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Abstract 

Synthetic aperture radar (SAR) technique has been researched and applied for many years 

as an important remote sensing method on variant of environmental or engineering 

applications. It can not only achieve the high-resolution radar images of the terrestrial 

surface independent of weather and sunlight illumination with air-born or space-born SAR 

systems, but it also draws many attentions for the near-range microwave imaging research 

due to its high-resolution and penetrating ability, such as through-wall radar and ground 

penetrating radar (GPR).  

However, a proper data acquisition standard need to be satisfied in order to generate the 

SAR imaging result, that the data need to be sampled well in both time/frequency domain 

and spatial domain under the Nyquist sampling criterion to prevent the result from imaging 

artifacts. In previous studies it is shown that such requirement is not practical to be achieved 

with the monostatic radar system because the scanning over a one or two-dimensional plane 

is necessary with high density depends on the operating frequency of the radar system. In 

order to simplify the data acquisition, multistatic array radar system is introduced. It can 

be used to acquire the dataset within a certain range without moving the system which can 

greatly enhance the data acquisition speed. But due to the limitation of hardware size or the 

cost, the spatial sampling may not fully satisfied the sampling criterion and imaging 

artifacts will be introduced to the imaging result.  On the other hand, in previous studies we 

found that the special dataset used for velocity estimation can only be obtained by bistatic 

radar system can also be acquired by multistatic array radar system. However, it is difficult 

for precise velocity estimation when the sampling is too coarse and such problem is also 

similar to the imaging problem.  

In the first part of this work, the imaging artifacts caused by the coarse sampling for near -

range microwave imaging is mainly discussed. In order to build a better relation between 

the radar signal and the SAR imaging result, we focus more on the time-domain SAR 

processing algorithm. The relation between time-domain SAR processing algorithm and its 

extensions to frequency-domain or frequency-wavenumber domain is well discussed. It is 

pointed out that the time-domain SAR processing algorithm has the best accuracy for near-

range imaging while the calculation cost is also the hugest. It is also shown that the main 

factors that related to the imaging artifacts includes the operating freq uency bandwidth, 

which is shown as the waveform in time-domain, the sparsity of the array configuration and 

the imaging algorithm itself. The experimental system that mainly used in this work is 

introduced with one and two-dimensional sparse array configuration which is also means 

that the operating frequency and the sparsity of the array is already fixed. Based on this, 

our main aim is to solve the artifacts problem with signal processing techniques.  
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Three different type of the approaches are introduced to suppress the imaging artifacts and 

enhance the imaging resolution; the first type of the method is based on modifying the SAR 

processing operator, three sub methods are introduced in Chapter 3. These methods are 

based on the observation during the time-domain imaging and applied as the weighting 

function or filter within the conventional processing operator. All of these methods do not 

require too much extra calculation and the selection of the processing parameter is easy 

which means that these methods are more robust than complicated algorithms. 

The second kind of method is based on solving the SAR processing as an inversion 

processing with least square approach. The least square solution with different 

regularization terms is well described in Chapter 4.  It is concluded that l1 norm regularized 

least square method for SAR processing can be a good approach for its high image 

resolution and the ability of artifacts suppression. It is also pointed out that compressed 

sensing based SAR imaging method is just a special case of the l1 norm regularized least 

square method. Furthermore, some improvements and suggestions on solving l2 norm 

regularized least square method are also discussed.  

The third type of the approach is a practical method that can enhance the conventional SAR 

imaging result. Based on the idea of the spatial filtering and pulse compression, we 

proposed to use the deblurring filter technique to remove the imaging artifacts caused by 

the sparse array. Mathematically we can obtain similar result with the least square SAR 

processing method. And since the deblurring filter  is applied as a spatial variant local filter, 

the calculation is simplified by using the filtering instead of the iterative algorithm which 

can be a great benefit comparing with the least square SAR processing technique.  

As for the velocity estimation problem, it is pointed out that this is similar to the SAR 

imaging problem but more practical. I proposed three advanced methods for the high precise 

velocity estimation with limited number of antenna elements  which includes: An 

interpolation approach to reconstruct the common-mid point (CMP) dataset, a practical 

method based on the cross-correlation of two CMP datasets for simultaneous velocity 

estimation, and the velocity estimation method based on l1 norm regularized least square 

method. It is demonstrated that the real value of the velocity may still difficult to be 

estimated, while the slight velocity changes can be detected much easier and precisely with 

the proposed method.  

In the end I introduced the multistatic array GPR system YAKUMO that is developed by 

our laboratory in 2012 for the large-scale environmental or engineering applications. The 

performance for the large-scale subsurface imaging is demonstrated with a field experiment. 

And the application for the airport taxi-way pavement inspection is mainly introduced with 

the precise velocity estimation techniques that I have introduced in Chapter 6. It is proved 

with the simulated dataset and the real dataset acquired with YAKUMO system at a model 

of airport taxi-way that the thin crack within the pavement can be detected with the slight 

velocity changes. The velocity profiles are also generated with the acquired dataset.
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Chapter 1 Introduction and background 

1.1 Background 

1.11 Application of Synthetic aperture radar (SAR) techniques  

Synthetic aperture radar (SAR) is a powerful remote sensing technique that can provide 

high-resolution radar images of the terrestrial surface independent of weather and sunlight 

illumination. 

The concept of synthetic aperture radar (SAR) was proposed by Carl Wiley of Goodyear 

Aerospace in 1951 [1] and the first practical fully polarimetric air-born SAR system is 

demonstrated in 1984 [2]. The SAR technique developed fast in recent decades and many 

new data acquisition modes and processing techniques have been successfully demonstrated, 

such as multi-looking-aspect SAR [3] circular SAR [4], bistatic SAR [5] and so on. These 

techniques are widely applied to different kind of environmental applications such as forest 

biomass estimation, hydrology, water resources measurements, land subsidence monitoring, 

agriculture management, geophysical and biophysical parameters inversion, natural disaster 

monitoring and so on [6][7]. 

1.12 SAR technique for near-range imaging with ultra-wide band (UWB) signal 

Besides the SAR techniques that applied for far-field mapping, its potential on near-field 

imaging ability also attracts attention of researchers in different domains [ 8][9][10]. The 

far-field SAR technique is more like the optical photograph that the imaging res ult is 

obtained by a narrowband microwave imaging system, hence the distance will be collapsed 

onto the image plane and such imaging result is known as angle -angle image. While for 

near-range microwave imaging, much wider frequency bandwidth can be applied  since the 

interference with other microwave system can be controlled. By employing a signal with 

bandwidth exceeding the lesser of 500 MHz or 20% of the center frequency, an UWB 

imaging system allows the imaging of both angular domain but also depth infor mation [11]. 

Due to the penetrating feature of the electromagnetic wave, it is possible to image the 

targets that hidden behind or within the certain medium and this is consider to be one of 

the most important feature of near-range microwave imaging. For example, it can be used 

for the security applications such as concealed weapon detection (CWD) or thorough -wall 

radar [12][13]; the main aim of such application is to detect the targets that hidden inside 

the cloths or baggage, or the targets behind the wal ls at a certain distance. There are already 

many existing technique or products that are already applied in screening and surveillance 

applications. Microwave imaging technique is also applied for medical diagnosis especially 

for breast cancer detection [14][15]. The main attractions of using microwave is due to the 

harmless nature of microwave at low radiation level and the relatively lower cost comparing 
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to the existing medical screening techniques such as computed tomography (CT) or 

magnetic resonance imaging (MRI). Due to the limitation of the microwave property the 

microwave imaging has lower accuracy comparing to the existing medical techniques but 

the main aim of applying such technique is to assist the existing technique to reduce risks 

for early-stage patients [16].  

The main activity and research work in our laboratory is focusing on the environmental or 

engineering of the microwave imaging. It is mainly related to the ground penetrating radar 

(GPR) systems [17][18]. GPR is a powerful tool used for subsurface exploration, 

characterization and monitoring. It is widely used in environmental and engineering 

applications, e.g. archaeological investigation, unexploded ordnance(UXO) and land mine 

detection, groundwater table localization, nondestructive testing (NDT), ice sounding, cave 

and tunnel detection, etc. It is a non-destructive detecting method that has the highest 

resolution among other method for subsurface imaging. Here we should notice that although 

the system is named as GPR, it does not limit  its applications. In above I mentioned about 

the microwave imaging techniques applied for medical or thought -wall radar, but from the 

view of the system they have no difference with the GPR system and most of the signal 

processing techniques are also similar. The main difference is just the operation frequency 

bandwidth which specific its application. In previous research work we developed different 

GPR systems such as the ALIS system [19] hat combined GPR system together with the 

metal detector, it is specific system for the landmine detection; the 3DGPR system that we 

developed together with the university of Miami, which is combined GPR system with a 

high accuracy position system for the precise 3-dimensional GPR data acquisition [20].  

With both experimental experience of our previous GPR system, and some reports of the 

previous application of microwave imaging, there is always a problem of the data 

acquisition speed. In order to generate the radar imaging result, the data have to be sampled 

under certain requirements. A straightforward way of acquiring the dense dataset is 

scanning with a single transceiver radar system together on a certain platform and such data 

acquisition is known as monostatic data acquisition. This is one of the most conventional 

way for radar data acquisition due to its low cost and dense data acquisition for air -born 

SAR system. However, the disadvantage of this system is also obvious especially for the 

near-range microwave imaging, when we suppose to acquire the dataset on a 2 -dimensional 

plane, the data acquisition along the survey direction is convenient because the current 

hardware can acquire the dataset with tiny time interval and the data can be acquired densely, 

while the data acquisition in orthogonal direction will be a problem. For example, if we 

want to acquire the dataset with 5 mm interval of a 1 by 1 meter square, each radar scan 

can be fast, but we have to scan for 200 times. For the scientific research such data 

acquisition is acceptable, however it is difficult to achieve the real-time data acquisition 

for the practical applications of the system. In this case, using multiple radar elements 

together can be a better solution. 
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1.13 Array radar system and MIMO 

 

It is obvious that by increasing the antenna elements on the platform can greatly reduce the 

data acquisition time. For example, if we consider the example that I mentioned in previous 

section, we can place a set of transceiver antenna pairs with 5 mm interval on the platform, 

we can finish the data acquisition with only one scan. And such straightforward approach 

has already applied to some medical scanning systems and GPR systems in previous 

research works [21][22][23]. However, such approach can hardly full fill the requirements 

of practical applications due to the limitations on hardware. Hence the next technological 

step is to apply the multiple-input multiple-output (MIMO) technique for array radar system. 

By using the combination of different antenna transmitter and receiver pairs and the digital 

beam forming technique it is already shown that the high resolution can be achieved with 

limited number of the antenna elements [24]. Many related works have already published 

and there are mainly two types of problem that attracted many researchers, the hardware 

design and the signal processing techniques [25][26]. It is already shown that by optimizing 

the antenna array the sidelobe can be greatly reduced and less antenna elements maybe 

required [27]. However here we should notice that the MIMO system is actually a  kind of 

radar technique based on hardware synchronization, it may trigger several transmitters 

working together to realize the beam-forming of the radar signal. There is another similar 

data acquisition method that is known as multistatic data acquisition , it use only one 

transmitter at the same time so it does not consider the problem of the interference of 

different antenna. The beam forming is done by only signal processing technique and such 

technique is very similar to the seismic data processing which is known as the prestack data 

processing. The concept of the MIMO and multistatic is similar, while depending on the 

hardware design the processing of the signal can be different. More discussion on the effect 

of the different data acquisition will be given in Chapter 2. 

In previous research work, comparing with the papers that related to the system design of 

the array system, there are not so many papers focus on the signal processing techniques 

with the multistatic system especially for the near-range imaging systems. Most methods 

or concepts are based on the far-field SAR techniques which is based on the frequency 

domain signal processing techniques [28][29]. There are also methods that are borrowed 

from other domain such as ultrasonic imaging or seismic imaging but the number is much 

smaller than the research on the far-field imaging techniques [30][31]. In general, the near-

range imaging is still not attract much attention for the researchers working on microwave 

engineering domain. I think more detailed discussion towards the near-range imaging is 

still necessary and this is also the main topic of this work.  
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As I have mentioned above, such MIMO or multistatic array system is considered to be very 

useful for near-range microwave imaging system since it can provide high resolution image 

with limited number of the antenna elements and the array system make the real -time data 

acquisition possible. There are already some projects and product that have already 

published at different groups [32][33][34]. In our group we focus more on the development 

of the multistatic system, and a multistatic array GPR system name YAKUMO is already 

developed in 2012 for the environmental applications [35][36]. The main advantage of our 

system is the realization of the real-time data multistatic data acquisition of the 8 by 8 

transmitter/receiver pairs. It is already applied for different cases such as archaeological 

survey, disaster mitigation and the inspection application of the pavement. Recently, 

another array based GPR system is also under investigating for the wooden structure 

inspection of the Japanese type wooden houses [37]. 

1.2 Research objective 

As I have reviewed in above, currently there is still no so many researches that focus on 

the signal processing or imaging techniques of near-range imaging with the sparse array 

radar system. The previous research mainly based on the far-field SAR imaging technique 

that is based on the far-field assumptions and the targets are always point -like target, for 

the variant near-field imaging applications the condition may not satisfied. On the other 

hand, I think that the imaging techniques based on the frequency domain is not clear for the 

imaging applications since our real world is not in frequency domain but in time-domain, 

in another word, it is not easy to correlate the frequency domain signals with the physical 

model that we want to image while it is much easier to use the time-domain signal.  

In this research work, I will mainly focus on the signal processing technique that based on 

the array radar system for the near-range imaging. There are mainly two topics will be 

discussed in this work: the first goal is the improvements of the imaging processing with 

the sparse array system; secondly is the development of the special array system for extra 

information extraction. 

In order to achieve a straightforward relation of the radar signal and the imaging result, I 

will mainly describe the imaging process in time-domain. The relation between the time-

domain imaging and frequency domain imaging will be clarified in Chapter 2. It is already 

described that sparse array will cause strong sidelobe and by optimizing the antenna 

configuration the performance of the imaging results can be improved. However, there will 

be still many imaging artifacts left especially for the near-range imaging cases and these 

artifacts are only caused by the imaging algorithm or the discretization of the signal. Since 

there are already plenty of the research works that improve the performance of the hardware 

or system design of the sparse array, we will mainly focus on solving the artifacts that are 

caused during the imaging processing. Furthermore, the imaging resolution or imaging 

quality can be enhanced by removing the imaging artifacts. However, for different 
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situations or conditions a certain processing method may not enough to solve all the 

problems. I think it is necessary to investigate multiple approaches from different point of 

view to achieve our goals. 

On the other hand, by using the array configuration of antenna elements. The different 

variation of the antenna configuration can be investigated, the antennas can be placed for 

special data acquisition hence the extra information can be extract ed. In later part of the 

research work I mainly focus on the electromagnetic wave propagation velocity estimation 

within the certain medium. In our laboratory we have already carried on the  similar research 

many years ago. However the previous work is limited on pure research work and the 

technique is not applied for real application due to the limitation of the system. One of the 

main problem is also similar to the sparse array imaging system that due to the coarse 

sampling the conventional processing is not suitable for the coarsely sampled dataset. In 

our work, I hope I can fully use the limited antenna elements by using advanced signal 

processing technique. 

1.3 Structure of the thesis 

  

The structure of this thesis is shown in Figure 1.1. The dissertation is organized mainly into 

three parts. The first part is presented in Chapter 2 that the general problems of using the 

sparse array for near-range imaging is clearly described. Also the experimental equipment 

that is mainly used in this work is introduced, the effects on the imaging result which is 

determined by the system is also summarized in this part.  

The second part is focusing on solving the imaging problem of using sparse array system 

by different processing approaches. I proposed mainly three different type of approaches to 

improve the imaging results in Chapter 3 to 5. These different type of approaches can be 

applied independently for the imaging processing. In each chapters I also introduced a few 

sub methods that belongs to a same type of approach. The detailed information will be given 

in below. 

The last part is focusing on the velocity estimation with array configuration. The problem 

is similar to the sparse array imaging problem that I proposed several approaches to estimate 

high accuracy velocity information with limited number of the antennas in Chapter 6. And 

in Chapter 7 I introduced our YAKUMO array GPR system and further discussed on the 

velocity estimation on pavement inspection application.  
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Figure 1 .1 Struc ture  of  the  thesi s  

 

Hereafter, the description of each chapter is provided:  

Chapter 2: Since most of the proposed approaches in this work is based on the time-domain 

signal processing technique, a detailed introduction about the SAR processing in time-

domain is given in this part. The relation of time-domain SAR processing and its 

development in frequency domain that is widely used in SAR research is well discussed. 

Based on this, the main factors that affect the near-range imaging result of sparse array 

system are summarized. The factors that decided by the system hardware are introduced 
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and some small improvements on antenna configuration design are introduced together with 

the experimental system and the antenna configurations that are used in la ter chapters. 

Chapter 3: In this chapter the first type of SAR processing approach is introduced. There 

are three sub methods included in this chapter. In general, all the three methods are 

improved SAR processing method by using a filter or weighting fact or within the 

conventional SAR algorithm. These factors includes a limitation on the processing aperture, 

a local low-pass filter and a semblance function as a weighting factor. They used some 

known physical fact as the factor to reduce the generation of t he imaging artifacts. A 

comparison of these methods is also given in the end of this chapter to describe the 

advantage and disadvantage of different method. As a summary, this kind of approach is 

easy to apply and the effect on the imaging result is easy to understand hence these methods 

can be applied for the real acquired dataset robustly and these method can be considered to 

combine with other complicated methods as I introduced in later chapters. 

Chapter 4: In this chapter a half inversion based method is introduced for the SAR 

processing algorithm. The core idea is to solve the SAR processing problem as a least square 

problem. A conventional way of solving the least square problem is under the ℓ2 norm 

regularization and this method is known as the least  square migration in seismic research. 

I applied this method to near-range imaging problem to suppress the artifacts caused by the 

coarse sampling. In order to promote the sparsity and further suppress the artifacts I also 

used the ℓ1 norm regularization term and it gives good imaging results for both simulation 

and experimental dataset. Theoretically, I also proved that the solution of ℓ1 norm 

regularized least square method is just a general solution of the CS method that applied to 

SAR imaging. Furthermore, I generalized the least square problem in a more general form 

and some trials on improving the conventional least square method are also well discussed 

in the end of this chapter.  

Chapter 5: In Chapter 4 I proposed to use the least square method to solve the accurate SAR 

imaging result. It is shown to have good performance with this approach, however the 

mathematic complicity is a huge problem for the practical use of this method. The pulse 

compression in time-domain is reviewed and a solution based on ℓ1 norm regularization is 

proposed in the beginning of this chapter. By combing the pulse compression method with 

the idea of deblurring filter introduced in imaging processing research, an imaging 

processing based deblurring filter method is proposed to reduce the imaging artifacts caused 

by the coarse sampling. The feature of the proposed method is well discussed and 

theoretically the estimated result of the least square solution can be achieved without the 

iterative calculation. However, the experimental  result shows that this method is still 

difficult to apply for the real data which is far different from the idea data.  
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Chapter 6: The velocity estimation technique with bistatic radar is reviewed in the 

beginning. It is also pointed out that the fact of the velocity estimation is similar to the 

SAR processing. Different methods are introduced to use the limited number of antennas 

for the velocity estimation. An interpolation method and the ℓ1 norm regularized least 

square method are introduced for high accurate velocity estimation. Also a practical 

approach that based on cross-correlation of two different observation is also introduced for 

single layer structure monitoring. The slight velocity/thick ness changes can be detected 

simultaneously.  

Chapter 7: The multistatic array GPR YAKUMO is introduced in this chapter. It is designed 

for the large scale engineering and environmental applications. The antenna configuration 

with different antenna polarization and its effects are well discussed. The performance  of 

the system for the large-scale 3-dimensional data acquisition is demonstrated with a field 

experiment example. The continuous multistatic data acquisition made it possible for the 

large scale subsurface velocity estimation together with the methods tha t are introduced in 

Chapter 6. A case study on airport taxi-way pavement inspection with the YAKUMO system 

is demonstrated in detail. I introduced a method to detect the thin cracks within the asphalt 

layers by precise velocity estimation. The results are well discussed with the data acquired 

at the model of the taxi-way. 

Chapter 8: This chapter summarized the main results of the thesis together with some 

discussions. Some recommendation of the future work is also included.  
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Chapter 2 Time-domain imaging of UWB sparse array radar 

system 

2.1 Introduction 

In the past, there are mainly two types of theory for the array radar imaging; the 

monochromatic theory and the impulse theory. For the researchers who are mainly working 

on SAR techniques the most classical formulation is based on narrowband far -field 

assumptions. It states that the elements of the uniform array must satisfied to Nyquist 

criterion that the element interval should less than half wavelength [1]. The mathematical 

formulation can be greatly simplified and easy to understand, the details can be found in 

different articles [1] - [3]. The other type of theory is based on the ultra-wideband impulse 

theory which is very similar to the imaging theory for seismic exploration or ultrasound 

imaging [4][5]. 

In previous research works, some main features of the near-field array imaging are already 

well described in [2][6]. However, most of the conclusions are based on the far -field point-

like target. When we consider the imaging quality of the distributed targets that are located 

within the near-field, the situation will be more complicated. For example, the analytical 

analysis in frequency domain will be very complicated, and also the PSF (point spreading 

function) of the distributed target is spatial -variant so that the stacked results of many PSF 

functions are difficult to predict [7].  

In this study, I will analyze some of the main factors that will influence the imaging result 

of distributed targets in near-field. Since the response of the frequency domain is difficult 

to analysis, I will mainly focus on impulse theory analysis. One of the key factor that affects 

the imaging result is the bandwidth and the center frequency of the transmitted signal and 

it is already well concluded in [8]. Here I will evaluate this issue from the view of the time-

domain waveform and its effect on the distributed targets. Secondary, the distribution of 

the antenna elements will strongly affect the imaging result, for the point target it is also 

will summarized in [9]. Here I will focus more on the redundancy of the antenna elements 

and the effect of the distributed targets. Finally, another main problem of the near -field 

imaging is that the strong artifacts may appear due to the coarse spatial sampling [10]. 

Similar problem is also well discussed for imaging processing, ult rasound imaging and 

seismic imaging issues and it is also pointed out that this issue is also closely related to the 

feature of the wavelet [11] –[14]. 
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2.2 Comparison of SAR processing in different domains 

2.21 Time-domain SAR processing and forward modeling 

SAR processing is now widely used for both near-range and far-range microwave imaging 

systems. Originally it comes from the medical imaging and seismic exploration, and it 

include many different extended methods and sometimes for a same algorithm it ca n be 

named differently in other domains. Here I mainly focused on the most fundamental 

algorithm which is known as SAR processing. It also called back projection or diffraction 

stacking in different cases. Equation (2.1) and (2.3) shows the 2-dimensional time-domain 

and frequency domain of the SAR processing. In this work I will mainly focus on the time-

domain of the processing. Here x, y and z is the coordinates of the imaging points and 𝑥𝑔 

𝑦𝑔 is the position of the transmitting/receiving antenna. r is the distance between 

transmitting/receiving antenna and the imaging point  and v is wave propagation velocity in 

a certain medium. Equation (2.1) can be used for both monostatic case and multistatic case. 

The monostatic SAR processing sketch is shown in Figure 2.1.  

 

Figure 2 .1  The schematic diagram of the 3-dimensional SAR processing 

The physical meaning is quiet straight forward that is to assume that every imaging point 

can be a potential target, by calculating the travel time hyperbolic in the data domain, we 

can summing all the amplitudes along this trajectory onto the imaging point. When the 

imaging point really has a target, the summing energy can be enhanced so that we can get 

the real target position information from the radar signals. By changing the order of 

realizing the algorithm, we can also explain this processing as we spreading energy at each 

trace and arrival time on the hyperbolic trajectory.  
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𝑚(𝑥, 𝑦, 𝑧) = ∬ 𝑑(𝑡, 𝑥𝑔, 𝑦𝑔) ∙ 𝛿(𝑡 −
𝑟

𝑣
)𝑑𝑡𝑑𝑥𝑔𝑑𝑦𝑔 (2.1) 

𝑟 = 2√𝑧2 + (𝑥 − 𝑥𝑔)
2

+ (𝑦 − 𝑦𝑔)
2

 (2.2) 

Here we should point out that from (2.1) we can find that the position of the antenna element 

can be either regularly distributed or not. However, due to the bandwidth of the signal, we 

need to follow the spatial Nyquist sampling criterion that at least two points need to be 

sampled within one wavelength, otherwise spatial aliasing will appear.  

Since the SAR processing can be seen as a simple inverse  method, it is straightforward that 

there is also forward modeling exists. A simplified forward modeling of UWB pulse system 

based on ray tracing can be described as (2.3)  

𝑑(𝑡, 𝑥𝑔, 𝑦𝑔) = ∬ 𝑤(𝑡) ∗ 𝑔(𝑥, 𝑦, 𝑧) ∙ 𝑚(𝑥, 𝑦, 𝑧) ∙ 𝛿(𝑡 +
𝑟

𝑣
)𝑑𝑡𝑑𝑥𝑔𝑑𝑦𝑔 (2.3) 

Where g include all the wave propagation factors such as radiation, dispersion and the effect 

of the antenna radiation pattern. w is the simulated waveform and we assume it is constant, 

usually we can use a Gaussian pulse or its second differential as the input because it is easy 

to control. Comparing to the (2.1) we can find that SAR processing is under the assumption 

of a station waveform, then the SAR processing is just the adjoint of the forward modeling 

given in (2.3). I will discuss more about this issue in later chapters.  

There are actually many different ways for the microwave simulation, for example finite -

difference time-domain (FDTD) is one of the most widely used numerical modeling 

techniques to simulate electromagnetic wave propagation for different cases [15]. Since 

FDTD algorithm explicitly solves Maxwell's curl equations using central finite differences 

in both time and space domain, it can solve different problems such as modeling the antenna 

elements or wave propagation through the medium accurately. However, FDTD forward 

modeling will make the imaging problem much more complicated because it include so 

many factors that is not considered in SAR algorithm. Since we are mainly focus on the 

imaging problem of SAR algorithm, I will use simple ray tracing for the forward modeling 

in this work. And I will pay more attention to make the acquired dataset more like the idea 

dataset with some preprocessing. For example, we can use the trace balancing technique 

based on antenna radiation pattern to make the energy more balanced and use pulse 

compression technique to make the waveform more like a pulse so that the input dataset 

satisfied more to the SAR processing assumptions which I will further discuss in Chapter 

5. 

G  
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2.22 Diffraction stacking and SAR processing  

In previous section I have introduced the time-domain SAR processing that is known as the 

diffraction stacking. And I mainly explained its physical meaning in time-domain that is to 

assume that every imaging point can be a potential target, by calculating the travel time 

hyperbolic in the data domain, we can summing all the amplitudes along this trajectory onto 

the imaging point. When the imaging point really has a target, the summing energy can be 

enhanced so that we can get the real target position information from the radar signals. And 

the equation of its time-domain and frequency domain has given as (2.4), for simplicity 

here I only show the 2-dimensional equations. 

𝑚(𝑥, 𝑧) = ∬ 𝑑(𝑡, 𝑥0) ∙ 𝛿(𝑡 −
𝑟

𝑣
)𝑑𝑡𝑑𝑥0 (2.4) 

𝑟 = 2√𝑧2 + (𝑥 − 𝑥0)2 (2.5) 

𝑚(𝑥, 𝑧) = ∬ 𝑑(𝜔, 𝑥0)𝑒
𝑗2𝜔𝑟

𝑣 𝑑𝜔𝑑𝑥0 (2.6) 

Actually in previous explanations I explained this approach mainly from the knowledge of 

the seismic exploration and some of the terms and ideas are slightly different from the 

descriptions of the researchers working on electromagnetics or SAR applications . In this 

part we will further investigate some its expanded versions of the time-domain SAR 

processing and summarize its relation to the methods that build from the view of Maxwell 

equation. 

First of all, based on (2.6) we can simply introduce the wave number that  

k =
𝜔

𝑣
 (2.7) 

and then (2.6) can be rewritten in terms of integration as  

𝑚(𝑥, 𝑧) = ∬ 𝑑(𝑘, 𝑥0)𝑒𝑗2𝑘𝑟𝑑𝑘𝑑𝑥0 (2.8) 

Actually now (2.8) already point out that the diffraction stacking is equivalent to the range 

migration technique or synthetic aperture focusing technique introduced in [16]. 

Furthermore, we can also apply the Fourier transform on spatial domain to get the 2 -

dimensional Fourier transform of (2.9) as  
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𝑚(𝑥, 𝑧) = ∬ 𝑓(𝑘, 𝑘𝑥)𝑑(𝑘, 𝑘𝑥)𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑧𝑧𝑑𝜔𝑑𝑘𝑥  (2.9) 

𝑘𝑧 = √4𝑘2 − 𝑘𝑥
2 (2.10) 

𝑓(𝑘, 𝑘𝑥) = 𝑒𝑗𝜋/4𝑘√2/(𝑘𝑧
3𝜋) (2.11) 

Here we need to notice that 𝑓(𝑘, 𝑘𝑥) is an amplitude factor where √𝑧 has been neglected. 

By substituting the frequency wavenumber k by the integration in 𝑘𝑧 (2.11) can be recast 

as a double Fourier transform as 

𝑚(𝑥, 𝑧) = ∬ 𝑓(𝑘, 𝑘𝑥)
𝑘𝑧

√𝑘𝑥
2 + 𝑘𝑧

2
𝑑(𝑘, 𝑘𝑥)𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑧𝑧𝑑𝜔𝑑𝑘𝑥 (2.12) 

This is known as the Stolt migration method that has advantages in calculation because it 

can be done with FFT algorithm [17]. However, please notice that there is already some 

simplification and it requires data to be interpolated and resampled according to a 

rectangular grid in k domain which may introduce problems especially in sparse array case.  

Furthermore, if we ignore the amplitude factor, it is equivalent to the conventional SAR 

imaging algorithm that presented in [18] . 

Here I should mainly point out that actually time-domain migration is the relatively accurate 

imaging method. While frequency domain SAR methods that widely used for SAR 

applications are achieved by neglect some weighting factors that is not important under 

some certain cases such as far-field approximation or Born approximation so that the large 

scale calculation can be done much easier.  

We may also apply some weighting factors to further compensate the amplitude changes 

due to the wave propagation or the imaging angle problem and one of the popular approach 

is known as the Kirchihoff migration [19]. However, in practical experiment or real 

applications, we always found that the complicate algo rithm may has worse performance 

comparing to some simple methods. I think it is because that we sometimes may not 

understand the effect of the main factors. For a simple example, when we use an antenna 

that has a narrow radiation pattern for the SAR processing for a long range imaging, we 

need to limit the imaging aperture during the processing. Of course we can use Kirchihoff 

migration because it also somehow compensate the angle effect, but the result may not good 

than just limit the imaging aperture during the SAR processing according to the information 

of the antenna radiation pattern. For a specific imaging system we always need to find out 

what is the main factor for the imaging and chose the imaging condition properly. It always 
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give better results than using a complicate algorithm for a specific issue which is not related 

to our cases. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2 .2  A 2 -dimens ional  example for  the  imaging ar t i fact s  caused by the coarse  

sampl ing,  (a)  A 2 -dimensional  ver t ica l  s l i ce  with  a  point  scar t t erer  in  the  middle;  (b)  

Convent ional  SAR imaging resul t  of  (a ) ;  (c )  Randomly removed 50% of  the  t races  in 

(a) ;  (d)  Convent ional  SAR imaging resul t  of  (c ) .  
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2.23 Relation between SAR imaging and the interpolation  

In previous section I point out that frequency SAR processing is performed by some 

simplification and transformation of time-domain SAR processing. In another word, SAR 

processing result is closely related to the Fourier transform which means that some 

numerical problems in Fourier transformation will also appear for SAR processing in time-

domain. One of the main effect is the sampling problem in Fourier transform. Nyquist 

sampling criterion rules that for a period we need at least two sampling points. Here we 

also need to notice that this is the most fundamental rule that it indicates in ideal cas e we 

can recover the signal by Sinc interpolation [20]. However if we only have two samples it 

is still very difficult to recover and practically we need 10 samples or even more to pre vent 

the numerical problems happen. Furthermore, if we think about the irregular sampling the 

situation will be more complicated.  

For the current radar system, the sampling in the time axis is quiet advance and we can even 

get hundreds point per period and there is almost no problem for time-domain signal 

processing. Therefore, as we explained above, the SAR processing is very similar to a 2 -

dimensional Fourier transform which means that we also need to follow the Nyquist 

sampling criterion in spatial domain. And vice versa we need at least two sample points 

within a wavelength. It means that for a transmitted signal with 3 GHz center frequency we 

need the distance between antenna elements less than 5 cm and if we think about a 

monostatic system the distance between each transceiver should less than 2.5 cm. Also such 

condition will be straighter for the UWB signal in near-field case as I mentioned before. In 

this case, if we want to design a 2-dimensional array for quick scanning, large number of 

antenna elements will be required. And also as I mentioned it is just the minimum 

requirement, there will be many problems happen without further interpolate the dataset. 

As I will mainly introduce in later section, the coarse sampling may cause severe problem 

during the SAR processing. As it shown in 1-dimensional case, the aliasing components 

will turn into artifacts after the SAR processing.  

In early stage of this research work, I proposed an interpolation algorithm to use 3-

dimensional interpolation method to interpolate the coarse dataset onto a uniform grid first 

and then do the SAR processing. The method is based on projection onto convex sets (POCS) 

and frequency-wavenumber zone-pass filtering to reconstruct the image from sparsely 

sampled data that violates the Nyquist criterion [21]. This method can fully use the 3-

dimensional information and works well with irregularly sampled data. Comparing to other 

iterative interpolation method, the proposed method needs much less iterations and can 

avoid the aliasing.  

And in later chapters I will mainly discuss how we can reconstruct the spatially sparse 

dataset to SAR image directly. This two method is somehow similar approach because SAR 

processing is just a special way to interpolate the acquired dataset. In Chapter 4  I will also 

introduce that SAR processing is just an adjoin calculation of the simple forward modelling. 
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It means that we can also apply the forward modeling to the SAR imaging result to 

reconstruct the acquired dataset in any required acquisition ways. I f we forward modeling 

the SAR results on a uniform grid, it is just the interpolation the coarsely sampled data on 

a uniform grid. And based on the similarity of the SAR processing and the Fourier transform, 

we can conclude that SAR processing can be consider as a multi -dimension interpolation 

method that based on Fourier transformation.  

While doing the iterative interpolation processing we are actually picking the unaliased 

frequency components at each iteration and reducing the high frequency aliasing 

components so that the dataset can be reconstructed. After that, the reconstructed dataset 

includes less aliasing during the conventional SAR processing so we can get better imaging 

result. This can be a good way to get the interpolated 3-dimensional data cube and we can 

directly check the horizontal slice of the data cube to find out the target we want. And 

mostly we do not have to worry about the artifacts caused by the SAR processing that may 

mislead us.  

However, this processing is somehow a dumping processing and it is still time consuming.   

As I explained above, I think it is possible to find a way that dealing with artifacts during 

the SAR processing so that we can directly get the imaging results.  

2.3 Data acquisition and array system 

2.31 Data acquisition of SAR system 

If we have multiple antenna elements, we can design any acquisition system that we want. 

There are mainly three different data acquisition methods; monostatic, bistatic and 

multistatic [22]. Here we should notice that these definitions come from the radar technique 

but it is slightly different because our target is not the moving target. The 2 -dimensional 

case of these acquisition methods are shown in Figure 2.3.  

If a transmitter antenna and a receiver antenna stay together as a transceiver, and we move 

it along a survey line. So that the data can be acquired at each position along this survey 

line. Such data is known as the monostatic data acquisition. Most of the air -born SAR 

systems and GPR systems are designed as monostatic system. This may be the most 

practical method for SAR data acquisition for its simplicity and flexibility. By fixing the 

antenna system on a platform we can acquire the dataset with different ways. However, less 

information can be extracted because there is only one propagation path between target and 

the transceiver at each position. For example, if we have multi targets, the targets close to 

the system may block the other targets behind it. Figure 2.4 shows a simulation example of 

monostatic SAR imaging. We simulated a point scatterer at 0.5 m away and we used the 

Gaussian pulse with 3 GHz center frequency as the source. The imaging aperture is 1.2 m 

long and the spatial sampling interval is 5 cm.  
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(a) 

 

(b) 

 

(c) 

Figure  2 .3  Data  acquisi t ion  with  dif fe rent  an tenna  configura t ions ,  the  red  t r iangle  

indica tes  the  t ransmi t t ing antenna and the blue  one indicates  the rece iving antenna ,  

(a)  monostat ic  data  acquis i t ion;  (b)  bi s ta t ic  da ta  acquis i t ion;  (c)  mult is tat ic  da ta  

acquis i t ion .  
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(a) 

 

(b) 

Figure 2 .4 2 -d imensional  s imulat ion  data  of  monostat ic  data  imaging,  (a)  s imulated 

radar  prof i le ;  (b)  convent ional  SAR imaging resul t  of  (a ) .  

 

 

(a) 

 

(b) 

Figure 2 .5 2 -d imensional  s imula t ion  da ta  of  bis ta t ic  data  imaging,  (a)  s imulated  radar  

prof i le ;  (b)  convent ional  SAR imaging resul t  of  (a ) .  

If we fix a transmitter antenna or receiver antenna while moving another one along a survey 

line, it is known as the bistatic system. From the view of the information quantity, there is 

no extra information comparing with the monostatic case if we place the antenna elements 

as in Figure 2.5 (a) and Figure 2.5 (b). Actually, if we think about the SAR processing and 

assume the target is a point scatterer or a horizontal reflector, the resolution will be worse 
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than monostatic case as it shown in Figure 2.6. Because under such situation we can actually 

consider a transceiver in the middle of the transmitter and receiver antenna is equivalent 

two this antenna pair. Hence the imaging aperture is actually half of the monostatic case 

and the spatial sampling interval is also half. We may also notice in Figure 2.5(b) the 

imaging result is affected the shift of the imaging aperture. 

 

(a) 

 

(b) 

Figure  2.6  2 -d imens ional  SAR imaging resul ts  wi th  di f ferent  configurat ion ,  (a)  

monostat ic  imaging resul t ;  (b)  mul t i s ta t ic  imaging resul t .  

Multistatic acquisition is similar to bistatic case, but after the bistatic acquisition we will 

also move the fixed antenna to other position and repeat the data acquisition. Here I should 

emphasis that multistatic acquisition is not equivalent to the multi -input multi-output 

(MIMO) data acquisition because we do not transmit signals at same time with multi 

transmitters. We should always consider the situation that there is only one source working 

at one time. In the case the bistatic data is just a part of the multistatic data. If we consider 

the SAR imaging of the multistatic case, we are actually stacking all the bistatic SAR results 

together. Since each bistatic SAR result has the different imaging aperture, we can expect 

that the trend of the artifacts or noise of each bistatic SAR result will be different. However, 

the response form the main target is more constant. While stacking all the bistatic SAR 

results together, the response from the main target will be enhanced and the artifacts or 

noise can be suppressed. In Figure 2.6 I also shows the imaging result of the multistatic 

case and monostatic case with same aperture width, In order to compare the details I used 

dB scale to show the results here. We can found that the wing shape imaging artifacts are 

reduced due to the stacking but the resolution is slightly worse than monostatic case. If we 

comparing the imaging aperture the resolution should be equivalent, practically, when w e 

do the stacking process the artifacts surround imaging target may blur the final results. 

Multistatic SAR processing is also known as the prestack migration in seismic exploration, 

and these features are also pointed out in [23].  
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In previous study, I did many works with monostatic system. As I mentioned in Chapter 1, 

it is widely used for the large scale imaging such as air-born SAR system or GPR survey. 

With the positioning system we can actually acquire dense dataset along the survey lines, 

however, the problem is that for the 2-dimensional survey we can acquire dense data on the 

survey lines but it is difficult to acquire dense data across the survey direction. So the 

monostatic system is still not enough for large scale 2-dimensional survey in near-field case 

such as GPR applications.  

Now if we consider the relatively small area for 2-dimensional survey, for example the 

wooden structure inspection that I introduced in Chapter 1. Same problem also happens if 

we use monostatic system for data acquisition. In this case, a straightforward idea is just 

make many transceiver pairs and arrange is along the cross direction of the survey direction 

so the 2-dimensional survey can be reduced to 1-dimensioal survey. Or we can do it even 

cleverer that make a 2-dimensional antenna array so we can acquire the data without moving 

the system. However, if we just simply put transceivers follow the Nyquist sampling 

criterion that elements spacing is less than half wavelength, then the cost may extremely 

huge. For example, if we want to make a 0.5 m by 0.5 m 2-dimensional array with about 6 

GHz center frequency, 0.05 m element spacing is required and it need more than hundred 

antenna elements. Also the size of the antenna will be another problem for producing such 

2-dimensional array. In this case we need better solutions for the 2-dimensional array design.  

 2.32 Experimental equipment and array configuration 

 

(a) 

 

(b) 

Figure  2 .7  SFCW radar  system for  our  exper iment .  (a)  Cont ro l  uni t  of  the  sys tem; 

(b)  combined sys tem wi th  a  1 -d imensional  l inear  sparse  a rray.   

Figure 2.7 shows the experimental equipment that is using for the experimental data 

acquisition for this thesis. It is a stepped frequency system that works from 3.81420 GHz 

to 8.0674 GHz. Here we should delight that the operating frequency bandwidth is directly 

related to the time-domain waveform. More detailed conclusions will be given in section 

2.41.The system can support eight transmitters and eight receivers work together as a 
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multstatic system. As the Figure 2.9(7) shows we can arrange the antenna elements in 

different way as an array radar system. Currently we are using the vivalid antenna for the 

data acquisition and a trace signal with one of the transceiver pair is shown in Figure 2.8. 

We put a metal sphere as the target and in Figure 2.8(b) we can observe the direct coupling 

at about 2 ns and the reflected signal from the metal sphere at about 6 ns. The wavelet of 

the reflected signal is complicated and we think it is caused by the drop of the high 

frequency components. Further discussion will be given in later section.  

 

 

(a) 

 

(b) 

Figure 2 .8  An acquired  dataset  wi th  a  t ransce iver  pai r  of  our  system,  (a)  f requency 

spec trum;  (b)  t ime -domain  s ignal ;  

In order for the quick data acquisition and to overcome the hardware limitation, we 

designed the sparse array systems as it shown in Figure 2.19. There are two kinds of the 

sparse array system that are used for the experimental data acquisition of this thesis, a 1 -

dimensional linear sparse array and a 2-dimensional sparse array. The conceptions of the 

sparse array design is already well discussed in previous research works [ 24] and our lab 

members designed these array system based on the mid-point assumptions that introduced 

in [24]. It assume there is a virtue monostatic radar located in the middle of a transceiver 

pair. For the 2-dimensional array case, the coverage area is 0.6 m by 0.6 m, and the 

imaging targets are considered to be within 0.5 m. In Figure 2.10 we plotted the middle 

point of each antenna pair. When the target is a plane reflector, the sparse array is 

equivalent to a monostatic array that has transceiver elements at these middle points. We 

can also find that these middle points is somehow uniformly distributed and there are 

some overlapped middle points included.  

 

 

4 5 6 7 8
55

60

65

70

75

80

85

90
TxAnt#=4, RxAnt#=5

f (GHz)

|S
2
1
| 
(d

B
)

0 5 10 15
-1000

-800

-600

-400

-200

0

200

400

600

800
TxAnt#=4 RxAnt#=5

t (ns)

re
c
e
iv

e
d
 s

ig
n
a
l



Chapter 2 
 

25 
 

 

(a) 

 

 

(b) 

Figure  2 .9  Two dif fe rent  sparse  ar ray conf igura t ions ,  (a)  1 -d imens ional  l inear  sparse 

array;  (b)  2 -d imensional  sparse array,  the red  crosses  indicate  the t ransmi t ters  and  b lue 

ci rcles  indica te  the  receivers .  

 

Here we should notice that the average interval between each mid-point is about 8 cm which 

is much larger than the half-wavelength of the operating frequency of our system, and this 

is the main problem that we need to solve for the imaging algorithm with this syst em. More 

discussion about this issue will be given in later sections.  
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(a) 

 

(b) 

Figure 2 .10  The  2 -d imensiona  sparse ar ray mid -points ,  (a )  d is t r ibut ion  of  the  middle  

poin ts  of  each antenna pair ;  (b)  the di s t r ibut ion  of  the  over lapped middle  poin ts .  

 

2.4 Hardware factors for multistatic near-range array imaging 

2.41 Effect of the waveform 

In general, the waveform is directly related to the frequency components of the signal. If 

we consider the SAR processing in time-domain, it is predictable that the spatial resolution 

and artifacts are closely related to the waveform of the signal. During the SAR processing 

we are actually spreading a waveform at a certain depth to an assumed hyperbolic trajectory, 

the cancelation or the summation of all the waveforms from different traces will decide the 

final imaging result. Figure 2.11 shows and simple case when the hyperbolic trajectory is 

above a horizontal reflector. It is straight forward that while the data is well sampled, the 

summed energy along this hyperbolic trajectory can be well canceled due to the positive 

and negative part of the waveform. When the spatial sampling is coarse, the energy along 

the hyperbolic cannot be canceled well and it is predictable that for the irregular sampling 

case this problem can be more severe. 
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(a)                                     (b) 

2 .11  The schematic diagram of imaging artifacts, (a) the summation hyperbola cross the properly 

sampled horizontal reflector; (b) The summation hyperbola cross the coarsely sampled horizontal 

reflector. 

As it concluded in [8], if we assume that the data is spatially well sampled and there is no 

noise. We can find that the resolution of the image is mainly related to the center frequency 

when the bandwidth is fixed, but at the same time the sidelobe will be enhanced. If we fix 

the center frequency, the sidelobe will be decreased and the resolution is constant while 

increasing the bandwidth. The time-domain signal analysis is more significant. For example, 

when we fix the bandwidth the signal pulse length in time-domain is fixed. And the 

mainlobe of the wavelet will be narrower if we increase the center frequency. When we do 

the SAR imaging, the sharpened mainlobe will provide higher resolution especially in the 

near-range. At the same time, the sidelobe of the time-domain wavelet will be increased. 

The simulated results of the PSF response of different waveform is shown in Figure 2.12 

(a) - (f). And the PSF response is generated with the sparse array that is shown in (g) - (i). 

Please notice that if the system is well sampled, these sidelobes will just cancel to each 

other. However, when the system is sparse, these energy cannot be canceled well and the 

pattern of the artifacts depends on the antenna elements distribution of the sparse array 

system. And these sidelobes can be seen as other reflection from different depth, then there 

will be a similar problem happens as shown in Figure 2.11. It suggests us that we should 

use simple waveform in time-domain for the imaging processing.  
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(a) 

 

(d) 

 

(g) 

 

(b) 

 

(e) 

 

(h) 

 

(c) 

 

(f) 

 

(i) 

Figure  2 .12  From the  lef t  s ide  to  r ight  s ide  shows the  s imulated  spect rum,  t ime -domain  

waveform and i t s  PSF response  of  di f ferent  f requency components ;  (a) (d)(g)  i s  the  

Gauss ian  s ignal  with  2  GHz center  f requency and 1  GHz bandwidth;  (b)(d) (e)  is  the 

Gauss ian  s ignal  wi th  5  GHz center  f requency and 1  GHz bandwidth ;  (c )(f ) ( i )  i s  the  

Gauss ian  s ignal  wi th  5  GHz center  f requency and 2.5  GHz bandwidth .  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure  2 .13  s imulated  3 -d imensional  imaging of  a  hor izontal  re f lec tor  a t  0 .47 m with 

sparse  ar ray;  (a )  ver t ica l  s l i ce  in  x  d irec t ion;  (b)  ver t ical  s l ice  in  middle  of  the  y 

direct ion;  (c)  hor izontal  s l i ce  at  sha l lower  depth  about  0 .35  m;  (d)  hor izontal  s l i ce  at  

the cor responded depth  of  the  horizontal  re f lector .  

When we think about the imaging of the distributed target, we can find that the imaging 

result is hard to be predict. For a certain antenna array, the PSF response is spatial variant 

and the final imaging result of a distributed target can be approximate t o many point targets 

distributed at different places. Which means that the final result is not only decided by the 

antenna array but also strongly affect by the target itself. And this is the main reason that 

sometimes the imaging distributed result does not follow the conclusions of the point target 

imaging. Because for a single point target there is no interaction from other targets while 

for the distributed target, the imaging will not only suffer from the artifacts caused by the 

sparse sampling but also suffer from the artifacts from the other targets at different position. 

Figure 2.13 shows one situation that imaging a layer reflection with the sparse array after 
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3-dimensional SAR processing. The target is a horizontal reflector at 0.48 m away and we 

can find this reflector is lightly distorted. And such distortion is less severe at lower part 

of the reflector. As I mentioned above, it is because that the lower part correspond to the 

sidelobe of the reflected wavelet and while spreading the energy from this part of the signal, 

it will mainly distort the upper part of the imaging area.  

Another problem is that we can find when we add other target in shallower region, the 

artifacts from the lower reflector will cover the reflected signal from the upper targ et. Such 

problem always happen for the near-range inspection of the inner wall structures.  

As the example shows, firstly we should try to use simple waveform as the transmitted 

signal so that less artifacts will be introduced due to the sparse sampling. He re we should 

emphasis that only for the sparse array the simple waveform is important because the 

fluctuations can be well canceled if we use spatially well -sampled dataset. Then we need 

to try to reduce the artifacts that introduced in shallower region of  a distributed target.  

As it shown in Figure 2.11, we can find that when the bandwidth is close to center frequency 

the waveform can be quiet simple because there is only one notch appears. However, such 

idea signal is difficult to be achieved due to the limitation of the transm itted frequency 

band or the hardware and antenna. In this case we may need signal processing methods such 

as deconvoluiton or wavelet shaping filter to improve the signal waveform. 

2.42 Effect of the Antenna redundancy  

As it also mentioned in [8], for the far-field antenna array design it is common to calculate 

the array response by convoluting the transmitting array and the receiving array. However 

it is not that proper for the near-range imaging because the distance between antenna 

elements is so large comparing to the distance to the target and the summation trajectory 

during the SAR processing changes dramatically for the different imaging points. It will 

cause many numerical problems during the SAR processing which are not significant for 

far-field imaging. Figure shows the case of a PSF response of a point target in 2-dimensional 

case. Such PSF response indicates the summation trajectory the imaging point on that point 

target. From the view of the time-domain imaging, these trajectory are clearly correspond 

to the antenna array distribution. As I mentioned in previous part, they are decided by 

antenna array distribution and also spatial variant. Rather than using the convolution 

approximation for far-field case, we may use mid-point approximation to simplify the array 

imaging.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figurer  2 .14  Simulated  3 -d imensional  SAR imaging of  the  cross  t arge t ;  (a )  model  of  

the  c ross  ta rget ; (b)  hor izonta l  s l i ce  of  the  targe t  wi th  al l  antenna  pai rs ;  (c )  hor izontal  

s l i ce  of  the  targe t  af ter  random redundancy middle  poin t  removal ;  (d)  hor izontal  s l ice  

of  the ta rget  af ter  symmetr ic  redundancy middle  poin t  removal ;  

 

If we know the position of the imaging point, and the wave propagation velocity, we can 

correct the response of a transmitter receiver pair to the response of a transceiver that 

located in the middle of the transmitter receiver pair. It is also pointed out  in [8] that such 

problem but there is not clear conclusion of this problem. Actually this problem is also 

appears for seismic exploration, and it is suggested to make the stacking number on each 

overlapping points to be as uniform as possible. While for antenna array system usually we 

only have few times of overlapping at each mid-point, we can predict that if there is only 
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few points are overlapped it may introduce strong artifacts due to the cancellation of the 

SAR processing trajectories. As we discussed above, such effect will be more significant 

for sparse array imaging. In previous section we showed the sparse array system that 

designed for relatively uniform mid-points in Figure 2.10. And there are 17 overlapping 

points that are indicate in Figure 2.10(b). Here in Figure2.14 shows the horizontal slice of 

a cross model with/without removing the overlapped mid-points. And the simulated 

waveform is generated with the Gaussian wavelet ranged from 3 GHz to 6 GHz. We can 

find that by removing the overlapping points the shape of the cross become more accurate 

and the surrounded artifacts also become weaker. Figure 2.14(c) shows another case that 

we remove the overlapped mid-points randomly, the result is somehow worse than removing 

these points symmetrically. It also leave us a question, if the random spatial sampling can 

provide better imaging results or not? However, in both cases we can find that the 

surrounded artifacts can be greatly reduced. With many simulated experiment we found that 

by removing these redundant traces the imaging result can be improved.  

2.5 Summary 

In this chapter I reviewed the basics of SAR imaging and clarified its relation with the 

migration processing in seismic. I have shown that the time-domain SAR imaging algorithm 

which is also known as migration is most accurate method for SAR imaging, while the 

calculation is very huge and it can be greatly simplified with FFT that applied in frequency 

domain by some mathematical simplifications. And the algorithms in frequency domain is 

widely used in SAR imaging techniques. However, I still think it is better to use the time-

domain algorithm for near-range imaging since many far-field assumptions are not satisfied 

and I think the wavelet shape has significant effect in near-range imaging. Similarly, it is 

also pointed out that the SAR processing is a kind of interpolation of the coarsely sampled 

data.  

Different kinds of data acquisition synthesis are introduced. And I introduced the 

multistatic SFCW radar equipment that is mainly used in this research work with two 

different sparse array configuration that applied for 2-dimensional imaging and 3-

dimensional imaging. The array radar system that I discussed in our work is not MIMO 

system but multistatic system, it transmit signals independently which is similar to the pre-

stack technique in seismic exploration.   

The main problem of the SAR imaging with the sparse array radar system is well discussed. 

There are many factors that caused the imaging artifacts during the SAR processing and 

one of the main problem is caused by the coarse spatial sampling which is related to the 

sparsity of the antenna elements. Also I discussed the effect of the operating frequency 

range which is presented as the wavelet shape of the time-domain signal. I think it is clearer 

to discuss the imaging problem in time-domain since there is only time-domain signal exist 

in the real world. From both microwave imaging point of view and the mathematic point of 
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view I think we should use simple wavelet form to reduce the imaging art ifacts. I also 

discussed the effect antenna redundancy and I think the unity of the overlapped point can 

be important especially for near-range imaging issue.  

These factors are somehow decided with the observation system. Hence In later chapters I 

will further discuss on artifacts removal methods with signal processing technique based 

on the fixed antenna configuration, antenna elements selection, and the fixed signal wavelet.  
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Chapter 3 SAR imaging with modified processing operators  

3.1 Introduction 

In previous chapter I discussed about the SAR imaging algorithm and an imaging problem 

caused by the coarse sampling in spatial domain. For the far-field SAR imaging research, 

it is already proved that the distance between the antenna elements should be less than half 

wavelength to prevent the imaging results from artifacts. There are many articles in SAR 

processing that dealing with the imaging artifacts caused by coarse sampling which is also 

known as the sidelobe suppression [1][2][3] . However, for the near-field imaging the 

condition will be straighter because some of the far-field assumptions are not satisfied for 

near-field case. I will introduce in later sections that many of the artifacts generated in 

near-field imaging is not really considered for classical far-field narrow-band imaging case.  

In this chapter I will mainly discuss on different methods that deal with the near-field 

imaging artifacts caused by coarse sampling form the view of time-domain imaging. All of 

our approaches are designed by using a filter or a weighting factor within the SAR 

processing operator. From the view of practical application, these methods are easy to apply 

and do not require too much extra calculation. On the other hand, due to the simple form 

and clear physical meaning of using these weighting factors, the processing resu lts are 

predictable and the performance are robust. So these methods can be applied to harsh or 

complicated dataset such as GPR dataset. Another advantage for its simple form so that we 

can consider to use these improved SAR processing operators for more complicated 

processing such as within the least square method. I mainly discussed three methods that 

can directly applied to SAR processing operator.  

The first method is about the limitation on SAR processing aperture. This approach is 

borrowed from seismic imaging processing to deal with the strong artifacts generated in 

near-field imaging [4]. It Is pointed out in [5] that the imaging artifacts can be reduced by 

limiting the effect aperture during the SAR processing. Here I should delight that this 

method is only dealing with the artifacts that caused by coarse sampling during the SAR 

processing, and actually we are removing the artifacts by sacrificing the effective aperture 

size for targets at different positions. The other method comes from the doubt of the half 

wavelength limitation that always mentioned in radar array imaging [2]. For conventional 

SAR imaging we did not consider about the spatial variation of the PSF on surface because 

the height is constant and we have enough virtual aperture length. However for the near-

range SAR imaging we may care about the distance or depth of our targets. If we consider 

the PSF function of the point target, it is more like spatial variant rather than constant, 

which means the far-field assumption is not fully correct in near-field case. Similar problem 

is also well-discussed in seismic imaging and known as the aliasing problem [6] [7], which 
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is borrowed from imaging processing techniques [8]. The core idea is consider the artifacts 

problem from the view of spatial Nyquist sampling criterion so that the imaging resolution 

can be related to the frequency components of the wavelet. If we can calculate the maximum 

frequency that do not violate the spatial Nyquist sampling criterion, we ca n low-pass the 

dataset properly to remove the imaging artifacts. It is somehow similar to previous method 

that we have to sacrifice part of the high frequency components to remove the artifacts. In 

another words, both of these method reduced the imaging resolution to suppress the imaging 

artifacts.  

3.2 Limitation on SAR processing aperture 

We will start from the simplest form of the filter applied to SAR processing operator that 

deal with the virtue range of the processed aperture. As it is shown in Figure  3.1(a), targets 

can be well detected only when it is located within the antenna radiation pattern of both 

transmitting and receiving antenna. Here we should notice that the beamwidth of the 

antenna radiation can be defined by the angle  𝜃, it does not means that we cannot “see” the 

target even if the target is out of the beamwidth, but the amplitude can be very weak which 

means that we may not see a complete hyperbolic within the aperture as it shown in Figure 

3.1(b). Since the SAR processing algorithm does not count for the radiation pattern of the 

antenna, it will assume that we can always observe the complete hyperbolic. In this case, 

the missing hyperbolic will turn to imaging artifacts when the sampling is coarse. It is 

simple to compensate this issue by using a limited aperture φ within the SAR processing 

operator and the equation can be given as (3.1)  

𝑚(𝑥, 𝑧) = ∬ 𝐻𝜑 ∙ 𝑑(𝑡, 𝑥0) ∙ 𝛿(𝑡 −
𝑟

𝑣
)𝑑𝑡𝑑𝑥0 (3.1) 

Here 𝐻𝜑 Indicates the threshold filter that ignore the hyperbolas that exceed the limited 

aperture φ, while d indicates the radar data and m indicates the imaging result. This φ can 

be selected by the means of the antenna beamwidth  θ. Here we should notice that such 

filtering processing includes two different meanings. Firstly, it compensate the differ ence 

between the observed dataset and the SAR processing algorithm as we described on above; 

secondary, it will actually limit the appearance of the hyperbolic artifacts caused by the 

coarse sampling. We will further discuss this issue with a simulation ex ample next. 
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(a) 

 

(b) 

Figure 3 .1 ef fect ive  aper ture in  phyjs ical  model  and  da ta  space ;  (a)  the antenna 

beamwidth  p lo ted in  model  space;  (b)  the l imited aper ture for  SAR processing in 

da ta  space .  

In order to analyze the performance and the effect of the method, we will use a simple 1 -

dimensional monostatic simulation case to demonstrate the different methods. The model 

and the simulated data are shown in Figure 3.2. Here we should point out that al l the 

simulations for imaging problems are done with simple ray tracing and convoluted with a 

Gaussian wavelet that is introduced in Chapter 2. We do not use the complicated simulation 

method such as FDTD method because we are focusing on comparing the different imaging 

methods. As we described in Chapter 2 that the SAR method is just focusing the energy on 

different hyperbolas, which means that the SAR processing are not considering the 

complicated effect such as the multiple reflection, wavelet changes caused by attenuation 

or dispersion. Hence we can purely comparing the performance of different imaging 

algorithm with the ray tracing simulation.  

The model is shown in Figure 3.2(a), it include two point scatterers and a horizontal layer 

reflection in middle of the point scatterers and the upper scatterer has weaker amplitude. 

As I mentioned in Chapter 2, we choose the simulated wavelet as a Gaussian wavelet ranged 

from 4 GHz to 8 GHz. After we resampled the dataset to 5 cm spatial interval, we can 

observe clear artifacts as it is shown in Figure 3.2(d). We can observe many hyperbolas 

appears on the horizontal reflector as the artifacts. Figure 3.3 shows the processed result 

by limiting the processing aperture with 45 degree. As the result, most of the hyper bolas 

artifacts disappeared. As the example shows, these artifacts are only caused by the coarse 

sampling and due to the SAR algorithm, when we summing the energy at shallower depth 

the summation hyperbolas may across with the reflected signals in deeper p art and these 

energy will appears as the hyperbolic artifacts. After we applied the limitation angle on 
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processing aperture as it is shown in Figure 3.1(b), these energy will no longer appear in 

shallower depth as the artifacts. As the drawback, since the scatterer in shallow depth has 

shaper hyperbolic reflection, most of the energy may cut off by the limited angle hence the 

point scartterer is almost disappeared in Figure 3.3(b).  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3 .2  2 -d imensional  s imulat ion  for  a r t i fact s  removal  exper iment ,  (a )  physical  

model ;  (b)  s imulated radar  prof i le  af ter  resampling to coarse condi t ion;  (c )  

convent ional  SAR imaging resul t  wi th  wel l -sampled  data;  (d)  convent ional  SAR 

imaging resul t  wi th coarsely samped data .  
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(a) 

 

(b) 

Figure 3 .3  SAR processing wi th  l imi ted processing aper ture,  (a)  wi thout  aper ture  

l imi tat ion;  (b)  wi th  45  degree  l imitat ion  on  aper ture .   

  

 

3.3 Artifacts removal by using the semblance weighted SAR processing  

From some of our near-range system results we found that in most of the cases the wavelet 

shape is quiet constant. It means that we can use the phase information as the weighting 

parameter. An analysis method for velocity analysis in seismic data processing which is 

known as semblance is introduced in [9][10]. Semblance is a mathematic definition and it 

defines in (3.2), it describe the uniformity of a vector q. In another word, when the values 

in the vector q are constant or nearly constant, the output s will be large; while the values 

are not uniform the output will be small. 

𝑠 =
[∑ 𝑞(𝑛)]𝑁

𝑛=1
2

∑ 𝑁𝑞2(𝑛)𝑁
𝑛=1

  (3.2) 

For our case, s is the semblance value of a certain hyperbolic trajectory,  N is the number of 

the sampled points along the hyperbolic and q is each of the amplitude along this trajectory. 

The semblance is just one of the practical way of measuring the coherency of a vector. The 

physical meaning is straightforward, when the values along this hyperbolic trajectory have 

same value, it will return as maximum value and when the values are differ ent to each other 

it will return a small value. 

As it is shown in Figure 3.4, the dash line indicates a focusing hyperbolic that across with 

the reflected signal. It will turn to an artifact point as we already described in previous 



Chapter 3 
 

40 
 

section. If we use the semblance instead of the stacking processing in SAR processing, even 

if the hyperbola is not complete and has many missing in between as it shown in Figure 

3.2(b), the output will not affect by the missing energy. Figure 3.5 shows some results that 

comparing the conventional SAR processing and the SAR processing that use semblance 

instead of the stacking.  

 

Figure  3 .4  ske tch  of  the  s tacking hyperbol ic  that  across  the  re f lected  s ignal ,  dash  l ine 

indica tes  a  focusing hyperbol ic  and the  blue  l ine  indica tes  t he  ref lected  s ignal  of  a  

scat terer .  

From Figure 3.5 we may found some interesting feature of using semblance for SAR imaging. 

For both of the well-sampled dataset and coarsely sampled dataset it seems that conventional 

diffraction stacking has better performance. But it is interesting to point out that semblance 

image will lose the amplitude information and both upper and lower scatter gives almost same 

response.  

It indicates that semblance is very sensitive to the stationary of the phase information and 

stacking is relatively stable. Hence we can try to use the semblance as the weighting factor of 

each summation hyperbolic trajectory. The formulation is shown in (3.3), S indicates the 

semblance along a focusing hyperbolic as a weighting factor.  

𝑚(𝑥, 𝑧) = 𝑆 ∬ 𝑑(𝑡, 𝑥0) ∙ 𝛿(𝑡 −
𝑟

𝑣
)𝑑𝑡𝑑𝑥0 (3.3) 

 

 

 

 



Chapter 3 
 

41 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3 .5  Compar ison of  conventonal  SAR processing and the SAR processing us ing  

semblence  ins tead  of  the  s tacking,  (a)  wel l -sampled  SAR processing resul t ;  (b)  wel l -

sampled  SAR process ing wi th  semblance;  (c)  SAR process ing wi th  coarsely sampled  

da ta ;  (d)  SAR process ing with  semblance on  coarsely samppled  da ta ;  

Figure 3.6 a shows the results for well-sampled and coarsely sampled dataset. As we can 

expect that the point target is perfectly reconstructed and almost all the artifacts are 

removed. However, the layer reflector become much weaker. It is because that for each 

diffraction hyperbolic that near to the layer reflector, the coherency along the assumed 

hyperbolic is much weaker than a point target. As the result, this approach has excellent 

performance for the point like targets but it may has problem for distributed target imaging.  
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(a) 

 

(b) 

Figure 3 .6  ar t i fact s  removal  with  semblence  weighted method,  (a)  processed  wi th  

the wel l -sampled  dataset ;  (b)  processed  with  the  coarse ly sampled  dataset ;  

 

3.4 local low-pass filter for artifacts removal 

3.31 Nyquist sampling theorem in spatial domain 

 

 

(a) 

 

(b) 

Figure 3 .7  Spat ia l  sampl ing requi rements  wi th  ref lectors  loca ted in  near -f i l ed case ,  

(a)  the  spat ial  sampling requirment  in real  space;  (b)  cor responded s i tua t ion  in da ta  

space .  

 

As it is shown in Figure 3.7(a), the reason of the spatial aliasing is caused by the p ossibility 
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of distinguish the time delay difference from the nearby signals that reflected from a same 

target. As I mentioned above, it is related to the angle of the reflector and also during the 

SAR processing it related to the position of the imaging po int. Usually for the near-range 

SAR case, the problem is mainly caused by the SAR processing because there are not so 

many tilted reflectors. As it shows in Figure 3.7(a), this angle can be calculated by the 

geometry relation as 

sinθ =
𝑣∆𝑡

2∆𝑥
 (3.4) 

Where θ is the reflection angle of the reflectors and v is the propagation velocity of wave, 

∆𝑥 is the spatial interval between the transceiver pairs and ∆𝑡 is the time delay difference 

of adjacent transceiver pair. Also as the Nyquist sampling theory required that the ∆𝑡 

should be less than the half of the dominant period T. 

∆t < T/2 (3.5) 

With (3.4) and (3.5) we can get the maximum cut-off frequency 𝑓𝑚𝑎𝑥 for a tilted reflector 

as  

𝑓𝑚𝑎𝑥=

𝑣

4 ∆𝑥𝑠𝑖𝑛θ
 (3.6) 

Here we need to point out that the aliasing condition that I mentioned above is quiet in 

general case. And once the data is acquired, these aliasing cannot or almost impossible to 

be removed. However, when we do the SAR processing these aliasing will turn into artifacts. 

Also, even if the data is well-sampled, the operator aliasing may still appears for some 

imaging points especially in near-field. Fig. 8 explains how these aliasing appears. Here we 

should notice that if we think about the SAR processing al iasing, the angle α should be 

defined as the local incident angle that defined by the antenna position and the imaging 

point. It indicates that depends on different imaging points, the requirement of the aliasing 

condition will be changed. And in this case (3.6) will become 

𝑓𝑚𝑎𝑥=

𝑣

4 ∆𝑥𝑐𝑜𝑠𝛼
 (3.7) 

𝑐𝑜𝑠𝛼 =
𝑥0 − 𝑥

√(𝑥0 − 𝑥)2 + 𝑧2
 (3.8) 

3.32 artifacts removal with local low-pass filter 

If we simply low-pass all the signal with the half wavelength condition, many of the useful 
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high frequency components will be lost. Here we should notice that actually by reducing 

the frequency components we will partially loss some spatial resolution. As it shown in 

(3.7), the targets that close to the antenna array has higher spatial resolution  but also suffers 

more from the aliasing problem.  

A simple 2-dimensional tests are shown in Figure 3.8, we use same model with previous 

section. Here we can find that the artifacts mixed to near region are greatly reduced by 

using the filter. From this result we may notice that 2-dimensional artifacts is not so 

dangerous because it is somehow easy to be distinguished. However, the pattern of the 

artifacts is strongly depends on antenna array and the target itself and they may much 

difficult to be recognized. Also for 3-dimensional horizontal slice these artifacts may just 

cover the reflections in shallow depth.  

 

(a) 

 

(b) 

Figure 3.8 SAR processing resul t  wi th local  low -pass  f i l ter ,  (a)  Convent ional  SAR 

imaging resul t ;  (b)  SAR processing with  local  low-pass  f i l t er ing.  

 

However, the maximum cut-off frequency is easy to be defined in 2-dimensional monostatic 

case while it is much difficult to be define for the 3-dimensional multistatic case. Because 

when we are summing the energy in 3-dimension with a hemi-spherical the aliasing appears 

in different spatial direction. There are already some research works discussed about this 

issue but there is still no clear conclusion. One of the way is to calculate the average spatial 

interval of both transmitting antenna and receiver antenna. And the maximum cut-off 

frequency can be given in (3.9) 
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𝑓𝑚𝑎𝑥=

𝑣

2 ∆𝜌(𝑐𝑜𝑠𝛼 + 𝑐𝑜𝑠𝛽)
 (3.9) 

 

Where ∆𝜌  is the average spatial aliasing and 𝛼, 𝛽  are the local angle of transmitting 

antenna and receiving antenna. 

But when the elements are distributed sparsely and irregularly such approach is still not 

correct. In this case, we designed our sparse array with such consideration that make the 

middle point of each antenna pair spatially uniform as possible and use this mid dle point 

distance as the average spatial interval of the array. We also tried some other methods to 

evaluate the maximum frequency that introduced in [11][12], while the maximum frequency 

calculated with (3.9) give best results for our 2-dimensional sparse array system. More 

precise mathematical analysis for this issue is still necessary.  

3.33 Practical application of the local low-pass filter 

The local low-pass filter is a relatively good method to compensate these artifacts. (3.7) 

indicates that the maximum cut-off frequency is changing at different position for each 

imaging point. In this case we can use the local low-pass filter to remove the high frequency 

components to reduce the aliasing or imaging artifacts while do not loss so much resolution. 

We can achieve it by conventional low-pass filter in frequency domain, however, for each 

data acquired by an antenna pair we need to apply different low-pass filter for many times. 

So the calculation can be very large. Here we used a mathematical simplificati on that is 

introduced in [13] on seismic imaging. The filtering in time-domain can be given as  

𝑓(𝑡) = 𝑥(𝑡) ∗ 𝑤(𝑡) (3.10) 

Where 𝑥 is the input signal and 𝑓 is the output and 𝑤 is the filter. The triangle filter in 

time-domain is a simple low-pass filter and it can be given as 

𝑤(𝑡) =  {
1 − |𝑡|/𝑘            |𝑡| ≤ 𝑘

  0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.11) 

Here this k is the width of the triangle filter and it can be related to the cut -off frequency 

of the low-pass filter. Because in frequency domain this filter can be given as  

𝑊(𝑓) = 𝑘 (
𝑠𝑖𝑛 (𝜋𝑘𝑓)

𝜋𝑘𝑓
)

2

= 𝑘𝑠𝑖𝑛𝑐2(𝜋𝑘𝑓) (3.12) 

For the linear calculation like convolution we can change the order of the 

integral/deferential hence (2) can also be give as  
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𝑓(𝑡) = 𝑥̃(𝑡) ∗ 𝑤′′(𝑡) (3.13) 

 

Where 

𝑥̃(𝑡) = ∬ 𝑥(𝑡)𝑑𝑡

𝑡

−∞

 (3.14) 

For the quadratic differential of the triangle filter it can be given as three delta function 

located at both side of the triangle and its middle point. Hence the output at a local position 

can be simplified as  

𝑓(𝑡) =
𝑥̃(𝑡 − 𝑘)+  𝑥̃(𝑡 + 𝑘) - 2𝑥̃(𝑡)

𝑘2
 (3.15) 

By using this method the local low-pass filter can be calculated easily without adding too 

much calculation. In most of the cases this method can get almost same result with the 

convolution method, while the cut-off frequency is less than center frequency numerical 

error will happen. Such case is quiet rare but we still need to keep it in mind.  

 

 

3. 5 Comparison of different methods 

Figure 3.9 shows the 3-dimenasional simulated model for 2-diemnsional sparse array. We 

put a cross shape at 0.35 m depth and a horizontal reflector at 0.45 m depth. And the 

simulated waveform is generated with the Gaussian wavelet ranged from 3 GHz to 6 GHz. 

The simulated waveform is designed to be similar to our experimental system that is 

introduced in Chapter 2, the frequency bandwidth is slightly narrower than the real system. 

It is adjusted based on the observed result since the real signal is not an ideal Gaussian 

wavelet and the frequency spectrum is not same. Here we simulated with the 2-dimensional 

sparse array configuration that we have introduced in Chapter 2 and the antenna 

configuration is shown in Figure 2.9(b). Figure 3.10(a) shows the conventional SAR 

imaging result at the correct depth. The artifacts caused by this horizontal reflector will 

cover the cross target in shallow depth in horizontal slice as we have discussed at the end 

of previous chapter. We can see many strong artifact and the cross shape become not 

continuous. The performance of different  processing methods are shown in Figure 3.10 and 

Figure 3.11. The aperture is limited to 45 degree for the processing aperture limitation 

method, the average spatial interval is set to be 7 cm for local low pass filtering method. It 
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is easier to compare with the horizontal slice at the correct depth of the cross shape reflector 

as it is shown in Figure 3.10. In general we can find that the local low-pass filtering method 

has relatively better performance than the other methods although we still can observe the 

distortion at the edge of the cross shape. While SAR process aperture limitation method 

result in Figure 3.10(b) can also greatly improve the imaging result that the artifacts from 

the lower plate reflector are most eliminated but the shape of the target is not clear 

comparing to the Figure 3.10(c). The semblance weighted method does not show a good 

result for this model. As we already introduced in section 3.3. This method is designed base 

on point target, for a distributed target this method will enhance the edge of the target which 

include some scattering effect hence the shape of the target may become discontinuous. In 

Figure 3.11 we can observe some other features of the proposed methods. In Figure 3.11(b) 

we can find that the limitation on processing aperture will prevent the SAR processing by 

bring the energy to the upper part of the summation hyperbola so that the artifacts can be 

suppressed. In this case some targets that close to the antenna which have sharp summation 

hyperbola may become much weaker after processing or vanished from the imaging result. 

Similar problem may also happen to the local low-pass filter method because we also need 

to calculate the cut-off frequency depending on the position of the imaging point. When the 

target is close to the antenna the cut-off frequency will be very small which means these 

targets may not image clearly. Also, we may notice from Figure 3.11(c) that not only the 

spatial resolution, but also the time resolution is reduced due to the low -pass filtering. 

 

 

(a) 

 

(b) 

Figure 3 .9 3 -d imensional  model  for  the  local  low -pass  f i l t er  t es t ;  (a)  ver t ical  s l i ce;  

(b)  horzontal  s l i ce;  
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(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 3 .10  Hor izonta l  s l i ce  compar ison of  dif fe rent  ar t i fac ts  removal  methods  for  2 -

diensional  sparse  ar ray,  (a)  convent ional  SAR imaging resul t ;  (b)  SAR imaging with  

l imi ted  processing aper ture  (c)  SAR imaging with  the  local  low -pass  f i l t er ;  (d)  SAR 

imaging with  the  semblence  weighted .  
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(a) 

 

(b) 

 

(c) 

 

(d) 

3 .11  Vert ical  s l ice  compari son  of  d if ferent  ar t i fac ts  removal  methods  for  2 -d iens ional  

sparse  array,  (a)  convent ional  SAR imaging resul t ;  (b)  SAR imaging wi th  l imi ted  

processing aper ture  (c)  SAR imaging with  the local  low -pass  f i l ter ;  (d)  SAR imaging 

wi th  the  semblence weighted .  

 

 

3.6 Summary  

In this chapter I introduced three different approaches to remove the imaging artifacts that 

can applied as a filter or weighting factor within the conventional SAR processing. All of 

these methods do not require too much extra calculation and the se lection of the processing 

parameter is easy which means that these methods are more robust than complicated 
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algorithm such as CS method that I will introduce in Chapter 4. The general idea of these 

methods are trying to deal with the impropriate summation of the energy along the 

summation hyperbola during the SAR processing, while the approaches are different to each 

other.  

The limitation on processing aperture is related to the antenna radiation beamwidth but 

actually it is reducing the artifacts by reducing the effective aperture. Hence the spatial 

resolution maybe reduced and the targets with sharp hyperbola response may lost.  

The semblance weighted SAR processing has good performance against the point like 

targets while it is not designed for distributed target. If we can make sure that there is only 

point scartterers this method can be the most effective way to reduce the imaging artifacts.  

The local low-pass filtering method has relatively robust performance for different 

applications. It uses a spatial variant low-pass filter to cut-off the high frequency 

components that may turn into artifacts during the SAR processing. The main disadvantage 

of this method is that the effective spatial interval which is used for calculating the 

maximum cut-off frequency cannot be clearly defined for multistatic system. And it remains 

to be a future work of this research.  

The main aim of using this operator based artifacts removal methods is that it can be 

combined with other advanced processing technique such  as iterative based algorithm that 

I will introduce in Chapter 4. And also we can consider to combine themselves together for 

example we can actually combining the processing aperture limitation and the local low -

pass filter together. This kind of trial is still continue.  
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Chapter 4 

Chapter 4 Advanced SAR imaging algorithms based on least 

square approach 

4.1 Introduction 

In Chapter 2 I state our problem on near-range imaging with the spare array radar system 

and I introduced several ways to compensate the imaging artifacts with the imaging operator. 

However, we can also treat this problem as the sparse reconstruction problem.  

In order to solve the problem, Compressed Sensing (CS) is a hot topic that has attract 

attentions from many researchers and it is widely applied in different domains, such as 

imaging processing or medical imaging [1][2]. The theory of CS has been clearly explained 

in [3][4]. And until now there are already plenty of papers that applied CS technique for 

imaging with sparse array system [5][6][7]. These results already shown that CS technique 

is can be a good way to reduce the cost of the data acquisition and also can used to d eal 

with the artifacts caused by the coarse sampling. However, most of the applications have 

to assume that the targets are sparse point target and we found it is difficult to apply these 

methods for near-range imaging. A lot of details are not described for far-field SAR 

applications while there are not so many success applications of the near -range imaging are 

reported. On the other hand, I will also explain in later section that CS is not really applied 

for the sparse array application. 

Instead of starting with the CS topic, I will introduce another approach that based on solving 

inverse problem. An imaging technique that is known as the least square migration that is 

used for seismic exploration [8][9]. It is already shown that least square migration has better 

spatial resolution than the common SAR processing and it can compensate the artifacts by 

the coarse sampling. Also many advanced methods are already introduced for better or 

faster solution than the conventional least square migration method. Howev er, the cost is 

still much larger than other imaging method so it is not practically used for seismic 

industrial.  

In later section I will introduce this approach and apply it to our sparse array imaging 

application. Furthermore, I will point out the relation between least square imaging method 

and CS imaging method and give a general form of solving least square problem with 

different regularization term. With the simulation dataset of the 2 -dimensional sparse array 

configuration and the experimental dataset, I would compare the imaging results with 

different regularized least square methods.  

In the end of this chapter, I proposed several ways to improve the least square algorithm. 

The key point is to use the improved SAR operator as I proposed in Chapter 3. Some 

experimental results and the discussion is given in this part.  
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4.2 least square method for SAR imaging 

4.21 ℓ2 norm regularized least square method for SAR imaging 

First we start with a simple imaging model that how we can acquire the radar dataset from 

a given model. If the physical properties of the targets and the surrounding media properties 

are known, the measured data d can be uniquely determined by an operator G. The size of 

this operator is related with the model, it means with more known parameters of model we 

will have a larger operator and at the same time the acquired dataset is more close to the 

real situation. This relation is known as forward problem or  forward modeling, it can be 

written in matrix form as (4.1) 

𝑑 = 𝐺𝑚 (4.1) 

If the inverse of the operator G can directly be acquired, the model m can uniquely be 

determined by the measured data d. However, the inverse of G is very difficult to acquire 

because in most cases the operator is non-linear problem [10]. Solving such problem is 

known as the inverse problem (4.2) 

𝑚 = 𝐺−1𝑑 (4.2) 

Another way to solve this problem is to use the adjoint matrix instead of the inverse matrix, 

hence we can acquire the estimated model 𝑚̃ as shown in (4.3). This result can not indicate 

the accurate value of the physical properties and some artifacts may be introduced.  

𝑚̂ = 𝐺𝐻𝑑 (4.3) 

For the radar image reconstruction, if the operator is a forward model operator by ray 

tracing, the adjoint matrix 𝐺𝐻 is SAR processing. In time-domain the 2-dimension SAR 

algorithm can be given given as (4.4)  

𝑚(𝑥, 𝑧) = ∬ 𝑑(𝑡, 𝑥0) ∙ 𝛿(𝑡 −
𝑟

𝑣
)𝑑𝑡𝑑𝑥0 (4.4) 

 

Here x and z is spatial coordinates in x and z direction, t is the two-way travel time and 𝑥0 

is the coordinates of the measurements.  

The misfit function of least square problem can be formulated as  
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𝐽(𝑚) = ‖𝐺𝑚 − 𝑑‖2  (4.5) 

In order to prevent from the ill-pose problem, some constrain condition is necessary to 

make the equation robust. For example, a common approach is applying a ℓ2 norm constrain 

on the processing result m, and the problem is given as (4.6) 

𝑎𝑟𝑔 𝑚𝑖𝑛‖𝑚‖2 𝑠. 𝑡. ‖𝐺𝑚 − 𝑑‖2 < 𝜖 (4.6) 

From the view of the mathematical solution, the ℓ2 norm regularized least square solution 

is trying to estimate the inverse solution.  In this case we can expect that least square method 

can increase the spatial resolution than conventional SAR processing and also can suppress 

the artifacts caused by the coarse sampling. In seismic imaging applications, this method is 

already applied to enhance the spatial resolution and dealing with the missing traces during 

the data acquisition. However, due to the huge calculation cost, this method is not practical 

for industrial application. In our case, since the sparse array does not include so much 

dataset and the imaging area is limited, I think it is possible to apply such complicate 

algorithm for imaging applications. 

4.22 Solution of ℓ2 norm regularized least square method 

As I mentioned in previous section, the operator G is equivalent to forward modeling and 

its transpose is just SAR processing. Here we just consider the simplest case that ignores 

other factors such as limitation on aperture or weighting factor. In order to solve the 

equations many solvers or mathematical  approaches can be applied [11]. Here we will 

introduce one of the most common method known as conjugate gradient method for solving 

such problem.  

If we want to solve a general form of (4.1) which given as the linear equation  

𝑏 = 𝐴𝑥 (4.7) 

Mathematically A should be a real, symmetric, positive-definite matrix (please notice it 

may not true for our application). The input vector  x0  can be an approximate initial 

solution or 0. The pseudo code of conjugate gradient method can be given as  
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Initialization 

𝑟0 = 𝑏 − 𝐴𝑥0 

𝑝0 = 𝑟0 

k = 0 

Do while 𝑟𝑘+1 is smaller than a misfitting constant value 

𝛼𝑘 =
𝑟𝑘

𝑇𝑟𝑘

𝑝𝑘
𝑇𝐴𝑝𝑘

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 

𝑟𝑘+1 = 𝑟𝑘 − 𝛼𝑘𝐴𝑝𝑘 

𝛽𝑘 =
𝑟𝑘+1

𝑇 𝑟𝑘+1

𝑟𝑘
𝑇𝑟𝑘

 

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘𝑝𝑘 

k = k + 1 

End 

Table 4.1 pseudo code of CG method 

 

There are also many improved method based on it such as Biconjugate gradient method 

(BiCG), Conjugate residual method and Nonlinear conjugate gradient method. They may 

have some improvements for some special cases but this is not the main topic of our 

research, for more details it can be refer to [11]. In this section we only applied this 

conventional conjugate gradient method. However, we can find out from this examp le that 

no matter which solver we will use, the key factor is the construction of the operator G.  

No matter what there are two ways for solving the problem; we can either use a function to 

calculate the output of the 𝐴𝑥 (in most of the cases we also need to calculate 𝐴𝐻𝑥) or 

directly calculate the explicit matrix form of the operator G. The final result of both method 

should be same and each of the method has its own advantages and disadvantages; If we 

construct the function to directly calculate the output, the coding is much simple because 

the forward modeling and backward (SAR processing) coding is straightforward so it is 

also easy to apply filter or weighting factors with the imaging algorithm. Each iteration 

may include forward and backward processing and it does not require large storage. On the 

other hand, if we construct the explicit matrix form of the operator it is much efficient 

especially for maltab program since the forward and backward processing is just the 

multiplication of two matrixes. However, it requires large storage because the constructed 

https://en.wikipedia.org/wiki/Biconjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_residual_method
https://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient
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matrix will be much larger than the input and output data. For example, if we assume both 

model space and data space is a 2-dimensinal matrix with same size M*N, then the size of 

the operator G will be M*M*N*N. It is obvious that for 2-dimensional case the operator is 

already very huge, and it will be extremely large for 3-dimensional case. Also the 

construction is quiet tricky and it may cause some problems if we  want to apply the filter 

or weighting factors. More detailed information on constructing the explicit matrix operator 

can be found in [12]. 

 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 4.1 The conventional SAR result and least square imaging result with a synthetic data, (a) 

the reflectivity model; (b) the simulated radar profile; (c) conventional SAR imaging result; (d) 

least square imaging result.  

Figure 4.1 shows the processing results of a simulated data with both SAR processing and 

least square imaging. There are three layer reflections with a 1 cm gap in between. The 

center frequency is 2 GHz and the target is relatively far. Due to the diffraction at the edge, 

the gaps cannot be seen with vertical slice directly. The horizontal resolution of SAR 
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processing will decrease with the distance so that only the gap at the first layer can be 

distinguished with the SAR processing result. But all the three gaps can be distinguished 

with the least square imaging method. It shows that this method gives much better spatial 

resolution than the coventional SAR processing. However, this method is extremely 

expensive for the iterative algorithm, usually equal to hundreds  times of common SAR 

algorithm. 

4.3 CS approach 

Many researches in signal processing found that most of the signal can be represented in 

another form where it has a sparse or compressible representation, by transform coding. By 

sparse signal it means that most of the information in the signal is contain ed in a very small 

number of its components. We also introduced an example in Chapter 2 that by using the 

Fourier transform the time-domain signal can be sparsely presented in frequency domain 

and there is some advantages of using the randomly sampled data set and we proposed an 

iterative interpolation method that based on f-k filtering, it shows good performance with 

irregularly distributed data for this reason. And this is just the core idea of compressed 

sensing that with the mathematical approaches we can use small amount of the sampling 

which violet the Nyquist sampling criterion to reconstruct the perfect results. CS uses 

randomization to turn coherent sub sampling related interferences such as aliasing into 

relatively Gaussian noise which are easy to suppress. According to the CS theory, the noise 

level depends on the degree of sub sampling and transform domain sparsity. Consequently, 

sampling is no longer fully determined by Nyquist, but by transform domain sparsity which 

make the sparse reconstruction become possible. 

The general idea of CS can be given as follows 

𝑥 = 𝐷𝛼 

(4.8) 

 

x is the original signal that can be represented sparsely in another domain by an operator 

D. Here the operator D can be any transform operator (e.g. Fourier transform, curvelet 

transform, convolution operator, migration operator, etc) as long as it can promote the 

sparsity that satisfy: 

‖𝛼‖0 < 𝐾 (4.9) 

Here the ℓ0 norm is the number of the non-zero elements, and K is a specific number that 

is much smaller than the data dimension.  

 

𝑦 = 𝑅𝑥 (4.10) 
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Y is the measured signal that resampled by a sensing matrix R. Another important condition 

is that the sample matrix R is incoherent with the operator matrix D, then the original signal 

x can be reconstructed by solving (4.11)  

𝑚𝑖𝑛‖𝛼‖0  𝑠. 𝑡.    𝑦 = 𝑅𝐷𝛼 (4.11) 

Here we use the CS reconstruction condition as the constrain to the least square imaging 

algorithm as (4.12) shows 

𝑎𝑟𝑔 𝑚𝑖𝑛‖𝑚‖0 𝑠. 𝑡. ‖𝐺𝑚 − 𝑑‖2 < 𝜖 (4.12) 

Here G is the transform operator which is also known as forward modeling, m is the data 

after SAR processing, and d is the observed data. The misfit 𝜖  controls the iteration 

number of the algorithm. Usually we set this value depends on the quality of the data.  

Mathematically, it is very difficult to solve the ℓ0 norm regularized least square problem 

directly. While the key point of CS approach is that when the sensing matrix is random and 

it is incoherent with the compress matrix, the ℓ1 norm constrained solution is equal to ℓ0 

norm. In this case we need to solve (4.13) instead of (4.12) and this problem is also known 

as basis pursuit denoising problem [11]. Comparing to the ℓ0 norm constrain, it has good 

performance even when the signal is noised, which made this constrain is more suitable for 

the SAR image.  

𝑎𝑟𝑔 𝑚𝑖𝑛‖𝑚‖1 𝑠. 𝑡. ‖𝐺𝑚 − 𝑑‖2 < 𝜖 (4.13) 

There are many ways to solve (4.13), such as the SPGℓ1 solver that is introduced in [13]. 

It is wrote with matlab and has good performance with large scale calculation and we are 

mainly using this solver for the simulation and experimental data imaging in our work.  

Also we shows a simple simulation results to compare the ℓ2 norm regularized least square 

method and CS based method. There is only a scatterer in the middle and the wavelet is a 

Gaussian wavelet ranged from 3 GHz to 6 GHz. In Figure 4.2(c) we can find that with ℓ2 

norm least square method, after 20 times iteration the imaging artifacts can be reduced 

comparing with the conventional SAR processing result. In Figure 4.2(d) we randomly 

resampled 10% of the data and applied CS approach, we can find the target is reconstructed 

to a point perfectly.  

However, here we should notice that actually the sensing matrix R in (4.10) is fixed by the 

distribution of antenna array and usually it is not really random matrix. In previous example 

we create the random sampling matrix by ourselves hence the result has  a good performance. 

While in practical case, it is almost impossible to have a real random sensing matrix. In 

this case, we are actually solving the ℓ1 norm regularized least square problem but not CS 
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problem. Since the ℓ1 norm regularization can promote the sparsity of the solution, I think 

it is still quiet acceptable for our application case. More details will be given in later 

sections. 

 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 4.2 Imaging results of the simulated data with different methods, (a) simulated radar 

profile with a scartterer in the middle; (b) conventional SAR imaging result; (c) ℓ2 norm 

regularized least square imaging result; (d) ℓ1 norm regularized least square result. 
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(a) 

 

 

(b) 

 

(c) 

 

(d) 

Figure 4.3 The ℓ1 norm reglarized least square imaging with noise and trace resampling, (a) the 

simualted radar profile with -3db noise; (b) ℓ1 norm regularized imaging result of (a); (c) the 

sumulated radar profile with trace resample based on (a); (d) ℓ1 norm regularized imaging result 

of (c). 

In Figure 4.3 we shows the simulated result with ℓ1 norm regularized least square method. 

Here we should notice that in this case we are not using the random sensing matrix so it is 

not CS method in definition although we are also solving (4.11). We also use a simple 

model that includes three scatterers so that the solution can be converged quickly. Depen ds 

on the complicity of the data, the iteration number can be reduced from hundred times to 

only a few times to reach at a same residual. Here we shows both using the full dataset and 

the dataset only resampled in spatial domain which is similar to sparse array data 
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acquisition. The three point targets still can be well reconstructed when 70% of the traces 

are randomly removed and we added -3 dB noise. Here we should also point out that 

comparing the ℓ1 norm regularized least square solution is quiet tricky. In Figure 4.3(b) 

and (d) we used same parameter for calculation which is not proper in mathematical sense, 

by selecting the parameter carefully we can improve the result in Figure 4.3(d) and it will 

looks similar to (b). Then it is difficult to compare the methods, similar problem also 

happens to later comparisons of least square methods. A discussion on calculation 

parameter will be given in later sections of this chapter.  

 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 4.4 The ℓ1 norm regularized least square imaging for real GPR data, (a) acquired radar profile 

with a metal sphere burried at 20 cm depth; (b) ℓ1 norm regularized imaging result of (a); (c) trace 

resample based on (a); (d) ℓ1 norm regularized imaging result of (c).  
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If we consider the calculation step of the ℓ1 norm regularization and ℓ2 norm regularization, 

a main difference is that ℓ1 norm regularization includes the soft-threshold within the 

calculation [13]. And this is the main reason that ℓ1 norm regularization can be used for 

denoising application and can improve the sparsity of the solution. In our application, it 

means that ℓ1 norm regularization has better possibility to image our main targets when the 

dataset is incomplete or include much noise. Figure 4.4 shows the experimental results with 

real data that acquired by the 1 GHz bowtie antenna. A metal sphere is buried at 20 cm 

depth. After 60% of the traces are randomly removed, the reconstructed result still indicated 

the correct position. It shows that ℓ1 norm regularized least square method may have good 

potential on sparse array imaging. 

4.4 Relation between least square migration and CS imaging method 

In previous section we have already shown that at the end the equation for least squ are 

migration and CS based SAR imaging is very similar to each other. The main difference is 

just the regularization term. In previous research on solving the least square problem, it is 

already addressed the importance of the regularization term.  

Regularization methods provide a procedure to guarantee the stability and uniqueness of 

the solution of an inverse problem. In more general case, the minimizing function can be 

written as 

𝐽(𝑚) = ‖𝐺𝑚 − 𝑑‖2 + μR(m) (4.14) 

Where G is a matrix of weights proportional to the inverse data covariance matrix and the 

second term in equation (4.14),  R(m) is called regularization term. Mathematically, we have 

quadratic regularization term and non-quadratic regularization term.  

Sacchi [8] already explained that conventional least square migration that use ℓ2 norm as 

the regularization term is just quadratic regularization. While ℓ1 norm regularization and 

Cauchy norm regularization is known as the non-quadratic regularization term. Cauchy 

norm regularization imaging method is also introduced in [9][14] and it is shown that it has 

similar performance with ℓ1 norm regularization which can improve the sparsity of the 

results.  

Hence we can conclude that the compressed sensing approach is actual ly a special case of 

least square problem. It requires ℓ1 norm regularization and also random sampling of the 

observed dataset. Practically, CS based SAR imaging can provide super high resolution 

because it promotes the sparsity of the result. In another word, it tries to compress the 

waveform into a pulse during the imaging processing and ignore the small artifacts so that 

the imaging result can be very clean. However, when the target is distributed target or 

multiple targets it will cause more problem. While ℓ2 norm regularization has more 
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advantages for distributed target imaging of our sparse array system as it pointed out in [8]; 

First, the problem can be treated as a Bayesian inference problem where a priori information 

about the unknown image and observations can be included and used to minimize unwanted 

artifacts. Secondly, weighting matrices in data space can be used to minimize the influence 

of missing observations. Practically, we need to choose proper regularization term for the 

least square imaging method with the different purposes which is target dependent.  

4.5 experimental results applied with 2-dimensional sparse array 

In Figure 4.5 we show the simulated result with the 2-dimensional sparse array 

configuration that we introduced in Chapter 2. It is a stepped frequency system that works 

from 3.81420 GHz to 8.0674 GHz with eight transmitting antennas and eight receiving 

antennas. The antenna arrangement is shown in Figure 2.9 and the interval between each 

midpoint of transceiver pair is about 8 cm. And the model is shown in Figure 4.5(a). We 

set up a cross-shape reflector at 65 cm away from the array and the Gaussian wavelet with 

3-6 GHz frequency bandwidth is used for ray tracing simulation. After the conventional 

SAR process we select the horizontal slice around 65 cm as it is shown in Figure 4.5(b). 

We can find the shape of target can be imaged while the edges are slightly distorted, and 

also we can find many artifacts distributed at the spaced area. These artifacts is only caused 

by the imaging algorithm since there is no other target within this model. 

 

(a) 

 

(b) 

Figure  4 .5  s imulat ion  resul ts  wi th  the  2 -d imensional  sparse  array configurat ion ,  (a)  

phys ica l  model ;  (b)  depth  s l i ce of  the  convent ional  SAR imaging resul t .  
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(a) 

 
(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure  4.6  Compari s ion  of  di f ferent  imaging methods  with  depth  s l ice( lef t )  and  ver t ical  

s l i ce  ( r ight ) ,  (a )(d)  convent ional  SAR imaging method;  (b) (e)  ℓ2  norm regular ized  least  

square method;  (c) (f )  ℓ1 norm regular ized  least  square  method.  
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In Figure 4.6 we compared the processing results with ℓ2 norm regularization and ℓ1 norm 

regularization. From the horizontal slice we can find that ℓ1 norm regularization gives good 

performance, the target has less distortion and almost all the imaging artifacts are well 

removed. For the ℓ2 norm regularization result, the shape of the target is slightly better 

than conventional method but the artifacts remains. We can find that distribution of the 

artifacts is changed and in this model the artifacts become stronger than the conventional 

SAR imaging result. We also tried with other different models and this problem happens 

case by case. It shows a general problem of the ℓ2 norm regularized least square solution 

that when the target is distributed target, some of the imaging artifacts can be co nsidered 

as noise. When the algorithm minimize the ℓ2 norm these part of the energy cannot be 

eliminated but replaced to “better” position that can minimize the ℓ2 norm. Hence there is 

a general feature of the ℓ2 norm regularized solution that when we use extremely large 

iteration number, the final solution will turn all the targets into the noise for imaging 

problem.  

We also applied the proposed methods with the real experimental dataset acquired by the 

2-dimensional sparse array radar system that we have introduced in Chapter 2. The results 

are shown in Figure 4.7. A metal pipe with 60 cm length and 5 cm diameter is used for the 

imaging experiment. We can find that for the real dataset that include noise and clutters the 

ℓ1 norm regularized least square method also gives the best result, most of the artifacts can 

be removed and the resolution of the imaging result is enhanced. While in this case the 

performance of the ℓ2 norm regularized least square method looks worse than conventional 

method, the artifacts seem to be increased. As we have already discussed in previous part I 

think it is caused by the strong noise and clutter included in the acquired dataset. With the 

data acquired with different targets we found that ℓ1 norm regularized least square method 

has good performance against the noise and clutters, however, in order to achieve to a good 

result the calculation parameter need to be selected carefully and it is very difficult to 

define automatically. We will further discuss about this issue in later  sections. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4 .7  Compari s ion of  di f ferent  imaging methods  with  experimental  dataset  

acquired  wi th  2 -d imensional  sparse  ar ray sys tem,  (a)  ta rge t  for  the  imaging 

experiment ;  (b)  convent ional  SAR imaging method;  (c)  ℓ2  norm regular ized  least  

square method;  (d)  ℓ1  norm regular ized least  square  method.  

4.6 Prospective on practical calculations of least square method applied 

for SAR imaging 

4.61 Selection on calculation parameters  

In previous imaging experiment for both simulated data and the real dataset we did not 
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mention about the detail parameter settings. The main reason is that these parameter is not 

unique for different solvers or different datasets. If we consider about the objective function 

as it is shown in (4.13), the only parameter that we need to solve the problem is the 𝜖 

which is known as a parameter that closely related to the SNR of the signal [8][11]. However, 

for different target or different imaging operator it is difficult to define the “noise”, in an 

extreme case, for ℓ0 norm regularized problem when the number of the target is defined, 

all the other clutters will be the “noise” for solving the problem. As we have also mentioned 

in previous examples, ℓ1 norm regularized least square imaging results are more sensitive 

to the parameter. We may achieve totally different results only by changing the parameter 

during the calculation. Furthermore, the parameter will be very different depending on the 

targets or imaging area from our experimental results.  

On the other hand, the different methods also require different parameters based on the 𝜖 

in (4.13). Beside the SPGℓ1 solver that is used in our research, there are also different 

methods can be used for solving (4.13), such as DALM and FISTA that are introduced in 

[14][15]. With different mathematic solver the methods may requires several parameters 

and there is no deterministic way to calculate these parameters, most the other articles that 

applied these method by selecting the parameters with experience and test [5][6][16]. In 

our experimental results, we also chose these parameters mostly depends on test results. In 

this case, actually it is not fair to compare the ℓ1 norm regularized results and ℓ2 norm 

regularized results together.  

I think currently one of the main problem that limited the ℓ1 norm regularized least square 

method or CS based methods for SAR imaging is caused by the determination of the 

calculation parameter. Since the imaging result will be changed  due to the different 

parameter, it is difficult to apply these algorithm for real application or products. Actually 

there are some methods for determining the parameter as it concluded in [17], however it 

is also depends on the different regularization term as we discussed in section 4.4 and also 

the operator that we used in calculation. For our application we still did not find a good 

way to calculate the regularization parameter accurately depends on the input radar dataset 

and it remains to be a main question of our research work. 

4.62 improvements on least square method for SAR imaging 

If we consider the process of least square method, we found it may possible to improve the 

calculation of the iteration process. The analytical solution of (4.6) can be given as 

𝑚 = (𝐺𝐻𝐺 + 𝜇𝐼)−1𝐺𝑑 (4.15) 
 

Here I is the unity matrix and u is the weighting parameter. From (4.15) we can get an 

important conclusion that if the 𝐺𝐻𝐺 = 𝐼 or 𝐺𝐻 = 𝐺−1, the imaging result will be same 

with the inverse result. 𝐺𝐻𝐺 is known as Hessian matrix, and many mathematical research 
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have been done on trying to diagonalize the Hessian matrix [12]. By diagonalization of the 

Hessian matrix, the effect of the wavelet and the artifacts can be suppressed. This is the 

main reason that least square imaging method has a good performance against the noise and 

the artifacts [12]. From the imaging point of view, 𝐺𝐻 will become similar to 𝐺−1 when 

we can focus the hyperbolas to a point without generating other artifacts and such modifie d 

𝐺𝐻 operator is just introduced in Chapter 3.  

I tried to apply the local low-pass filter and the processing aperture limitation operator 

within the least square method. However, we found the result may not stable and we show 

an example in Figure 4.8. Here we applied the conventional ℓ2 norm regularized method 

and the ℓ2 norm regularized method together with the local low-pass filter. In this example 

we set the maximum iteration number to be 30 and used same regularization parameter for 

the calculation. Actually from this result we can find that the proposed method has good 

performance, I think it is mainly because of the simplicity of the model. As I mentioned in 

above that 𝐺𝐻 will become similar to 𝐺−1 when there are less artifacts introduced, and 

this condition only satisfied when there is point scartterer and we cannot guarantee that 

such assumption is mathematically correct for the distributed target.  

On the other hand, if we check the residual curve that is shown in Figure 4.8(f) we can 

notice that the curve is not converged constantly comparing to the conventional ℓ2 norm 

regularized method in Figure 4.8(d), and I think it is also the main reason that the proposed 

method is not always work. 

Beside this approach, we also tried another simple approach based on this idea. If we can 

remove the artifacts during the each iteration, I think it is also “forced” the convergence of 

the least square problem and the artifacts removal can be considered as a regu larization 

term based on physical idea of SAR processing. I tried a simple threshold during the 

iteration processing as in (4.16) that we introduced in table 4.1, here 𝐻𝑠 is a threshold that 

reduce the artifacts caused by SAR operator at each iteration. We found the method has a 

good performance and can greatly reduce the iteration number than the conventional ℓ2 

norm regularized least square method. However, later we found this approach is already 

mathematically presented in [15] that by using a properly designed soft -threshold function 

instead of 𝐻𝑠 , we can obtain the ℓ1 norm regularized solution instead of the ℓ2 norm 

regularization.  

𝑚𝑘+1 = 𝐻𝑠(𝑚𝑘 + 𝛼𝐺𝐻(𝐺𝑚𝑘 − 𝑑) (4.16) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.8 Simulated example for applying the local low-pass filter on ℓ2 norm regularized least 

square method, (a) simulated radar profile of a point scartterer with trace resampled; (b) 

conventional SAR imaging result; (c) result of ℓ2 norm least square method; (d) residual of each 

iteration of (c); (e) result of ℓ2 norm least square method with the local low-pass filter; (f) 

residual of each iteration of (e).  
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4.7 Summary 

In this chapter I represented the idea to reduce the imaging artifacts and enhance the 

imaging quality by using the least square method for SAR imaging pro blem. I introduced 

ℓ2 norm regularized and ℓ1 norm regularized least square method for near-range SAR 

processing with 2-dimensional sparse array and from the simulation and experimental 

results I think ℓ1 norm regularized least square method is a good method for sparse array 

imaging. It can greatly reduce the imaging artifacts and enhance the imaging resolution. I 

also clarified the relation between the CS based imaging method that is already widely used 

for far-field SAR imaging and the proposed methods that CS is actually a special form of 

ℓ1 regularized least square method. However, I also pointed out that due to the difficulty 

of determining the regularization parameter for different dataset, the iterat ive method is 

still difficult to apply to the real system practically and it remains to be the main aim of our 

further research aim. 

On the other hand, in order to reduce the huge calculation cost of the iterative algorithm 

for this problem, I tried to improve the ℓ2 norm regularized least square method by using 

the physical constrain conditions to make it fit better for the near-range SAR imaging 

application. The core idea is to remove the artifacts during solving the ℓ2 norm regularized 

method so that the least square solution is more like the inverse solution and we can expect 

better convergence speed. For example, the artifacts removal methods applied with the SAR 

operator that I introduced in Chapter 3 can be used for the least square method. However 

with the proposed approach I found the solution is not robust due to the violence on 

mathematical assumptions for solving the least square problem. Another simple approach 

that use a threshold during the CG iteration is success but I found it already known as a 

mathematical approach for solving the ℓ1 norm regularized solution. However, I think the 

least square methods still has much potential for solving the SAR imaging problem and I 

am still trying to improve it. 
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Chapter 5 Enhancement of SAR imaging result with multi-

dimensional pulse compression 

5.1 Introduction 

In previous chapter I have introduced the least square based methods for near -range SAR 

processing. The main aim of our methods is to suppress the imaging artifacts  caused by the 

coarse sampling. Although we are solving the linearized problem, we still need to solve the 

problem by iteration processing which is not practical for real -time processing. In this 

chapter I will try to solve the imaging problem in a different way. As I mentioned before, 

the main problem of the imaging artifacts is that we cannot find the inverse matrix for the 

data inversion because of the complicity of the targets. As the result, the SAR processing 

results seems to be “blurred” comparing with the accurate shape of the targets. In this case, 

we can also try to use a specific filter to remove these artifacts and such processing is 

known as deblurring for imaging processing [1][2][3]. As it concluded in [3], such 

processing is actually a spatial filter applied to an image or video that depends on different 

situations, such as the shaking of the camera, coarse sampling or limitation of the hardware.  

For signal processing there is also a similar processing that is known as pulse compression 

or deconvolution [5][6]. The idea is to use the inverse wavelet to design a 1-dimensional 

filter to compress the wavelet into a pulse. A conventional way to apply the pulse 

compression is to apply it with the Wiener filter [6]. It is easy to apply in frequency domain 

and it can somehow compensate the noise components. However, due to the noise or other 

clutters, the pulse compression always do not have a good performance for real dataset 

because it is actually trying to find the least square solution [6]. In ord er to achieve higher 

resolution I tried to apply ℓ1 norm regularized least square method that we used for imaging 

problem on pulse compression and it gives good result for the real dataset that I acquired 

with our sparse array system. Similar approach is a lso introduced in signal processing 

articles that defined with different names such as sparse deconvolution or spike 

deconvoluiton [7][8]. The results indicate that pulse compression for near-range imaging is 

very effective. 

The only difference between the imaging deblurring and the pulse compression is that 

deblurring uses the inverse of the PSF function instead of the inverse wavelet. By using 

such idea we can also try to solve our problem by the means of image deblurring and in 

later section I will show that the forward modelling processing is actually “blurring” the 

accurate reflectivity model. 

This idea is not totally new and in [9] Hu already explained the results by deconvolution 

before or after the migration imaging processing with mathematical formulation and pointed 
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out that the migration imaging is just “blurred” version of the accurate re flectivity model. 

And he also suggested to use the 2-dimensonal spatial filter to compensate the blurring 

effect on migrated images directly so that the resolution can be enhanced. However, for the 

seismic application this method do not show much difference comparing to the conventional 

deconvoluted result hence there are not so many research that follows this topic. However, 

if we consider about the imaging artifacts that caused by the sparse array, I think this 

approach may have good performance to enhance the imaging results. In later section I will 

introduce a practical way to apply the deblurring filter on SAR image acquired with the 

sparse array system to enhance the imaging resolution and reduce the imaging artifacts that 

I discussed in previous chapters.  

5.2 1-dimensional pulse compression with Wiener filter 

5.21 pulse compression with Wiener filter 

Pulse compression or it is also called deconvolution processing is a popular method that 

widely used for seismic data processing [10]. The idea is straightforward, if we know the 

waveform of the transmitted signal, we can just do the inverse processing of the convolution 

modelling (5.1) where 𝑑𝑤 denotes the acquired data with a wavelet convoluted and W is 

the convolution matrix include a certain wavelet  and this is the simple form of (2.3). Now 

we do not consider about the imaging operator G that we discussed in Chapter 4 and ignore 

the noise n, so we can simplify the problem to (5.3) which has similar form to SAR 

processing problem as (5.2). It means we can restore the reflected signal into a pulse so that 

we can achieve to a better resolution or even super-resolution.  

𝑑𝑤 = 𝑊𝐺𝑚 + 𝑛  (5.1) 

𝑑 = 𝐺𝑚 (5.2) 

𝑑𝑤 = 𝑊𝑑 (5.3) 

Pulse compression can be treated as an inverse problem and can be solved with the least 

square methods in both time-domain and frequency domain. [11] introduced more details 

about the deconvolution processing and it pointed out that the complicated time-domain 

convolution calculation can be greatly simplified in frequency domain, here we directly 

give the Wiener inverse filter in frequency domain as (5.4)  

X(ω) =
𝐻𝑇(ω)Y(ω)

|𝐻(ω)|2 + 𝛽2
 (5.4) 
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where 𝑌(𝜔) is the acquired data in frequency domain, 𝑋(𝜔) is the deconvoluted signal, 

𝐻(ω) is the reference signal in frequency domain and the parameter  𝛽 can be considered as 

a regularization parameter.  

5.22 Effect of the regularization parameter 

The optimal solution is a compromise between the stability and accuracy of pulse 

compression and it is controlled by the regularization parameter. Stability means the 

capability of handling the noise with the Wiener filter. And accuracy described the 

possibility of compressing the waveform. Normally the less is stability the larger is 

accuracy. [12] introduced a way to estimate the parameter by using (5.5)  

β =
3𝛿

𝑌̅
 (5.5) 

𝛿  stands for the noise level (square root from noise energy), and 𝑌̅ is the mean spectral 

density of the acquired spectrum. Theoretically it can estimate the optimized parameter 

quiet well but it still has error, it is because the definition of the noise is hard to define 

especially when the noise is always mixed with the wavelet signal. Practically this equation 

can give a relatively good results but we may still need to adjust this parameter.  

Figure 5.1 shows an example of compressing a complicated waveform that is generated with 

a spiral antenna. Figure 5.1(a) is the acquired signal that reflected from a metal plate and 

we use the acquired signal itself as the reference signal to compress it i nto a pulse. Figure 

5.1(b) shows the compressed result with the parameter equals to 3.2 that calculated with 

(5.2). As we discussed above we find this value is still too large because the wavelet shape 

is still remains. Figure 5.1(c) shows the result with parameter equals to 0.1 and we can find 

that the result is more like a pulse. However, we may also notice that the stability of the 

result become worse since the signal becomes noisier. If we further decrease the parameter 

the generated noise will become stronger than the compressed pulse. And this is the balance 

between the stability and the accuracy that I mentioned above. 
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(a) 

 

(b) 

 

(c) 

Figure 5.1 The pulse compression with Wiener filter, (a) raw signal acquired with spiral 

antenna; (b) after pulse compression with regularization parameter equals to 3.2; (c) after 

pulse compression with regularization parameter equals to 0.1.  
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5.23 Effect of the reference signal 

Beside the parameter, the reference signal is also a main factor for the pulse com pression 

processing. The deconvoluiton processing is easier to be understand from the view of image 

matching. What we are actually doing is to find out the reflected signals among a serious 

of reflected signals which “looks like” the reference signal. However, this is almost 

impossible to get perfect reference signal because the reflected signal may include noise, 

multiple reflections and also changes of the frequency components. And this is the reason 

why we have to use the Wiener filter so that we can somehow compensate the inaccurate 

reference signal.  

On the other hand, [13][14] mentioned the feature of the wavelet shape and pointed out that 

the minimum-phase signal is much easier for pulse compression. I think it is a similar reason 

to what we have discussed in Chapter 2 that the simple wavelet is better for the inverse 

processing from the mathematic point of view.  

5.24 ℓ1 norm regularized pulse compression 

In previous chapter we introduced that we can use the ℓ1 norm regularization to enhance 

the sparsity of the SAR processing so that the resolution can be further improved and part 

of the imaging artifacts can be suppressed. It can be also applied for the pulse compression 

processing and it is known as the spike deconvoluiton in seismic signal processing [14]. As 

it introduced in [14], the Weiner filer is just a simple way to find the least square solution 

of the pulse compression processing under the ℓ2 norm regularization. So the ℓ1 norm 

regularized pulse compression is also quiet straightforward by solving (5.6)  

𝑎𝑟𝑔 𝑚𝑖𝑛‖𝑑‖1 𝑠. 𝑡.  ‖𝑊𝑑 − 𝑑𝑤‖2 < 𝜖 (5.6) 

Comparing to the ℓ1 norm regularized SAR method, the only difference is to change the 

SAR operator G to the convolution matrix W that include a reference wavelet signal. We 

can also solve it in same way with that we introduced in Chapter 4. For the simplicity here 

we will not repeat the detail explanation of the method.  

We found that the ℓ1 norm regularized pulse compression has better performance than 

conventional Weiner filter when the acquired data is noisy. However, it is similar to the ℓ1 

norm regularized imaging case that when there are multiple targets or distributed targets, 

this method may not robust as the conventional Weiner filter. 

Figure 5.2 shows an example of the real data trace that acquired by the vivalid antenna and 

the target is a metal sphere located at 0.5 m away. Due to the noise level, Weiner filter 

cannot give a good result even after I tried to adjust the parameter carefully. We can find 

that the wavelet is slightly compressed but the noise level is start rising already. In Figure 

5.2(c) we can find that the proposed method gives much better result and the target 
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reflection is compressed into a pulse and only a few noise components are remind as weaker 

response.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.2 Comparison of Wiener filter and ℓ1 norm regularized method, (a) raw signal 

acquired with vivalid antenna; (b) pulse compression with Wiener filter; (c) pulse compression 

with ℓ1 norm regularized method. 
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5.25 Pulse compression and SAR imaging 

Now if we go back to previous discussions on SAR algorithm, it is clear that actually SAR 

processing is under the assumption that the waveform of the transmitted signal is just a 

pulse. Obviously it is not true for near-range SAR imaging and it somehow explained why 

the simple waveform is better for least square imaging methods. Since we did not consider 

the waveform within the least square iterations, the algorithm will recognize the waveform 

as multi targets at different distance and it cause problem for imaging. It delights that we 

may need to apply pulse compression before the SAR processing especially for our sparse 

array applications.  

Here we show a real dataset example for pulse compression and SAR processing. The 

dataset is acquired with the linear sparse 1-dimensional array that we have introduced in 

Chapter 2. Also eight transmitter and eight receiver antennas are used for the array system, 

the antenna configuration is shown in Figure 2.10. The frequency ranged from 4 to 8 GHz 

and the target is a metal sphere located at 0.5 m away. In Figure 5.2 we actually used one 

of the trace from this dataset and we show that ℓ1 norm regularized pulse compression gives 

a good result. Figure 5.3 shows the acquired 64 channel dataset before/after pulse 

compression processing. We can observe that after the pulse compression processing the 

time resolution is greatly improved. However it also introduces problem for simple SAR 

processing because there is almost no negative value and artifacts cannot be canceled well 

as it is shown in Figure 5.4(b). In Figure 5.4(c) I tried the semblance weighted SAR method 

that we introduced in Chapter 3. As the result we can get high resolution reconstruction 

result. 

Here we should delight that ℓ1 norm regularized SAR processing that we introduced in 

Chapter 4 can get quiet similar result as we shown in Figure 5.4. But the physical meaning 

is slightly different, as I mentioned before SAR processing does not consider about the 

wavelet information and it is same to ℓ1 norm regularized method. However, with ℓ1 norm 

regularization some of the sidelobes in time-domain may treated as noise and thresholded 

while minimizing the ℓ1 norm, which means the pulse compression is also partially included 

although there is no pulse compression processing included. While the ℓ1 norm regularized 

pulse compression is physically more accurate and we expect it has better accuracy. From 

this point of view, a good way for processing should include ℓ1 norm regularized pulse 

compression and then apply ℓ1 norm regularized SAR processing. However, this processing 

is extremely time consuming but not improving so much comparing the processing we use 

for Figure 5.4. However, it inspired us the possibility of combing the pulse compression 

and SAR processing together. 
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(a) 

 

(b) 

Figure 5.3 1-dimensional array dataset with ℓ1 norm regularized pulse compression, (a) radar 

signal of all channels before pulse compression; (b) after pulse compression.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.4 SAR processing results with pulse compression, (a) conventional SAR processing 

result; (b) conventional SAR processing result after pulse compression; (c) Semblance weighted 

SAR processing result after pulse compression.  

 

5.3 Multi-dimensional pulse compression of SAR imaging result with the 

deblurring filter 

5.31 Methodology 

An idea that use multi-dimensional pulse compression processing on focused optical 

imaging is introduced in [15] to further enhance the spatial resolution. The core idea is to 
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compensate the artifacts that caused by the observation system which is very similar to our 

case that imaging with a certain sparse array. This idea to seismic processing as a multi -

dimensional deconvoluiton technique and shows it can somehow improve the imaging 

quality [9]. I think it is a good approach to deal with sparse array artifacts since these 

artifacts are spatially variant as we discussed in previous sections.  

From (5.1) we can combine the convolution matrix and SAR operator together as a operator 

L, hence we can have (5.7) 

𝑑𝑤 = 𝐿𝑚  (5.7) 

The blurred result can be acquired with (5.8)  

𝑚̂ = 𝐿𝑇𝑑𝑤 (5.8) 

Also we can get the relation between model and the blurred result in (5.9)  

𝑚 = (𝐿𝐻𝐿)−1𝑚̃ (5.9) 

It indicates that we may further improve the migrated results with an inverse filter (𝐿𝑇𝐿)−1. 

Actually, this is known as the deblurring processing for imaging problem. This deblurring 

filter is still very difficult to solve for the whole imaging area, but we can use the local 

filters at different position instead of a whole filter. It is much easier to explain this with 

mathematics. For a given matrix, if there is only one non-zero value exists, the inverse 

matrix can be uniformly determined. And this is  exactly same that in a local window there 

is only a scatterer exists. The inverse matrix may not uniformly determined when there are 

many non-zero values, which is just the reason why it is difficult to find the inverse of the 

whole imaging area.  

In order to realize this method, a dictionary needs to be reconstructed correspond to the 

antenna configuration and the background velocity first. At each local window we put a 

point scatter in the middle and calculate the forward modelling result and the migrate d 

result of this local window. Then the local deblurring filter can be uniformly determined. 

After we construct this dictionary for a certain survey area, we can apply the filters to the 

acquired dataset. Since the local deblurring filter is just the inver se PSF function of the 

simulated data of the point scatterer, we need to apply the filter as the matched filter. For 

simplicity we directly applied it as the Weiner filter. In order to improve the imaging quality, 

the filters at different local windows should be overlapped properly. In general, we can 

propose the flow chart of the deblurring method in Figure 5.5.  
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Figure 5.5 Flow chart of applying the deblurring filter method on conventional SAR processing 

results. 

5.32 Simulation tests for a single scatterer deblurring 

In previous section we have introduced the basic idea of the deblurring imaging method. 

Here we start with the simplest example that apply the deblurring filter on a single scatterer 

itself. Figure 5.6 shows the monostatic simulation example and the target is a scatterer 

located at the middle of the imaging area. And the wavelet is still the Gaussian wavelet 

with 4-8 GHz bandwidth. The transceivers are distributed on a 1.2 m survey line and there 

are only five traces remind so that we can observe strong artifacts after SAR processing.  

In this simple test, we can directly use this dataset as the dictionary by using a rectangular 

window with the scatterer in the center as indicated as a re rectangular in Fi gure 5.6(b). 

Then we can acquire the deblurring filter by dividing the windowed dataset with the model 

which include only a non-zero value in the center. After that we can apply this filter to 

other part of the SAR imaging result. If we directly apply this  filter to the red rectangular 

area which is just the filter response itself, we can get perfect reconstruction result in Figure 

5.7(b) as we can expect. All the imaging artifacts are removed and also the wavelet is 

further compressed. In Figure 5.7(c) we show the case that apply this filter to the blue 

rectangular area. Although the reference does not fit the blue rectangular area perfectly, we 

can still get good deblurring result with the Wiener filter processing. As we explained in 

previous section, deblurring filter actually includes two steps: a conventional 1-dimensional 

pulse compression processing that can compress the waveform and also 2 -dimensional 

deblurring processing that suppress the artifacts that created by the distributed antenna 

array.  
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(a) 

 

(b) 

Figure 5.6 A simulated data of a point scartterer; (a) Simulated radar profile after coarse 

resample; (b) conventional SAR imaging result of (a). The data within the red rectangular is 

used for generating the deblurring filter.  

Figure 5.8 also shows another case that we do not include the wavelet while generating the 

dictionary. We can find that in this case the point response does not compressed but the 

artifacts still can be suppressed. In this case the processing is very simil ar to the ℓ2 norm 

regularized least square method for SAR processing. As we explained before, these kind of 

imaging artifacts may not fully eliminated with ℓ2 norm regularization. 

 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.7 results of deblurring filter applied to the sub-windows, (a) sub-window data indicated 

with red rectangular in Figure 5.6; (b) after applying deblurring filter; (c) sub -window data 

indicated with blue rectangular in Figure 5.6; (d) after applying debluring filter.  

 

 

(a) 

 

(b) 

Figure 5 .8 resul t s  of  deblurr ing f i l t er  tha t  generated  without  known wavele t ;  (a)  before  

applying the   deblur r ing f i l t er ;  (b)  af te r  applying the  deblur r ing f i l t er .  

 

It is obvious that when the position of the scatterer in dictionary is coincident overlap with 

the scatterer in acquired dataset we can get the best matched deblurring result. And it seems 

to be that if we can create a dictionary that includes the deblurring filters of all the possible 

position then we can get a good result. However for real application i t is not really helpful 
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because in most of the cases the dictionary created by simulation is not totally matched 

with the acquired dataset due to the noise or the change of the wavelet (or we can understand 

the change of the frequency component), also the real targets may include the distributed 

targets that is not exist in our scatterer dictionary. This is a general problem for all the 

deblurring processing and [9] pointed out that it can be somehow overcome by proper 

stacking of the filtered windows. As we can already observe in Figure 5.7. If we simply 

stack the Figure 5.7 (b) and (d), the scatterer can be further enhanced and the surrounded 

artifacts caused by the filtering can be suppressed. It delights that it is important to choose 

the proper window size and the stacking interval of different windows. It is not really 

possible to give a deterministic solution so we may need to analyze it with the experience. 

5.33 Factors for applying deblurring filter method 

In previous sections we have introduced an imaging method that based on deblurring filter. 

Theoretically it can generate the least square migration result based on a conventional 

migration result without iteration processing. Here we will make more accurate explanation 

of this method, and extend it  to the current sparse array system. 

The fundamental idea of this method is using the reference model, which include only point 

scatterers and their PSF function to design the 2-dimensonal pulse compression filters at 

different regions of the imaging area.  Mathematically, when there is only a non-zero value 

within a window which is just the case that there is only one point target in the middle of 

the window, the inverse matrix can be determined uniquely. Then we apply this filter with 

Weiner filter method because the reference model is always different with real data 

practically. Some more detailed explanations are given in presentation.  

In this case, the main factors of this method includes the accuracy of the reference signal 

and the size of the filter. As I mentioned before, this deblurring filter is actually the 2-

dimensional pulse compression that applied to the migration results. Hence it is similar to 

the 1-dimensional pulse compression that the accurate wavelet reference is very important. 

For our case, we can acquire the wavelet from the acquired dataset since it is quiet stable. 

Another problem is more significant that the assumed position of the scatterers. Ideally, we 

should make as many possible scatterers as possible but it is not practical in r eal application. 

Firstly, no matter how dense scatterers reference model we make, it always not really work 

for distributed target. Even if we have only one scatterer reference model, somehow we still 

can use it to suppress the artifacts. Secondary, If the  scatterers are distributed too dense in 

imaging area, it will cause problem to the size of the filter near the boundary of the imaging 

area.  

On the other hand, since this method is more like an imaging method, the effect of the filter 

size is more significant because larger filter size provide more information to ‘recognize’ 

the point target. We found that practically only a few scatterers reference model is already 

quiet enough. But it is much better if we know the about distance of our target.  
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5.34 Simulation and experimental results with sparse array system 

Here we will demonstrate the proposed method with both sparse array system that we have 

introduced in Chapter 2. We use the same antenna configuration and use 4 -8 GHz Gaussian 

wavelet to generate the ray tracing simulation results. Here we should notice that the 

proposed method is applied base on the conventional SAR imaging results.  

In Figure 5.9 we use 1-dimensional linear array configuration for the simulation test. The 

model include a linear reflector at 0.8 m away and a point scatterer at 0.5 m away. Figure 

5.9(a) shows the imaging result with conventional SAR processing. Basically both targets 

can be imaged well but the hyperbola artifacts appears due to the sparse sampling. With 

this antenna configuration we assumed 9 point scatterers that distributed uniformly in the 

imaging area for the reference model and generated 9 deblurring filters at different position 

of the imaging area. After the deblurring processing we can find that the linear reflec tor 

and the point scatterer is further focused. Also the hyperbola artifacts are greatly reduced. 

It proved the possibility of the proposed method. However, here we should point out that 

in this example the proposed method has good performance is mainly be cause that both the 

accuracy of the wavelet and the position of the reference model are designed to fit with this 

dataset. For the real application the situation will be much complicated as we already  

discussed in previous section. 

 

(a) 

 

(b) 

Figure 5 .9 resul t s  of  deblur r ing f i l l t er  appl ied to  1 -d imesional  sparse  a rray s imulated  

da ta ,  (a )  convent ional  SAR processing resul t ;  (b)  af te r  applying the deblurr ing f i l te r  

to  (a) .  

 

Figure 5.10 shows the proposed method that applied to the real data acquired by the 1 -

dimensional linear sparse array. The target is a metal sphere and we extracted the reference 

wavelet from the acquired dataset and we also generated 9 deblurring filters t hat distributed 
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uniformly within the imaging area. However, the performance of the method is not good as 

the simulation example that we show in Figure 5.9. We can find the imaging artifacts are 

well suppressed but the target itself did not focused well. As  we introduced in section 5.2, 

I tried to adjust the parameter of the Wiener filter to improve the quality. However, we find 

that with a smaller parameter the imaging result will be destroyed by the noise since the 

conventional SAR imaging result in Figure 5.10(a) is already quiet noisy.  

 

(a) 

 

(b) 

Figure  5 .10  resul ts  of  deblurr ing f i l l t er  appl ied  to  1 -d imesional  sparse  ar ray  

experimental  data  acquired for  a  meta l  sphere  ta rge t ,  (a)  convent ional  SAR processing 

resul t ;  (b)  af te r  apply ing the  deblur r ing f i l t er  to  (a) .  

 

With Figure 5.11 we show another experimental dataset that acquired with 1 -dimensional 

linear array system. Here we change the metal sphere to a metal pipe located at 0.65 m 

away. Same with the previous example we extract the reflection from the metal pipe  as the 

reference wavelet and generated 9 deblurring filters. In this case we used smaller value of 

the Wiener filter parameter to show another kind of imaging result from the previous 

example. In Figure 5.11(b) we can find that the reflection from the target is further focused 

into the pulse, while the imaging artifacts still remain strong comparing with the 

conventional SAR imaging result. Here we did not show too much processing results with 

different parameters because this method is still quiet practical and target dependent. 

Although the calculation is much simple comparing with the iteration algorithm that we 

introduced in Chapter 4, the optimization of the regularization parameter is still tricky for 

the real dataset that include complicated reflections and noise. 
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(a) 

 

(b) 

Figure 5 .11  Figure  5 .10  resul ts  of  deblurr ing f i l l te r  appl ied  to 1 -d imes ional  sparse  

array exper imental  data  acquired for  a  metal  pipe ,  (a )  convent ional  SAR processing 

resul t ;  (b)  af te r  apply ing the  deblur r ing f i l t er  to  (a) .  

 

5.35 Simulation and experimental results with sparse array system 

In order to apply the proposed method to 2-dimensional sparse array. We need to extend the 

2-dimensional filtering to 3-dimensinal filtering. There is not so much difference comparing 

with the previous processing and we only need to use 3-dimensional Fourier transform 

instead of the 2-dimensional Fourier transform and make the 3-dimensional deblurring 

filters. However, we found the deblurring processing for 3-dimensional data cube is not that 

predictable as 2-dimensional case and the results with real 2-diemensional sparse array data 

are not good.  

Here we show some result with simulated dataset that using the 2 -dimensional array 

configuration to demonstrate the performance of the proposed met hod. Figure 5.12 shows 

the simulated SAR imaging with a scatterer in the center of the imaging area. We are still 

using the 9 deblurring filters that are uniformly distributed in the imaging area. As we can 

see, after the proposed method the artifacts are removed and the scatterer is further focused. 

However, in Figure 5.12(e) and (f) we can observe that the artifacts are turned into different 

distribution and become stronger. Similar problem also happens to other simple model that 

we did not shown here and this problem still need to be further discussed.  
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure  5 .12  resul ts  of  deblurr ing f i l l te r  appl ied  to  2 -d imes ional  sparse  ar ray 

s imulated  data  acqui red  for  a  point  t arget ,  (a) (d)  hor izontal  s l i ce  before/af te r  

applying the deblurr ing f i l te r ;  (b)(d)  ver t ical  s l ice in  x - di rect ion  before/af te r  

applying the deblurr ing f i l te r ;  (c )( f )  ver t ical  s l ice in  y - di rect ion  before/af te r  

applying the  deblurr ing f i l te r ;  
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 5 .13  resul ts  of  deblur r ing f i l l t er  appl ied to  2 -d imesional  sparse  a rray s imulated  

da ta  acquired  for  a  poin t  t arge t ,  (a )(d)  hor izontal  s l ice  before/af te r  applying the  

deblur r ing f i l ter ;  (b)(d)  ver t ical  s l ice in x - d irec t ion  before/af ter  applying the  

deblur r ing f i l te r ;  (c )(f )  ver t i cal  s l ice in y - d irec t ion  before/af ter  applying the 

deblur r ing f i l te r ;  
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In Figure 5.13 we also tried the cross-shape target that we always use in previous chapters. 

When we compare the horizontal slice we can find that the shape of the target become more 

sharp and accurate due to the deblurring process. However in this result the target looks not 

continuous and we cannot observe clear improvement from the vertical slices. Also the 

result changes a lot with different parameters and we find it is much difficult to select a 

proper parameter for 2-dimensional sparse array case. 

5.4 Summary 

As I introduced in previous chapters that SAR processing is not considering about the 

wavelet shape which lead to the appearance of the artifacts after imaging processing. In this 

case, I think the pulse compression processing is important especially for the near-field 

imaging since the duration of the wavelet is relatively large comparing with the imaging 

area. I reviewed the conventional Wiener filter and applied ℓ1 norm regularized least square 

method to achieve better results. It is shown that the ℓ1 norm regularized pulse compression 

can restore the signal into the pulse and it has better performance against noise than Wiener 

filter. AS the drawback it also require iterative calculation although it is much faster than 

ℓ1 norm regularized SAR processing method. Also it is similar to ℓ1 norm regularized SAR 

processing, the setting of the regularization parameter has strong effect to the results.  

Based on the idea of the spatial filtering, I proposed to use the deblurring filter technique 

to remove the imaging artifacts caused by the sparse array. Mathematically we can obtain 

similar result with the least square SAR processing method. And since we are applyin g the 

deblurring filter as a spatial variant local filter, the calculation is simplified and we do not 

need to use iterative algorithm which can be a great benefit comparing with the least square 

SAR processing technique. With the simulated experiment and experimental dataset 

acquired with the 1-dimensional linear array system I demonstrated the possibility of the 

purposed method. I also extended this method to 3-dimensional spatial filtering method and 

applied to the 2-dimesional sparse array configuration. However, this method is very 

practical and the result is strongly dependent on the reference scatterer model that we 

created. Due to the uncertainty and the noise of real dataset, I still do not obtain idea result 

from the 2-dimensional sparse array system. 
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Chapter 6 Subsurface velocity estimation methods with 

array radar system 

6.1 introduction 

In previous chapters I discussed about the near-range imaging problems of sparse array 

radar system. While in this chapter I will mainly discuss on how we can use the flexibility 

of the array system for velocity estimation of the medium. This special application is mainly 

related to the GPR technique, it is a powerful tool that is used for subsurface exploration. 

It is a non-destructive method and can provide the highest resolution among all methods of 

subsurface imaging. In previous researches, it has been shown that the GPR technique has 

many advantages, which leads to its wide use in different fields [1][2][3].  

Currently we are conduction a research project on monitoring of pavement at airport runway 

by using ground-based SAR and array-type GPR. In this research project, we are developing 

radar technologies to detect the defects or anomalies which occurred inside the pavement 

of the surface of the pavement of the runway and taxiway or park apron in airports. In this 

project, I mainly focus on estimating the slight velocity changes within the single layer 

reflections such as the inspection of the pavement. Under such simple condition we are 

aiming at using limited number of antennas for precise velocity estimation.  

I first introduce the theory that uses the CMP dataset to estimate the velocity of 

electromagnetic wave propagation in subsurface [4]. In previous work we applied this 

method with a bistatic GPR system to acquire the CMP dataset [5] . However, the data 

acquisition is very complicated for a CMP dataset at one fixed position. In most cases we 

have to use the limited information, for example, we have to decide only a few CMP points 

based on the knowledge of hydrology to estimate the subsurface properties in a relatively 

large area [6]. In order to improve the efficiency of the data acquisition, we are also 

considering to use multistatic system for CMP data acquisition instead of the biastatic 

system. In previous chapters it was already shown that the resolution of the SAR technique 

is mainly related to the maximum aperture and it is similar for CMP velocity estimation. 

However, artifacts may introduced if there are only a few antenna combinations exist within 

this distance [7]. The artifacts make it difficult to pick the velocity automatically. In this 

case, I introduced a method to enhance the estimated results by removing the a liasing 

components caused by the coarse sampling and then interpolating the CMP dataset, so that 

the velocity can be picked automatically at every position. I also show how the velocity 

estimation can be enhanced with the real data acquired at a sand dune.  The result also 

indicates that the velocity of multiple layers can be acquired for the hydrology research.  

On the other hand, due to the similarity of the CMP velocity estimation and the SAR 
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imaging, I also try to apply the ℓ1 norm regularized least square method for precise velocity 

estimation. It shows that few millimeter per nano second velocity changes can be detected 

and the result is much easier for automatic velocity picking [8]. 

In the end, for the special application case I proposed a practical way for single layer 

pavement inspection method based on interference of two different CMP dataset [ 9]. The 

core idea of this approach is based on the time lapse monitoring technique that is widely 

used in different domains [10]. The main advantage of this method is that we can distinguish 

the velocity and/or thickness change of the single layer structure with only few antenna 

pairs.  

6.2 velocity estimation with CMP dataset 

6.21 Common-mid-point (CMP) velocity analysis with Bistatic GPR 

CMP data is a unique dataset that can be acquired by the bistatic GPR system. The vertical 

root mean square (RMS) velocity of electromagnetic wave propagation in subsurface layers 

can be estimated from a CMP dataset. Its successful applications have been demonstrated 

for example for hydraulic property estimation [3].  

For the CMP analysis at a fixed position, reflected signals need to be measured at both sides 

of the middle point with different antenna distances as Figure 6.1 shows. If the subsurface 

is homogeneous and horizontally layered, the two-way travel time of the reflection signal 

can be given with (6.1). 

  

(a) (b) 

Figure 6 .1 Configuration of a CMP dataset; (a) data acquisition; (b) corresponding CMP data.  

 

𝜏𝑖(𝑣, 𝑧) = √
4𝑧2 + 𝑥𝑖

2

𝑣2
 

 

 

(6.1) 
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𝑃(𝑣, 𝑧) = ∑ 𝑑(𝜏𝑖

𝑁

𝑖=1

(𝑣, 𝑧), 𝑥𝑖) (6.2) 

Where z is the depth of the horizontal reflector,  𝑥𝑖 is the distance between the antenna pair 

i, v is the trial velocity, N is the number of the traces and d is the CMP data. After a CMP 

dataset is acquired, we can apply the velocity analysis to obtain the velocity spectrum P 

with (6.2). Velocity spectrum shows the stacked amplitude of the signals at different 

positions along the hyperbolic curves given by (6.1). When a trial velocity is close to the 

real velocity, the stacked energy will be enhanced. Hence we can pick the estimated velocity 

at the maximum energy point. Figure 6.2 shows a simple simulated CMP dataset and its 

velocity spectrum. Here we assume that there is only one reflector located at 0.5 m depth 

with 0.12 m/ns subsurface velocity. We can find that due to the different distance between 

the antenna pairs the reflected signal forms into a hyperbolic curve as it shown in Figure 

6.2(a). The direct coupling is also included that is shown as a straight line. After the 

velocity analysis we can acquire the velocity spectrum as shown in Figure 6.2 (b). We can 

find that the energy is well focused at the position where the velocity is equals to 0.12 m/ns. 

The quality of the velocity spectrum is related to the length of a CMP survey line which is 

decided by the largest distance of an antenna pair for multistatic system, the wavelength of 

the signal, signal to noise ratio (SNR) and the update step of the trial  velocity. Also the 

artifacts may be introduced when the data is very coarse as I mentioned before. More details 

on CMP analysis can be found in [4][5].  

On the velocity spectrum we can pick the depth and also the velocity of the upper layers. 

Here we should notice that the picked velocity is RMS velocity which indicates the  average 

velocity of a layer as 

𝑣𝑟𝑚𝑠 = √
∑ 𝑣1𝑑1 + 𝑣2𝑑2 + ⋯

∑
𝑑1

𝑣1
+

𝑑2

𝑣2
+ ⋯

 (6.3) 

Here d and v represents the thickness and the velocity of different layers. The quality of the 

velocity spectrum depends on the effective length of a CMP survey line, the pulse width of 

the signal, trial velocity update step, depth of layer and noise [4]. From Equatio n (6.1) we 

can see that the velocity analysis processing is very similar to SAR processing; therefore, 

many features of SAR processing also apply. As it is shown in Figure 6.2, the velocity 

analysis transforms the CMP dataset to velocity-depth domain. This explains well that the 

small velocity update step gives better resolution in velocity spectrum. The effect of the 

pulse width and the CMP survey length is same as that in the SAR processing, as a shorter 

pulse and longer effective survey line give better resolution. The effective CMP survey 

length means the maximum offset that can observe the hyperbolic reflections from a layer. 
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It is related to the antenna radiation pattern and the depth of the layer. The observation 

length of a CMP dataset limited the resolution of the velocity spectrum. The coarse 

sampling does not reduce the resolution, however, it may introduce the imaging artifacts 

that distort the velocity spectrum. Noise can be a problem to almost all the signal processing 

methods. The best way is to suppress the noise while acquiring the data, and it may be 

reduced further with de-noising algorithms that we also mention in later part.  

 

 

(a) 

 

(b) 

Figure 6.2 The simulated CMP dataset (a) and its velocity spectrum (b).  

 

6.22 Fast CMP velocity analysis with multistatic array radar system 

For CMP data acquisition the bistatic GPR system is necessary. And the spatial sampling 

interval should be less than half wavelength to prevent the data from generating artifacts as 

we pointed out in previous chapters. In this case, we need to move the antennas step by 

step, and it can be very time consuming for single CMP dataset. On the other hand, for the 

geological application or the pavement inspection, the velocity information in single 

position is not enough. It is much better if we can acquire the velocity information along a 

survey line or even the distributed 2-dimensional area which is very difficult for bistatic 

system. It is similar to the SAR system problem that we discussed in previous chapter, we 

may also solve this problem with the multistatic system. In 2012, we developed a multistatic 

array GPR system named YAKUMO [11], the details of the system will be introduced in 

next chapter. With this antenna configuration, it is also possible to acquire th e CMP data 

at a fixed position as Figure 6.3 shows. Due to the size of antennas, each trace of the CMP 

data is not placed on a line. Comparing to the configurations of the common CMP 

measurements, the CMP data acquisition of YAKUMO system is very fast and convenient. 

As the trade off, the CMP data acquired by YAKUMO system includes only eight traces 
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and the spatial interval of the antenna distances between the different antenna pairs are not 

unique. As I mentioned in previous section, the coarse CMP data generates artifacts in 

velocity spectrum and it makes the automatic velocity picking much difficult. In this case, 

some special processing techniques are required for the coarsely acquired CMP dataset.  

 

Figure 6.3 Antenna configuration of YAKUMO system.  

 

6.3 Interpolation of YAKUMO CMP dataset 

From the view of imaging processing, the aliasing are generated by the tilted linear objects 

which are not well sampled. Here we try to use a trial velocity to regularize the antenna 

pairs with different distance to zero distance. It can be calculated for each antenna pair by 

geometry with (6.4).  

𝜏0 = √𝜏𝑖
2 −

𝑥𝑖
2

𝑣2
 (6.4) 

 

Where τ𝑖  is the two-way travel time with different antenna distance 𝑥𝑖  and τ0  is the 

estimated two-way travel time when the distance between the antenna pair is zero. Here we 

should notice that the trail velocity v is unknown so the τ0  is not equals to τ0 . As I 

mentioned above, the travel time with different antenna pairs are shown as a hyperbolic 

curve in CMP dataset which can include strong aliasing when it is not well sampled. If we 

know the accurate velocity, the hyperbolic can be then flattened to a horizontal reflection 

by using the time delay acquired by (6.4). Here the trial  velocity can be seen as an initial 

value that is used for accurate velocity estimation. Hence we can use a trial velocity that is 

estimated within the current survey area when the subsurface velocity does not change 

dramatically. After the aliasing removal, we applied an interpolation method that can handle 

the irregular data to reconstruct the CMP dataset [12]. And at the end we do the inverse 

correction to remove the time shift we acquired by (6.4). Figure 6.4 shows the processing 
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schedule of the proposed method. Figure 6.4(a) shows a simple simulated CMP dataset that 

includes a direct coupling and a layer reflection with 0.12 m/ns subsurface velocity at 0.5 

m depth. We show the similar configuration to YAKUMO system that there are only eight 

traces available while the antenna offset reach to two meter. Figure 6.4(b) shows the 

flattened reflect signals with an inaccurate velocity 0.15 m/ns. As it shows, the reflected 

signal is not flattened perfectly but goes slightly upward, and the direct coupling  is not a 

hyperbolic curve so it is not flattened correctly. However, as the interpolated result shows, 

the reflected signal are interpolated correctly because it is still much flattened by the 

aliasing removal. But the direct coupling cannot be interpolated well because of the aliasing 

problem we discussed above. Here we should point out that in most cases the direct coupling 

can be ignored or muted before the velocity analysis, but the direct coupling may overlap 

to the reflected signal when reflect layer is too shallow. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.4. The processing schedule of a simulated CMP dataset with the proposed method; (a) 

Raw data; (b) After the aliasing removal by forward transform; (c) After the interpolation; 

(d)After the inverse transform. 
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 6.5 The velocity analysis of simulated datasets; (a)(d) original CMP dataset and its 

velocity spectrum; (b)(e) the CMP dataset after resample with 0.3 m spatial interval and its 

velocity spectrum; (c)(f) interpolated CMP dataset after the proposed method and its velocity 

spectrum. 

Figure 6.5 shows a velocity analysis example with the coarse simulated data. As we 

discussed above, the sparse CMP dataset will introduce strong artifacts which will damage 

the results as it shows in Figure 6.5(e). In this example there is only one reflect ion so the 

artifacts are not so strong and we still can distinguish the focused energy well. With the 



Chapter 6 
 

99 
 

proposed method, the artifacts in the velocity spectrum are well eliminated. We also tested 

the method with the real CMP datasets acquired from YAKUMO sys tem, in most cases the 

velocity can be automatically picked at different depth.  

Figure 6.6 shows a vertical slice data acquired with YAKUMO system. It was acquired at 

a sand dune near the seashore. We can observe multiple layer reflections in this dataset  

which are caused by the interaction of the wind and the trends at different time periods. 

Figure 6.7 shows one of the YAKUMO CMP dataset that was acquired within this survey 

line at eight meter. As I mentioned above this CMP dataset includes several reflect layers 

and it is more complicated than the simulated case. In Figure 6.7(a) we can find strong 

artifacts appear at low velocity and most of them are as strong as the focused energy of the 

hyperbolic curve, which will make the automatic velocity picking become difficult. After 

the proposed method, these artifacts are well eliminated and the velocity spectrum becomes 

much clean. The velocity profile can be then generated automatically from the velocity 

spectrum at different positions. In Figure 6.7(d) the energy are well focused at 6 ns, 10ns 

and 12 ns, and the result shows that the subsurface velocity is decreasing at each layer. It 

is also another application of the CMP velocity analysis which we can provide the velocity 

at each layer directly related to the soil moistures so that the geologist can use this 

information. If we can acquire this information at every position and then we can generate 

a velocity profile, it can be used for the initial model for the further processing including 

migration or tomography. On the other hand, we expect that the velocity profile can also be 

used to detect a slight velocity change within a survey area when the reflected wave caused 

by the damaged pavement is hard to identify. These velocity changes may indicate the slig ht 

changes of the physical properties which related to our interest.  

However, the velocity picking at each position is still not a simple task. Ideally, the slight 

velocity change or thickness change can be detected directly with the velocity spectrum; 

when the focused energy shifts in vertical direction, it indicates the thickness changes; 

while it shifts in horizontal directions, it indicates the velocity changes. Due to the 

limitation of the velocity analysis, the real value of the velocity is still diff icult to pick. As 

shown in Figure 6.5, the focused energy still cannot be focused into a point even with this 

ideal simulated dataset. When the dataset is more complicated, the slight changes are even 

more difficult to pick.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.7 Velocity analysis results of CMP dataset acquired by YAKUMO; (a)(c)the original CMP 

dataset and its velocity spectrum; (b)(d) the processed CMP dataset with proposed method and its 

velocity spectrum. 

 

6.4 ℓ1 norm regularized CMP velocity analysis for high accuracy velocity 

estimation 

As we described above, velocity analysis is very similar to the SAR processing, while SAR 

processing transforms signals to the spatial domain and velocity analysis transforms sig nals 

to velocity-time-domain. It is shown in previous chapter that such approach can be seen as 

a linear transformation and expressed in matrix form. The forward modelling can be written 

in matrix form as 
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𝑑 = 𝐺𝑚 (6.5) 

The measured dataset d can be uniquely determined by a forward operator G. The operator 

G can be generated by using (6.1), and the model m will be the exact velocity spectrum 

each point corresponding to the reflected layer and the RMS velocity above it.  

𝑎𝑟𝑔 𝑚𝑖𝑛‖𝑚‖1 𝑠. 𝑡. ‖𝐺𝑚 − 𝑑‖2 < 𝜖 (6.6) 

The problem can be solved with (6.6). Comparing with the problem that we solved in 

Chapter 4, the only difference is that the operator G is velocity estimation operator instead 

of SAR processing operator. The general idea of using ℓ1 norm regularized least square 

problem is already well discussed as well in Chapter 4 and the details of constructing the 

operator can be referred to [13]. The main aim of this approach is to get a further focused 

imaging result of the velocity spectrum so that the slight change of the velocity can be 

distinguished and the focused result is easier for automatic picking.  

In Figure 6.8 we show a simple simulation test of the proposed method. Here we should 

notice that until this chapter we used simple ray tracing for the simulation test, it is because 

that we are focusing on the imaging algorithm. Our algorithm is designed under the ray 

tracing theory so the complicated simulation will introduce error that is not belongs to the 

algorithm. However, for velocity estimation we have to consider it in a more realistic case. 

We need to evaluate if the velocity estimation algorithm can deal with some real problems 

that violated the assumptions. For example, the wavelet changes caused by the increasing 

antenna offset or the attenuation within the medium, and also the semblance problem that 

we discussed in the end of the section 6.21. Hence we chose FDTD simulation for the 

velocity estimation examples for the practical evaluation of the proposed algorithms [14].  

In this example, the model is very simple that only included a layer reflection and the upper 

part is 15 cm thick asphalt layer with velocity assumed to be 0.1 m/ns, also we have 1 cm 

air layer at the top of the model because for real application the antenna may not attached 

on the surface perfectly. We can find that the proposed method can provide much higher 

resolution in velocity spectrum. However, we may notice that the estimated velocity is 

slightly higher than the real value. There are mainly two reasons for  this issue, and the first 

reason is the 1 cm air layer at the top of the model. It can be seen as another layer with 

higher velocity, since the velocity estimation is estimating the RMS velocity of all the 

layers beyond the base soil, the air layer will increase the RMS velocity as the result. The 

second reason is the wavelet change, we may notice from Figure 6.8(b) that the wavelet 

shape at different antenna offset changes a lot due to the strong attenuation of the medium 

and the dramatic change of the incident angle. Since the velocity estimation is just 

evaluation the stacked energy, such phase change will also affect the final result. It is also 

the main reason why I mentioned that stacking method is better for GPR application but not 

semblance in seismic velocity analysis application. This problem indicates us that GPR 
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velocity estimation has some limitation on precise velocity estimation as it pointed out in 

previous researches. We cannot expect a very precise value of the real velocity of within 

the subsurface layer, however, we can use the high resolution result to detect the velocity 

difference at different position. I think these velocity differences may more reliable, and it 

can be used for inspection applications, more details on this topic will b e given in next 

chapter. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.8 Simulated test of the ℓ1 norm regularized velocity estimation method; (a) FDTD 

model; (b) the simulated CMP dataset in the middle; (c) the velocity spectrum acquired with 

conventional velocity analysis; (d) the velocity spectrum acquired with the proposed method.  

Another problem of using this method is calculation itself, as I mentioned in Chapter 4 we 

still have to using the iteration algorithm for ℓ1 norm solution. However, for large scale 

inspection application this problem can be greatly simplified. Since the thickness and the 

velocity will not change that much, the calculation area can be greatly reduced. For example, 

in Figure 6.8 we know the reflect layer is at 15 cm and velocity is around 0.11 m/ns. When 

Base soil ε = 3  

Asphalt layer ε = 9

15 cm

1 cm air layer

1 m
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we want to detect the slight change, we can reduce the velocity estimation range from 0.08 -

0.13 m/ns to 0.1 to 0.12 m/ns, and the depth can be also reduced from 0 to 4.5 ns to 2.5 to 

3.5 ns. In this case, not only the calculation area can be greatly reduced, but also the noise 

or other clutters can be reduced. Hence, the parameter for the ℓ1 norm calculation will be 

easier to define. 

 

6.5 Simultaneous Estimation of Velocity and Thickness of Strati fied 

Material 

As I mentioned above, it is possible to estimate the velocity and thickness with the velocity 

spectrum. A straightforward way is to evaluate the shifts of the focused energy in velocity 

spectrum to estimate the velocity and thickness changes.  For example, if the focused energy 

from the same reflector shifts in horizontal direction, it indicates the velocity changes; 

while it shifts in vertical directions, it indicates the thickness changes. However, the 

resolution of the velocity spectrum is l imited by many different factors as I mentioned 

above. 

In order to improve the accuracy of the estimated results, the key issue is to improve the 

resolution of the signals. For example, if the reflected signal is only a pulse and there is no 

noise, the energy in velocity spectrum can focused into a point. Hence the slight 

velocity/thickness changes can be easily detected. However, such ideal case is not exists. 

Another way is to improve the quality of CMP dataset to enhance the resolution of the 

velocity spectrum. In previous work we used the interpolation method to improve the 

quality of the CMP dataset and the artifacts in the velocity spectrum are well suppressed. 

With that approach can find out some velocity/thickness anomalies automatically. But it is 

still difficult to quantify the differences and distinguish the velocity and thickness changes 

simultaneously [4]. 

Since the accurate travel time of the reflected signal is difficult to be measured accurately, 

we have to find other ways. The interferometry technique is widely used in SAR 

applications. Here we can also borrow this idea to measure the accurate time delay 

differences of two CMP datasets by cross-correlation [15][ 16] .  

 



Chapter 6 
 

104 
 

 

(a) 

 

(b) 

Figure 6.9 Simulated CMP datasets with only one layer; (a) Base dataset, z=0.35 m, v=0.15 m/ns; 

(b) Monitor dataset,z=0.37 m, v=0.17 m/ns;  

 

If the time delay can be determined accurately, we can use it to find out the changes on 

velocity or thickness. With the simple cross-correlation algorithm, we can pick the high 

accurate time delay information. Figure 6.9 shows a simple simulated dataset that only 

include one layer reflection. The velocity of the base data is assumed as 0.15 m/ns and the 

thickness is 0.35 m. While the velocity of the monitor data is assumed as  0.17 m/ns and the 

thickness is 0.31 m; 

As shown in Figure 6.9, the two CMP dataset are very similar. However, with the cross -

correlation, we can extract the time delay difference at different offsets as shown in Figure 

6.10. We also show the theory results with the known velocity and thickness of monitor 

data. The measured results agree well with the theory.  

After the time delay was acquired, we assume there are slight changes in velocity and the 

reflector depth. 

∆𝑧

𝑧
,
∆𝑣

𝑣
≪ 1 (6.7) 

With this assumption we can derive the first order differential of the arrival time with (6.8)  

 

∆𝜏(𝑥) = ∆ (
1

𝑣
√4𝑧2 + 𝑥2) =

4𝑧

𝑣
(√4𝑧2 + 𝑥2)−1∆𝑧 −

1

𝑣2
√4𝑧2 + 𝑥2∆𝑣 (6.8) 
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Figure 6.10. The time delays at different offsets;  

It indicates that if we have the known velocity v and the reflector depth z at a known point 

which we define it as the base dataset, we can calculate the  slight velocity change dv and 

thickness change dz with time delays difference ∆𝜏 of base dataset and another interested 

position which we define it as monitoring dataset. In order to solve (6.8) we need at least 

two different antenna pairs with different offset x, and we can also solve this over 

determined problem by finding the least square solution  with more antenna paris. The 

accuracy will be better if we chose two offsets that are far away to each other, the details 

will be discussed in later section. Figure 6.11 shows the estimated velocity and thickness 

changes with the time delay differences at 0.1 m offset and other offsets. As the result 

shows, when there are slight changes on velocity and thickness, the value can be estimated 

accurately by the proposed method. Here we should delight that the base information can 

be estimated by the velocity spectrum. As I mentioned above, the accurate value of the 

thickness and velocity maybe difficult to determine. The inaccurate base information will 

lead some errors to the estimated velocity/thickness changes. As we have tried out, in most 

cases the error can be ignored because we did not use the higher order in (6.7).  
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Figure 6.11 Estimated velocity/thickness changes with the proposed method. The arrow indicated 

the real value of the velocity change 0.018 m/ns and the real value of the thi ckness change 0.033 

m. The least square solution is shown in the title of the figure.  

 

 

(a) (b) 

Fig 6.12 Simulated results with single layer, the velocity changes is 0.003 m/ns that indicated 

with the arrow, (a) Calculated with the theory time delay; (b) Calculated with the time delay 

estimated by the cross-correlation. 

 

The proposed method is still not complete now. As it shows in Figure 6.11, we found that 

the estimated results are not correct when the offset is small. I think it is caused by the 

Velocity change  

Depth change  

Velocity change  

Depth change  

Velocity change  

Depth change  
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error in time delay estimation. When the offsets are getting smaller, the accuracy of the 

cross-correlation results will become worse. Fig 6.12(a) shows the results that calculated 

with the theory time delay calculated by the known parameters. In this case  we set 0.003 

m/ns velocity changes in monitor data. When the time delays are accurate, we can estimate 

accurate velocity estimation with each pair of the time delay information. However, if we 

use the time delays estimated by the cross-correlation in Fig 6.12(b), the estimated results 

with small offset are incorrect as we expected. I think more advanced cross-correlation 

algorithm need to be considered.  

Another issue that we may concern is the accuracy of the estimated parameters. As I 

mentioned above, if we want to estimate the true value of the changed Velocity and 

thickness, the given parameter of the base dataset must be accurate. However, the base 

information is unknown or inaccurate in most of the cases and we have to deal with this 

problem. Figure 6.13 shows a simple example when we use inaccurate base information. 

Here we still use the same parameter as shown in Figure 6.11. The velocity of the base 

dataset is 0.15 m/ns and thickness is 0.35 m with 0.02 m/ns velocity change together with 

0.04 m thickness change. However, here we assume that we get inaccurate base information 

that the velocity of the base dataset is 0.2 m/ns and the thickness is 0.2 m. As the result, 

we can still detect the velocity and thickness changes and the error is acceptable. A lso I 

tried the cases with only velocity or thickness is changed and we found in this case even 

the base information is not accurate. The constant velocity or thickness is always not change. 

It means that the proposed method has a relatively robust result when the base information 

is not accurate.  

Figure 6.14 show a FDTD simulated dataset includes the CMP datasets on a survey line. It 

shows more realistic situation that includes some multiple reflections and dispersion effects. 

In the middle part of this survey line there is a 2 cm thickness change as it indicated in 

Figure 6.14(a). If we acquired such dataset, we can find that there are some anomalies 

appear in the middle part as it shows in Figure 6.14(b). However, both the deeper reflection 

and lower velocity can cause the same results as shown in Figure 6.14(b). After we 

processed this dataset with the proposed method, we found that the quality of the time delay 

estimation is not good. The near offset traces show incorrect time delay because of the 

strong direct couplings. Figure 6.15(a) and 6.15(b) shows the estimated time delay and the 

estimated thickness/velocity changes and the results are not correct because of the wrong 

time delay estimations of near offset traces. Here we simply do not use the near  offset traces. 

And then we can get much better estimation results as shown in 6.15(c) and 6.15(d). This 

is just a simple approach to improve the quality of the cross -correlation results. More 

advanced methods are still under investigation. This example indicates that the near offset 

traces are difficult to estimate the correct time delays. So, when use the time delays at two 

different offsets, we should avoid using the pairs that close to each other. For the YAKUMO 

system that includes only eight CMP traces, we can estimate 64 different results. In this 
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case, we need to select the useable pairs of the different offsets.  

On the other hand, this method is specific for the one layer structure, but we can apply it 

to complicated structures by assuming the upper  part of a layer reflector is homogeneous. 

For example, there is always a 5 cm air layer between YAKUMO system and the ground 

surface and we can just ignore this 5 cm air space and combine its effect together with the 

near surface medium. It may lead some errors to the values we estimated, but the slight 

changes on a specific layer still can be determined.  

  

Figure 6.13. Estimated velocity/thickness changes with inaccurate base information.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 6.14. FDTD simulated single layer data and CMP gather. There is a 2 cm thickness change 

in middle part of the data.  (a) Model (b) Vertical slice of the simulated area; (c) Simulated 

CMP gather in the middle part of the survey line (The arrow in Figure 9(b) indicated the position 

of the CMP gather). 
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(a) (b) 

(c) (d) 

Figure 6.15. Estimated time delay and velocity/thickness changes of the FDTD simulated dataset, there is a 2 cm 

thickness changes in monitor data. The arrow indicated the 0.02 m thickness change. (a) Estimated time delay 

with the cross-correlation; (b) Estimated velocity/thickness changes; (c) Estimated time delay without near offset 

traces; (d) Estimated velocity/thickness changes without near offset traces. 

6.6 Summary 

In this chapter I discussed about another topic of using the sparse array radar system. It is demonstrated 

that we can arrange the sparse array system for CMP data acquisition instead of using the bistatic radar 

system. And the electromagnetic wave propagation velocity within the layer mediums can be estimated 

with CMP dataset. Also I pointed out that the velocity estimation with the CMP dataset is very similar 

to the SAR processing that I have discussed in previous chapters. Hence the artifacts may introduced 

to the velocity estimation result and make it difficult to pick the correct velocity of a certain reflect 

layer. In this case, I introduced three different ways to improve the velocity estimation result acquired 

with limited antenna elements. 

Velocity change 

Depth change 

Velocity change 

Depth change 
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The interpolation of the CMP dataset is the most straightforward approach. Comparing with the 

monostatic radar profile with unknown reflection, the CMP dataset is easier to be interpolated from 

the imaging processing point of view. I demonstrated that we can flatten the reflected signal with the 

estimated velocity to improve the interpolation result. In most of the cases we can reconstruct the CMP 

dataset with coarse sampled CMP data that far beyond the Nyquist sampling criterion has defined.  

The ℓ1 norm regularized velocity estimation method can be achieved due to the similarity of velocity 

estimation processing and SAR processing. It can greatly improve the resolution of the velocity 

estimation result. Comparing to its application on SAR imaging, the required calculation area is much 

smaller since the subsurface velocity usually only change in a relatively small range, hence the iterative 

algorithm can also done fast. However here I should delight that although the velocity estimation result 

can be focused, due to the effect of the wavelet we cannot confirm the focused velocity is just the real 

velocity value. It is better to apply this approach for slight velocity change detection.  

The last method is a practical method that can be done with only few antenna elements. It can estimate 

the slight velocity/thickness change simultaneously. However the limitation of this method is much 

tighter, it can only be applied to single layer reflection, or it can be done when there is no clear 

reflection from other reflection layers. And these changes should be relatively small. The key point is 

to detect the time delay of two different CMP dataset, however, for the real dataset the reflected 

waveform may different when the medium is significantly different and the phase center of a certain 

waveform maybe will changed. I think the phase center of the waveform still need to be further 

analyzed in order to reach higher accuracy for the velocity estimation. It is a practical way to 

distinguish the distortion of the reflected signal from a layer reflection and I expect that this method 

can be applied for pavement inspection applications. 
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Chapter 7 Case study: applications of array GPR system  

7.1 Introduction 

In this chapter I will mainly focus on the application of the array GPR system YAKUMO that I have 

already mentioned in Chapter 6. Currently there are several groups are investigating the array type 

GPR system for the engineering applications or archaeological applications. [1] [2] [3]. Comparing 

with the other system, one of the main advantage of our YAKUMO system is the fast data acquisition 

of the multistatic dataset. We can acquire the 64 channels dataset in real-time while moving the system 

along the survey line. As I have already discussed in Chapter 2 that the multistatic data coverage has 

much advantages than monostatic for sparse array imaging. An archeological field experiment with 

YAKUMO system will be introduced in later section. The performance of the YAKUMO system for 

3-dimensional GPR data acquisition will be demonstrated.  

On the other hand, In our previous research work for the large scale subsurface velocity estimation, 

the data acquisition is always a problem for its long term operation which limited the quantity of the 

information that we can acquired in each field experiment [4][5]. In this case, with YAKUMO system 

we can fully use the special configuration for the continuous CMP data acquisition. The CMP dataset 

along a survey line can be acquired continuously and these information can be used to generate a 

velocity profile which can provide much more information [6]. Although the CMP dataset is coarse 

and it may cause some problems, we can overcome these problems with the methods that I have 

introduced in Chapter 6.  

Besides of the archeological application, GPR system is also widely used for engineering application 

such as pavement inspection. There are already many researches on this topic [7][ 8][9]. In previous 

researches, most of the inspection processing are analyzing the reflected signal form the damaged part 

and focusing on relatively large target such as the holes generated in meters depth. However, one of 

our project request us to investigate a way to inspect the pavement of the airport taxi-way which is 

very different from the previous cases. The targets are the thin cracks with millimeter thickness that 

distributed within the 15 cm thick asphalt layer just above the surface. It is already proved to be a 

difficult task if we want to use the reflected signal to detect these thin cracks in previous researches 

[10] [11][12]. Here I tried to use the slight velocity changes to detect these thin cracks with velocity 

estimation techniques. With the high-resolution velocity estimation obtained by ℓ1 norm regularized 

least square solution, I show the possibility of detecting the slight velocity changes. Both simulation 

and field experiment are used to analyze the proposed method.  
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7.2 Array GPR system yakumo 

7.21 Array GPR system YAKUMO 

Yakumo is a SFCW multistatic GPR system, it operated from 50MHz to 1.5GHz. It has 8 transmitting 

and 8 receiving antennas, having the swath width of 2m. The main purpose of YAKUMO system is 

for large scale GPR surveys, because we can get totally 64 channels at each position that covers the 2 

m width. For large scale survey we can operate the system on a single survey line and then we can 

acquire the 3-dimensional data cube with SAR processing. The sampling interval along the survey 

direction is 1 cm which satisfied the sampling criterion well, but the spatial interval along the 

perpendicular direction is much coarse if we think about the mid-point assumption that I mentioned in 

Chapter 2. The size of each antenna element is 24 cm so we can assume that there are 16 traces that 

have 12 cm spatial interval. It means that there may be some imaging problems happen with 

conventional SAR processing and I will discuss more about it in later sections. Currently we have 

operated our system for the survey of tsunami victims in sand beach in East Japan, and archaeological 

surveys [13]. More recently, we also use it for nondestructive inspection of airport taxi-way pavement.  

Another advantage of YAKUMO system is that it can be used for estimating the subsurface velocity 

of EM wave propagation. One of the main difference of the GPR system with the sparse array system 

I mentioned in previous Chapter is that the velocity of the EM wave is not constant anymore. In order 

to do the imaging processing we need to know the subsurface velocity distribution to prevent the wrong 

imaging result. Also, the subsurface velocity is also an important information for environmental studies 

[14].  

The antenna distribution is shown in Figure 7.2. Here we should notice that the original idea of the 

YAKUMO array distribution is different from the sparse array design that we discussed in previous 

chapters. If we assume the middle point of each transmitting and receiving antenna pair as the 

monostatic transceiver, we can find that there are only 16 virtue transceiver along the 2 m width and 

each of the position is overlapped several times. There are mainly two purpose of using the overlapping 

virtue transceiver: the first reason comes from seismic exploration that the subsurface environment is 

much complicated than it in air. There are many scatterers such as small stones, wooden pieces, or 

sudden change of the dielectric constant due to the ground water so the imaging result will suffer from 

these unwanted scatters. Although the virtue transceiver is overlapped, each of the antenna pair has 

different observation angle and they are actually “looking” different scatterers except the main target. 

Hence by stacking them together it is possible to preserve the unwanted scatterers; another reason is 

that by using this configuration, we can get CMP dataset at each position for the continuous velocity 

estimation. 
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Figure 7.1 Operation of array GPR system YAKUMO 

7.22 Effect of the Antenna polarization 

Yakumo is equipped with bowtie antennas so the radiation pattern of the antenna element is strongly 

related to the antenna polarization direction [15]. We arranged the antenna orientation in two ways as 

shown in Figure 7.2. The antenna polarization in the antenna arrangement #1, shown in Figure 7.2 (a) 

is parallel to the direction of the survey line. In this case, antenna coupling are strong, even for the 

antenna pairs which located at the other end of the array. It means that with such antenna configuration 

the far-offset antenna pair can work well so it has more advantages especially for the CMP data 

acquisition. However, the near-offset antenna pairs have weak coupling and their vertical profiles may 

have poor performance. On the other and, in the antenna arrangement #2 shown in Figure 7.2 (b), 

antenna coupling is strong only among nearby antenna pairs, but relatively weak for a pair at long 

antenna offset. And vice versa, the near-offset vertical profile can have much better performance.  
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(a) 

 

(b) 

Figure 7.2 Antenna configuration of YAKUMO system, (a) antenna arrangement #1; (b) antenna arrangement 

#2. 

We also did experiment before/after rotating the antenna at the same location. In Figure 7.3 we show 

a vertical profile that acquired in same location with different antenna pairs. We compared three 

different pairs as T4 to R4, T3 to R5 and T2 to R6. They correspond to near, middle and far offset 

antenna pairs. As we described in the beginning, antenna arrangement #1 have better performance than 

#2 with far offset. However, if we only compare the near offset profiles with Figure 7.3(a) and Figure 

7.3(d) we can find that antenna arrangement #2 has better performance and the details can be seen 

more clearly.  
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 7.3 Comparison of the antenna arrangement #1 and #2 with different antenna offset, (a)-(c) are 

acquired with antenna arrangement #1 and (d)-(f) are acquired with antenna arrangement #2; (a)(d) are 

acquired with nearest antenna offset; (b)(e) are acquired with medium antenna offset; (c)(f) are acquired with 

far antenna offset. 

 



Chapter 7 
 

117 
 

In Figure 7.4 we compared the CMP dataset with both antenna configuration at the middle position of 

the profile that we show in Figure 7.3. Also as we predicted, antenna arrangement #1 has better 

performance for CMP dataset because the reflected signal still can be seen with the far offset antennas, 

which means we can have higher resolution in velocity spectrum. Also we may notice that the wavelet 

shape is also changed due to the change of the polarization direction. This is also a problem that affect 

the accuracy of the velocity estimation as we discussed in Chapter 6. By comparing this two cases, we 

may notice that there is a balance of the current YAKUMO system, when we want to have better 

velocity profile with near offset antennas, we will lose affective observation length in CMP dataset. In 

order to solve this problem, we have to improve from the hardware design. Now we are considering to 

use cross-bowtie antenna or change part of the antenna orientation to optimize both vertical profile and 

the CMP dataset. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.4 CMP dataset with two antenna arrangements, (a)(b) antenna arrangement #1 before/after gain and 

trace balance; (c)(d) antenna arrangement #2 before/after gain and trace balance; 
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7.23 An example of archaeological survey at Kunohe  

 

 

(a) 

 

(b) 

Figure 7.5 Experimental site at Kunohe, (a) sketch map of survey area; (b) geometry of experimental site. 

As we introduced in the beginning, one of the main purpose of developing YAKUMO system is large 

scale archeological survey. In this section we will introduce a field experiment to demonstrate the 

performance of YAKUMO system. 

The site is located in Kunohe district, Iwate prefecture of Japan. There is a historical remaining of the 

Kunohe castle that already destroyed hundred years ago. And the local government want to find some 

remained structures that may located at few meter depth within this area. The indicated survey area is 

about 50 m by 35 m as we marked in Figure 7.5(a). It is a huge survey area and can be extremely time 

consuming to acquire the 3-dimensional data with the conventional monostatic GPR system since each 

survey line should be acquired very dense. However, we can acquire a 2 meter wide 3-diemensional 

data cube with YAKUMO system by a single survey line. It can greatly improve the data acquisition 

time and we took only two hours to acquire the whole dataset that covered this area. 

In Figure 7.6 we show two vertical slices at around 6 m and 12 m in Y- direction. The data is processed 

with gain function hence we can still see the reflected signals at 2 meter. We find it is very difficult to 

intemperate this area with only vertical slice because there are too much clutters that comes from small 

stones and they stacked with each other and the subsurface layers. In general, we can see several tilted 

boundary reflectors that goes up to the X- direction. 



Chapter 7 
 

119 
 

 

(a) 

 

(b) 

Figure 7.6 Vertical profiles at x- direction (survey direction); (a) Y=6.3 m; (b) Y= 12.66 m. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 7.7 The depth slice of the survey site at different depth, the velocity is estimated as 0.9 m/ns; (a) depth 

slice at 0.41 m; (b) depth slice at 0.83 m; (c) depth slice at 1.16 m; (d) depth slice at 1.52 m; (e) depth slice 

at 2.02 m; (f) depth slice at 2.56 m. 
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In Figure 7.7 we show the horizontal slices at different depth. In Figure 7.7(a) we can see many linear 

structures in shallow depth and we found that these are the abandoned wires buried in recent years. 

Then we can see some distributed shape in Figure 7.7(b) and (c) that is located around 1 m depth. I 

think it maybe the old layer structure that indicates the previous geometry of this area. And this layer 

can be also seen clearly in vertical slices that are shown in Figure 7.6. From 1 meter depth to 2.5 meter, 

we can always observe some reflections from around the right-bottom of the imaging area. I think 

these reflections maybe caused by larger stone structures which can be the target that we want to find 

out. Later the archaeologists also mentioned that the remains of the old city can be located near that 

area. Currently the further investigation of this area is still undergoing.  

We also applied the SAR processing technique with this dataset however we find the processed result 

lost many detail information and the performance is not that good. It is a common problem of applying 

the SAR technique to the GPR dataset especially for the complicated reflections. While in some special 

case SAR processing give better results as we introduced in [16] [17]. Archaeological survey is a 

special application of radar technique and it require experience, sometimes we cannot simply apply all 

the processing techniques to the dataset for the sake of losing important information.  

 

7.3 Pavement inspection application for airport taxi-way with YAKUMO system 

7.31 Pavement inspection at near-surface 

As I mentioned in the beginning of this chapter, one of our goal is to apply the velocity estimation 

technique for airport taxi-way’s pavement inspection. In this section we will further discuss on how 

we can apply the velocity technique for pavement inspection. 

Pavements of airport taxi way usually consists of a few layers. The asphalt layer on the top of the 

pavement is about 15 cm and the health condition of this layer is our main interest. One of the problems 

is delamination that is caused by water intruded from surface cracks due to the daily use which expand 

the space between layers. By temperature and/or pressure changes, the space between layers would be 

further expanded. When cracks appear in the asphalt layer, the most straightforward way to detect 

them is to observe reflected signals from the cracks. The reflected signals from the crack are directly 

related to the pulse-width of the GPR system. The relation between the amplitude of the reflected 

signal and the crack aperture or antenna band-width are shown in [18]. It shows that when aperture is 

less than 1 cm, it is very difficult to see the reflection directly with about 1 GHz center frequency. 

When a higher frequency is used, reflected signals from other scatterers can also be observed and it is 

difficult to determine the source of the reflected signals. Since the asphalt layer is always a constant 

layer structure and has strong homogeneity, we may also use some other parameters such as the RMS 
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velocity to detect the partially damaged pavement. For example, if the pavement is partially damaged, 

there may be some cracks or change of the density and the permittivity of this part of the asphalt layer 

may also be different to the healthy part. If we can detect these slight changes in RMS velocity by the 

CMP analysis, this information can be used as another parameter to evaluate the pavement.  

 

In the case of pavement inspection, the reflector is very shallow. So the cracks within the pavement 

and the distance from antenna to the surface are both significant issues to the estimated velocity. For 

example, if there is a 1 cm gap between antenna and the surface, it can be seen that there is another air 

layer since it is thick enough compared to the 15 cm thick asphalt. From (6.3) we can also derive 

another form for this case as it shown in (7.1), here d is total thickness of asphalt layer and s is the 

crack aperture. We can calculate that with 1 cm air layer the RMS velocity of the asphalt layer increases 

about 0.05 m/ns. Also from this equation we can find that the RMS velocity of the asphalt layer is only 

related to the total thickness of the air layer. And when there are several cracks exist at different depth, 

the RMS velocity will not change. It indicates the possibility of the crack detection with the velocity 

change of the asphalt layer. 

𝑣𝑟𝑚𝑠 = √
𝑣1(𝑑 − 𝑠) + 𝑣2𝑠

𝑑 − 𝑠
𝑣1

+
𝑠

𝑣2

    (7.1) 

 

 

Figure 7.8 aperture of the crack with the RMS velocity with water/air filled inside. 
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As we calculated from the equation (6.7), the relation between the crack thickness and the RMS 

velocity of asphalt layers are shown in Figure 7.8 with the asphalt velocity assumed to be 0.11 m/ns. 

In both cases that the space filled with air and water, it shows the nearly linear relation between the 

delaminated space and the RMS velocity.  

 

 

(a) 

 

 

 

(b) 

 

(c) 

 

(d) 

Figure 7.9 Simulated CMP datasets with/without crack filled with air; (a) model without air layer (b) model 

with 3 mm air layer within the asphalt layer; (c) Simulated CMP dataset of (a); (d) Simulated CMP dataset 

of (b).  

Figure 7.9 shows the FDTD simulated CMP dataset of the asphalt layer with/without the crack. The 

thickness of the asphalt layer is assumed to be 0.15 m, and the velocity is 0.1 m/ns. The wavelet is 1.5 

GHz Ricker wavelet and the pulse width is about 1 ns. The antenna is set 1 cm above the surface. We 

Base soil ε = 3  

Asphalt layer ε = 9

15 cm

1 cm air layer

1 m

Base soil ε = 3  

Asphalt layer ε = 9

15 cm

1 cm air layer

1 m
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should notice that due to this 1 cm air layer, the estimated RMS velocity become higher than the real 

value. Hence we should get about 0.11 m/ns estimated RMS velocity as we can calculate with (4). It 

is also pointed in (1) that the far-offset traces are very sensitive to the slight change of the velocity, but 

they also suffer from the attenuation during the wave propagation. The pulse width become wider 

when the antenna offset is large so the far-offset trace may introduce error. We can observe such 

phenomenon with Figure 7.9(c) and (d). For real application we may need some processing such as 

gain or trace balance to enhance the far-offset trace but please notice that they still include error for 

velocity analysis.  

The air filled crack is located in the middle of the asphalt layer which is at about 10 cm depth from the 

surface and the aperture is 3 mm. In this simple simulation we can see the multiple reflections with 

small antenna offset as it is shown in Figure 7.9, but we usually cannot see it in the real dataset because 

the crack may not distributed totally flat with few millimeter aperture. This is also the reason why we 

mainly focus on analysis the reflection from the bottom layer of the asphalt. Due to the incident angle 

change the reflection from the crack reduced quickly with the increased antenna offset as it is shown 

in Figure 7.9(b). It reminds us that we should use small antenna offset to receive the reflected signal 

from the near surface cracks; however, due to the limited size of the antenna element the received 

signal can be very weak. For our YAKUMO system case, the antenna element is about 24 by 24 cm, 

which means the minimum antenna offset is already 24 cm, comparing with the simulated result in 

Figure 7.9(b), it is predictable that the reflected signal from the crack is very difficult to be observed. 

Figure 7.10 shows the results with the conventional velocity analysis method and the proposed method. 

As we introduced before, the proposed method can greatly increase the resolution of the velocity 

spectrum and reduce the artifacts caused by the coarse sampling. Figure 7.10 (a) shows the results of 

the conventional velocity analysis. The depth and the velocity of the reflected layer can be picked 

roughly due to the limited resolution as we described in previous part. Figure 7.10 (b) shows the results 

of the proposed method, we can find that the RMS velocity above the reflected layer is clearly indicated 

and there is about 0.02 m/ns velocity difference caused by the 3 mm air layer. Due to the property of 

the ℓ-1 norm regularized least square method, the resolution of the velocity spectrum with this FDTD 

simulated data can be extremely high. Here we need to delight that during the velocity analysis 

processing we did not consider about the effect of the wavelet and phase. Actually ℓ-1 norm regularized 

least square method is trying to find a best curve to fit with the reflected signals at different antenna 

offset to retrieve the high resolution. It may include some errors due to the phase change of the wavelet, 

however our main aim is to enhance the resolution so that the slight velocity changes can be observed 

better so that it can be automatically picked. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.10 Comparison of velocity spectrum acquired by different methods; (a) velocity spectrum acquired 

by convention method without air layer (b) velocity spectrum acquired by convention method with air layer; 

(c) velocity spectrum acquired by proposed method without air layer; (d) velocity spectrum acquired by 

proposed method with air layer  

Another model is same with the air filled crack but we changed the air to water. It is more similar to 

the real case because there is always water remind in the cracks. Since the difference of the permittivity 

is much larger, we can expect that the thin crack filled with water is easier to be detected. However, 

we should notice that this is just ideal case and in real situation we may still cannot observe the 

reflection from the water layer directly which we will show in the later part. Figure 7.10 shows the 

CMP dataset and the result of the analysis with ℓ-1 norm regularization. We can find that the reflected 

signal from the water layer is much stronger than the previous case as we expected, but it is too ideal 

and I think we should ignore this reflected signal and still use the reflected signal from the bottom of 



Chapter 7 
 

126 
 

the asphalt layer. Due to the attenuation effect of the water layer the waveform is more complicated 

than it through the air filled crack, hence the energy cannot be focused well. With the proposed method 

we can find that the velocity is about 0.03 m/ns lower than it in Figure 7.10(c) due to the water layer. 

This is not so accurate comparing to the theoretical results we calculated from Figure 7.9 due to the 

complicated phase changes while the signal propagate through the water layer. But it can still indicate 

the existence of the anomalies.  

 

(a) 

 

(b) 

Figure 7.11 Simulation for water filled crack; (a) Simulated CMP dataset; (b) Velocity spectrum acquired by 

proposed method. 

7.32 Application to field data 

 Here we show an example that uses the velocity information in damaged pavement inspection. 

The data was acquired at an airport runway model in Port and Airport Research Institute located in 

Nobi, Kanagawa Prefecture, Japan. The experiment site is shown in Figure 9 and we selected a part of 

it as the inspection area. This area is a 15 m by 7 m rectangular area and the sketch is shown in Figure 

7.13. We defined the 15 m side as the x-direction and the other side as y-direction. There are two man-

made cracks simulated by embedding nonwoven fabrics in between 5 cm thick asphalt layers. Then 

the water is injected into the asphalt layers. Both cracks are located at around 0.1 m depth along the y-

direction, however, the aperture between the asphalt layers is not clear due to the construction process. 

And they are located at x=4 m and x=9 m respectively. Due to the 24 cm offset of the YAKUMO 

antenna pair, in most profiles the reflected signals from the crack is very weak and difficult to be 

distinguished. Figure 11 shows the vertical profile at y=2 m, in this profile we can see that the first 

void is clearly imaged at 4 m but the other one at 9 m is not clear when we use the smallest offset. 

However, it is interesting that with the far offset vertical profile we can observe the arrival time 

differences at the reflect layer. It indicates the position of the cracks, however, it is not possible to 
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analysis the reason of this time difference only with this vertical profile because it may also be caused 

by the change of the thickness but not velocity. 

 

 

Figure 7.12 Data acquisition with YAKUMO on the airport runway model in Nobi experiment site. 

 

Figure 7.13. The sketch of the survey site, the man-made voids are indicated by dark rectangles and the dash 

circles indicate the location of a man-made rut. 
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(a) 

 

(b) 

Figure 7.14 A vertical slice extracted from YAKUMO dataset at y=2 m, (a) near-offset antenna combination 

(0.2 m offset); (b) far-offset antenna combination (1 m offset). 

 

Figure 7.15 shows the results of the conventional velocity analysis method and the proposed 

method. The three CMP positions are indicate at Figure 7.14(a). We can find that the resolution of 

the velocity spectra by the proposed method is much increased and most artifacts are suppressed. In 

this case we did not compensate the effect of the wavelet hence we can see the positive value and 

negative value in the result. We can just pick one of them although there is slight difference between 

them. And this is the remained problem that we mentioned in above that the proposed method can 

provide better imaging resolution, while it does not means that the accuracy of the estimated velocity 

is enhanced. The proposed method make it easier to extract the slight velocity changes of different 

dataset, but it may not increase the accuracy of a certain CMP position. The data shown in Figure 

7.15(a) and Figure 7.15. (c) are acquired at the crack positions and Figure 7.15(b) is away from the 

crack. We can find that there is about 0.04 m/ns velocity decrease at the position of the crack. 

Comparing with the simulated results we may judge that there is water inside the cracks and the 

thickness is around 3 mm. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Figure 7.15 Comparison of conventional velocity analysis and proposed method with YAKUMO dataste, (a)-

(c) are acquired CMP datasets, (d)-(f) show the velocity spectrum acquired with conventional method, (g)-(i) 

show the velocity spectrum acuired with ℓ1 norm regularized velocity estimation method. (a)(d)(g) are 

acquired at x=3.8 m, (b)(e)(h) are acquired on the healthy pavement at x=6.5 m and the rests are acquired at 

x=8 m. 

Figure 7.15 shows the results of the conventional velocity analysis method and the proposed method. 

The three CMP positions are indicate at Figure 7.14(a). We can find that the resolution of the velocity 

spectra by the proposed method is much increased and most artifacts are suppressed. In this case we 

did not compensate the effect of the wavelet hence we can see the positive value and negative value in 

the result. We can just pick one of them although there is slight difference between them. The data 
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shown in Figure 7.15(a) and Figure 7.15. (c) are acquired at the crack positions and Figure 7.15(b) is 

away from the crack. We can find that there is about 0.04 m/ns velocity decrease at the position of the 

crack. Comparing with the simulated results we may judge that there is water inside the cracks and the 

thickness is around 3 mm. 

In previous results we set relatively large imaging area for velocity analysis. Once we know the 

depth of interest in the survey area, we can further reduce the imaging area of the velocity spectrum 

since the ℓ1 norm regularized analysis employs an iterative algorithm. When the imaging area is small 

and the CMP dataset is sparse, the velocity estimation can be done in real time. Fig. shows the velocity 

profile of the survey line and the color legend indicates the RMS velocity. From the result we can see 

that the crack positions are clearly indicated with the low RMS velocity. 

The velocity profiles at x-direction are shown in Figure 7.16. First of all, we can find the man-

made voids imaged much clearly than is in vertical profile that shown in Figure 7.14. Both of the voids 

are imaged accurately with lower velocity. It is because that these voids have some reflections in 

shallow depth and the velocity profiles include the information from the different antenna 

combinations that enhanced the imaging results. Also we can find that the profile at y=2 m and y=4 m 

shown in Figure 7.16(b) and 7.16(c) which are located near the man-made groove shows lower velocity 

than the another velocity profile and I think it may caused by the man-made grooves. This velocity 

change is further proofed with the velocity profiles at y-directions that shown in Figure 7.17. We can 

always see two low velocity areas in the middle part of the velocity profile. With this information we 

can find the location of the low velocity area matches well with the position where the man-made 

grooves exist. I think the lower velocity is caused by the denser pavement. The pavement near the 

groove has higher density because of the compaction by a truck. Hence the air spaces inside the 

pavement are reduced which reduce the velocity of the wave propagation.  

 

(a) 

 

(b) 

 

(c) 

Figure 7.16 The velocity profiles at x- direction; (a) y= 0m; (b) y=2 m; (c) y=4 m. 
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(a) 

 

(b) 

Figure 7.17 The velocity profiles at y-direction; (a) x= 6.5 m; (b) x=9 m. 

7.4 Summary 

In this chapter I introduced the YAKUMO array GPR system and its application cases on archeological 

and engineering applications. The performance of the system for both 3-dimensional data acquisition 

and CMP data acquisition are well discussed with different antenna arrangement. I concluded that due 

to the polarization effect of the bowtie antenna, the performance of scan dataset and CMP dataset need 

to be balanced.  

An archaeological survey example at Kunohe city is introduced. Large scale 3-dimensional dataset can 

be acquired conveniently with YAKUMO system, and some interpolations are given together with the 

imaging results of this area. Some stones structures can be found and the location is matched with the 

expectation of the archaeologist. 

I mainly introduced the pavement inspection application at the airport taxi-way with YAKUMO system. 

Since it is difficult to find the reflection from the thin layer, I proposed an approach that use the slight 

velocity changes to identify the damaged pavements with thin cracks inside. I use FDTD simulation 

to analysis the possibility of detecting the thin cracks with slight velocity change and I applied the ℓ1 

norm regularized velocity estimation method to detect the precise velocity changes with few 

centimeters per nanosecond. Here we need to emphasis the conclusion that is given in previous chapter 

that the proposed method can only increase the imaging resolution of the velocity spectrum so that the 

slight velocity changes at different CMP location can be detected. While it is similar to the least square 

method for imaging, the proposed method is somehow trying to find the peak value within the 
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waveform with the mathematical approach, in this case the high resolution result may not correspond 

to the real phase center of the waveform. Hence even when we can pick the unique value within the 

velocity spectrum, it may not match perfectly with the real velocity of the medium. But the method 

that I proposed is focus on detecting the slight velocity changes at different positions which can be 

achieved by the proposed method. With both the simulation experiment and the YAKUMO dataset at 

the experimental field I show that it is possible to detect the damaged pavement with the velocity 

estimation methods. Velocity profiles at the experimental site is also generated with YAKUMO system 

and the damaged part can be detected easier than using the reflected signal only.  
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Chapter 8 Conclusions and recommendation 

8.1 Conclusions 

The near-range microwave imaging with the sparse array system is still relatively new topic for the 

radar engineering. The existing techniques and the theory are mostly applied with the far-field SAR 

imaging technique directly, or borrow the methods from the similar research such as ultrasound 

imaging or seismic imaging. In this work I focused on the imaging artifacts that caused by the coarse 

sampling during the SAR processing. In general, similar problem happens in different domain such as 

seismic imaging or imaging processing and radar signal processing. And there are different 

assumptions or theories that are trying to interoperate the reason of generating the imaging artifacts. 

For example, in radar science researchers are mainly considering the artifacts as the sidelobe that 

generated by improper beam-forming; for imaging processing applications the artifacts are presented 

as the distortion of the imaging and the artifacts is discussed as aliasing effect; similarly for seismic 

imaging it is common to discuss the aliasing that is caused by the coarse sampling which is similar to 

the sparse array case in our discussion. Each of these research direction indicates some of the truth of 

the problem and many methodologies are investigated to overcome the problem, while it is still a 

difficult question to conclude the source of the imaging artifacts. 

In our work, I suggested to analyze the time-domain signal and most of our methods are proposed in 

time-domain. The idea is that since the time-domain signal is closely related to the physical model of 

the targets, we can somehow “observe” the generating of the artifacts during the signal processing. In 

Chapter 3 I presented several different weighting factors within the conventional SAR processing is 

mostly based on the observation of the artifacts. In a specific case, I conclude that the semblance 

method that I introduced in this chapter may work only for the point-like targets. This conclusion can 

be directly observed by analyze the semblance factor in time-domain signal and I think this may be a 

simplest way to determine this fact. 

In Chapter 4 I introduced a mathematical based method for artifacts removal. The relation between the 

least square method and the CS approach is well described in this chapter. The CS approach have been 

introduced and applied for SAR imaging techniques for few years. While the sensing matrix of most 

SAR system is not satisfied with the random sampling condition, the good results can still be achieved 

in previous research. One of our interpretation is that the ℓ1 norm regularization term promoted the 

sparsity of the solution and I think although the random sampling is difficult to achieve with the array 

system, ℓ1 norm regularized least square method is still a good way to remove the imaging artifacts 

and enhance the imaging resolution. It is an interesting trial that I tried to apply the weighting factors 

into the iterative algorithm. The results become not stable due to the violation on the mathematic 



Chapter 8 
 

135 
 

criterion, however in some certain cases the results can really be improved. Some more discussions 

will be given in later sections. 

In the rest part of the thesis I mainly focus on the velocity estimation technique with the limited number 

of antenna elements. It is delighted that the velocity estimation with the CMP dataset is similar with 

the conventional SAR processing, hence many similar problems happen to velocity estimation with 

coarse data acquisition and on the other hand, many similar methods can also be applied to solve this 

problem which are introduced in Chapter 6. In most of the cases the precise velocity estimation is not 

necessary such as for the ground water level detection or use the estimated velocity for the SAR 

processing. The conventional velocity estimation technique can already satisfy such requirements. 

While one of our key point is to apply the velocity estimation technique for the large scale velocity 

estimation or inspection which can only be realized with the array radar system such as YAKUMO. In 

order to generate the velocity profile, the automatic velocity picking become important, the artifacts 

removal and the point picking can both be done with the ℓ1 norm regularized velocity estimation 

method. And comparing with its application on SAR imaging, the calculation cost is much reduced. 

On the other hand, with the proposed methods the slight velocity changes which is few millimeter per 

nanosecond can be detected. Although the value may not fit with the real velocity perfectly, the 

enhancement of the resolution can be used to distinguish the velocity changes at different positions. In 

Chapter 7 I introduced that such small velocity changes can be used for the pavement inspection, a 

serious experimental examine and real data analysis are done with YAKUMO multistatic array GPR 

system. 

8.2 Results and novelties of this research 

Within the framework of this thesis, the following novel results have been achieved and presented: 

1. The SAR imaging algorithm is well discussed in both time-domain and frequency domain. It is 

pointed out that the time-domain algorithm is much accurate and the physical meaning is clearer 

because frequency domain algorithm include some mathematical simplification for the sake of the 

high speed calculation with FFT. Although time-domain algorithm requires much larger calculation 

especially for the 3-dimensional imaging, it will not introduce numerical problem while doing the 

FFT especially for the irregularly sampled dataset. 

2. In order to deal with the irregularly sampled dataset, an iterative interpolation algorithm that based 

on f-k domain transformation is proposed in early research. The proposed method can deal with 

the 3-dimensional irregularly acquired dataset and it is designed specifically for the radar signal 

interpolation. A journal paper is published with the proposed method and the proposed method is 

also applied to some other applications such as the reconstruction of the CMP dataset.  
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3. The main factors that generating the imaging artifacts during the SAR processing is summarized 

form the view of the time-domain imaging processing. It is shown that the SAR imaging results 

for near-range imaging is affected by the sparsity of the spatial sampling, waveform or frequency 

bandwidth of the received signal and the imaging algorithm itself. The first two factors are 

determined with the designed sparse array system, I discussed this issue together with the 

experimental equipment that is used in this research. And the artifacts removal with the advanced 

signal processing technique is mainly discussed in this thesis, three different types of the improved 

SAR imaging algorithms are introduced. 

4. The first type of the SAR imaging method is designed by adding a weighting factor or filter within 

the conventional SAR algorithm. Three sub methods are introduced in Chapter 3. The main 

advantages of these methods is that they can partially remove the imaging artifacts without too 

much extra calculation. However, these methods are designed specifically for some certain 

conditions, for example, the semblance method mainly works for the point-like targets and the rest 

methods will sacrifice the imaging resolution while reducing the imaging artifacts. Another 

important feature of these methods is that they can be applied together with other advanced imaging 

techniques. 

5. The second type of the methods is based on solving the least square problem of SAR imaging. The 

general idea of solving least square solution of SAR processing with different regularization terms 

is mainly discussed in Chapter 4. It is shown that the CS based SAR imaging method is a special 

case of the ℓ1 norm regularized least square method. Comparing with the ℓ2 norm regularized least 

square imaging method, the ℓ1 norm regularized method has better performance for both simulated 

data and the real data of 2-dimensional sparse array system. I think it is mainly because that during 

the promotion of the sparsity of the imaging result, the waveform is compressed with the algorithm 

hence the imaging resolution can be enhanced. At the same time, due to the soft-threshold within 

the algorithm the weaker clutters and the noise can be well suppressed hence the imaging artifacts 

can be reduced. 

6. Different approaches for improving the least square methods are discussed. The weighting factors 

are combined with the least square method but the performance is not robust, mathematical 

explanation is still required. The hard threshold is applied with the ℓ2 norm regularized least square 

method and it shows good performance for better solution and much less iteration. However, I 

found similar approach is proved to be the solution of ℓ1 norm regularized least square method in 

mathematical research. 

7. The pulse compression of UWB signal is reviewed and I think it is important for improving the 

imaging quality of the sparse array system. The ℓ1 norm regularized least square method is applied 

to the pulse compression problem and it shows good result for real data that include some noise.  



Chapter 8 
 

137 
 

8. The third type of the imaging method is investigated for an estimated solution of the least square 

methods to get rid of the huge calculation. By combing the idea of pulse compression and imaging 

deblurring, an imaging based method is proposed to enhance the SAR imaging results with the 2-

dimensional spatial deblurring filter. The method is demonstrated with the simulated data and it 

shows good performance with real-time processing ability. However, it is similar to the pulse 

compression that the method is difficult to apply for the real data because the waveform of real 

data is not so stable comparing with the simulated data. This method still need to improve for the 

real application. 

9. The velocity estimation with the bistatic radar system is reviewed. It is shown that the velocity 

estimation with the CMP deataset has many similarities with the SAR imaging algorithm. Although 

the coarse CMP sampling will not affect the resolution of the velocity spectrum, imaging artifacts 

will be generated and it may reduce the imaging resolution and make the automatic velocity picking 

become more difficult. Several methods are proposed for accurate velocity estimation with limited 

number of the antenna elements.  

10. The CMP interpolation is demonstrated. It is shown that the interpolation of CMP dataset is much 

easier than radar profile because the target is not unpredictable. A trial velocity can be used for 

assisting the interpolation of the CMP dataset, although it will not enhance the accuracy of the 

velocity estimation, the imaging artifacts can be well suppressed with this method. 

11. The ℓ1 norm regularized least square method is also applied for velocity estimation and it shows 

good performance for this application. Due to the simplicity of the imaging target which is just the 

focused energy of the reflected layer, this method can greatly improve the imaging resolution and 

remove the imaging artifacts of the velocity spectrum. Although the high accuracy velocity 

estimation result may not match with the real value perfectly due to the waveform, this method can 

be used for precise detection of the velocity changes. 

12. By using the cross-correlation of two CMP dataset, the time delays of two CMP dataset can be 

used for simultaneous estimation of velocity and thickness change of a single layer structure. This 

method shows good performance and it can be applied with minimum two antenna pairs. However, 

this method is very practical and can be only used for the limited cases. 

13. The multistatic array GPR system YAKUMO is introduced. The performance of the system with 

different antenna polarization is discussed. A case study of pavement inspection by large-scale 

velocity estimation with YAKUMO system is mainly discussed in Chapter 7. The response of the 

thin cracks within the pavement for velocity estimation with ℓ1 norm regularized least square 

method is analyzed with FDTD simulation and I think it is possible to detect these thin cracks by 

detecting the slight velocity changes. Both simulated data and real data acquired with YAKUMO 

system show that the slight velocity changes can be detected and it shows the possibility of using 
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the proposed method for pavement inspection.  

8.3 Recommendations 

In this section I summarized some interesting problems and idea that I have mentioned in this thesis. 

A list of the new directions is given in below, the further study and investigation may be required to 

solve these problems: 

1. During the study of this work, I found that the idea of time-domain imaging is very important for 

the near-range imaging applications. The main reason is that the effect of the waveform and the 

distributed target are difficult to be analyzed in frequency domain. In most of the far-field SAR 

research the pulse is commonly used for the simulation or analysis, which is totally different for 

near-field imaging cases. A complicated waveform will not only introduce imaging artifacts with 

coarsely sampled data, but also introduce numerical problem for the pulse compression or solving 

least square problem. However, the definition of the “complicate” for a waveform is still not clear 

in near-range imaging, and I think better results can be achieved by considering the waveform 

effect for the near-range imaging. From the view of the frequency domain analysis, which is also 

means the phase information should be considered for the near-range imaging. 

2. In this work I am only focus on the diffraction stacking and some simple extensions with the filter 

or weighting function. The main reason is that during the previous research work on GPR, I found 

that the complicated algorithm such as Kirchhoff migration do not have significant advantages for 

the near-range microwave imaging. In Chapter 2 I have a short introduction on the Kirchhoff 

migration and I found from the equation it is not clear how it can improve the imaging quality. 

Because the original idea of Kirchhoff equation indicates that it only has clear physical meaning 

when I can observe the target from all the directions but not part of it. Since in most of the cases 

we only use the observation data from one or two dimensional scan at one side of the target, the 

Kirchhoff migration terms may not working properly for the imaging result. In this case, I suggest 

to focus on more physical meaningful operators for the imaging processing. Sometimes traditional 

mathematical theory may not proper for a certain application, practical observation or experiment 

is always necessary. 

3. In general I think the least square based method is a good approach for the near-range imaging 

problem. It can somehow compensate the artifacts caused by the waveform or the coarse sampling 

by minimizing the misfit function. Currently there are many advanced technique of solving the 

least square problem by adding more and more regularization terms, however, I think the main 

problem of least square based methods is not the performance but the ability of application. In 

order to solve these problem, many parameters are crucial for the final results such as the value of 

the regularization term. Although there are some existing technique to estimate the value of 
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regularization term, in most of the cases we still have to try different values to achieve a good 

imaging result. It is fine for research but it is not enough for the real applications and this is one of 

the main reason that I proposed the deblurring filter method as a practical estimation of the least 

square based methods.   

4. The deblurring filter method works well with simulated data while the performance with the real 

data is still not good enough. The main problem is the simulated reference data. Since the reference 

model is built with only point scatterers, the deblurring is mainly working for the point target or 

the edge of the distributed target. When the deblurring window only include the distributed target 

or the imaging artifacts, the output is not predictable and may become new artifacts. I think a 

further weighting factor can be introduced for each deblurring window that is to enhance the 

window include the point response while suppress the output without the point response. On the 

other hand, more advanced methods of deconvolution should be also included in this approach 

because the main problem is still the suppression of the waveform. 

5. After all the trials for the imaging problem, I have noticed a fact for the compress sensing based 

method. If we consider the output of the compress sensing based method, we may notice that the 

resolution can be greatly improved. While consider the imaging resolution from the view of SAR 

imaging, since the aperture size is constant, the only factor that can improve the resolution is just 

bandwidth, or compression of the waveform. In another word, compressed sensing based method 

improve the imaging resolution because it compressed the waveform into a pulse by the 

mathematical procedure. In this case, a problem arise: does the phase center of the signal can be 

recognized accurately with such mathematical approach which do not consider anything about the 

physics? If not, it means the compress sensing based method may not obtain a correct imaging 

result. 

6. For the velocity estimation applications I concluded it is very similar to the imaging problem. In 

this case, a similar problem to above appears: we may not get the accurate velocity due to the effect 

of the waveform. Although we can get high resolution result by using least square based method, 

the compression of the waveform may not correct. And this is the main reason that I mentioned in 

Chapter 7 that it is better to detect the changes of the estimated velocity but not focus on the value 

of the estimated velocity. If we really need to estimate the accurate velocity value, the 

compensation on the phase center of the wavelet is necessary. It is similar to previous suggestion 

that we need to use more phase information in order to achieve the accurate velocity estimation 

value. 
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