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In this thesis, we study a threshold circuit C' computing generalized symmetric functions djj, and
investigate the relationship among the size and the energy of C'. Then, the size of C' is defined to be the
number of gates in C' and the energy of C' is defined to be the maximum number of gates outputting “1”

over all inputs to C'. We first prove that dy; of nk variables can be computable by a threshold circuit C

with size s = O(e - 2*/(¢=2) 4 p) for any energy e > 3, and size s = O(2") for energy e = 2. In contrast
of this upper bound, we also prove that a threshold circuit C' computing dy j, of nk variables requires size
s = Q(Q"/ 662) for any energy e > 2. In addition we give a lower and an upper bounds of a threshold circuit

C computing dy;, of nk variables in the case where energy is extreme small, that is e = 1. We prove
that a threshold circuit C' computing dy ) of nk variables requires size s = {(k — 1)" + (k + 1)"}/2* for
energy e = 1. We also prove that dy;, of nk variables can be computable by a threshold circuit C' with size
s =Q((k+1)") and energy e = 1. Thus these results imply that threshold circuits computing generalized
symmetric functions dy ; have tradeoff between size and energy.

1. Introduction

A logic circuit is a computational model of a
Boolean function. In precise, a logic circuit is a
directed acyclic graph which has input nodes of
in-degree 0 and an output node of out-degree 0
corresponding to input and output of a Boolean
function respectively, and other nodes called gates
which are elements computing basic Boolean func-
tions. A computational power of a logic circuit de-
pends on computational power of gates contained
in the circuit, and there are much research to ana-
lyze computational power of a variety of logic cir-
cuits composed of gates having different power.

In this thesis, we investigate the computational
power of threshold circuits computing generalized
symmetric functions in terms of size energy com-
plexity. A threshold circuit is a logic circuit com-
posed of threshold gates which compute linear
threshold functions. This circuit is generalized
computational model of logic circuits consisting
of AND, OR, NOT gates because threshold gates
have more computational power than those gates.
Threshold circuits have attracted considerable at-
tention in circuit complexity, and much research
has been devoted to understand their computation
for a few decades 2. However, the computational
power of threshold circuits is still in the dark .

An energy complexity is one of the complexity
measures of threshold circuits. As a neural network
in the brain carries out information processing by

conveying electrical signals (i.e., “firing”) among
neurons, we can view a threshold circuit as a net-
work computing a Boolean function by conveying
Boolean values (i.e., “1”) among threshold gates.
The energy of a threshold circuit is then defined as
the maximum number of gates outputting “1” in
the circuit, where the maximum is taken over all
the input assignments to the circuit 3.
2. Definitions

A threshold gate g is a logic gate computing a
linear threshold function of an arbitrary integer z
of inputs, which is identified by weight w(g) € R?
for the z inputs and an threshold ¢(g) € R, where
the ith component of w(g), denoted by w(g)]i], is
a weight for ith input. We define the output g(x)
of g as follows: For every « € {0,1}7,

g(x) = sign (Z w(g)[ilzli] - t(g))

i=1

where sign(z) = 11if z > 0 and sign(z) =0if 2 <0

A threshold circuit C' is a feedforward circuit
consisting of threshold gates, and is expressed by
a directed acyclic graph. Let n be the number of
inputs to C, then C' has n input nodes of in-degree
0, each of which corresponds to one of the n input
variables = (x[1], z[2], ..., z[n]), while the other
nodes correspond to threshold gates. The inputs
to a gate g in C consist of the inputs « and the out-
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puts of some gates directed to g. Let gs be one of
the gates of out-degree 0, and we regard the output
gs(x) of gs as the output C(x) of C: C(x) = gs(x)
for every input « € {0,1}"™. We call g4 the top gate
of C. A threshold circuit C' computes a Boolean
function f : {0,1}" — {0,1} if C(z) = f(x) for
every x € {0,1}". We define size s of C' as the
number of gates in C, and define the energy e of
C as

S
e = max i\
zeforn ;gz( )7

where g;(x) is the output of g; when input of C is
x.
For a function f : {0,1,2,....,n} — {0,1} and a
positive integer k, generalized symmetric functions
dy . are defined as follows: For every input x =
(1,22, ..., xx) € ({0,1})F,

der(x) = f(H(x1i Ao A - Axyg)),
where we define H(x) = >, x[i] for € {0,1}".

3. Our results

We first prove the relationship among the size
s and the energy e if e is relatively large, that
is e > 2. The following two theorems show the
enough size to give a construction of a threshold
circuit computing generalized symmetric functions
for each energy e.

Theorem 1 For any positive integers k and n,
and any function f : {0,1,...,n} — {0,1}, dyx
is computable by a threshold circuit of size O(e -
27/(¢=2) 1 n) and energy e > 3.

Theorem 2 For any positive integers k and n,
and any function f : {0,1,...,n} — {0,1}, dys
is computable by a threshold circuit of size 2™ and
energy two.

The following theorem shows the size required
threshold circuits computing generalized symmet-
ric functions with energy e > 2.

Theorem 3 Lete > 2. For any posilive integers k
and n, and any function f:{0,1,...,n} — {0,1},
every threshold circuit of size s and energy e com-
puting dy i, satisfies on/6e? < g

Theorems 1, 2 and 3 imply that there exists
tradeoff between size and energy of threshold cir-
cuit computing generalized symmetric functions.
Compared Theorems 1 and 2 to Theorem 3, the
upper bound of the size almost matches the lower
bound. In precise, both of them are exponential of
n if e is constant, and are polynomial of n if e is
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polynomial of n. So we can prove tradeoff between
size and energy of energy-efficient threshold circuit
computing generalized symmetric functions.

In contrast above case, we also prove the rela-
tionship among the size s and the energy e if e is
extreme small, that is e = 1. Theorem 4 shows an
upper bound of the size of a threshold circuit com-
puting generalized symmetric functions and Theo-
rem 5 shows a lower bound.

Theorem 4 For positive integers k, n and any
function f :{0,1,...,n} — {0,1}, dy is com-
putable by a threshold circuit of size at most (k +
1)™ and energy one.

Theorem 5 For any two positive integers n > 1
and k > 2, and any function f : {0,1,...,n} —
{0,1}, any threshold circuit of energy one that
computes dy . has size

(k—1)"+ (k+1)"
s > oF .

Above two theorems imply optimal size of
threshold circuit computing generalized symmet-
ric functions with energy one. In Theorem 5, if
integer k is constant,

k—1)"+ (E+1)"

= = Q((k+1)").

Therefore size of such the threshold gate is O((k +
1)™) if k is constant.

4. Conclusion

In this thesis, we investigate a threshold circuit
C' computing generalized symmetric functions dy j,
and show that there is a tradeoff between the size s
and the energy e. Furthermore, we give a construc-
tion of threshold circuit C' computing generalized
symmetric functions dy; with energy one which
has almost optimal size.
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