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For a graph and a vertex subset, called a terminal set, a Steiner tree is a subtree of the graph which

contains all terminals. We study a reconfiguration problem for Steiner trees, defined as follows: Given
a graph, a terminal set, and two Steiner trees, the STEINER TREE RECONFIGURATION problem is to
determine whether there exists a sequence of Steiner trees that transforms a given Steiner tree into another

one by exchanging a single edge at a time. In this thesis, we analyze the computational complexity of

STEINER TREE RECONFIGURATION from the viewpoint of graph classes, and give an interesting picture of

the boundary between intractability and polynomial-time solvability.

1. Introduction

The STEINER TREE problem on graphs is one
of the most well-known NP-complete problems?).
For an unweighted graph G and a vertex subset
S C V(G), a Steiner tree for S is a subtree of G
which includes all vertices in S; each vertex in S
is called a terminal. For example, Fig. 1 illustrates
four Steiner trees of the same graph G for the same
terminal set S. Given an unweighted graph G, a
terminal set S C V(G), and an integer k > 0, the
STEINER TREE (search) problem is to determine
whether there exists a Steiner tree 7' of G for S
such that T consists of at most k edges. This prob-
lem is known to be NP-complete even for planar
graphs?).

The concept of Steiner trees has several applica-
tions such as network routing and VLSI design. In
the network routing problem, a graph represents a
computer network such that each terminal corre-
sponds to a user or a server, each non-terminal to
a router, and each edge to a communication link.
Then, we wish to find a routing which connects
all users and severs to provide the service; thus, a
Steiner tree of the graph represents such a routing.

However, the network routing problem could be
considered in more “dynamic” situations: In or-
der to temporarily remove routers for maintenance,
we sometimes need to change the current rout-
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Fig. 1. A sequence (Ty, Ty, T, T3) of Steiner trees,
where the terminals are depicted by squares,
non-terminals by circles, the edges in Steiner trees
by thick lines.

ing (i.e., Steiner tree) into another one. To min-
imize disruption, this transformation needs to be
done by switching communication links one by one,
while keeping the connectivity among all users and
servers to provide the service even during the trans-
formation.

In this thesis, we thus study the following prob-
lem: Suppose that we are given two Steiner trees
of a graph G for a terminal set S C V(G) (e.g., the
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upper-left and lower-right ones in Fig. 1), and we
are asked whether we can transform one into the
other via Steiner trees for S such that each Steiner
tree in the transformation can be obtained from the
previous one by exchanging a single edge, that is,
two consecutive Steiner trees T and 7" satisfy both
|[E(TY\E(T")| =1and |[E(T")\ E(T)| = 1. We call
this decision problem the STEINER TREE RECON-
FIGURATION problem. For the particular instance
of Fig. 1, the answer is yes as illustrated in the fig-
ure.

2. Known results

Tto et al.®) studied the SPANNING TREE RE-
CONFIGURATION problem, which can be seen as
STEINER TREE RECONFIGURATION when restricted
to the case where all vertices in a given graph are
terminals. They showed that any instance of SPAN-
NING TREE RECONFIGURATION is a yes-instance,
that is, there always exists a desired transforma-
tion between two spanning trees in any graph.

3. Our results

In this thesis, we study the computational com-
plexity of STEINER TREE RECONFIGURATION from
the viewpoint of graph classes. In particular,
we deal with graph classes called split graphs,
cographs, and interval graphs'). Figure 2 summa-
rizes our results, together with the inclusion rela-
tionship between graph classes. (A preliminary ver-
sion of our results appeared in the proceedings of
IWOCA 2016%.)

PSPACE-comp. [Thm 1]
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Fig. 2. Our results, where each arrow represents
the inclusion relationship between graph classes:
A — B represents that a graph class B is prop-
erly included in a graph class AY.

We first give the following computational hard-
ness of the problem.
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Theorem 1 STEINER TREE RECONFIGURATION 1is
PSPACE-complete for split graphs.

As a proof of Theorem 1, we gave a polynomial-
time reduction from VERTEX COVER RECONFIGU-
RATION, which is known to be PSPACE-complete®
to our problem for split graphs

We then show that STEINER TREE RECONFIG-
URATION is solvable in polynomial time for some
graph classes.

Theorem 2 STEINER TREE RECONFIGURATION
can be solved in polynomial time for cographs, and
for interval graphs.

As a proof of Theorem 2, we constructed such
polynomial-time algorithms. Indeed, we proposed
a general scheme to handle the reconfigurability of
Steiner trees. We proved that the scheme can yield
polynomial-time algorithms for cographs, and for
interval graphs.

4. Conclusion

In this thesis, we have shown that STEINER TREE
RECONFIGURATION is PSPACE-complete even for
split graphs (and hence for chordal graphs and for
perfect graphs), while solvable in polynomial time
for interval graphs and for cographs. Thus, we
have clarified an interesting boundary on the graph
classes lying between intractability and tractability,
because the structure of split graphs (resp., chordal
graphs) can be seen as a star-like (resp., tree-like)
structure of cliques, while that of interval graphs
can be seen as a path-like structure of cliques.
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