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Abstract

In this dissertation, we propose fast algorithms for various pattern matching problems.

Among these pattern matching problems, the first problem is called the dynamic dictio-

nary matching problem, where we find occurrences of patterns in a set that can change

dynamically by inserting a pattern into or deleting a pattern from the dictionary. We

propose two algorithms for this problem, one based on the directed acyclic word graph

(DAWG) and the other based on the Aho-Corasick automaton (AC-automaton) algo-

rithm. The DAWG-based algorithm can solve the problem in O(m log σ) update time

and O(n log σ + occ) matching time if only insertion is allowed, and O(σm+ log d
log log d

) up-

date time and O(n( log d
log log d

+log σ)+occ log d
log log d

) matching time if both insertion and deletion

are allowed; here, n denotes the length of the text, m denotes the length of pattern that

is inserted or deleted, d is the total length of the patterns in the dictionary, σ denotes

the alphabet size, and occ denotes the number of occurrence positions of all patterns. In

contrast, the AC-automaton-based algorithm has an update time in O(m log σ+ uf + uo)

if only insertion is allowed, and O(σm+uf +uo) if both insertion and deletion are allowed,

where uf is the number of states whose failure link needs to be updated, and uo is the

number of states on which the value of the output function needs to be updated. The

AC-automaton-based algorithm takes O(n log σ+ occ) time for matching the case of both

these settings.

The second problem is called the parameterized pattern matching problem, where

we find substrings of a text that match the pattern by replacing some symbols by other
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appropriate symbols. We propose a data structure called the parameterized position heap

to solve this problem. We propose an algorithm to construct parameterized position heaps,

which runs in O(n log (|Σ|+ |Π|)) time, where |Σ| is the number of constant symbols, |Π|

is the number of parameter symbols. Using the parameterized position heap, we can

perform parameterized pattern matching in O(m log (|Σ|+ |Π|) +m|Π|+ occ) time.

The third problem is called order-preserving pattern matching, in which we consider

the relative order of the elements of the strings instead of their value. We propose a

duel-and-sweep algorithm for order-preserving pattern matching. Our algorithm runs in

O(n + m logm) time which is theoretically the same as the Knuth-Morris-Pratt (KMP)

algorithm for order-preserving pattern matching, where n denotes the length of the text

and m denotes the length of the pattern. Moreover, we show that our algorithm is faster

than the KMP-based algorithm through experiments.

The last problem is called permuted pattern matching, where we use multi-track strings

which is a group of strings, and find the occurrence positions of all permutations of the

pattern in the text. We propose some algorithms for permuted pattern matching on

multi-track strings. The permuted matching automaton algorithm has a fast theoretical

computing time with O(mM log σ) as the preprocessing time and O(nN log σ+occ) as the

matching time, where n denotes the length of the text, m denoted the length of the pattern,

N denotes the number of sequences in the text, M denotes the number of sequences in

the text, σ denotes the alphabet size, and occ denotes the number of occurrence positions

of the pattern. The multi-track Boyer-Moore algorithm and the Horspool algorithm with

track-trie are the fastest algorithms experimentally. Furthermore, we also propose the

multi-track AC-automaton algorithm that can solve dictionary matching on multi-tracks,

finding multiple multi-track patterns in a multi-track text. Finally, we propose filtration

algorithms that can, in practice, perform permuted pattern matching fast.
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Chapter 1

Introduction

1.1 Background

In recent years, owing to the decreasing costs of computers and faster internet speeds, the

use of computers to store and process data is increasing. Among of these data, many of

the variants can be represented as strings. For example, in biology, DNA sequences can

be represented as strings consisting of ‘A’, ‘C’, ‘T, and ‘G’; in addition, proteins can be

represented as strings of amino acid sequences. Furthermore, in finance, stock prices and

currency rates can be represented as integer strings, as can sensor data, such as vehicle

velocity, air temperature, and seismic intensity. Moreover, digital data and computer

programs can be represented as binary strings. Thus, considering these examples, string

processing is considerably important for data analysis in various applications, including

pattern matching, data compression, and text similarity, among others. In particular,

considering the proliferation of data in modern times, commonly referred to as Big Data,

we can gain considerable useful information by analyzing these large datasets. For exam-

ple, we can find similarities between organisms by identifying similar structures on their

DNA; in addition, we can predict future events from sensor data such those related to nat-

ural phenomenon like earthquakes or man-made incidents like traffic accidents, which can

help us prevent them by applying appropriate countermeasures sooner. In order to process
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1.1 Background

such large data time- and cost-effectively, we require fast algorithms and space-efficient

data structures.

One of the fundamental tasks in string processing is the pattern matching problem.

Given two strings, a text T and a pattern P , the pattern matching problem involves

finding all occurrences of P in T . The pattern matching problem has wide applications,

such as in keyword search, event recognition, and search engines. A simple approach to

this problem involves checking the entire text for the pattern to find its occurrences or its

absence at all positions; however, this approach is not efficient and takes O(|T ||P |) time in

the worst case, where |T | and |P | denote the length of T and P , respectively. Therefore,

to overcome the limitations of this simple approach, many pattern matching algorithms

have been developed since the 1970s. Pattern matching can be performed efficiently by

preprocessing the pattern or by constructing indexing structures based on the text. The

first approach is effective in finding a fixed pattern in multiple texts or in the cases where

the text is available only in real-time and the pattern needs to be found immediately.

Among the previously proposed pattern matching algorithms in this approach, the

Knuth-Morris-Pratt (KMP) algorithm [51] is a fundamental algorithm; it utilizes the pe-

riodicity of prefixes of a pattern to achieve pattern matching in O(|T |) time with O(|P |)

preprocessing time and space complexities. Another basic algorithm for pattern match-

ing is the Boyer-Moore algorithm [14], which uses the symbol occurrence positions and

periodicity of suffixes of a pattern instead its prefixes as in the KMP algorithm. Later,

Horspool [40] proposed an algorithm that used only symbol occurrence positions; this

algorithm was shown to be faster than the Boyer-Moore algorithm on average, but was

slower for the worst case. Further, Vishkin [70] proposed an algorithm called the duel-

and-sweep algorithm that utilizes non-periodic properties of a pattern; this method was

designed using parallel computing. The duel-and-sweep algorithm first considers all posi-

tions in T to be candidates of occurrence positions of P , then eliminates the candidates

until only real occurrence positions remain. This algorithm is divided into two stages,
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1.1 Background

namely the duel and sweep stages. In the duel stage, the algorithm duels, i.e., compares,

the candidates with each other using a witness table, eliminating the candidates that are

proved to be incorrect. This witness table contains a witness for two overlapped candi-

dates, to prove that those candidates cannot occur simultaneously, thus at least one of

the candidates is incorrect. After the duel stage, all the remaining candidates are checked

in the sweep stage. This algorithm takes O(|P |) time to construct the witness table for

P and O(|T |) time for the duel and sweep stages. Aside from these algorithms, the other

noteworthy fast or space-efficient algorithms have also been proposed, including the con-

stant space algorithm [36], Karp-Rabin algorithm [47] that uses a hash function, quick

searching algorithm [65], and sampling algorithm [71].

In contrast, the other approach for pattern matching algorithms that involve con-

structing indexing structures from the text, are effective for finding many patterns in a

fixed text, for example, finding keywords in a book or webpage. The most basic indexing

structure for pattern matching is the suffix trie. The suffix trie of a text T is a trie of all

suffixes of T . We can find a pattern P on the trie of T from the root iff P is a substring of

T . Thus, pattern matching using a suffix trie takes O(|P |) time. However, the suffix trie

of T has a space complexity of O(|T |2). Therefore, to improve the space complexity of the

suffix trie, Weiner proposed the suffix tree [72], the compacted suffix trie that only require

O(|T |) space, by removing nodes that have only one outgoing edge, and concatenating the

labels into a string. In addition, Weiner proposed a linear time suffix tree construction

algorithm, which is later further improved by McCreight [58]. Ukkonen [69] introduced an

online construction algorithm for suffix trees that runs in O(|T |) time; in this algorithm

the suffix tree of T is constructed by updating the suffix tree each time a new symbol

is read. Another data structure that can be constructed from suffix tries is the directed

acyclic word graph (DAWG), which was introduced by Blumer et al. [12]. The DAWG

of T is the smallest deterministic finite automaton (DFA) that accepts all suffixes of T ,

and can be constructed by minimizing the suffix trie of T . In addition, Blumer et al. [12]

3



1.1 Background

proposed a direct online construction algorithm for DAWGs that runs in O(|T |) time.

Later, Blumer et al. [13] improved the algorithm so that the DAWG for a set of strings

can be constructed in linear time. Ehrenfeucht et al. [32] proposed another linear indexing

structure called the position heap. The position heap of T is a sequence hash tree [20] of

all suffixes of T ; in addition, a position heap of T can be considered a subtree of the suffix

trie of T that shares the same root. Ehrenfeucht et al. proposed a linear time position

heap construction algorithm by inserting all suffixes of T from the shortest to the longest

in the length. Furthermore, Kucherov [54] proposed an online position heap construction

algorithm that involves inserting all suffixes of T from the longest to the shortest in the

length that runs in O(|T |). Aside from these indexing structures, many other indexing

structures for pattern matching have been proposed such as suffix arrays [57], suffix cac-

tus [46], suffix trays and trists [23], linear-size suffix tries [27], and linear-sized compact

DAWGs [66].

It is common to find more than one pattern in a text. Therefore, given a set of patterns

D called a dictionary and a text T , we want to find all occurrences of all patterns in D in

T . This problem is called the dictionary matching problem. In this case, we can find the

occurrence positions of all the patterns in the text individually using a pattern matching

algorithm. However, this approach is inefficient for finding a fixed set of patterns in the

case when the text is flexible or given in an online manner. In order to address this

problem efficiently, Aho and Corasick [1] proposed automata with a failure function that

can solve this problem in O(|T |) time with an O(‖D‖) preprocessing time, where ‖D‖

denotes the total length of the patterns in D. It is noteworthy that this algorithm is an

extension of the KMP-algorithm for multiple patterns. Commentz-Walter [24] proposed

another automaton-based algorithm that is based on the Boyer-Moore algorithm. While

theoretically slower than the Aho-Corasick algorithm, in practice, this algorithm is faster

than the Aho-Corasick algorithm on average. Meyer [59] introduced a dictionary matching

problem where insertion of a pattern into the dictionary is allowed, which is known as
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1.1 Background

the semi-dynamic dictionary matching problem. He proposed an algorithm for this semi-

dynamic dictionary matching, which updates the Aho-Corrasick automata (AC-automata)

when a new pattern is inserted into the dictionary. Later, Amir et al. [5] introduced the

dynamic dictionary matching problem which allows for both insertion and deletion of

patterns in a dictionary. Further, several linear O(‖D‖) space data structures are used in

solving the dynamic dictionary matching problem have been proposed [2, 3, 6, 5, 16, 42].

Motivated by finding duplications in program codes, Baker introduced an extension of

pattern matching, called parameterized pattern matching [9, 11]. The parameterized pat-

tern matching focuses on matching a string with another string by replacing the symbols

in the first string with symbols of the other string using some functions. She introduced

parameterized strings, which are strings consisting of constant symbols, i.e., symbols that

cannot be replaced, and variable symbols, i.e., symbols that can be replaced by other

variable symbols. Given two parameterized strings, we can say that the strings are pa-

rameter matched, if there exists a bijection from the symbols of one string to the sym-

bols of the other string such that the bijection is an identity on the constant symbols

and the strings match after the symbols are replaced. Given a text T and a pattern

P , the parameterized pattern matching problem involves finding positions of the sub-

strings of T that parameterized match with P . To solve this problem, Baker proposed

an encoding called prev-encoding for parameterized strings and constructed parameter-

ized suffix trees from the encoded texts; her algorithm constructs parameterized suffix

trees in O(n|Π| + log(|Σ| + |Π|)) time and can perform parameterized pattern matching

in O(m log(|Σ|+ |Π|) + occ) time using the constructed parameterized suffix trees. Later,

Kosaraju [62] proposed a faster parameterized suffix tree construction algorithm, that can

construct the trees in O(n log(|Σ|+ |Π|)) time. Another data structure for parameterized

strings is the parameterized suffix array, proposed by Deguchi et al. [31] for binary strings

and later generalized by I et al. [41]. Other algorithms for parameterized strings have

been proposed that can be found in [7, 10, 21, 22].
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1.1 Background

Recently, Kubica et al. [53] and Kim et al. [50] independently introduced another vari-

ant of pattern matching, called order-preserving pattern matching. The order preserving

pattern matching considers order-isomorphism of integer strings instead of their value.

Given two integer strings of equal length, they are order-isomorphic iff the value rela-

tion of any two positions in the strings is the same. Then, the order-preserving pattern

matching algorithm involves finding positions of substrings of a text T that is order-

isomorphic with a pattern P . On considering this problem, Kubica et al. motivated by

the combinatorial properties of the strings, while Kim et al. motivated by some appli-

cations of this problem such as stock market analysis and melody similarities. Both of

aforementioned studies proposed algorithms based on the KMP algorithm and can solve

the order-preserving pattern matching problem in O(|T |+ |P | log |P |) time. In addition,

Cho et al. [19] proposed another algorithm for this problem based on the the Horspool

algorithm that uses q-grams and showed that their algorithm is experimentally faster than

the KMP-based algorithm, although their algorithm is theoretically slower in the worst

case. As another approach, Crochemore et al. [28] proposed indexing structures for order-

preserving pattern matching called incomplete order-preserving suffix trees and complete

order-preserving suffix trees. The incomplete order-preserving suffix tree for T can be

constructed in O(|T | log log |T |) time, whereas the complete order-preserving suffix tree

of T can be constructed in O( |T | log |T |
log log |T |) time. Order-preserving pattern matching can be

performed using these data structures in O(|P | + occ) time. Furthermore, Chhabra and

Tarhio [18] also Faro and Külekci [33] proposed filtration methods for order-preserving

pattern matching which are practically fast. Moreover, the filtration algorithms can per-

form order-preserving pattern matching faster using Single Instruction Multiple Data

(SIMD) instructions [15, 17, 68].

In 2013, Katsura et al. [48] proposed a pattern matching problem on strings, which

consisted of multiple sequences of the same length, called multi-track strings (multi-track,

in short). Two multi-tracks of the same length that have the same number of sequences
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1.2 Contributions

are permuted match if one of the multi-tracks is a permutation of another multi-track.

Given a multi-track text T and a multi-track pattern P that have the same number of

sequences, the permuted pattern matching problem involves finding positions of the sub-

strings of T that permuted match with P. This problem is motivated by the need to find

patterns of multi-sequence data in various types of texts, such as multiple-sensor data,

polyphonic music data, and multiple genomes. In addition, Katsura et al. [48] proposed

some algorithms to solve the permuted pattern matching problem. The first algorithm

uses the AC-automata of all sequences in P, which can solve the permuted pattern match-

ing problem in linear time with respect to the size of T and P. The second algorithm

uses an indexing structure called multi-track suffix trees ; using their algorithm, the multi-

track suffix tree of T can be constructed in linear time with respect to the size of T.

Furthermore, later, Katsura et al. [49] proposed two data structures for permuted pattern

matching: the time-efficient multi-track position heap and the memory-efficient contracted

multi-track position heap. A variant of permuted pattern matching problem, called sub-

permuted pattern matching problem, is considered when the number of sequences in the

pattern is the same or less than the number of sequences in the text; this problem is

considered more difficult than the permuted pattern matching problem. However, this

problem can be solved by using the AC-automaton based algorithm [48].

In this dissertation, we propose algorithms for the dynamic dictionary matching, pa-

rameterized pattern matching, order-preserving pattern matching, and permuted pattern

matching problems. Furthermore, we show the worst case computation time of our algo-

rithms theoretically; in addition, we experimentally obtain the running time of some of

the algorithms by implementing them in practice.

1.2 Contributions

In this dissertation, we propose fast algorithms for various pattern matching problems,

namely the dynamic dictionary matching, parameterized pattern matching, order-preserving
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1.2 Contributions

Table 1.1: Summary of proposed algorithms on each problems. Each algorithm is pub-
lished on the paper in List of Publication indicated by superscripted number.

Problem Algorithm

Semi-dynamic dictionary matching
DAWG-based9

AC-automaton-based9

Dynamic dictionary matching
DAWG-based
AC-automaton-based

Parameterized pattern matching Parameterized position heaps6

Oerder-preserving pattern matching Duel-and-sweep4

Permuted pattern matching

MTKMP14

MT AC-automaton11

MT permuted matching automaton11

MT Boyer-Moore11

MT Horspool11

Filtration14

MT duel-and-sweep

pattern matching, and permuted pattern matching problems. The details of our algo-

rithms are as follows:

1. For the semi-dynamic and dynamic dictionary matching problems, we propose ef-

ficient algorithms by using DAWGs and AC-automata. The first algorithm is a

DAWG-based algorithm that has an update time in O(m log σ) and matching time

in O(n log σ+occ) for the semi-dynamic dictionary matching problem; in contrast, it

has an update time in O(σm+ log d
log log d

) and a matching time in O(n( log d
log log d

+log σ)+

occ log d
log log d

) for the dynamic dictionary matching problem. Here n denotes the length

of the text, m denotes the length of the pattern, d denotes the total length of the

patterns in the dictionary, and σ denotes the alphabet size. We also propose an al-

gorithm that can update the AC-automata by using DAWGs in O(m log σ+uf +uo)

time for the semi-dynamic setting and O(σm + uf + uo) time for the dynamic set-

tings, where uf is the number of states whose failure link needs to be updated, and

uo is the number of states for which the value of the output function needs to be

updated. We show that our AC-automaton update algorithm is faster than any
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other AC-automata update algorithms. The details are described in Chapter 4.

2. For parameterized pattern matching, we propose a data structure called parameter-

ized position heap. The parameterized position heap for T is constructed from all

prev-encoded suffixes of T from the longest to the shortest. Further, we propose an

online construction algorithm based on Kucherov’s algorithm [54]. The algorithm

can construct the parameterized position heap of T in O(n log (|Σ|+ |Π|)) time,

where |Σ| is the number of constant symbols and |Π| is the number of parameter sym-

bols. We can find the occurrence positions of P in O(m log (|Σ|+ |Π|)+m|Π|+occ)

time by using the parameterized position heaps. The details are described in Chap-

ter 5.

3. For order-preserving pattern matching, we propose a duel-and-sweep algorithm that

can perform order-preserving pattern matching in O(n) time with O(m logm) pre-

processing time. We use a pair of positions instead of one position as a witness for

the duel stage. We show that our algorithm is theoretically as fast as the KMP

algorithm for order-preserving pattern matching and faster than it in practice. The

details are described in Chapter 6.

4. For permuted pattern matching, we propose some algorithms and data structures

that preprocess the pattern. We extend the KMP algorithm, Boyer-Moore algo-

rithm, Horspool algorithm, and duel-and-sweep algorithm for use with multi-tracks.

In addition. we propose an AC-automaton-based algorithm that can perform dic-

tionary matching on multi-tracks in linear time with respect to the size of the input.

Through experiments, we show that our algorithms are faster than existing algo-

rithms. The details are described in Chapter 7.

The rest of this dissertation is organized as follows. In Chapter 2, we describe the

notations and basic algorithms that we use. Next, in Chapter 2, we describe the data

structures that we extend to solve the problems that are specified above. In Chapters 4, 5,
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6, and 7, we propose algorithms for dynamic-dictionary matching, parameterized pattern

matching, order-preserving pattern matching, and permuted pattern matching, respec-

tively. Furthermore, we describe the details of the problems and some previous results in

these chapters. Lastly, we conclude our work in Chapter 8 and discuss future work that

we might undertake.

10



Chapter 2

Preliminaries

2.1 Notation

Let Σ be an alphabet, a set of symbols, and σ = |Σ| be the alphabet size. An element

of Σ∗ is called a string. For a string W ∈ Σ∗, the length of W is denoted by |W |. The

empty string, denoted by ε, is a string of length 0. For a string W ∈ Σ∗ of length n, W [i]

denotes the i-th symbol of W , W [i : j] = W [i]W [i+ 1] . . .W [j] denotes a substring of W

that begins at position i and ends at position j for 1 ≤ i ≤ j ≤ n. For convenience, we

abbreviate W [1 : i] to W [: i] and W [i : n] to W [i :], which are called prefix and suffix of

W , respectively. Moreover, let W [i : j] = ε if i > j. The reverse string of W is denoted

by WR = W [n]W [n− 1] . . .W [2]W [1]. For two strings X and Y , X ≺ Y denotes that X

is lexicographically smaller than Y and X � Y denotes that either X = Y or X ≺ Y . For

a string W , let Substr(W ) denote the set of all substrings of W . Similarly, let Pref (W )

be the set of all prefixes of W and Suff (W ) be the set of all suffixes of W .

LetD = {W1,W2, . . . ,Wr} be a set of strings over Σ. D is often called a dictionary. Let

|D| = r be the size of dictionary and ‖D‖ =
∑r

i=1 |Wi| be the total length of the patterns

in D. For a dictionary D, let Substr(D) =
⋃r
i=1 Substr(Wi), Pref (D) =

⋃r
i=1 Pref (Wi),

and Suff (D) =
⋃r
i=1 Suff (Wi).

The pattern matching problem is a task to find occurence positions of a pattern P in

11



2.2 Naive algorithm for pattern matching

a text T . Formally, the pattern matching problem is defined as follows.

Definition 2.1. Given a text T of length n and a pattern P of length m, output all

position i such that T [i : i+m− 1] = P .

We will describe a naive algorithm and some efficient algorithms for pattern matching

problem in this chapter.

2.2 Naive algorithm for pattern matching

In this section, we will describe a naive algorithm for pattern matching problem. Let T

denote a text of length n and P denote a pattern of length m.

Let i = 1 and j = 1. The naive algorithm compares P with T from the left to the

right. First, the algorithm compares P [j] with T [i+j−1] which is initially P [1] with T [1].

If P [j] = T [i+ j− 1], the algorithm will compare the next symbol by increasing the value

of j by one and repeat the same procedure. On the other hand, if P [j] 6= T [i+ j − 1], we

found a mismatch at position j of pattern and T [i : i+m− 1] will not match P . In this

case we shift P by one to the right by increasing the value of i by one and start comparing

P [1] with T [i] by setting j = 1. When the value of j is increased until m + 1, we know

that P [j] = T [i + j − 1] holds for 1 ≤ j ≤ m. We should output i as an occurrence

position since P = T [i : i+m− 1], then shift P by one to the right and set j = 1.

By using above procedure, the naive algorithm can perform pattern matching in

O(nm) time. The pattern matching problem can be solved faster by increasing the shift

amount when a mismatch occurs, and by setting comparison position j to other than 1.

2.3 Knuth-Morris-Pratt algorithm

In this section, we will describe two linear time algorithms for the exact pattern matching

problem, called the Morris-Pratt algorithm (MP algorithm) and the Knuth-Morris-Pratt

12



2.4 Boyer-Moore algorithm and Horspool algorithm

algorithm (KMP algorithm) [51]. Let T denote a text of length n and P denote a pattern

of length m.

Similarly to the naive algorithm, the MP algorithm compares P to T from the left

to the right. The MP algorithm is an algorithm that uses border array BorderP of P to

compute the shift amount MPShift , which is also called failure function, when there is

a mismatch on position i + 1 of P . A border of P is any string that is simultaneously

a prefix and a suffix of P . A proper border of P is any border of P except P itself. A

border array BorderP of P is an array where BorderP [i] is the length of the longest proper

border of P [: i] for 1 ≤ i ≤ m. In order to simplify the algorithm let Border [0] = −1.

The amount of shift that MP algorithm do when a mismatch occurs at position i + 1 is

MPShift [i] = i − Border [i] for 0 ≤ i ≤ m. In other words, when P [i] mismatches T [j],

MP algorithm continue the matching from P [i′] with T [j] where i′ = i− Border [i]. Note

that MPShift [m] is used if P matches a substring of T .

The KMP algorithm is an improvement of the MP algorithm. This algorithm uses a

stronger condition StrongBorderP to compute the shift amount KMPShift . The condition

is defined as StrongBorder [i]P = k, where k is the length of the longest border that satisfies

P [k + 1] 6= P [i + 1]. In order to simplify the algorithm let StrongBorderP [0] = −1. By

using StrongBorderP [i], the shift amount is defined as KMPShift [i] = i−StrongBorderP [i]

for 0 ≤ i ≤ m. Therefore, the KMP algorithm shifts the pattern the same or more than

the MP algorithm when a mismatch occurs.

We will extend the KMP algorithm for permuted pattern matching in Chapter 7.

2.4 Boyer-Moore algorithm and Horspool algorithm

In this section, we will describe two exact pattern matching algorithms that utilize oc-

currence positions of symbols in the pattern. The first algorithm is called Boyer-Moore

algorithm [14] and the second algorithm is called Horspool algorithm [40].

Boyer-Moore algorithm uses two functions BadSymP and GoodSuf P while Horspool

13



2.5 Duel-and-sweep algorithm

algorithm uses only BadSymP to determine the shift amount of the pattern where there is

a mismatch. For a symbol c, we define BadSymP [c] as the rightmost occurrence position

of c on P excluding P [m] and BadSymP [c] = 0 where there is no occurrence of c in P

or when c only occurs in position m on P . For a position i on P , GoodSuf P [i] is defined

as follows. If P [i + 1 :] occurs in P [: i], GoodSuf P [i] = j where j is the the rightmost

occurrence position of P [i+1 :] in P [: i]. If P [i+1 :] do not occur in P [: i], GoodSuf P [i] = j

where j is the longest suffix of P [i+ 1 :] that also a prefix of P .

Boyer-Moore algorithm matches the pattern to the text from the rightmost sym-

bol of the pattern to the left. When a mismatch occurs at position i on the pat-

tern and j on the text, Boyer-Moore algorithms shift the pattern by BMShift [i] =

max(GoodSuf P [i],BadSymP [T [j]]) to the right. The algorithm uses BMShift [0] = GoodSuf P [0]

if the pattern matches a substring of the text. On the other hand, Horspool algorithm

can perform pattern matching from the left side or the right side of the pattern. When a

mismatch occurs at position i on the pattern and j on the text, Boyer-Moore algorithms

shift the pattern by HorsShift [i] = BadSymP [T [j +m− i]] to the right.

We will extend Boyer-Moore algorithm and Horspool algorithm for permuted pattern

matching in Chapter 7.

2.5 Duel-and-sweep algorithm

In this section, we will describe the duel-and-sweep algorithm for pattern matching prob-

lem [4, 70].

First, the duel-and-sweep algorithm considers all positions i in T to be candidates

for occurrence positions and eliminates the candidates until only the correct occurrence

positions of P remain. The algorithm eliminates the candidates in two stages, dueling

and sweeping stages. In the duel stage, the algorithm “duels” two superimposed and

contradicted candidates by using a witness table and deletes one of the candidates. In the

sweeping stage, the algorithm checks all candidates whether they are matched or not.
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First, we will describe the witness tables that will be used in the duel stage. The

algorithm first preprocesses P to construct the witness table WITP of P . The witness

table WITP is an array of size m−1 that saves a witness position i such that P [i] 6= P [i+a]

in WITP [a] for each offset a. When the overlap regions are matched for offset a, we save

0 in WITP [a].

After constructing the witness table WITP , the algorithm performs dueling on the text.

For superimposed pair of candidate positions x, x+a, the algorithm duels the candidates

by using WITP [a] and eliminates one of the candidates if WITP [a] 6= 0, otherwise we call

x is consistent with x + a and keep both candidates. Formally, let i = WITP [a], the

algorithm eliminates x+ a if T [x+ a+ i− 1] 6= P [i], otherwise x is eliminated in dueling

stage. After the duel stage, all remaining candidates are consistent with each other, The

algorithm then checks whether the candidates are matched or not in the sweep stage.

We extend this algorithm for order-preserved pattern matching and describe it in

Chapter 6.
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Chapter 3

Data Structures

3.1 Suffix trie

Tries are tree data structures that contain information of strings and their prefixes. Let

D be a set of strings. The suffix trie of D, denoted by Trie(D), is a tree where each edge

of the trie labeled by a symbol, each leaf represents a string that is stored in the trie,

and each node represents a prefix of a string that is stored in the trie. Fig. 3.1 (a) shows

an example of a trie. We can find any prefix W ∈ Pref (D) by traversing Trie(D) by

following edges W [1] to W [|W |] from the root. We identify each node in the trie by the

string that is obtained by concatenating the path labels from the root to the node.

The suffix trie of a string T is a trie that contains all suffixes of T .

Definition 3.1. For a string W , the suffix trie of W is STrie(W ) = Trie(Suff (W )).

Fig. 3.1 (b) shows an example of a suffix trie. Since we can find any prefix of any

string that is contained in a trie and a suffix trie contains all suffixes of a string, we can

find any substrings of the string by using the suffix trie. Suffix trie is useful for solving

pattern matching problem. Given a pattern P of length m and a text T of length n

over an alphabet Σ, we can find occurrences of P in O(m log |Σ|) by using the STrie(T ).

However, we need O(n2 log |Σ|) time and space to construct STrie(T ). Many of suffix
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Figure 3.1: (a) The trie of D = {aabab, abac, aabc, bacb, baba, caa} and (b) the suffix
trie of W = ababba.

trie based data structures that can be constructed in linear time with respect to the text

length are proposed, such as suffix trees [72, 58, 69], directed acyclic word graphs [12, 13],

and position heaps [32, 54]. We will describe some of these data structures later in this

chapter.

3.2 Aho-Corasick automaton

Let D = {p1, p2, . . . , pr} be a set of patterns over Σ called a dictionary. Let d = ‖D‖ =∑r
i=1 |pi|, the total length of the patterns in D. The Aho-Corasick Automaton of D,

denoted by AC(D), is a trie of all patterns in D, associated to goto, failure and output

functions [1]. We call a node in Aho-Corasick automaton as a state. We often identify

a state s of AC(D) with the string obtained by concatenating all the labels found on

the path from the root to the state s. The state transition function goto δ is defined

so that for any two states s, s′ ∈ Substr(D) and any symbol c ∈ Σ, if s′ = sc then

s′ = δ(s, c). We can naturally extend the domain of the second argument of δ to Σ∗,

that δ(s, cw) = δ(δ(s, c), w) and δ(s, ε) = s for any string s and symbol c. The failure

function is defined by flink(s) = s′ where s′ is the longest proper suffix of s such that
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Figure 3.2: The Aho-Corasick automaton of D = {aabaa, ababb, baba}. Black solid lines
represent the goto function and blue dashed lines represent the failure function.

s′ ∈ Pref (D). We can also extend the failure function that flinki(s) = flinki−1(flink(s))

and flink1(s) = flink(s). Finally, output(s) returns the set of all patterns that are suffixes

of s. Fig. 3.2 shows an example of Aho-Corasick automaton.

For a dictionary D and a text T , AC(D) can be constructed in O(d log σ) time. We

find occurrence positions of any pattern on given text T of length n in O(n log σ) time by

using the AC-automaton. This problem is called dictionary matching. This problem will

be discussed in Chapter 4.

3.3 Directed acyclic word graph

The Directed acyclic word graph, shortly DAWG, graph data structure obtained by min-

imizing suffix tries [12, 13]. Let D = {W1,W2, . . . ,Wr} be a set of strings over Σ. Let

d = ‖D‖ =
∑r

i=1 |Wi| be the total length of the patterns in D. For any string x, let

endPosD(x) = {(i, j) | x = pi[j − |x|+ 1 : j], |x| ≤ j ≤ |pi|, pi ∈ D}

namely, endPosD(x) represents the set of ending positions of x in patterns of D. For any

x, y ∈ Substr(D), we define the equivalence relation ≡D such that x ≡D y iff endPosD(x) =

endPosD(y). We denote by [x]D the equivalence class of x with respect to ≡D. The directed

acyclic word graph (DAWG) [13, 12] of D, denoted by DAWG(D), is an edge-labeled
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3.3 Directed acyclic word graph
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Figure 3.3: Directed acyclic word graph of D = {aabaa, ababb}. Solid-line circles show
trunk nodes and the dashed-line circle shows a non-trunk node. Thick solid lines, thin solid
lines, and dashed lines show primary edges, secondary edges and suffix links, respectively.

directed acyclic graph (V,E) such that

V = {[x]D | x ∈ Substr(D)},

E = {([x]D, c, [xc]D) | x, xc ∈ Substr(D), c ∈ Σ, x 6≡D xc}.

Namely, each node of DAWG(D) represents each equivalence class of substrings of D, and

henceforth we will identify a DAWG node with an equivalence class of substrings. The

node [ε]D is called the source of DAWG(D). For each node [x]D except the source, the suffix

link is defined by slink([x]D) = [y]D, where y is the longest suffix of x satisfying x 6≡D y.

For convenience, we define slink1([x]D) = slink([x]D) and slinki([x]D) = slink(slinki−1([x]D))

for i > 1. A node v of DAWG(D) is called a trunk node if there is a path from the source

to v which spells out some prefix of a pattern in Pref (D), and it is called a non-trunk

node otherwise. An edge e from [x]D to [xc]D labeled by c is a primary edge if both x and

xc are the longest strings in their equivalence classes, otherwise it is a secondary edge. It

is known (c.f. [13]) that the numbers of nodes, edges, and suffix links of DAWG(D) are all

linear in d. Fig. 3.3 shows an example of a DAWG.

DAWGs can be used for pattern matching [26]. Blumer et al. proposed a DAWG con-

struction algorithm for a single string [12], then they improved their algorithm for multiple

strings [13]. The algorithm can construct a DAWG online in O(d log σ) time, where the
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algorithm updates the DAWG each time a new symbol is read. Later, Kucherov et al. [55]

proposed a deletion algorithm for DAWG, which can update the DAWG when a string

is deleted from the dictionary. We use DAWGs to solve the dynamic dictionary problem

that will be described in Chapter 4.

3.4 Position heap

In this section, we briefly review the position heap for strings. First, we introduce the

sequence hash tree that is a trie for hashing proposed by Coffman and Eve [20]. Each

edge of the trie is labeled by a symbol and each node can be identified with the string

obtained by concatenating all labels found on the path from the root to the node.

Definition 3.2 (Sequence Hash Tree). Let D = (W1, . . . ,Wn) be an ordered set of strings

over Σ and Di = (W1, . . . ,Wi) for 1 ≤ i ≤ n. A sequence hash tree SHT(D) = (Vn, En)

for D is a trie over Σ defined recursively as follows. Let SHT(Di) = (Vi, Ei). Then,

SHT(Di) =


({ε}, ∅) if i = 0,

(Vi−1 ∪ {pi}, Ei−1 ∪ {(qi, c, pi)}) if 1 ≤ i ≤ n.

where pi is the shortest prefix of Wi such that pi 6∈ Vi−1, , qi = Wi[1 : |pi|−1], and

c = Wi[|pi|], also we store index i in pi. If no such pi exists, then Vi = Vi−1 and Ei = Ei−1.

We store index i in Wi in this case. Therefore, each node in a sequence hash tree except

the root stores one or several indices of strings in the input set.

An example of a sequence hash tree is shown in Fig. 3.4 (a).

Given a text T of length n, the position heap, proposed by Ehrenfeucht et al. [32], is a

sequence hash tree of all suffixes of T that is sorted in ascending order of length. Later,

Kucherov [54] proposed another type of position heap, which is a sequence hash tree of

sorted Suff (T ) in descending order of length. The position heap definiton by Kucherov

will be used in Chapter 5.
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Figure 3.4: (a) Sequence hash tree of D = (aabab, abac, aabc, bacb, baba, caa), (b) posi-
tion heap of T = ababba, and (c) augmented position heap of T = ababba. Double line
arrows show the maximal reach pointer.

Definition 3.3 (Position Heap [54]). Given a string T ∈ Σn, let ST = (T [1 :], T [2 :

], . . . , T [n :]) be the ordered set of all suffixes of T except ε in descending order of length.

The position heap PH(T ) for T is SHT(ST ).

Each node except the root in a position heap stores either one or two integers, which

is beginning positions of corresponding suffixes. We call them regular node and double

node respectively. Assume that i and j are positions stored by a double node v in PH(T )

where i < j, then i and j are called the primary position and the secondary position,

respectively. Fig. 3.4 (b) shows an example of a position heap.

Kucherov [54] also proposed online construction of position heap that run in O(n log σ).

In order to find occurrences of the pattern in O(m log σ+occ) time, Ehrenfeucht et al. [32]

and Kucherov [54] added additional pointers called maximal-reach pointers to the position

heap and called this extended data structure augmented position heap. An example of an

augmented position heap is shown in Fig. 3.4 (c).
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Chapter 4

Dynamic Dictionary Matching

Algorithm

The Dictionary matching problem is an extension of the pattern matching problem. The

dictionary matching problem is a task to find occurrence positions of multiple patterns

simultaneously instead of a single pattern.

Definition 4.1 (Dictionary matching [1, 5]). Given a set D = {P1, P2, . . . , Pr} of patterns

called dictionary and a text T over an alphabet Σ, find all positions i in T such that

Pj = T [i : i+ |Pj| − 1] for all 1 ≤ j ≤ r.

The dictionary matching problem can be solved by the Aho-Corasick algorithm [1],

which is based on the KMP algorithm, or the Commentz-Walter algorithm [24], which

is based on the Boyer-Moore algorithm. For a dictionary of size d over an alphabet of

size σ, both of the above algorithms first preprocess the dictionary in O(d log σ) time.

Then, given a text of length n, the occurrences of all patterns Pi ∈ D in the text can

be reported in O(n log σ + occ) time by the AC-algorithm, and in O(nd log σ) time by

the Commentz-Walter algorithm, where occ is the total number of occurrences of all the

patterns in the text. Notice that occ ≤ nd always holds and hence the occ term is omitted

in the latter time complexity.
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Meyer [59] introduced the incremental string matching problem, which is also known

as the semi-dynamic dictionary matching problem, a variant of dictionary matching that

allows insertion of a pattern into the dictionary. He proposed an algorithm for semi-

dynamic dictionary matching, which updates the AC-automaton when a new pattern is

inserted into the dictionary. Amir et al. [5] introduced the dynamic dictionary matching

problem which allows for both insertion and deletion of patterns. Several sophisticated

data structures for dynamic dictionary matching have been proposed in the literature [2,

3, 6, 5, 16, 42]. All these data structures use linear O(d) (words of) space. More recently,

succinct data structures for dynamic dictionary matching have been produced, where

the main concern is to store the dictionary in memory space close to the information

theoretical minimum [34, 39].

Remark that in all the above-mentioned approaches except Meyer’s, the pattern

matching time to search a text for dictionary patterns is sacrificed to some extent. Tsuda

et al. [67] proposed a dynamic dictionary matching algorithm, which follows and ex-

tends Meyer’s method. Whilst Tsuda et al.’s method retains O(n log σ + occ) pattern

matching time, still it requires O(z log σ) time to update the AC-automaton upon each

insertion/deletion, where z is the size of the AC-automaton. Note that in the worst

case this can be as bad as constructing the AC-automaton from scratch, since z can be

as large as the dictionary size d. Ishizaki and Toyama [45] introduced a data structure

called an expect tree which efficiently updates the dictionary for insertion of patterns and

showed some experimental results, but unfortunately no theoretical analysis was provided.

See Table 4.1 for a summary of the update times and pattern matching times for these

algorithms.

Along this line, in this chapter, we propose new efficient algorithms for the semi-

dynamic and dynamic dictionary matching problems, where pattern matching can still be

performed in O(n log σ + occ) time.

Firstly, we show a dynamic dictionary matching algorithm which is based on Blumer
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et al.’s directed acyclic word graphs (DAWGs) [12, 13]. The DAWG of a dictionary D is

a (partial) DFA of size O(d) which recognizes the suffixes of the patterns in D. We show

how to perform dynamic dictionary matching with DAWGs, by modifying Kucherov and

Rusinowitch’s algorithm which originally uses DAWGs for pattern matching with variable

length don’t cares [55]. The key idea is to use efficient nearest marked ancestor (NMA)

data structures [2, 3, 73] on the tree induced from the suffix links of the DAWG. For the

semi-dynamic dictionary matching, our DAWG method achieves O(m log σ) update time,

O(n log σ+occ) pattern matching time, and uses linear O(d) space, where m is the length

of pattern p to insert. For the dynamic version of the problem, our DAWG method uses

O(σm + log d/ log log d) update time, O(n(log d/ log log d + log σ) + occ log d/ log log d)

matching time, and O(d) space. The term σm in the update time is indeed unavoidable

for maintainining the DAWG in the dynamic setting, namely, we will also show that there

is a sequence of insertion and deletion operations for patterns of length m such that each

insertion/deletion operation takes Ω(σm) time.

Secondly, we present another algorithm for the semi-dynamic and dynamic dictionary

matching problem which is based on the AC-automaton. This is closely related to our

first approach, namely, the second algorithm updates the AC-automaton with the aid

of the DAWG. The algorithm uses O(d) space, finds pattern occurrences in the text

in O(n log σ + occ) time, and updates the AC-automaton in O(m log σ + uf + uo) time

with additional DAWG update time, O(m log σ) time for semi-dynamic and O(σm) time

for dynamic settings, where uf is the number of states whose failure link needs to be

updated, and uo is the number of states on which the value of the output function needs

to be updated. Therefore, when uf and uo are sufficiently small and σ is constant, our

update operation can be faster than other approaches. Notice that uo is negligible unless

the pattern p to insert/delete is a common prefix of many other patterns; in particular

uo = 0 for any prefix codes. Also, uf is negligible unless the prefixes of p are common

substrings of many other patterns. We emphasize that the update time of our algorithm
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4.1 Key idea of proposed algorithm

Table 4.1: Comparison of the algorithms for the dynamic dictionary matching. The last
four in the table are our proposed methods. Here, n is the length of the text, d is the total
length of the dictionary of patterns, and m is the length of the pattern to insert or delete.
k and ε are any constants with k ≥ 2 and 0 < ε < 1, respectively. lmax is the length
of the longest pattern in the dictionary, and z is the size of the AC-automaton before
updates. † indicates algorithms for semi-dynamic dictionary matching which allows only
for insertion. The bounds for Chan et al.’s algorithm [16] hold for constant alphabets.

Algorithm Update time Pattern matching time

Idury & Schäffer [42] O(m(kd1/k + log σ)) O(n(k + log σ) + k · occ)

Amir et al. [6] O(m( log d
log log d

+ log σ)) O(n( log d
log log d

+ log σ) + occ log d
log log d

)

Alstrup et al. [2, 3] O(m log σ + log log d) O(n( log d
log log d

+ log σ) + occ)

Chan et al. [16] O(m log2 d) O((n+ occ) log2 d)
Hon et al. [39] O(m log σ + log d) O(n log d+ occ)
Feigenblat et al. [34] O(1

ε
m log d) O(n log log d log σ + occ)

Meyer† [59] O(lmax · d · σ) O(n log σ + occ)
Tsuda et al. [67] O(z log σ) O(n log σ + occ)

DAWG based† O(m log σ) O(n log σ + occ)

DAWG based O(σm+ log d
log log d

) O(n( log d
log log d

+ log σ) + occ log d
log log d

)

AC-automaton based† O(m log σ + uf + uo) O(n log σ + occ)
AC-automaton based O(σm+ uf + uo) O(n log σ + occ)

is optimal in the sense that any algorithm which explicitly maintains the AC-automaton

must use at least Ω(uf + uo) time to update the automaton. Last, we give tight upper

and lower bounds on uf and uo in the worst case.

4.1 Key idea of proposed algorithm

Meyer [59] and Tsuda et al. [67] used the inverse of the failure function to update the AC-

automaton. Although the inverse failure function can be stored in a total of O(d) space, it

is not trivial whether one can efficiently access and/or update the inverse failure function,

because the number of inverse failure links of each state may change dynamically and can

be as large as the number of states in the AC-automaton. For instance, let us consider

AC(D) for D = {baaaac} over Σ = {a, b, c} in Fig. 4.2 (a). Its root is pointed by 6 failure

links. When a new pattern c is inserted to D, then the above algorithms first create a
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Figure 4.1: DAWG({abba}). Solid-line circles show trunk nodes and the dashed-line circle
shows a non-trunk node. Thick solid lines, thin solid lines, and dashed lines show primary
edges, secondary edges and suffix links, respectively.
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Figure 4.2: (a) AC({baaaac}) and (b) DAWG({baaaac}).

new state s, a new transition from the root to s, and a failure link from s to the root. The

real difficulty arises when they try to find which suffix links should be updated to point at

s; they must follow all the 6 inverse failure links from the root and get 6 states numbered

2, 3, . . . , 7, and check whether there is an edge labeled c from each of them, although

only one state 7 should be updated. Ishizaki and Toyama [45] introduced an auxiliary

tree structure called an expect tree to reduce the number of the candidates and showed

some experimental results, but no theoretical analysis is provided. Unfortunately, their

algorithm behaves the same for the above example. Therefore, maintaining the inverse

failure links to update the AC-automaton might be inefficient.

In order to overcome this difficulty, we pay our attention to the suffix links of DAWG(D),

instead of the failure links of AC(D). It is known (see, e.g. [12, 13, 30, 29]) that the in-

verse suffix links of all nodes in DAWG(D) form the suffix tree of the reversed patterns

in D, so that for any node v in DAWG(D), each suffix link pointing at v is labeled by a
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distinct symbol which is the first symbol of the edge label in the suffix tree. Formally, the

label of a suffix link is defined as follows. Let xy be the longest string in [xy]D, y be the

longest string in [y]D, and slink([xy]D) = slink([y]D), the label of this suffix link is x[|x|].

In Fig. 4.1, the label of each suffix link is showed by an underlined symbol. Therefore,

the number of suffix links that point at v is at most σ, and the inverse suffix links can be

accessed and updated in O(log σ) time using O(d) total space. This means that when a

pattern of length m is inserted to or deleted from the dictionary, the inverse suffix links

can be maintained in O(m log σ) time.

By the properties of AC-automata and DAWGs, for each state s in AC(D), there exists

a unique node v in DAWG(D) that corresponds to s, so that AC(D) can be consistently

embedded into DAWG(D). Because s ∈ Pref (D), the corresponding node v is a trunk

node and each trunk node has its corresponding state. Therefore, there exists a one-to-one

mapping from the set of trunk nodes in DAWG(D) to the states of AC(D). We denote

this mapping by s = π(v), where v is a DAWG trunk node and s is the corresponding

AC-automaton state. We denote v = π−1(s) iff s = π(v). Fig. 4.3 (a) and (b) show the

AC-automaton and DAWG of D = {abba, aca, cbb}, respectively, where each number in

nodes and states expresses the correspondence.

Our algorithm to follow will make a heavy use of the following lemma, which charac-

terizes the relationship between the states of AC(D) and the trunk nodes of DAWG(D).

Lemma 4.2. Let s and s′ be any states in AC(D), and let v = π−1(s) and v′ = π−1(s′)

be corresponding trunk nodes in DAWG(D). Then, s′ = flink(s) iff there exists an integer

k ≥ 1 such that v′ = slinkk(v), and when k ≥ 2, slinki(v) is a non-trunk node for all

1 ≤ i < k.

Proof: (=⇒) Suppose s′ = flink(s). Then, by definition, s′ is a proper suffix of s. Hence

there exists an integer k ≥ 1 such that v′ = slinkk(v). Also, by definition, k is the smallest

such that slinkk(v) ∈ Pref (D). Hence, when k ≥ 2, slinki(v) is a non-trunk node for all

1 ≤ i < k.
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4.2 Dynamic Dictionary Matching by using DAWG

Algorithm 1: Dynamic dictionary matching algorithm by using a DAWG

Input: A text string T .
Output: Occurence positions of all pattern in the dictionary.

1 activeNode ← root ;

2 for 1 ≤ i ≤ n do
3 while checkTransition(activeNode,T[i]) and activeNode 6= root do
4 activeNode ← slink(activeNode);

5 if checkTransition(activeNode,T[i]) then
6 activeNode ← trans(activeNode, T [i]);

7 outNode ← activeNode;

8 if outNode is marked then
9 output(outNode);

10 while NMA(outNode) 6= NULL do
11 outNode ← NMA(outNode);

12 output(outNode);

13 Function checkTransition(node, c)
14 if node is not a trunk node then return false;

15 if trans(node, c) = NULL then return false;

16 if c is a secondary edge then return false;

17 if trans(node, c) is not a trunk node then return false;

18 return true;

(⇐=) Suppose there exists an integer k ≥ 1 such that v′ = slinkk(v). When k = 1,

clearly s′ = flink(s). When k ≥ 2 and slinki(v) is a non-trunk node for all 1 ≤ i < k, then

k is the smallest integer such that v′ = slinkk(v) is a trunk node. Hence s′ = flink(s).

It is known that DAWGs can be used for solving the pattern matching problem with

a single pattern [26]. However, it is not trivial to maintain the output function efficiently

for dynamic and multiple patterns, as is pointed out by Kucherov and Rusinowitch [55].

In the next section, we shall show our algorithm which efficiently maintains the output

function on the DAWG.
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4.2 Dynamic Dictionary Matching by using DAWG

4.2 Dynamic Dictionary Matching by using DAWG

In this section, we will describe how to perform dynamic dictionary matching with the

DAWG. This algorithm is a simple modification of Kucherov and Rusinowitch’s algo-

rithm [55] for matching multiple strings with variable length don’t-care symbols.

First we will discuss the time complexity to update the DAWG in the semi-dynamic

and dynamic settings. As it was shown in [13] the DAWG can be updated in O(m log σ)

amortized time for an insertion of a pattern of length m in the semi-dynamic setting. For

the dynamic setting, Kucherov and Rusinowitch [55] gave an algorithm which deletes a

pattern from the dictionary, and claimed that the update time for deletion and insertion

is the same as in the semi-dynamic setting. However, in what follows we show that this

is not true when the alphabet size is super-constant. Namely, the number of edges to be

constructed when we split a DAWG node can be amortized constant by the total length

of the input strings in the semi-dynamic setting, but this amortization argument does not

hold in the dynamic setting. That is, we obtain the following lower bound for updating

the DAWG in the dynamic setting.

Lemma 4.3. In the dynamic setting where both insertion and deletion of patterns are

supported, there exists a family of patterns such that Ω(σm) time is needed when updating

the DAWG for insertion and deletion of each pattern.

Proof: To show an Ω(σm) lower bound, consider a pattern P = (ba)
m
2 and an initial

dictionary D = {(ab)iajc | 1 ≤ i ≤ m
2
, j ∈ {0, 1}, c ∈ Σ \ {a, b}} of size d = Θ(σm2).

We insert P to the dictionary and update DAWG(D) into DAWG(D ∪ {P}). In this case

we need to split a node each time we read a symbol from P , and construct σ − 2 edges

labeled by c ∈ Σ\{a, b} from the new node. Hence, we need to create Ω(σm) edges when

we update the DAWG. Moreover, the same computation time Ω(σm) is required when we

delete the same pattern P from D ∪ {P} and update the DAWG.

If we repeat this operation more than m times by inserting and deleting Pp, we can
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4.2 Dynamic Dictionary Matching by using DAWG

not amortize the update cost by the size of the dictionary. Therefore, we need Ω(σm)

operations to update the DAWG when inserting or deleting a pattern.

The above lower bound is tight, namely, below we will show a matching upper bound

for updating the DAWG in the dynamic setting.

Lemma 4.4. In the dynamic setting where both insertion and deletion of patterns are

supported, the DAWG can be updated in O(σm) time for insertion and deletion of patterns.

Proof: To show the upper bound, we will evaluate the number of edges and suffix links

that are traversed and/or created during the update.

Let us first consider the insertion operation. Let P be a pattern of length m to be

inserted to the dictionary. Suppose that the prefix P [1 : i − 1] of P has already been

inserted to the DAWG for 1 ≤ i ≤ m. Let v be the DAWG node that represents P [1 : i−1].

There are three cases for the next pattern symbol P [i]:

(1) There is a primary out-going edge of v labeled with P [i]. In this case no new edge

or node is created, and it takes O(log σ) time to traverse this primary edge.

(2) There is no out-going edge of v labeled with P [i]. In this case, a new sink node

and a new edge from v to this new sink labeled with P [i] are created. Then, the

algorithm follows a chain of suffix links from v and insert new edges leading to the

new sink labeled with P [i], until finding the first node which has an out-going edge

labeled with P [i].

(3) There is a secondary out-going edge of v labeled with P [i]. Let u be the node that

is reachable from v via the edge labeled with P [i]. This node u gets split into two

nodes u and u′, and at most σ out-going edges of the original node u are copied to

u′.

It is clear that Case (1) takes O(log σ) time per symbol. At most i new edges can be

introduced in Case (2), but it follows from [12] that the total number of suffix links that
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are traversed is O(m) for all m symbols of P . Hence, Case (2) takes O(log σ) amortized

time per symbol. It is clear that Case (3) takes O(σ) time. Overall, a pattern of length

m can be inserted to the DAWG in O(σm) total time.

The deletion operation can also be performed in O(σm) time, since the deletion can

be done in the same complexity as insertion by reversing the insertion procedure (see also

Kucherov and Rusinowitch’s result [55]).

Next, we will describe how to find the occurrences of the patterns in the text by

using the DAWG. We will use a nearest marked ancestor (NMA) data structure on the

inverse suffix link tree. In the NMA problem on a rooted tree, each node of the tree

is either marked or unmarked. The NMA query returns the nearest marked ancestor of

a given query node v in the tree, or returns NULL if v has no marked ancestor. The

semi-dynamic NMA problem allows for marking operation only, while the dynamic NMA

problem allows for both marking and unmarking operations. New leaves can be added

to the tree in both of the problems, and existing leaves can be removed in the dynamic

problem. There is a semi-dynamic NMA data structure [73] which allows for NMA queries,

marking unmarked nodes, and inserting new leaves in amortized O(1) time each. For the

dynamic NMA problem, there is a data structure which permits NMA queries and both

marking and unmarking operations in worst-case O(log t/ log log t) time, and inserting

new leaves in amortized O(1) time, where t is the size of the tree [2, 3]. Both of the data

structures use O(t) space and O(t) preprocessing time.

In our dictionary pattern matching algorithm using the DAWG, we mark each node

v of the inverse suffix link tree iff v is a DAWG node that represents a pattern in the

dictionary1. Now, for a given node w in the DAWG, we can find all patterns in the

dictionary that are suffixes of w by performing NMA queries from w on the inverse suffix

link tree as follows. If w itself is marked, then we output it. Then, we perform NMA

1Kucherov and Rusinowitch [55] used Sleator and Tarjan’s link-cut tree data structure [64] to maintain
a dynamic forest induced from the inverse suffix link tree. Our important observation here is that
essentially the same operations and queries in this application can be more efficiently supported with
NMA data structures.
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4.2 Dynamic Dictionary Matching by using DAWG

queries in the inverse suffix link tree from w, until we find a node that has no marked

ancestor. This allows us to skip all unmarked nodes in the path from w to the node, and

we output all marked nodes found by NMA queries in this path.

Algorithm 1 shows a pseudo-code of our algorithm for dynamic dictionary matching by

using the DAWG. The algorithm only uses the trunk nodes and primary edges to perform

pattern matching. Therefore, when the algorithm reads a symbol c from the text, it checks

whether or not there is a primary edge which is labeled with c and leads to a trunk node

by using a function checkTransition(node, c). If there is no such node, then the algorithm

follows a chain of suffix links until it reaches a trunk node, and then performs the same

procedure as above. Thus, the suffix links of the DAWG replaces the failure links of the

corresponding AC-automaton. The correctness is immediately justified by Lemma 4.2.

As soon as the algorithm finds a primary edge which is labeled with c and leads to a trunk

node, it checks whether there is an occurrence of any patterns in the dictionary by using

NMA queries from this destination trunk node, as described previously. This procedure

is used as a substitute for the output function of the AC-automaton.

Consider inserting a new pattern P to the dictionary. If v is the DAWG node which

represents P , then v is newly marked in the inverse suffix link tree, and v is the only

node that gets marked in this stage. Hence, exactly one unmarked node gets marked per

inserted pattern. For the same reasoning, exactly one marked node gets unmarked per

deleted pattern. To delete an existing pattern P from the dictionary and hence from the

DAWG, we can use Kucherov and Rusinowitch’s algorithm [55] which takes O(σm) time

due to Lemmas 4.3 and 4.4, where m is the length of P .

Overall, we obtain the following.

Theorem 4.5. In the semi-dynamic setting where only insertion of patterns is supported,

the DAWG-based algorithm supports insertion of patterns in O(m log σ) time and pattern

matching in O(n log σ + occ) time.

In the dynamic setting where both insertion and deletion of patterns are supported, the
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DAWG-based algorithm supports insertion/deletion in O(σm + log d/ log log d) time and

pattern matching in O(n(log d/ log log d + log σ) + occ log d/ log log d) time. The size of

both data structures is O(d).

Proof: The update times and space requirements of both of the semi-dynamic and dy-

namic versions should be clear from Lemmas 4.3, 4.4 and the above arguments.

For pattern matching, we need to perform at least one NMA query each time a symbol

from a text is scanned, and need to perform an NMA query each time an occurrence of a

pattern is found. Hence, it takes O(n log σ + occ) time for the semi-dynamic setting and

O(n(log d/ log log d+ log σ) + occ log d/ log log d) time for the dynamic setting.

4.3 AC-Automaton Update Algorithm

In this section we will describe how to perform dynamic dictionary matching by using

the AC-automaton and the DAWG for the dictionary. Our algorithm performs pattern

matching in exactly the same manner as the original AC-algorithm, while updating the

AC-automaton dynamically with the aid of the DAWG upon insertion/deletion of pat-

terns. We will describe how to modify the AC-automaton by using the DAWG. Note

that we can simulate the AC-automaton with the DAWG augumented with the output

function. However, we will explicitly use the AC-automaton since it makes the pattern

matching algorithm simpler.

4.3.1 Pattern insertion algorithm

We consider inserting a new pattern p of length m into the dictionary D, and we denote

the new dictionary by D′ = D∪{P} = {P1, P2, . . . , Pr, P}. It is known that DAWG(D) can

be constructed in O(d log σ) time, and can be updated to DAWG(D′) online in O(m log σ)

amortized time [13]. We update AC(D) to AC(D′) by using DAWG(D), and then update

DAWG(D) to DAWG(D′). We also add weight(v) to each state v of AC(D) that is the
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Figure 4.3: For a dictionary D = {abba, aca, cbb} (a) AC(D), and (b) DAWG(D).
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Figure 4.4: Illustration of updating process when inserting a pattern p = bac into the
dictionary D = {abba, aca, cbb}. Compare them with Fig. 4.3. (a) The updated automa-
ton AC(D′), where the only updated failure links are shown. (b) In DAWG(D), the only
suffix links that are used for the update are shown, and the visited nodes are colored.

number of occurrences v as prefix in D. We will use weight(v) as a reference counter to

determine whether v should be deleted or not in the deletion algorithm later.

The key point of our algorithm is to update the output and failure functions of AC(D)

in linear time with respect to the number of states that should be modified. The goto

function can be updated easily by adding a new transition for a new state in the same

way as in the AC-automaton construction algorithm. We then update the output and

failure functions efficiently by using inverse suffix links of DAWG(D). Algorithm 4 updates

AC(D) when a new pattern is inserted to D, and Algorithms 2 and 3 find the states on

which the output and failure functions should be updated, respectively.

For any node v in DAWG(D), let isuf (v) = {x | slink(x) = v} be the set of its

inverse suffix links. The set isuf (v) for each v is stored in ordered array va as described in
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Algorithm 2: Algorithm to find the states on which the output function should
be updated

1 Function getOutStates(P )
2 outStates ← ∅;
3 activeNode ← root ;

4 for 1 ≤ i ≤ m and activeNode 6= NULL do
5 activeNode ← trans(activeNode, P [i]);

6 if activeNode 6= NULL then
7 queue ← ∅;
8 push activeNode to queue;

9 while queue 6= ∅ do
10 pop node from queue;

11 if node is a trunk node then
12 outStates ← outStates ∪ {π(node)}
13 for lnode ∈ isuf (node) do
14 push lnode to queue;

15 return outStates ;

Section 4.1. For the new pattern P , we can divide P to P = xyz and categorize the prefixes

of p into three categories, so that for any i, j, k with 1 ≤ i ≤ |x| < j ≤ |x|+ |y| < k ≤ m;

1. P [1 : i] exists both in AC(D) and DAWG(D),

2. P [1 : j] does not exist in AC(D) but exists in DAWG(D), and

3. P [1 : k] exists in neither AC(D) nor DAWG(D).

To update both output and failure functions of AC(D) to AC(D′) we only use nodes in

DAWG(D) that represent prefixes in the second category. Algorithm 2 follows inverse

suffix links of a node representing P recursively in DAWG(D), in order to find all the

states in AC(D) on which the output function needs to be updated. On the other hand,

Algorithm 3 follows inverse suffix links of nodes that represent P [i : j] for |x| < j ≤ |x|+|y|

(category 2) recursively, until it reaches a trunk node u, and then saves the state s = π(u)

that corresponds to the trunk node to update its failure link later.

Fig. 4.4 illustrates an example, where we insert a pattern P = bac into the dictionary
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Algorithm 3: Algorithm to find the states whose failure link should be updated

1 Function getFailStates(P, start)
2 stack ← ∅;
3 activeNode ← root ;

4 for 1 ≤ i ≤ m and activeNode 6= NULL do
5 activeNode ← trans(activeNode, P [i]);

6 if i ≥ start and activeNode 6= NULL then
7 push (activeNode, i) to stack ;

8 while stack 6= ∅ do
9 pop (activeNode, i) from stack ;

10 queue ← ∅;
11 push activeNode to queue;

12 while queue 6= ∅ do
13 pop node from queue;

14 if node is a trunk node then
15 push (π(node), i) to failStates ;

16 if node is not marked then
17 mark node;

18 if node is a branch node then
19 for lnode ∈ isuf (node) do
20 push lnode to queue;

21 return failStates ;

D = {abba, aca, cbb}. First, we create new states 11, 12, and 13. The string b is

represented by node q in DAWG(D), and by the new state 11 in AC(D′), thus there is at

least one state whose failure link should be updated to point at the state 11. We will

explain how to find these states below. Similarly, we know that at least one failure link

should be updated to point at the state 12, because the string ba represented by the state

12 in AC(D′) is also represented by node 5 in DAWG(D). However, the string bac, which

is represented by the new state 13, is not represented in DAWG(D), thus we know that

there is no state whose failure link should be updated to state 13. As a result, we have

the set {11, 12} of states. (Lines 4–7 in Algorithm 3)

We now explain how to find states whose failure links should be updated. We begin

by the deepest state in {11, 12}, that is, state 12. We search the states from node 5 in
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Algorithm 4: Pattern insertion algorithm of AC-automaton

1 Function InsertPattern(P )
2 activeState ← rootState;

3 newStatesSet ← ∅;
4 weight(activeState)← weight(activeState) + 1;

5 for 1 ≤ i ≤ m do
6 if δ(activeState, P [i]) 6= fail then
7 activeState ← δ(activeState, P [i]);

8 else
9 create newState;

10 δ(activeState, P [i])← newState;

11 activeState ← newState;

12 newStatesSet ← newStatesSet ∪ {newState};
13 weight(activeState)← weight(activeState) + 1;

14 if i = m then
15 output(newState)← output(newState) ∪ {P};

16 failStates ← getFailStates(P,m− |newStatesSet |+ 1);

17 while failStates 6= ∅ do
18 pop (s, i) from failStates ;

19 flink(s)← newStatesSet [i− |newStatesSet |+ 1];

20 activeState ← rootState;

21 for 1 ≤ i ≤ m do
22 if δ(activeState, P [i]) ∈ newStatesSet then
23 failureState ← flink(activeState);

24 while goto(failureState, P [i]) = fail do
25 failureState ← flink(failureState);

26 activeState ← δ(activeState, P [i]);

27 flink(activeState)← failureState;

28 output(activeState)← output(activeState) ∪ output(failureState);

29 else
30 activeState ← δ(activeState, P [i]);

31 outStates ← getOutStates(P );

32 for s ∈ outStates do output(s)← output(s) ∪ {P} ;

DAWG(D), which represents the same string ba as state 12 in AC(D′). When searching

from node 5, we do not search further because node 5 is a trunk node. Therefore, we

update the failure link of state 5 to state 12. Next, to find states whose failure links should
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Algorithm 5: Pattern deletion algorithm of AC-automaton

1 Function DeletePattern(P )
2 activeState ← rootState;

3 deleteStatesSet ← ∅;
4 for 1 ≤ i ≤ m do
5 activeState ← δ(activeState, P [i]);

6 if weight(activeState) = 0 then
7 deleteStatesSet ← deleteStatesSet ∪ activeState;

8 else
9 weight(activeState)← weight(activeState)− 1;

10 failStates ← getFailStates(P,m− |deleteStatesSet |+ 1);

11 while failStates 6= ∅ do
12 pop (s, i) from failStates ;

13 flink(s)← flink(newStatesSet [i− (m− |newStatesSet |) + 1]);

14 activeState ← rootState;

15 outStates ← getOutStates(P );

16 for s ∈ outStates do
17 output(s)← output(s) \ {P};
18 for s ∈ deleteStatesSet do
19 delete s;

be updated to state 11, we search the states from node q in DAWG(D), which represents

the same string b as state 11 in AC(D′). By following the inverse suffix links recursively

from node q until reaching a trunk node, we get the set {3, 4, 9, 10} of trunk nodes (see

Fig. 4.4 (b)). Therefore, we update the failure links of states 3, 4, 9, and 10 to state 11.

(Lines 8–20)

4.3.2 Pattern deletion algorithm

We consider deleting a pattern Pi of length m from the dictionary D, and we denote the

new dictionary by D′ = D \ {Pi} = {P1, . . . , Pi−1, Pi+1, . . . , Pr}. From Lemma 4.4 we can

delete a pattern from DAWG(D) in O(σm) time. We update AC(D) to AC(D′) by using

DAWG(D), and then update DAWG(D) to DAWG(D′). The proposed deletion algorithm

is also update the output and failure functions of AC(D) in linear time with respect to
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the number of states that should be modified.

Algorithm 5 shows the proposed deletion algorithm. First, the algorithm finds which

states should be deleted. The algorithm finds the states by decreasing the weight of states

which represent prefixes of P . The algorithm will delete the states whose weight becomes

zero, which means those states do not represent any prefixes of patterns in D′.

After the algorithm has found the states which should be deleted, it will update the

states whose failure links should be updated. A state should be updated if the failure link

of the state is pointing at one of the nodes that will be deleted. Such states can be found

by traversing reverse failure links of the states. From Lemma 4.2 we can use inverse suffix

links of the DAWG instead of inverse failure links of the AC-automaton to find the states.

The algorithm uses getFailStates(P, start) in Algorithm 3 to find the states and update

them from the states of which the suffix links point to shallower states.

Next, the algorithm will update the output function of the AC-automaton. The output

function of a state should be updated if and only if p is a suffix of the string that is

represented by the state. The algorithm uses getOutStates(P ) in Algorithm 2 to find

the states whose output function should be updated. Last, the algorithm will delete the

respective states.

4.3.3 Correctness of the algorithms

We now show the correctness of Algorithms 2 and 3.

Lemma 4.6. Algorithm 2 correctly returns the set of states on which output functions

should be updated.

Proof: When a new pattern P is inserted to a dictionary D, we have to update the

output function of every state s in AC(D) such that P is a suffix of the string s. If there

is no node in DAWG(D) representing P , we know that no such a string s exists in D.

Otherwisem, let sP be a new state created in AC(D′) to represent the pattern P . The

output function of some state s should be updated if and only if sP is reachable from s
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via a chain of failure links. From Lemma 4.2, for nodes u = π−1(s) and vP = [P ]D, we

have vP = slinki(u) for some i. Therefore, s = π(u) can be found by following inverse

suffix links from vP recursively.

Lemma 4.7. Algorithm 3 correctly returns the set of states whose failure links should be

updated.

Proof: By arguments similar to the proof of Lemma 4.6, all the states that should be

updated are reachable via chains of inverse suffix links from the nodes in DAWG(D) that

correspond to the new states in AC(D′). Next, we will show that Algorithm 3 only returns

the set S of the states that should be updated. Let x be a new state and t = [x]D be a

node that represents the string x. Assume that S contains a state s that can be reached

by following inverse failure links from x recursively but should not be updated. Let

u = π−1(s) and v = π−1(flink(s)) be trunk nodes in DAWG(D) corresponding to s and

flink(s), respectively. From Lemma 4.2, v = slinki(u) and t = slinkj(v) for some i and j.

Since Algorithm 3, started from t, stops a recursive search after reaching a trunk node (v

in this case), it would not find u. Therefore, s = π(u) 6∈ S.

4.4 Algorithm Complexity Analysis

We now show the time complexity of Algorithms 2 and 3.

Lemma 4.8 ([12]). A string x ∈ Substr(D) is the longest member of [x]D if and only if

either x ∈ Pref (D) or ax, bx ∈ Substr(D) for some distinct a, b ∈ Σ.

Lemma 4.9. For any non-trunk node in DAWG, there exist at least two suffix links that

point at it.

Proof: Let [x]D be any non-trunk node in DAWG(D) and x ∈ Substr(D) be the longest

member of [x]D. Then x 6∈ Pref (D) because [x]D is a non-trunk node. By Lemma 4.8,
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there exist two distinct a, b ∈ Σ such that ax, bx ∈ Substr(D). Because x is the longest

member of [x]D, we have [ax]D 6= [x]D. Thus, slink([ax]D) = [x]D because x is a suffix

of ax. Similarly, slink([bx]D) = [x]D. Because [ax]D 6= [bx]D, the non-trunk node [x]D is

pointed by at least two suffix links.

Lemma 4.10. Algorithm 2 runs in O(m log σ+uo) time, where uo is the number of states

on which output function should be updated.

Proof: At first, Algorithm 2 finds the node v representing the pattern P , by traversing

the nodes from the root, in Lines 4–5. It takes O(m log σ) time. If it failed, done. Then

we analyze the runnning time consumed in Lines 6–14 by counting the number ` of visited

nodes in DAWG(D). These nodes form a tree, rooted at v and connected by inverse suffix

links chains. Let b (resp. t) be the number of non-trunk (resp. trunk) nodes in this

tree, and let q be the number of nodes (either non-trunk or trunk) that are child nodes

of some non-trunk node. Because every non-trunk node has at least two child nodes by

Lemma 4.9, we have 2b ≤ q, and obviously q ≤ b + t. Thus, b ≤ t, which yields that

` = b+ t ≤ 2t = 2|outStates| = 2uo. Therefore, Algorithm 2 runs in O(m log σ+uo) time.

Lemma 4.11. Algorithm 3 runs in O(m log σ+uf ) time, where uf is the number of states

whose failure links should be updated.

Proof: At first, Algorithm 3 finds the set V of nodes representing the pattern P [1 : j]

for 1 ≤ j ≤ m such that P [1 : j] does not exist in AC(D) but does exist in DAWG(D),

by traversing the nodes from the root, in Lines 4–7. The algorithm saves the nodes in

a stack, because the algorithm will search from the deepest node. This takes O(m log σ)

time. Then we analyze the running time consumed in Lines 8–20 by counting the number

` of visited nodes in DAWG(D). These nodes form a forest, where each tree is rooted by

some node in V and connected by inverse suffix link chains, where some node in V can

be an inner node of a tree rooted by another in V . In this case, we mark the nodes that
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have been visited, so each node is visited at most twice. Let b (resp. t) be the number

of non-trunk (resp. trunk) nodes in this forest, and let q be the number of nodes (either

non-trunk or trunk) that are child nodes of some non-trunk node. Because every non-

trunk node has at least two child nodes by Lemma 4.9, we have 2b ≤ q, and obviously

q ≤ b+ t. Thus, b ≤ t, which yields that ` = b+ t ≤ 2t = 2|failStates| = 2uf .

Theorem 4.12. AC-automaton can be updated for each pattern in O(m log σ + uf + uo)

time.

Proof: The goto, failure and output functions of newly created states can be calculated

in O(m log σ), similarly to the original AC-automaton construction algorithm. From

Lemmas 4.10 and 4.11, the output and failure functions on existing states can be updated

in O(m log σ + uo) and O(m log σ + uf ), respectively. Therefore, AC-automaton can be

updated in O(m log σ + uf + uo) time in total.

Note that any algorithm which explicitly updates the AC-automaton requires at least

Ω(m + uf + uo) time. Hence, the bound in the above theorem is optimal except for the

term log σ which can be ignored for constant alphabets. As it was stated in introduction,

uf and uo can be considerably small in several cases.

On the other hand, the remaining question is how large uf and uo can be in the worst

case. The next theorem shows matching upper and lower bounds on uf and uo.

Theorem 4.13. For any pattern of length m, uf = O(km) and uo = O(km), where k is

the number of patterns to insert to the current dictionary. Also, there exists a family of

patterns for which uf = Ω(km) and uo = Ω(km).

Proof: In this proof, we only show bounds for uf ; however, the same bounds for uo can

be obtained similarly.

First, we show an upper bound uf = O(km). We begin with an empty dictionary and

insert patterns to the dictionary. Let d be the total length of the pattens in the dictionary

after adding all patterns, and let total uf be the total number of AC-automaton states
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whose failure links need to be updated during the insertion of all patterns. If k is the

number of patterns to insert, then clearly total uf ≤ kd holds. Hence, the number of

failure links to update per symbol is total uf /d ≤ k. This implies that for any pattern of

length m, the number uf of failure links to update is O(km).

To show a lower bound uf = Ω(km), consider an initial dictionary D = {ciak | 1 ≤

i ≤ x} of x ≥ 1 patterns, where k ≥ 1 and ci 6= cj for any 1 ≤ i 6= j ≤ x. For each

j = 1, 2, . . . , k in increasing order, we insert a new pattern aj to the dictionary. Then,

the total number total uf of failure links to update for all aj’s is

total uf = xk + x(k − 1) + x(k − 2) + · · ·+ x = xk(k + 1)/2.

Let dadd be the total length of patterns to insert to the initial dictionary, and d the

total length of the patterns after adding all patterns to the initial dictionary. Then

d = xk + dadd = xk + k(k + 1)/2. Hence, the number of failure links to update for each

symbol in the added patterns aj’s is

total uf

dadd

<
total uf

d
=

xk(k + 1)

2xk + k(k + 1)
=

x(k + 1)

2x+ k + 1
= Ω

( xk

x+ k

)
,

which becomes Ω(k) by choosing x = Ω(k). Hence, for each 1 ≤ m ≤ k, when we add

pattern am of length m to the dictionary, uf = Ω(km) failure links need to be updated.

The arguments in the above proof consider the semi-dynamic case where only insertion

of new patterns in supported. However, if we delete all patterns after they have been

inserted, then exactly the same number of failure links need to be updated. Hence, the

same matching upper and lower bounds hold also for the dynamic case with both insertion

and deletion of patterns.
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Chapter 5

Parameterized Pattern Matching

Algorithm

The parameterized pattern matching introduced by Baker [11] is a variant of pattern

matching that focuses on a structure of strings. Let Σ and Π be two disjoint sets of

symbols. A string over Σ ∪ Π is called a parameterized string (p-string for short). Given

p-strings T and P , The parameterized pattern matching problem task is find positions of

substrings of T that can be transformed into P by applying a one-to-one function that

renames symbols in Π. The parameterized pattern matching is motivated by applying to

software maintenance [8, 9, 11], plagiarism detection [35], analysis of gene structure [63],

and so on. Some indexing structures that support the parameterized pattern matching

are proposed, such as parameterized suffix trees [9, 11, 62], structural suffix trees [63],

and parameterized suffix arrays [31, 41].

In this chapter, we propose a new indexing structure called parameterized position

heap for the parameterized pattern matching. The parameterized position heap of a

parameterized string T is a sequence hash tree for the ordered set of prev-encoded [9]

suffixes of T . We give an online construction algorithm of a parameterized position heap

based on Kucherov’s algorithm [54] that runs in O(n log (|Σ|+ |Π|)) time and an algorithm
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5.1 Notation on parameterized string and parameterized pattern matching
problem

that runs in O(m log (|Σ|+ |Π|) + m|Π| + occ) time to find the occurrences of a pattern

in the text, where n is the length of the text, m is the length of the pattern, and occ is

the number of occurrences of the pattern in the text.

5.1 Notation on parameterized string and parame-

terized pattern matching problem

Let Σ and Π be two disjoint sets of symbols. Σ is a set of constant symbols of size σ

called constant alphabet and Π is a set of parameter symbols of size π called parameter

alphabet. An element of Σ∗ is called a string, and an element of (Σ ∪ Π)∗ is called a

parameterized string, or p-string for short [11]. Let N denote the set of all non-negative

integers.

Definition 5.1 (Parameterized match [11]). Two p-strings W1 and W2 of length n are a

parameterized match or p-match, denoted by W1 ≈ W2, if there exists a bijection f from

the symbols of W1 to the symbols of W2, such that f(W1[i]) = W2[i] for 1 ≤ i ≤ n and f

is identity on the constant symbols.

We can determine whether W1 ≈ W2 or not by using an encoding called prev-encoding

defined as follows.

Definition 5.2 (Prev-encoding [11]). For a p-string W over Σ ∪ Π, the prev-encoding

for w, denoted by prev(W ), is a string X of length |W | over Σ ∪N defined by

X[i] =


W [i] if W [i] ∈ Σ,

0 if W [i] ∈ Π ∧W [i] 6= W [j] for 1 ≤ j < i,

i−max{j | W [j] = W [i] ∧ 1 ≤ j < i} otherwise.

For any p-strings W1 and W2, W1 ≈ W2 if and only if prev(W1) = prev(W2). For
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5.2 Parameterized Position Heap

example, given Σ = {a, b} and Π = {u, v, x, y}, W1 = uvuvauuvb and W2 = xyxyaxxyb

are a p-match where prev(W1) = prev(W2) = 0022a314b.

The parameterized pattern matching is a problem to find occurrences of a p-string

pattern in a p-string text defined as follows.

Definition 5.3 (Parameterized pattern matching [11]). Given two p-strings, text T and

pattern P , find all positions i in T such that T [i : i+ |P | − 1] ≈ P .

For example, let us consider a text T = uvaubuavbv and a pattern p = xayby over

Σ = {a, b} and Π = {u, v, x, y}. Because p ≈ t[2 : 6] and p ≈ t[6 : 10], we should output

2 and 6 in this example. Throughout this chapter, let T be a text of length n and P be

a pattern of length m.

5.2 Parameterized Position Heap

In this section, we propose a new indexing structure called parameterized position heap.

It is based on the position heap proposed by Kucherov [54].

5.2.1 Definition and Property of Parameterized Position Heap

The parameterized position heap of a p-string T is a sequence hash tree [20] for the

ordered set of prev-encoded suffixes of T in the descending order of length.

Definition 5.4 (Parameterized Position Heap). Given a p-string T ∈ (Σ∪Π)∗ of length n,

let ST = (prev(T [1 :]), prev(T [2 :]), . . . , prev(T [n :])) be the ordered set of all prev-encoded

suffixes of the p-string T except ε in descending order of length. The parameterized

position heap PPH(T ) for T is SHT(ST ).

Fig. 5.1 (a) shows an example of a parameterized position heap. The parameterized

position heap PPH(T ) for a p-string T of length n consists of the root and nodes that cor-

respond to prev(T [1 :]), prev(T [2 :]), . . . , prev(T [n :]), so PPH(T ) has at most n+ 1 nodes.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

x a x y x y x y y a x y x y

1 0 a 2 0 2 2 2 2 1 a 4 3 2 2

2 a 0 0 2 2 2 2 1 a 4 3 2 2

3 0 0 2 2 2 2 1 a 4 3 2 2

4 0 0 2 2 2 1 a 4 3 2 2

5 0 0 2 2 1 a 4 3 2 2

6 0 0 2 1 a 4 3 2 2

7 0 0 1 a 4 3 2 2

8 0 1 a 0 3 2 2

9 0 a 0 3 2 2

10 a 0 0 2 2

11 0 0 2 2

12 0 0 2

13 0 0

14 0
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Figure 5.1: Let Σ = {a}, Π = {x, y} and T = xaxyxyxyyaxyx. (a) A parameterized
position heap PPH(T ). Broken arrows denote suffix pointers. (b) An augmented param-
eterized position heap APPH(T ). Parameterized maximal-reach pointers for pmrp(i) 6= i
are illustrated by double line arrows.

Each node in PPH(T ) holds either one or two of beginning positions of corresponding suf-

fixes. We can specify each node in PPH(T ) by its primary position, its secondary position,

or the string obtained by concatenating path labels from the root to the node.

Different from string, prev(T [i :]) = prev(T )[i :] does not necessarily hold for some

cases. For example, for T = xaxyxyxyyaxyxy, prev(T [3 :]) = 0022221a4322 while

prev(T )[3 :] = 0222221a4322. Therefore, the construction and matching algorithms for

the standard position heaps cannot be directly applied for the parameterized position

heaps. However, we can use similar properties to construct parameterized position heaps

efficiently.

Lemma 5.5. For i and j, where 1 ≤ i ≤ j ≤ n, if prev(T [i : j]) is represented in PPH(T ),

then a prev-encoded string for any substring of T [i : j] is also represented in PPH(T ).

Proof: First we will show that prev-encoding of any prefix of T [i : j] is represented in

PPH(T ). From the definition of prev-encoding, prev(T [i : j])[1 : i− j] = prev(T [i : j − 1]).

In other words, prev(T [i : j − 1]) is a prefix of prev(T [i : j]). From the definition of

PPH(T ), prefixes of prev(T [i : j]) are represented in PPH(T ). Therefore, prev(T [i : j − 1])

is represented in PPH(T ). Similarly, prev(T [i : j − 2]), · · · , prev(T [i : i]) are represented

in PPH(T ).
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Next, we will show that prev-encoding of any suffix of T [i : j] is represented in PPH(T ).

From the above discussion, there are positions b0 < b1 < · · · < bj−i = i in t such

that prev(t[bk : bk + k]) = prev(t[i : i+ k]). From the definition of parameterized position

heap, prev(T [b1 + 1 : b1 + 1]) is represented in PPH(T ). Since prev(T [bk + 1 : bk + k]) is

a prefix of prev(T [bk+1 + 1 : bk+1 + k + 1]) for 0 < k < j − i, if prev(T [bk + 1 : bk + k]) is

represented in PPH(T ) then prev(T [bk+1 + 1 : bk+1 + k + 1]) is also represented in PPH(T )

recursively. Therefore, prev(T [bj−i + 1 : bj−i + j − i]) = prev(T [i+ 1 : j]) is represented in

PPH(T ). Similarly, prev(T [i+ 2 : j]), · · · , prev(T [j : j]) are represented in PPH(T ).

Since any prefix and suffix of prev(T [i : j]) is represented in PPH(T ), we can say that

any substring of prev(T [i : j]) is represented in PPH(T ) by induction.

5.2.2 Online Construction Algorithm of Parameterized Position

Heap

In this section, we propose an online algorithm that constructs parameterized position

heaps. Our algorithm is based on Kucherov’s algorithm [54], although it cannot be applied

easily. The algorithm updates PH(T [1 : k]) to PH(T [1 : k + 1]) when T [k+1] is read, where

1 ≤ k ≤ n−1. Updating of the position heap begins from a special node, called the active

node. The position specified by the active node is called the active position. At first,

we show that there exists a position similar to the active position in the parameterized

position heap.

Lemma 5.6. If j < n is a secondary position of a double node in a parameterized position

heap, then j + 1 is also the secondary position of another node.

Proof: Let i be the primary position and j be the secondary position of node v, where

i < j. This means there is a position h such that prev(T [i : h]) = prev(T [j :]). By

Lemma 5.5, there is a node that represents prev(T [i+ 1 : h]). Since prev(T [j + 1 :]) =

prev(T [i+ 1 : h]), then j + 1 will be the secondary positions of node prev(T [i+ 1 : h]).
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Lemma 5.6 means that there exists a position s which splits all positions in T [1 : n]

into two intervals. Positions in [1 : s − 1] and [s : n] are called primary and secondary

positions, respectively. We call the position s the active position.

Assume we have constructed PPH(T [1 : k]) and we want to construct PPH(T [1 : k + 1])

from PPH(T [1 : k]). The primary positions 1, . . . , s− 1 in PPH(T [1 : k]) become primary

positions also in PPH(T [1 : k + 1]), because prev(T [i : k]) = prev(T [i : k + 1])[1 : k−1+1]

holds for 1 ≤ i ≤ s− 1. Therefore, we do not need to update the primary positions.

On the other hand, the secondary positions s, . . . , k require some modifications. When

inserting a new symbol, two cases can occur. The first case is that prev(T [i : k + 1]) is not

represented in PPH(T [1 : k]). In this case, a new node prev(T [i : k + 1]) is created as a

child node of prev(T [i : k]) and position i becomes the primary position of the new node.

The second case is that prev(T [i : k + 1]) is represented in PPH(T [1 : k]). In this case, the

secondary position i that is stored in prev(T [i : k]) currently should be moved to the child

node prev(T [i : k + 1]), and position i becomes the secondary position of this node.

From Lemma 5.5, if the node prev(t[i : k]) has an edge to the node prev(T [i : k + 1]),

prev(T [i+ 1 : k]) also has an edge to prev(T [i+ 1 : k + 1]). Therefore, there exists r, with

1 ≤ s ≤ r ≤ k, that splits the interval [s : k] into two subintervals [s : r − 1] and

[r : k], such that the node prev(T [i : k]) does not have an edge to prev(T [i : k + 1]) for

s ≤ i ≤ r − 1, and does have such an edge for r ≤ i ≤ k.

The above analysis leads to the following lemma that specifies the modifications from

PPH(T [1 : k]) to PPH(T [1 : k + 1]).

Lemma 5.7. Given T ∈ (Σ ∪ Π)n, consider PPH(T [1 : k]) for k < n. Let s be the

active position, stored in the node prev(T [s : k]). Let r ≥ s be the smallest position such

that node prev(T [r : k]) has an outgoing edge labeled with prev(T [r : k + 1])[k − r + 2].

PPH(T [1 : k + 1]) can be obtained by modifying PPH(T [1 : k]) in the following way:

1. For each node prev(t[i : k]), s ≤ i < r, create a new child prev(t[i : k + 1]) linked

by an edge labeled prev(t[i : k + 1])[k − i + 2]. Delete the secondary position i
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Figure 5.2: An example of updating a parameterized position heap, from (a)
PPH(xaxyyxyx) to (b) PPH(xaxyyxyxx). The updated positions are colored red.
The secondary positions 6 and 7 in PPH(xaxyyxyx) become primary positions in
PPH(xaxyyxyxx), while the secondary position 8 in PPH(xaxyyxyx) becomes a secondary
position of another node in PPH(xaxyyxyxx). The active position is updated from 6 to
8.

from the node prev(t[i : k]) and assign it as the primary position of the new node

prev(t[i : k + 1]).

2. For each node prev(T [i : k]), r ≤ i ≤ k, move the secondary position i from the node

prev(T [i : k]) to the node prev(T [i : k + 1]).

Moreover, r will be the active position in PPH(T [1 : k + 1]).

Proof: Consider the first case that i is a secondary position in PPH(T [1 : k]) and s ≤ i <

r. From the definition of r, there is no node prev(T [i : k + 1]) in PPH(T [i : k]). Therefore,

i will become the primary position of the node prev(T [i : k + 1]) in PPH(T [1 : k + 1]). We

can update the position heap from PPH(T [1 : k]) to PPH(T [1 : k + 1]) by deleting i from

secondary position of the node prev(T [i : k]) and create a new node prev(T [i : k + 1]) and

assign i to its primary position for the case s ≤ i < r.

Next case, i is a secondary position in PPH(T [1 : k]) and r ≤ i ≤ k. In this case,

there is a node prev(T [i : k + 1]) in PPH(T [i : k]) and the node prev(T [i : k + 1]) is also

represented in PPH(T [i : k + 1]). Therefore, i will become a secondary position of the
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node prev(T [i : k + 1]) in PPH(T [1 : k + 1]). We can update the position heap from

PPH(T [1 : k]) to PPH(T [1 : k + 1]) by deleting i from secondary position of the node

prev(T [i : k]) and assign i as the secondary position of the node prev(T [i : k + 1]) for the

case r ≤ i ≤ k.

Since position i for 1 ≤ i < r are primary positions in PPH(T [1 : k + 1]) and position

i for r ≤ i ≤ k + 1 are secondary positions in PPH(T [1 : k + 1]), r will be the active

position in PPH(T [1 : k + 1]).

Fig. 5.2 shows an example of updating a parameterized position heap. The modifica-

tions specified by Lemma 5.7 need to be applied to all secondary positions. In order to

perform these modifications efficiently, we use parameterized suffix pointers.

Definition 5.8 (Parameterized Suffix Pointer). For each node prev(T [i : j]) of PPH(T ),

the parameterized suffix pointer of prev(T [i : j]) is defined by psp(prev(T [i : j])) = prev(T [i+ 1 : j]).

By Lemma 5.5, whenever the node prev(T [i : j]) exists, the node prev(T [i+ 1 : j])

exists too. This means that psp(prev(T [i : j])) always exists. During the construction of

the parameterized position heap, let ⊥ be the auxiliary node that works as the parent

of root and is connected to root with an edge labeled with all symbols c ∈ Σ ∪ {0}. We

define psp(root) = ⊥.

When s is the active position in PPH(T [1 : k]), we call prev(T [s : k]) the active node. If

no node holds a secondary position, root becomes the active node and the active position

is set to k + 1. The nodes for the secondary positions s, s + 1, . . . , k can be visited by

traversing with the suffix pointers from the active node. Thus, the algorithm only has to

memorize the active position and the active node in order to visit any other secondary

positions.

Updating PPH(T [1 : k]) to PPH(T [1 : k + 1]) specified by Lemma 5.7 is processed as

the following procedures. The algorithm traverses with the suffix pointers from the active

node till the node that has the outgoing edge labeled with prev(T [i : k + 1])[k − i + 2] is

found, which is i = r. For each traversed node, a new node is created and linked by an
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Algorithm 6: Parameterized position heap online construction algorithm

1 Function ConstructPPH(T )
2 create root and ⊥ nodes;
3 psp(root)← ⊥;
4 child(⊥, c)← root for c ∈ Σ ∪ {0};
5 currentNode ← root ;
6 s← 1;
7 for i = 1 to n do
8 c← normalize(prev(T )[i], depth(currentNode));
9 lastCreateNode ← undefined;

10 while child(currentNode, c) = null do
11 create newnode;
12 prim(newnode)← s;
13 child(currentNode, c)← newnode;
14 if lastCreateNode 6= undefined then
15 psp(lastCreateNode)← newnode;

16 lastCreateNode ← newnode;
17 currentNode ← psp(currentNode);
18 c← normalize(prev(T )[i], depth(currentNode));
19 s← s+ 1;

20 6 currentNode ← child(currentNode, c);
21 if lastCreateNode 6= undefined then
22 psp(lastCreateNode)← currentNode;

23 while s ≤ n do
24 sec(currentNode)← s;
25 currentNode ← psp(currentNode);
26 s← s+ 1;

edge labeled with prev(T [i : k + 1])[k − i + 2] to each node. A suffix pointer to this new

node is set from the previously created node. When the node that has the outgoing edge

labeled with prev(T [i : k + 1])[k− i+2] is traversed, the algorithm moves to the node that

is led to by this edge, and a suffix pointer to this node is set from the last created node,

then the algorithm assigns this node to be the active node.

A pseudocode of our proposed construction algorithm is given as Algorithm 6. prim(v)

and sec(v) denotes primary and secondary positions of v, respectively. From the prop-

erty of prev-encoding, prev(T [i+ 1 : k + 1])[k − i + 1] = prev(T [i : k + 1])[k − i + 2] if
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prev(T [i : k + 1])[k−i+2] ∈ Σ or prev(T [i : k + 1])[k−i+2] ≤ k−i and prev(T [i+ 1 : k])[k−

i + 1] = 0 otherwise. Therefore, we use a function normalize(c, j) that returns c if c ∈ Σ

or c ≤ j and returns 0 otherwise.

The construction algorithm consists of n iterations. In the i-th iteration, the algorithm

reads T [i] and constructs PPH(T [1 : i]). In the i-th iteration, the traversal of the suffix

pointers as explained above is done. Since the depth of the current node decreases by

traversing a suffix pointer, the number of the nodes that can be visited by traversal is

O(n). For each traversed node, all the operations such as creating a node, an edge and

updating position can be done in O(log (|Σ|+ |Π|)) time. Therefore, the total time for

the traversals is O(n log (|Σ|+ |Π|)).

From the above discussion, the following theorem is obtained.

Theorem 5.9. Given T ∈ (Σ∪Π)n, Algorithm 6 constructs PPH(T ) in O(n log (|Σ|+ |Π|))

time and space.

5.3 Augmented Parameterized Position Heaps

We will describe augmented parameterized position heaps, the parameterized position

heaps with an additional data structure called the parameterized maximal-reach pointers

similar to the maximal-reach pointers for the position heap [54]. The augmented param-

eterized position heap gives an efficient algorithm for parameterized pattern matching.

Definition 5.10 (Parameterized Maximal-Reach Pointer). For a position i on T , the

parameterized maximal-reach pointer pmrp(i) of position i is a pointer from node i to the

deepest node whose path label is a prefix of prev(T [i :]).

Obviously, if i is a secondary position, then pmrp(i) is node i itself. We assume that the

parameterized maximal-reach pointer for a double node applies to the primary position

of this node. Fig. 5.1 (b) shows an example of an augmented parameterized position

heap. Given a prev-encoded p-string prev(W ) represented in an augmented parameterized
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position heap APPH(T ) and a position 1 ≤ i ≤ n, we can determine whether prev(W ) is

a prefix of prev(T [i :]) or not in O(1) time by checking whether pmrp(i) is a descendant of

prev(W ) or not. It can be done in O(1) time by appropriately preprocessing APPH(T ) [25].

Parameterized maximal-reach pointers can be computed by using parameterized suffix

pointers, similarly to [54]. Algorithm 7 computes parameterized maximal-reach pointers.

pmrp(i) is computed iteratively for i = 1, 2, · · · , n. Assume that we have computed

pmrp(i) for some i. Let pmrp(i) = prev(T [i : l]). Obviously, prev(T [i+ 1 : l]) is a prefix of

the string represented by pmrp(i+ 1). Thus, in order to compute pmrp(i+ 1), we should

extend the prefix prev(T [i+ 1 : l]) = psp(prev(T [i : l])) in PPH(T ) until we find l′ such that

node prev(T [i+ 1 : l′]) does not have an outgoing edge labeled with prev(T [i+ 1 :])[l′−i+1]

and set pmrp(i+ 1) = prev(T [i+ 1 : l′]). In this time, we need re-compute prev(T [i+ 1 :])

by replacing prev(T [i+ 1 :])[j] with 0 if prev(T [i+ 1 :])[j] ≥ j. The total number of

extending prev(T [i+ 1 : l]) in the algorithm is at most n because both i and l always

increase in each iteration. In each iteration, operations such as traversing a child node

can be done in O(log (|Σ|+ |Π|)) time. Therefore, we can get the following theorem.

Theorem 5.11. Parameterized maximal-reach pointers for PPH(T ) can be computed in

O(n log (|Σ|+ |Π|)) time.

5.3.1 Parameterized Pattern Matching with Augmented Param-

eterized Position Heaps

Ehrenfeucht et al. [32] and Kucherov [54] split a pattern P into segments Q1, Q2, · · · , Qk,

then compute occurrences of Q1Q2 · · ·Qj iteratively for j = 1, · · · , k. The correctness

depends on a simple fact that for strings X = T [i : i + |x| − 1] and Y = T [i + |x| :

i+ |x|+ |y|−1] imply XY = T [i : i+ |xy|−1]. However, when X, Y , and T are p-strings,

prev(X) = prev(T [i : i+ |X| − 1]) and prev(Y ) = prev(T [i+ |X| : i+ |X|+ |Y | − 1]) do

not necessarily imply prev(XY ) = prev(T [i : i+ |XY | − 1]). Therefore, we need to modify
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Algorithm 7: Augmented parameterized position heap construction algorithm

1 Function ConstructAPPH(T )
2 ConstructPPH(T );
3 let t[n+ 1]← # where # is a symbol that does not appear in t elsewhere;
4 currentNode ← root ;
5 l← 1;
6 for i = 1 to n do
7 c← normalize(prev(T )[l], l − i);
8 while child(currentNode, c) 6= null do
9 currentNode ← child(currentNode, c);

10 l← l + 1;
11 c← normalize(prev(T )[l], l − i);
12 pmrp(i)← currentNode;
13 currentNode ← psp(currentNode);

the matching algorithm for parameterized strings.

Let X, Y and W be p-strings such that |W | = |XY |, prev(X) = prev(W [: |X|]) and

prev(Y ) = prev(W [|X|+ 1 :]). Let us consider the case that prev(XY ) 6= prev(W ). From

prev(X) = prev(W [: |X|]) and prev(Y ) = prev(W [|X|+ 1 :]), X and Y have the same

structure of W [: |X|] and W [|X|+1 :], respectively. However, the parameter symbols that

are prev-encoded into 0 in prev(Y ) and prev(W [|x|+ 1 :]), might be encoded differently in

XY and prev(W ), respectively. Therefore, we need to check whether prev(XY )[|X|+ i] =

prev(W )[|X| + i] if prev(Y )[i] = 0. Given prev(XY ) and the set of positions of 0 in

prev(Y ), Z = {i | 1 ≤ i ≤ |Y | such that prev(Y )[i] = 0}. We need to verify whether

prev(XY )[|X|+ i] = prev(W )[|X|+ i] or not for i ∈ Z. Since the size of Z is at most |Π|,

this computation can be done in O(|Π|) time.

A pseudocode of proposed matching algorithm for the parameterized pattern matching

problem is shown in Algorithm 8. DesAPPH(T )(u) denotes the set of all descendants of

node u in APPH(T ) including node u itself. The occurrences of P in T have the following

properties on APPH(T ).

Lemma 5.12. If prev(P ) is represented in APPH(T ) as a node u then P occurs at position

i iff pmrp(i) is u or its descendant.
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Figure 5.3: Examples of finding occurrence positions of a pattern using an augmented
parameterized position heap PPH(xaxyxyxyyaxyxy). (a) Finding xyxy (prev(xyxy) =
0022). (b) Finding axyx (prev(axyx) = a002).

Proof: Let u be the node that represents prev(P ). Assume P occurs at position i in T

and P is represented in APPH(T ) as prev(T [i : k]). Since either prev(T [i : k]) is a prefix of

prev(P ) or prev(P ) is a prefix of prev(T [i : k]), then i is either an ancestor or descendant

of u. For both cases pmrp(i) is a descendant of u, because P occurs at position i.

Next let i be a node such that pmrp(i) is a descendant of u and represents prev(T [i : k]).

In this case, prev(P ) is a prefix of prev(T [i : k]). Therefore P occurs at i.

Lemma 5.13. Assume prev(P ) is not represented in APPH(T ). We can split P into

Q1, Q2, · · · , Qk such that Qj is the longest prefix of prev(P [|Q1 · · ·Qj−1|+ 1 :]) that is

represented in APPH(T ). If P occurs at position i in T , then pmrp(i + |Q1 · · ·Qj−1|) is

the node prev(Qj) for 1 ≤ j < k and pmrp(i + |Q1 · · ·Qk−1|) is the node prev(Qk) or its

descendant.

Proof: Assume that P = Q1Q2 · · ·Qk occurs at position i in T . Since prev(Q1) is a prefix

of prev(p), then pmrp(i) is the node that represents prev(Q1) or its descendant. However,

if pmrp(i) is a descendant of node prev(Q1), then we can extend Q1 which contradicts

with the definition of Q1. Therefore, pmrp(i) is the node that represents prev(Q1).

Similarly for 1 < j < k, prev(Qj) is a prefix of prev(p[|Q1 · · ·Qj−1|+ 1 :]) and occurs

at position i + |Q1 · · ·Qj−1| in T . Therefore, pmrp(i + |Q1 · · ·Qj−1|) is the node that

represents prev(Qj). Last, since Qk is a suffix of P , then pmrp(i + |Q1 · · ·Qj−1|) can be
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the node prev(Qk) or its descendant.

Algorithm 8 utilizes Lemmas 5.12 and 5.13 to find occurrences of P in T by using

APPH(T ). First, if prev(P ) is represented in APPH(T ) then the algorithm will output all

positions i such that pmrp(i) is a node prev(P ) or its descendant. Otherwise, it will split

P into Q1Q2 · · ·Qk and find their occurrences as described in Lemma 5.13. The algorithm

also checks whether prev(Q1 · · ·Qj) occurs in T or not in each iteration as described the

above.

Examples of parameterized pattern matching by using an augmented position heap are

given in Fig. 5.3. Let T = xaxyxyxyyaxyxy be the text. In Fig. 5.3 (a) we want to find

the occurrence positions of a pattern P1 = xyxy in T . In this case, since prev(P1) = 0022 is

represented in PPH(T ), The algorithm outputs all positions i such that pmrp(i) is the node

0022 or its descendants, namely 3, 4, 5, and 11. On the other hand, Fig. 5.3 (b) shows how

to find the occurrence positions of a pattern p2 = axyx in T . In this case, prev(P2) = a002

is not represented in PPH(T ). Therefore, The algorithm finds the longest prefix of prev(P2)

that is represented in PPH(i), which is prev(P2)[1 : 2] = a0. We can see that pmrp(()2) =

pmrp(()10) = a0, then we save positions 2 and 10 as candidates to ans . Next, The

algorithm finds the node that represents the longest prefix of prev(P2[3 :]) = 00 which is

prev(P2[3 :]) = 00 itself. Since both of pmrp(2+|P2[1 : 2]|) = pmrp(4) and pmrp(10+|P2[1 :

2])| = pmrp(12) are descendants of the node 00, prev(T [2 : 5][3]) = prev(T [10 : 13][3]) =

prev(P2)[[3]] = 0, and prev(T [2 : 5][4]) = prev(T [10 : 13][4]) = prev(P2)[4] = 2, then the

algorithm outputs 2 and 10.

The time complexity of the matching algorithm is as follow.

Theorem 5.14. Algorithm 8 runs in O(m log (|Σ|+ |Π|) +m|Π|+ occ) time.

Proof: It is easily seen that we can compute line 5 to 9 in O(m log (|Σ|+ |Π|)+occ) time.

Assume that p can be decomposed into Q1, Q2, · · · , Qk such that Q1 is the longest prefix of

P and Qi is the longest prefix of prev(P [|Q1 · · ·Qj−1|+ 1 :]) represented in APPH(T ). The

For loop in line 18 is iterated k−1 times. In the j-th iteration of the loop of line 21, Qj+1
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is extended up to reach |Qj+1| length. This can be computed in O(|Qj+1| log (|Σ|+ |Π|))

time. After k − 1 iterations, the total number of extending of Qj+1 does not exceed m,

because
∑k

j=2 |Qj| < m. In the For loop of line 28, the algorithm checks elements of ans.

In the j-th iteration, the size of ans is at most |Qj|. Thus, after k−1 iterations, the total

number of elements checked in line 28 does not exceed m for the same reason for that of

line 21. In each checking in line 28, the number of checks for line 30 and 32 is at most

|Qj|. Therefore, it can be computed from line 28 to 35 in O(m|Π|) time.
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Algorithm 8: Parameterized pattern matching algorithm with APPH

1 Function MatchAPPH(P )
2 let w be the longest prefix of prev(P ) represented in APPH(T ) and u be the

node represents w;
3 if |w| = m then
4 v ← root ;
5 for i = 1 to m do
6 v ← child(v, prev(p)[i]);
7 if pmrp(v) ∈ DesAPPH(t)(u) then
8 add prim(v) to ans ;

9 add all primary and sedondary position of decendants of u to ans;

10 else
11 v ← root ;
12 i← 1, j ← 1;
13 while i ≤ |w| do
14 v ← child(v, prev(P )[i]);
15 i← i+ 1;
16 if pmrp(v) = u then
17 add prim(v) to ans ;

18 while i 6= m do
19 j ← i, v ← root ;
20 Z ← ∅;
21 while i 6= m do
22 c← normalize(prev(p)[i], i− j);
23 if child(v, c) = null then break;
24 if c = 0 then add i to Z;
25 v ← child(v, c);
26 i← i+ 1;

27 if v = root then return ∅;
28 foreach i′ ∈ ans do
29 if i = m then
30 if pmrp(i′ + j − 1) /∈ DesAPPH(t)(v) then remove i′ from ans;

31 else
32 if pmrp(i′ + j − 1) 6= v then remove i′ from ans;

33 for k = 1 to |Z| do
34 if normalize(prev(T )[i′ + Z[k]− 1], Z[k]− 1) 6= prev(P )[Z[k]]

then
35 remove i′ from ans;

36 return ans ;
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Chapter 6

Order-preserving Pattern Matching

Algorithm

Order-preserving pattern matching is a variant of pattern matching that considers the

relative order of elements, rather than their real values. Order-preserving pattern is more

applicable for numerical data, such as sensor data, financial data, or climate data. The

difficulty of order-preserving pattern matching mainly comes from the fact that we cannot

determine the isomorphism by comparing the symbols in the text and the pattern on each

position independently; instead, we have to consider their respective relative orders in the

pattern and in the text.

Kubica et al. [53] and Kim et al. [50] independently proposed the same solution for

order-preserving pattern matching based on the KMP algorithm. Their KMP-based al-

gorithm runs in O(n+m logm) time. Cho et al. [19] brought forward another algorithm

based on the Horspool algorithm that uses q-grams, which was proved to be experimentally

fast. Crochemore et al. [28] proposed useful data structures for order-preserving pattern

matching called order-preserving incomplete suffix tree. On the other hand, Chhabra and

Tarhio [18], Faro and Külekci [33] proposed filtration methods which are practically fast.

Moreover, faster filtration algorithms using SIMD (Single Instruction Multiple Data) in-
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structions were proposed by Cantone et al. [15], Chhabra et al. [17] and Ueki et al. [68].

They showed that SIMD instructions are effective in speeding up their algorithms.

In this paper, we propose a new algorithm for order-preserving pattern matching based

on the duel-and-sweep technique. Our algorithm runs in O(n+m logm) time which is as

fast as the KMP based algorithm. Moreover, we perform experiments to compare those

algorithms, which show that our algorithm is faster than the KMP-based algorithm.

6.1 Notation in order-preserving pattern matching

Let Σ denotes an alphabet of integer symbols such that the comparison of any two symbols

can be done in constant time. We say that two strings S and T of equal length n are

order-isomorphic, written S ≈ T , if

S[i] ≤ S[j]⇐⇒ T [i] ≤ T [j] for all 1 ≤ i, j ≤ n.

For instance, (12, 35, 5) ≈ (25, 30, 21) 6≈ (11, 13, 20).

In order to check the order-isomorphism of two strings, Kubica et al. [53] defined useful

arrays1 LmaxS and LminS by

LmaxS[i] = j (j < i) if S[j] = max
k<i
{S[k] | S[k] ≤ S[i]}, (6.1)

LminS[i] = j (j < i) if S[j] = min
k<i
{S[k] | S[k] ≥ S[i]}. (6.2)

We use the rightmost (largest) j if there exist more than one such j. If there is no such j

then we define LminS[i] = 0 and LmaxS[i] = 0. From the definition, we can easily observe

1Similar arrays PrevS and NextS are introduced in [38].
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the following properties. Unless LmaxS[i] = 0 or LminS[i] = 0,

S[LmaxS[i]] = S[i] ⇐⇒ S[i] = S[LminS[i]], (6.3)

S[LmaxS[i]] < S[i] ⇐⇒ S[i] < S[LminS[i]]. (6.4)

Lemma 6.1 ([53]). For a string S, let sort(S) be the time required to sort the elements

of S. LmaxS and LminS can be computed in O(sort(S) + |S|) time.

Thus, LmaxS and LminS can be computed in O(|S| log |S|) time in general. Moreover,

the computation can be done in O(|S|) time under a natural assumption [53] that the

symbols of S are elements of the set {1, . . . , |S|O(1)}. By using LmaxS and LminS, the

order-isomorphism of two strings can be decided as follows.

Lemma 6.2 ([19]). For two strings S and T of length n, assume that S[1 : j] ≈ T [1 : j]

for some j < n. Moreover assume that LmaxS[j + 1] 6= 0 and LminS[j + 1] 6= 0. Let

imax = LmaxS[j+ 1] and imin = LminS[j+ 1]. Then S[1 : j+ 1] ≈ T [1 : j+ 1] if and only

if either of the following two conditions holds.

S[imax ] = S[j + 1] = S[imin ] ∧ T [imax ] = T [j + 1] = T [imin ], (6.5)

S[imax ] < S[j + 1] < S[imin ] ∧ T [imax ] < T [j + 1] < T [imin ]. (6.6)

Corollary 6.3. Suppose that P [1 : j − 1] ≈ Q[1 : j − 1] and P [1 : j] 6≈ Q[1 : j] for

two strings P and Q of length at least j. For imax = LmaxP [j] and imin = LminP [j], if

imax , imin 6= 0, we have

P [j] = P [imax ] ∧ Q[j] 6= Q[imax ]

∨ P [j] = P [imin ] ∧ Q[j] 6= Q[imin ]

∨ P [j] > P [imax ] ∧ Q[j] ≤ Q[imax ]

∨ P [j] < P [imin ] ∧ Q[j] ≥ Q[imin ] .
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Table 6.1: Z-array of a string S = (18, 22, 12, 50, 10, 17). For instance, ZS[3] = 3 be-
cause S[1 : 3] = (18, 22, 12) ≈ (12, 50, 10) = S[3 : 5] and S[1 : 4] = (18, 22, 12, 50) 6≈
(12, 50, 10, 17) = S[3 : 6]. LmaxS and LminS are also shown.

1 2 3 4 5 6
S 18 22 12 50 10 17
ZS 6 1 3 1 2 1

LmaxS 0 1 0 2 0 3
LminS 0 0 1 0 3 1

The order preserving-pattern matching problem is defined as follows.

Definition 6.4 (Order-preserving pattern matching [50, 53]). Given two strings, a text

T of size n and a pattern P of size m, find all occurrence positions i such that of T [i :

i+m− 1] ≈ P .

Hasan et al. [38] proposed a modification to Z-function, which Gusfield [37] defined

for ordinary pattern matching, to make it useful from the order-preserving point of view.

For a string S, the Z-array for order-preserving pattern matching of S is defined by

ZS[i] = max
1≤j≤|S|−i+1

{j | S[1 : j] ≈ S[i : i+ j − 1]} for each 1 ≤ i ≤ |S|.

In other words, ZS[i] is the length of the longest substring of S that starts at position i

and is order-isomorphic to some prefix of S. An example of Z-array is illustrated in Table

6.1.

Lemma 6.5. ([38]) For a string S, the Z-array ZS can be computed in O(|S|) time,

assuming that LmaxS and LminS are already computed.

Note that in their original work, Hasan et al. [38] assumed that each symbol in S is

distinct. However, we can extend their algorithm by using Lemma 6.2 to verify order-

isomorphism even when S contains duplicate symbols.

In this chapter, we fix a text T of length n and a pattern P of length m.
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6.2 Duel-and-sweep algorithm for order-preserving matching

6.2 Duel-and-sweep algorithm for order-preserving

matching

In this section, we will propose an algorithm for OPPM based on the “duel-and-sweep”

paradigm [4, 70]. The duel-and-sweep paradigm screens all substrings of length m of the

text, called candidates, in two stages, called the dueling and sweeping stages. Suppose

when P is superimposed on itself with the offset a < m and the two overlapped substrings

of P are not order-isomorphic. Then it is impossible that two candidates with offset a

are both order-isomorphic to P . The dueling stage lets each pair of candidates with such

an offset a “duel” and eliminates one based on this observation. This test is quick but

not perfect. This stage can remove many candidates, although there would still remain

candidates which are actually not order-isomorphic to the pattern. On the other hand,

it is guaranteed that if distinct candidates that survive the dueling stage overlap, their

prefixes of certain length are order-isomorphic. The sweeping stage takes the advantage

of this property when checking the order-isomorphism between surviving candidates and

the pattern so that this stage can be done also quickly.

Prior to the dueling stage, the pattern is preprocessed to construct a witness table

based on which the dueling stage decides which pair of overlapping candidates should

duel and how they should duel.

6.2.1 Pattern preprocessing

For each offset 0 < a < m, the original duel-and-sweep algorithm [70] saves a position

i such that P [i] 6= P [i + a]. However, in order-preserving pattern matching, the order-

isomorphism of two strings cannot be determined by comparing a symbol in one position.

We need two positions as a witness to say that the two strings are not order-isomorphic.

Therefore, for each offset 0 < a < m, when the overlapped regions obtained by superim-

posing P on itself with offset a are not order-isomorphic, we use a pair 〈i, j〉 of locations
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6.2 Duel-and-sweep algorithm for order-preserving matching

Table 6.2: Witness table WITP for a string P = (18, 22, 12, 50, 10, 17). For instance,
the witness pair WITP [2] for offset 2 is (〈2, 4〉, <), due to P [2] = 22 < 50 = P [4] and
P [2 + 2] = 50 > 17 = P [4 + 2]. On the other hand, WITP [4] = (〈0, 0〉,=), since
P [1 : 2] ≈ P [5 : 6].

1 2 3 4 5 6
P 18 22 12 50 10 17

WITP (〈1, 2〉, <) (〈2, 4〉, <) (〈1, 2〉, <) (〈0, 0〉,=) (〈0, 0〉,=) –

called a witness pair for the offset a if either of the following holds:

1. P [i] = P [j] and P [i+ a] 6= P [j + a],

2. P [i] > P [j] and P [i+ a] ≤ P [j + a],

3. P [i] < P [j] and P [i+ a] ≥ P [j + a].

For a witness pair 〈i, j〉, the witness sign of the witness pair is the equality/inequality

sign ∗ that P [i]∗p[j] holds, that is =, <, and > for condition 1,2, and 3, respectively. We

call a tuple of a witness pair and a witness sign as a witness.

Next, we describe how to construct a witness table for P . The witness table WITP

of P is an array of length m− 1, such that WITP [a] = (〈i, j〉, ∗) for all possible offsets a

(0 < a < m), where 〈i, j〉 is a witness pair and ∗ is witness sign of the witness pair. In

the case when there are multiple witness pairs for offset a, we take the pair 〈i, j〉 with

the smallest value of j and some i < j. When the overlap regions are order-isomorphic

for offset a, which implies that no witness pair exists for a, we express it as WITP [a] =

(〈0, 0〉,=). Table 6.2 shows an example of a witness table.

Lemma 6.6. For a pattern P of length m, Algorithm 9 constructs WITP in O(m) time

assuming that ZP is already computed.

Proof: Clearly the algorithm runs in O(m) time.

We show that for each 1 ≤ a < m, Algorithm 9 computes WITP [a] correctly. Recall

that ZP [a+1] is the length of the longest prefix of P [a+1 : m] that is order-isomorphic to

a prefix of P . Let j = ZP [a+ 1] + 1, for which we have P [1 : j − 1] ≈ P [1 + a : j − 1 + a].
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6.2 Duel-and-sweep algorithm for order-preserving matching

Algorithm 9: Algorithm for constructing the witness table WITP

1 Function Witness(P)
2 compute the Z-array ZP for the pattern P ;
3 for a = 1 to m− 1 do
4 j ← ZP [a+ 1] + 1;
5 imin ← LminP [j];
6 imax ← LmaxP [j];
7 if j = m− a+ 1 then
8 WITP [a]← (〈0, 0〉,=);

9 else if imax = 0 then
10 WITP [a]← (〈imin , j〉, >);

11 else if imin = 0 then
12 WITP [a]← (〈imax , j〉, <);

13 else if P [imin ] = P [imax ] = P [j] then
14 if P [imin + a] 6= P [j + a] then
15 WITP [a]← (〈imin , j〉,=);

16 else
17 WITP [a]← (〈imax , j〉,=);

18 else if P [imin ] > P [j] ∧ P [imin + a] ≤ P [j + a] then
19 WITP [a]← (〈imin , j〉, >);

20 else
21 WITP [a]← (〈imax , j〉, <);

Suppose that j = m−a+1. This means that P [1 : j−1] ≈ P [1+a : j−1+a] = P [1+a : m],

i.e., there is no witness pair for the offset a. Indeed Algorithm 9 gets WITP [a] = (〈0, 0〉,=)

for this case.

Otherwise, we have P [1 : j] 6≈ P [1 + a : j + a]. Let imax = LmaxP [j] and imin =

LminP [j]. If imax = 0, P [j] < P [k] for all k < j. Note that imin 6= 0 by j ≥ 2. Since

P [1 : j−1] ≈ P [1+a : j−1+a] and P [1 : j] 6≈ P [1+a : j+a], there exists 1 ≤ k < j such

that P [k + a] ≤ P [j + a]. By P [imin ] ≤ P [k] and (P [imin ], P [k]) ≈ (P [imin + a], P [k + a]),

we have P [imin + a] ≤ P [k + a] ≤ P [j + a]. Therefore, (〈imin , j〉, >) is a witness for the

offset a. The case where imin = 0 can be discussed in the exactly symmetric way.

Let us assume imin 6= 0 and imax 6= 0. If P [imin ] = P [imax ] = P [j], either P [imin + a] 6=

P [j + a] or P [imax + a] 6= P [j + a] holds. For the first case (〈imin , j〉,=) is a witness for a
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6.2 Duel-and-sweep algorithm for order-preserving matching

and for the second case (〈imax , j〉,=) is a witness for a. Otherwise, by Corollary 6.3, either

P [imin ] > P [j] ∧ P [imin + a] ≤ P [j + a] or P [imax ] < P [j] ∧ P [imax + a] ≥ P [j + a] holds,

in which case either (〈imin , j〉, >) or (〈imax , j〉, <) is a witness pair for a, respectively.

6.2.2 Dueling stage

Let us denote the candidate that starts at the location x as Tx = T [x : x + m − 1]. In

the dueling stage, we “duel” all pairs of overlapping candidates Tx and Tx+a such that

WITP [a] 6= (〈0, 0〉,=). Witness pairs are used in the following manner. Suppose that

WITP [a] = (〈i, j〉, <), where P [i] < P [j] and P [i + a] ≥ P [j + a], for example. Then, it

holds that

• if T [x+ a+ i− 1] ≥ T [x+ a+ j − 1], then Tx+a 6≈ P ,

• if T [x+ a+ i− 1] < T [x+ a+ j − 1], then Tx 6≈ P .

Based on this observation, we can safely eliminate either candidate Tx or Tx+a with-

out looking into other locations. We can perform this process similarly for other equal-

ity/inequality cases. This process is called dueling. The procedure for all cases of the

dueling is described in Algorithm 10.

On the other hand, if Tx and Tx+a do not overlap or the offset a has no witness pair,

i.e. P [1 : m− a] ≈ P [a+ 1 : m], no dueling is performed on them. We say that a position

x is consistent with x+ a if either 0 < a < m and WITP [a] = (〈0, 0〉,=) or a ≥ m. Note

that the consistency property is determined by a and P only, and x and T are irrelevant.

The consistency property is transitive.

Lemma 6.7. For any a, b and x such that 1 ≤ a < a + b < m and 1 ≤ x < m − a − b,

if x is consistent with x+ a and x+ a is consistent with x+ a+ b, then x is consistent

with x+ a+ b.

Proof: Since x is consistent with x+ a, it follows that P [1 : m−a] ≈ P [a+1 : m], so that

P [b+ 1 : m− a] ≈ P [(a+ b) + 1 : m]. Moreover, since x+ a is consistent with x+ a+ b,
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6.2 Duel-and-sweep algorithm for order-preserving matching

Algorithm 10: Dueling

1 Function Dueling(x, a)
2 (〈i, j〉, ∗)←WITP [a];
3 if T [x+ a+ i− 1] ∗ P [x+ a+ j − 1] then
4 return x+ a;
5 else
6 return x;

Algorithm 11: The dueling stage algorithm

1 Function DuelingStage(P, T )
2 create stack ;
3 for y = 1 to n−m+ 1 do
4 while stack is not empty do
5 pop x from stack ;
6 if y − x ≥ m or WITP [y − x] = (〈0, 0〉,=) then
7 push x and y to stack ;
8 break;

9 else
10 z ← Dueling(x, y − x);
11 if z = x then
12 push x to stack ;
13 break;

14 if stack is empty then
15 push y to stack ;

it follows that P [1 : m − b] ≈ P [b + 1 : m], so that P [1 : m − b − a] ≈ P [b + 1 : m − a].

Thus, P [1 : m − (a + b)] ≈ P [(a + b) + 1 : m], which implies that x is consistent with

x+ a+ b.

The whole process of the dueling stage is shown in Algorithm 11, which follows

Amir et al. [5] for ordinary pattern matching. This stage eliminates candidates until

all surviving candidates are pairwise consistent. The algorithm uses a stack to maintain

candidates which are consistent with each other. A new candidate y will be pushed to

the stack if the stack is empty. Otherwise y is checked by comparing it to the topmost

element x of the stack. By Lemma 6.7, if x is consistent with y, all the other elements
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Figure 6.1: An example run of the dueling stage for T = (8, 13, 5, 21, 14, 18, 20, 25, 15, 22),
P = (12, 50, 10, 17), and WITP = ((〈1, 2〉, <), 〈0, 0〉, 〈0, 0〉). First, the position 1 is pushed
to the stack. Next, T2 duels with T1 and then T2 loses because P [1] < P [2] and T2[1] >
T2[2]. The next position 3 is pushed to the stack by WITP [3− 1] = (〈0, 0〉,=). Similarly,
T4 loses against T3, and 5 is accepted to the stack. For y = 6, T5 is removed and T6 is
added because P [1] < P [2], T6[1] < T6[2], and 3 is consistent with 6. Finally T7 defeats
T6 and the contents of the stack become 1, 3, and 7.

in the stack are consistent with y, too. Thus we can push y to the stack. On the other

hand, if x is not consistent with y, we should exclude one of the candidates by dueling

them. If x wins the duel, we put x back to the stack, discard y, and get a new candidate.

If y wins the duel, we exclude x and continue comparison of y with the top element of

the stack unless the stack is empty. If the stack is empty, y will be pushed to the stack.

Fig. 6.1 gives an example run of the dueling stage.

Lemma 6.8 ([5]). The dueling stage can be done in O(n) time by using WITP .

6.2.3 Sweeping stage

The goal of the sweeping stage is to eliminate inconsistent candidates until all remaining

candidates are order-isomorphic to the pattern P . Suppose that we need to check whether

some surviving candidate Tx is order-isomorphic to P . It suffices to successively check
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6.2 Duel-and-sweep algorithm for order-preserving matching

Algorithm 12: The sweeping stage algorithm

1 Function SweepingStage()
2 while there are unchecked candidates to the right of Tx do
3 let Tx be the leftmost unchecked candidate;
4 if there are no candidates overlapping with Tx then
5 if Tx 6≈ P then
6 eliminate Tx;

7 else
8 let Tx+a be the leftmost candidate that overlaps with Tx;
9 if Tx ≈ P then

10 start checking Tx+a from the location m− a+ 1;

11 else
12 let j be the mismatch position;
13 eliminate Tx;
14 start checking Tx+a from the location j − a;

the conditions (6.5) and (6.6) in Lemma 6.2, starting from the leftmost location in Tx. If

the conditions are satisfied for all locations in Tx, then Tx ≈ P . Otherwise, Tx 6≈ P , and

obtain a mismatch position j.

A naive implementation of sweeping requires O(n2) time. Algorithm 12 takes advan-

tage of the fact that all the remaining candidates are pairwise consistent, we can reduce

the time complexity to O(n) time. Suppose there is a mismatch at position j when com-

paring P with Tx, that is, Tx[1 : j − 1] ≈ P [1 : j − 1] and Tx[1 : j] 6≈ P [1 : j]. If the

next candidate is Tx+a with a < j, since P [1 : j − a − 1] ≈ P [a + 1 : j − 1] ≈ Tx[a + 1 :

j−1] = Tx+a[1 : j−a−1], we can start comparison of P and Tx+a from the position where

the mismatch with Tx occurred. If P ≈ Tx, the above discussion holds for j = m + 1.

Therefore, the total number of comparison is bounded by O(n), by applying the same

argument on the complexity of the KMP algorithm for exact matching.

Lemma 6.9. The sweeping stage can be completed in O(n) time.

By Lemmas 6.6, 6.8, and 6.9, we summarize this section as follows.

Theorem 6.10. Given a text T of length n and a pattern P of length m, The duel-and-
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Figure 6.2: Running time of the algorithms with respect to (a) text length, and (b) pattern
length.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0  2e+06  4e+06  6e+06  8e+06  1e+07

N
u
m

b
e
r 

o
f 

co
m

p
a
ri

so
n

Text length

OPKMP
OPDuel&Sweep

(a)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0  20  40  60  80  100

N
u
m

b
e
r 

o
f 

co
m

p
a
ri

so
n

Pattern length

OPKMP
OPDuel&Sweep

(b)

Figure 6.3: Number of comparisons in the algorithms with respect to (a) text length, and
(b) pattern length.

sweep algorithm solves the OPPM Problem in O(n+m logm) time. Moreover, the running

time is O(n + m) under the natural assumption that the symbols of P can be sorted in

O(m) time.

6.3 Experiments

In order to compare the performance of proposed algorithm with the KMP-based algo-

rithm [53, 50] on solving the OPPM problem, we performed two sets of experiments. In

the first experiment set, the pattern size m is fixed at 10, while the text size n is changed

from 100000 to 1000000. In the second experiment set, the text size n is fixed at 1000000

while the pattern size m is changed from 5 to 100. We measured the average of running
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time and the number of comparisons for 50 repetitions on each experiment. We used

randomly generated texts and patterns with alphabet size |Σ| = 1000. Experiments are

executed on a machine with Intel Xeon CPU E5-2609 8 cores 2.40 GHz, 256 GB memory,

and Debian Wheezy operating system.

The results of our experiments are shown in Figs. 6.2 and 6.3. We can see that our

algorithm is better than the KMP-based algorithm in running time and the number of

comparisons when the pattern size and text size are large. However, our algorithm was

slower when the pattern is very short, namely m = 5. The reason why the proposed

algorithm makes fewer comparisons than the KMP-based algorithm may be explained

as follows. The KMP-based algorithm relies on Lemma 6.2, which compares symbols at

three positions (two inequalities) to check the order-isomorphism between a prefix of the

pattern and a substring of the text when the prefix is extended by one. On the other hand,

the dueling stage of our algorithm compares only two positions (one equality/inequality)

determined by the witness table. By eliminating candidates in the dueling phase, the

number of precise tests of order-isomorphism in the sweeping stage is reduced.
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Chapter 7

Permuted Pattern Matching

Algorithms

The permuted pattern matching problem, proposed by Katsura et al. [48, 49], is a gener-

alization of the pattern matching problem, where we compare tuples of strings. Tuples

of strings can model various types of real data such as multiple-sensor data, polyphonic

music data, and multiple genomes. We call a tuple of strings of the same length a multi-

track string. The permuted pattern matching problem is, given two multi-track strings

T = (T1, T2, . . . , TN) and P = (P1, P2, . . . , PM) where M = N and |T1| = · · · = |TN | =

n ≥ |P1| = · · · = |PM | = m, to find all positions i such that P is a permutation of

(T1[i : i + m − 1], . . . , TN [i : i + m − 1]). The problem is called sub-permuted pattern

matching when N ≥ M , where we need to find all positions i such that P is a sub-

permutation of (T1[i : i + m − 1], . . . , TN [i : i + m − 1]). The problem can be solved by

constructing some data structure from the text such as a multi-track suffix tree [48] and

a multi-track position heap [49], or by preprocessing the pattern such as AC automaton

based algorithm [48].

In this chapter, we propose several algorithms that solve permuted pattern matching

fast. The algorithms can be grouped into three groups and an algorithm that does not
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Table 7.1: Comparison of the algorithms for permuted pattern matching. Multi-track
AC-automaton can find occurrences of multiple patterns.

Algorithm Preprocessing time Matching time

AC-automaton based [48] O(mM log σ) O(nN log σ)

Multi-track KMP O(mM) O(nN)
MT AC-automaton O(dM log σ) O(nN log σ)
MT permuted matching automaton O(mM log σ) O(nN log σ)
MT Boyer-Moore O(m(M log σ + σ)) O(nN(m+ log σ) + n(N + σ))
MT Horspool O(m(M log σ + σ)) O(nN(m+ log σ) + n(N + σ))
MT duel-and-sweep O(mM) O(nN)

belong to any group. The first group is a group of algorithms that are based on the

KMP algorithm [51]. This group includes multi-track KMP, multi-track AC-automaton,

and multi-track permuted matching automaton algorithms. The second group is a group

of algorithms that are based on the Boyer-Moore algorithm [14] and the Horspool al-

gorithm [40]. This group includes multi-track Boyer-Moore and multi-track Horspool

algorithms. The third group is a group of filtration algorithms. The last algorithm that

does not belong to any group is the multi-track duel-and-sweep algorithm. This algo-

rithm is based on the duel-and-sweep algorithm for pattern matching [4, 70]. Moreover,

we conduct experiments and show that our algorithms perform permuted pattern match-

ing faster than existing algorithms. The worst case running time of proposed algorithms

and existing algorithms are summarized in Table 7.1, where d is the total length of the

patterns and σ is the size of the alphabet.

7.1 Notation and definition on multi-track strings

A multi-track symbol C = (c1, c2, . . . , cN) is an N -tuple of symbols ci ∈ Σ. A multi-track

string (or multi-track for short) W = (W1,W2, . . . ,WN) is an N -tuple of strings Wi ∈ Σ∗

where |W1| = |W2| = · · · = |WN |, and each Wi is called the i-th track of W. The length

n of strings in W is called the length of W and denoted by |W|len , and the number N
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of tracks in W is called the track count of W and denoted by |W|num . For a multi track

W, W[i] = (W1[i],W2[i], . . . ,WN [i]) denotes the i-th multi-track symbol, W[i][j] denotes

Wj[i], and W[i : j] = (W1[i : j],W2[i : j], . . . ,WN [i : j]) denotes the substring of W that

begins at position i and ends at position j for 1 ≤ i ≤ j ≤ |W|len . Similarly to the

notation for strings, W[: i] and W[i :] mean W[1 : i] and W[i : |W|len ], which are called a

prefix and a suffix of W, respectively.

Let r = (r1, r2, . . . , rN) be a permutation of (1, 2, . . . , N). For a multi-track W =

(W1,W2, . . . ,WN), W〈r〉 = W〈r1, r2, . . . , rN〉 = (Wr1 , . . . ,WrN ) is called a permuted multi-

track of W. The sorted index SI(W) of a multi-track W is a permutation (r1, . . . , rN) such

that Wri � Wri+1
for any 1 ≤ i < N , where we assume ri < ri+1 in the case Wri = Wri+1

.

The sorted multi-track sort(W) is defined as W〈SI(W)〉. The reverse of a multi-track

W = (W1, . . . ,WN) is WR = (WR
1 , . . . ,W

R
N ). The sorted index of the reverse multi-track,

denoted by RI(W), is a permutation (r1, . . . , rN) such that wRri � wRri+1
for any 1 ≤ i < N .

Note that SI(W[i :]) and RI(W[: i]) for 1 ≤ i ≤ n can be computed in O(nN) time

offline by using suffix arrays [52, 61], and RI(W[: i]) for 1 ≤ i ≤ n can be computed in

O(n(N + σ)) time online by using radix sort.

For two multi-tracks X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yN), X permuted-

matches Y, denoted by X ./ Y, if X = Y〈r〉 for some permutation r. Moreover, for

two multi-tracks X = (x1, x2, . . . , xM) and Y = (y1, y2, . . . , yN) for M ≤ N , we say X

sub-permuted-matches Y, denoted by X ./

v Y, if X = Y〈r〉 for some partial permutation r.

Lemma 7.1 ([48]). For two multi-tracks X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yN),

X ./ Y if and only if sort(X) = sort(Y).

Lemma 7.2. For two multi-tracks X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yN), X 6./ Y

if there is a position i such that X[i] 6./ Y[i].

Lemma 7.3. For two multi-tracks X = (x1, x2, . . . , xN) and Y = (y1, y2, . . . , yN), X 6./ Y

if and only if there are two positions i and j such that X[i]X[j] 6./ Y[i]Y[j].

75



7.2 KMP based permuted pattern matching algorithms

Proof: (=⇒) From Lemma 7.1, if X 6./ Y, then sort(X) 6= sort(Y). Thus there are two

position i and j such that sort(X)[i]sort(X)[i][j] 6= sort(Y)[i]sort(Y)[j]. Therefore, there

are two position i and j such that X[i]X[j] 6./ Y[i]Y[j], by Lemma 7.1.

(⇐=) Obviously, if X ./ Y then X[i]X[j] ./ Y[i]Y[j] for any i and j. Thus if there are

positions i and j such that X[i]X[j] 6./ Y[i]Y[j] then X 6./ Y.

Throughout this chapter, we assume that P is a pattern with |P|num = M and |P|len =

m, and T is a text with |T|num = N and |T|len = n ≥ m. The pattern matching problem

on multi-tracks is defined as follows.

Definition 7.4 (Permuted pattern matching[48]). Given a multi-track text T and a multi-

track pattern P, compute all positions i that satisfy P ./ T[i : i+m− 1].

Definition 7.5 (Sub-permuted pattern matching[48]). Given a multi-track text T and a

multi-track pattern P, compute all positions i that satisfy P ./

v T[i : i+m− 1].

For example, given a text T =


aabaaaaa,

abaabbaa,

baaababa

 and a pattern P =


aba,

baa,

aaa

, we can

see that the pattern matches at T[2 : 4] = P. Moreover, the pattern permuted matches

with T[6 : 8], since P〈3, 2, 1〉 =


aaa,

baa,

aba

 = T[6 : 8]. Therefore, we should output {2, 6}

in this case.

7.2 KMP based permuted pattern matching algo-

rithms

In this section, we propose algorithms for permuted pattern matching based on KMP

algorithm. The first algorithm is called multi-track KMP algorithm (shortly MTKMP)

that uses the border array of a multi-track pattern.
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Algorithm 13: Multi-track border array contruction algorithm

1 Function constructMTBorderArray(P)
2 compute SI(P[i :]) for 1 ≤ i ≤ m;

3 i← 1;

4 j ← 0;

5 Border [0]← −1;

6 while i ≤ m do
7 while j ≥ 0 and P[j + 1]〈SI(P[1 :])〉 6= P[i]〈SI(P[i− j :])〉 do
8 j ← BorderP[j];

9 i← i+ 1;

10 j ← j + 1;

11 BorderP[i] = j;

12 return BorderP[i];

7.2.1 Multi-track KMP algorithm

The Multi-track KMP algorithm is an extension of the KMP algorithm for multi-track.

MTKMP uses multi-track border array to compute the shift amount when the algorithm

found a mismatch. First we define a border of am ulti-track.

Definition 7.6 (Border of multi-track). Given a multi-track P, a border of P is any

multi-track that permuted matches with a prefix and a suffix of P.

A proper border of P is any border of P that is not permuted match with P. By using

the definition of border and proper border, we define the border array of a multi-track.

Definition 7.7 (Multi-track border array). Given a multi-track P of |P|len = m and

|P|num = M , the border array BorderP of P is an array of length m, where the i-th

element of BorderP is the length the longest proper border of P[1 : i]. Formally,

BorderP[i] = max {j|P[1 : j] ./ P[i− j + 1 : i], 0 ≤ j < i} (7.1)

For algorithm purpose, we define BorderP[0] = −1. Algorithm 13 constructs the

multi-track border array of a multi-track P.
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Algorithm 14: MTKMP pattern matching algorithm

1 Function MTKMP(T,P)
2 compute SI(T[i :]) for 1 ≤ i ≤ n and SI(P[i :]) for 1 ≤ i ≤ m;

3 BorderP[i] = constructMTBorderArray(P);

4 i← 1;

5 j = 0;

6 while i ≤ n do
7 while j ≥ 0 and T[i]〈SI(T[i− j :])〉 6= P[j + 1]〈SI(P[1 :])〉 do
8 j ← BorderP[j];

9 i← i+ 1;

10 j ← j + 1;

11 if j = m then
12 output (i− j);
13 j ← BorderP[j];

Lemma 7.8. Given a multi-track P, Algorithm 13 constructs BorderP in O(mM) time.

Proof: Suffix index SI(P[i :]) for 1 ≤ i ≤ m can be computed in O(mM). Both while

loops are called O(m) time at most, since the i− j ≤ i ≤ m+ 1 and the value of i always

increases each time the outer loop is called, and the value of i − j always increases each

time the inner loop is called. Each comparison of P[j]〈SI(P[1 :])〉 and P[i]〈SI(P[i − j :])〉

consumes O(M) time, hence Algorithm 13 runs in O(mM) time.

Algorithm 14 shows MTKMP pattern matching algorithm. The MTKMP algorithm

performs permuted pattern matching from left to right of the pattern and the text. Sorted

indexes of the pattern SI(P[i :]) for 1 ≤ i ≤ m and the text SI(T[i :]) for 1 ≤ i ≤ n are

used to perform permuted-matching between the pattern and a substring of the text.

If symbols on text and pattern are mismatched, we shift the matching position of the

pattern by using BorderP. If the pattern matches a substring of the text, then MTKMP

outputs the occurrence position at text and shifts the pattern according to BorderP.

Theorem 7.9. The MTKMP algorithm runs in O(nN +mM) time for matching.

Proof: Sorted indexes SI(P[i :]) for 1 ≤ i ≤ m and SI(T[i :]) for 1 ≤ i ≤ n can be com-

puted in O(mM) and O(nN), respectively. From Lemma 7.8, constructMTBorderArray(P)
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Figure 7.1: Multi-track AC-automaton of D = {P1,P2,P3}, where P1 =
(aaabb, abaab, bbaaa), P2 = (abab, abba, bbab), and P3 = (aabbab, bababb, baaaab). The
asterisk ‘*’ is a special symbol that matches with any symbols in Σ.

runs in O(mM). Both while loops are called O(n) times at most, since i− j ≤ i ≤ n+ 1

and the value of i always increases each time the outer loop is called, and the value of i−j

always increases each time the inner loop is called. Each comparison of P[j]〈SI(P[1 :])〉

and T[i]〈SI(T[i− j :])〉 consumes O(N) time. Hence Algorithm 14 runs in O(nN +mM)

time.

7.3 Multi-track AC-automaton

In this section, we introduce a data structure called a multi-track AC-automaton that

can perform dictionary matching on multi-tracks, called permuted dictionary matching.

Given a set D = {P1,P2, . . . ,Pr} of multi-track patterns called a dictionary and a multi-

track text T, by preprocessing the patterns, the multi-track AC-automaton can find all

occurrence positions of each pattern in the text. Let d =
∑r

i=1mi be the total length of

the patterns in D, where mi = |Pi|len . The multi-track AC-automaton of D, denoted by

MTAC(D), consists of three functions; goto, failure, and output functions. Fig. 7.1 shows

an example of MTAC(D).

Unlike the original AC-automaton, the multi-track AC-automaton uses a multi-track

symbol, instead of a single symbol to define the goto function. The states and goto

function in MTAC(D) construct a trie of sort(Pi) for all Pi ∈ D. Each state in MTAC(D)
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Algorithm 15: Multi-track AC-automaton goto function construction algorithm

1 Function constructGotoFunction(D)
2 compute SI(Pi[j :]) for 1 ≤ i ≤ r and 1 ≤ j ≤ mi;

3 create states rootState and ⊥;

4 δ(⊥,C)← rootState for all multi-track symbols C of track count M ;

5 for i← 1 to r do
6 activeState ← rootState;

7 for 1 ≤ j ≤ mi do
8 if δ(activeState,Pi[j]〈SI(Pi[1 :])〉) 6= NULL then
9 activeState ← δ(activeState,Pi[j]〈SI(Pi[1 :])〉);

10 else
11 create newState;

12 δ(activeState,Pi[j]〈SI(Pi[1 :])〉)← newState;

13 label(newState)← i;

14 activeState ← newState;

represents a prefix of sort(Pi), thus each state can be identified with a multi-track W,

where W is the string obtained by concatenating the labels of the edges from the root

to the state. Let δ be the goto function of a multi-track AC-automaton. We can define

δ(sort(Pi)[: j]), sort(Pi)[j + 1]) = sort(Pi)[: j + 1] for 1 ≤ i ≤ r and 1 ≤ j < mi. For

convenience, we denote δ(s,CW) = δ(δ(s,C),W) for any state s, multi-track symbol C

and multi-track W. For a state s and a multi-track symbol C, δ(s,C) can be implemented

by using a multi-track symbol trie of depth at mostM nodes, thus δ(s,C) can be computed

in O(M log σ) time. The function goto can be constructed by using Algorithm 15.

Lemma 7.10. Algorithm 15 constructs the goto function of the multi-track AC-automaton

of a dictionary D = {P1,P2, . . . ,Pr} in O(dM log σ) time.

Proof: The goto function δ(s,C) is computed d =
∑r

i=1mi times and δ(s,C) can be

computed in O(M log σ) time.

Next, the failure link of a state sort(Pi)[: j] is defined as flink(sort(Pi)[: j]) = sort(Pi[k :

j]), where Pi[k : j] is the longest proper suffix of Pi[: j] such that Pi[k : j] is permuted-

matched with a prefix of any P` ∈ D. Algorithm 16 shows a construction algorithm for
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Algorithm 16: Multi-track AC-automaton failure function construction algo-
rithm
1 Function constructFailureFunction(D)
2 compute SI(Pi[j :]) for 1 ≤ i ≤ r and 1 ≤ j ≤ mi;

3 flink(rootState)← ⊥;

4 push rootState to queue;

5 while queue 6= ∅ do
6 pop activeState from queue;

7 for C such that δ(activeState,C) = s 6= NULL do
8 push s to queue;

9 s← flink(activeState);

10 i← label(s);

11 while δ(s,Pi[depth(s)]〈SI(Pi[depth(s)− depth(s) :])〉) = NULL do
12 s← flink(state);

13 flink(s)← δ(s,Pi[depth(s)]〈SI(Pi[depth(s)− depth(s) :])〉);

the failure function of a multi-track AC-automaton. In order to simplify the construction

algorithm, we use a special state that reads any multi-track symbol to get to the root

state.

Lemma 7.11. Algorithm 16 constructs the failure function of the multi-track AC-automaton

of a dictionary D = {P1,P2, . . . ,Pr} in O(dM log σ) time.

Proof: We can bound the running time of Algorithm 16 by counting the number of

executions of δ(s,C). For each pattern Pi, let si,j be a state such that si,j = δ(root ,Pi[: j])

for 1 ≤ j ≤ mi. Let fi,j be the number of executions of flink when finding flink(si,j).

The maximum value of fi,j is bounded by depth(flink(si,j−1)) + 1. Because the depth of

flink(si,j) is at most depth(flink(si,j−1))−fi,j+1, we get fi,j ≤ depth(flink(si,j−2))−fi,j−1+2

recursively. By solving this formula, we get
∑mi

j=1 fi,j ≤ 2mi, and
∑r

i=1

∑mi

j=1 fi,j ≤∑r
i=1 2mi = 2d. Moreover, each δ(s,C) is executed in O(M log σ) time.

Finally, the output function of the multi-track AC-automaton is similar to the original

AC-Automaton. For a state sort(Pi)[: j], the output function of the state output(S(Pi[: j]))

is the set of patterns P` ∈ D such that P` ./ Pi[k : j] for some 1 ≤ k ≤ j. Algorithm 16
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Algorithm 17: Multi-track AC-automaton output function construction algo-
rithm
1 Function constructOutputFunction(D)
2 compute SI(Pi[j :]) for 1 ≤ i ≤ r and 1 ≤ j ≤ mi;

3 for i← 1 to r do
4 activeState ← rootState;

5 for 1 ≤ j ≤ mi do
6 activeState ← δ(activeState,Pi[j]〈SI(Pi[1 :])〉);
7 if j = mi then
8 output(activeState)← output(activeState) ∪ {i};

9 push rootState to queue;

10 while queue 6= ∅ do
11 pop activeState from queue;

12 output(activeState)← output(activeState) ∪ output(flink(activeState));

13 for C such that δ(activeState,C) = s 6= NULL do
14 push s to queue;

constructs the output function of a multi-track AC-automaton.

Lemma 7.12. Algorithm 17 constructs the output function of the multi-track AC-automaton

of a dictionary D = {P1,P2, . . . ,Pr} in O(dM log σ) time.

Proof: Updating the output function can be performed in O(1) time by using lists to

save the output function, and update it by concatenating the list (see [1]). The proof is

similar to the proofs of Lemmas 15 and 16.

From Lemmas 15, 15, 16, and 17, we get the following theorem.

Theorem 7.13. The multi-track AC-automaton of a dictionary D = {P1,P2, . . . ,Pr} can

be constructed in O(dM log σ) time.

By using the multi-track AC-automaton of D, we can perform permuted dictionary

matching on a text T as shown in Algorithm 18. Let activeState be the current state of

the multi-track AC-automaton. For each position i on T, Algorithm 18 uses the sorted

index of T[i − depth(activeState) :] to determine permutation of T[i] used in the goto

function.
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Algorithm 18: Permuted dictionary matching algorithm by using multi-track
AC-automaton.
1 Function MTACADictionaryMatching(T)
2 compute SI(T[i :]) for 1 ≤ i ≤ n;

3 activeState ← rootState;

4 for 1 ≤ i ≤ n do
5 while δ(activeState,T[i]〈SI(T[i− depth(activeState) + 1 :])〉) = NULL do
6 activeState ← flink(activeState);

7 activeState ← δ(activeState,T[i]〈SI(T[i− depth(activeState) + 1 :])〉);
8 for k ∈ output[activeState] do
9 output (k, i−mk + 1);

Theorem 7.14. Algorithm 18 performs permuted dictionary matching on a multi-track

text T in O(nN log σ) time.

Proof: The running time of Algorithm 18 can be evaluated by counting the number of

executions of δ(s,C). First, for each i, δ(s,C) is executed at least once on activeState

transition. Next, δ(s,C) is executed to check whether the transition is NULL or not. In

this case, the number of executions of δ(s,C) is the same as that of flink. The latter is

at most n, because whenever δ(s,C) is executed, the depth of activeState is increased by

one, and whenever flink is executed, the depth of activeState is decreased by at least one.

Therefore, the number of executions of δ(s,C) is O(n).

7.4 Multi-track permuted matching automaton

In this section, we will describe a data structure called a multi-track permuted matching

automata that can perform permuted pattern matching on a multi-track text T online,

by preprocessing a multi-track pattern P. A multi-track permuted matching automaton

consists two functions, goto and function. In addition, each state of the multi-track

permuted matching automaton has a weight in order to determine whether flink should

be executed or not. Fig. 7.2 shows an example of a multi-track permuted matching
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Algorithm 19: Multi-track permuted matching automaton goto function con-
struction algorithm

Input: Multi-track P
Output: Goto function

1 Function constructGotoFunction(P)
2 create states rootState and ⊥;

3 δ(⊥, c)← rootState for all symbol c ∈ Σ;

4 newState← rootState;

5 weight(⊥)← weight(rootState)←M ;

6 for 1 ≤ i ≤M do
7 activeState ← rootState;

8 for 1 ≤ j ≤ m do
9 if δ(activeState,P[j][i]) = NULL then

10 create newState;

11 δ(activeState,P[j][i])← newState;

12 weight(newState)← 1;

13 activeState ← newState;

14 else
15 activeState ← δ(activeState,P[j][i]);

16 weight(activeState)← weight(activeState) + 1;

17 if k = m then
18 set activeState as an accept state;

automaton.

For a multi-track pattern P = (P1, P2, ..., Pm), the multi-track permuted matching

automaton of the pattern is denoted by MTPMA(P). The goto function of the multi-track

permuted matching automaton is similar to that of an AC-automaton, thus, each state

in MTPMA(P) represents a prefix of Pi, which is denoted by S(w), where w is the string

obtained by concatenating the labels of the edges from the root to the state. Each state

W has a weight, which is a number of tracks containing W as a prefix. Moreover, a

state W is called an accept state if W = Pi for some i. Algorithm 19 constructs the goto

function of a multi-track permuted matching automaton.

Lemma 7.15. Algorithm 19 constructs the goto function of MTPMA(P) in O(mM log σ)

time.
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Algorithm 20: Multi-track permuted matching automaton failure function con-
struction algorithm

1 Function constructFailureFunction(P)
2 activeStates ← {rootState};
3 flink(rootState)← ⊥;

4 BorderP[i]← constructMTBorderArray(P);

5 for 1 ≤ i ≤ m do
6 tempStates ← ∅;
7 for activeState ∈ activeStates do
8 failureState ← flink(activeState);

9 while depth(failureState) + 1 6= BorderP[i] do
10 failureState ← flink(activeState);

11 for c such that δ(activeState, c) = s 6= NULL do
12 tempStates ← tempStates ∪ {s};
13 flink(s)← δ(failureState, c);

14 activeStates ← tempStates ;

Proof: For each track, the number of executions of δ(W, c) is m and there are M tracks

in a pattern P. Moreover, δ(W, c) can be executed in O(log σ) time.

Next, we will define the failure function of a multi-track permuted matching automa-

ton. Let Sj be the set of states that have depth j where S(Pi[: j]) ∈ Sj. The failure link

of the state is flink(Pi[: j]) = Pk[: `] ∈ S` such that Pk[: `] is a proper suffix of Pi[: j]

and P[: `] is the longest prefix of P that permuted matches with a proper suffix of P[: j].

The latter condition is similar to that of the multi-track KMP algorithm, which can be

computed by using a multi-track border array.

Algorithm 20 constructs the failure function of the MTPMA(P). For each state s, we

use multi-track border array to determine the depth of flink(s).

Theorem 7.16. Algorithm 20 constructs the failure function of P in O(mM log σ) time.

Proof: Similarly to the proof of Theorem 7.11, the failure and goto functions are executed

O(mM) times. Moreover, execution time of the failure function is O(1) and that of the

goto function is O(log σ).
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Algorithm 21: Multi-track permuted matching automaton matching algorithm

1 Function MTPMAMatching(T)
2 activeStates [i]← rootState for 1 ≤ i ≤ N ;

3 for 1 ≤ i ≤ n do
4 failFlag ← true;

5 while failFlag = true do
6 failFlag ← false;

7 failFlag ← isFail(activeStates ,T, i);
8 if failFlag = true then
9 for j = 1 to N do

10 activeStates [j]← flink(activeStates);

11 else
12 for j = 1 to |activeStates| do

activeStates [j]← δ(activeStates [j],T[i][j]) ;

13 if activeStates [1] is an accept state then
14 output i−m+ 1;

15 Function isFail(activeStates ,T, i)
16 for j = 1 to N do
17 if δ(activeStates [j],T[i][j]) = NULL then
18 return true;

19 else
20 nextState = δ(activeStates [j],T[i][j]);

21 temp(nextState)← temp(nextState) + 1;

22 if temp(nextState) > weight(nextState) then
23 return true;

24 return false;

Finally, by using MTPMA(P), Algorithm 21 can perform permuted pattern matching

on a multi-track text T. Algorithm 21 uses N pointers activeStates to pointing the current

states. Note that all activeStates always have the same depth. Algorithm 21 uses two

conditions to determine whether it should execute the failure function or not. The first

condition is when it cannot find the goto transition, and the second condition is when

the number of state pointers in the state is more than the weight of the state. If any of

the activeStates is fail, then all of the activeStates execute the failure function, otherwise

activeStates execute the goto function.
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Figure 7.2: Multi-track permuted matching automaton of P = (aaabb, abaab, bbaaa).
The asterisk ∗ is a special symbol that matches with any symbols in Σ.

Theorem 7.17. By using MTPMA(P) Algorithm 21 performs permuted pattern match on

a multi-track string T in O(nN log σ) time.

Proof: Similarly to the proof of Theorem 7.14, the number of executions of the failure

and goto function is O(nN). Since the execution time of the failure function is O(1) and

the goto function is O(log σ), Algorithm 21 runs in O(nN log σ) time.

7.5 Multi-track Boyer-Moore and Horspool algorithms

In this section, we propose two permuted pattern matching algorithms that are based

on the Boyer-Moore algorithm and the Horspool algorithm, which we call MT-BM and

MT-H, respectively.

7.5.1 Multi-track Boyer-Moore algorithm

The original Boyer-Moore algorithm uses two arrays GoodSuf (good suffixes) and BadSym

(bad symbols) to determine how much the position of a substring to compare should be

shifted when a mismatch is found between the input patten and the substring of the text.

Those functions are defined as follows on multi-tracks.
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Algorithm 22: MT-BM and MT-H preprocessing functions

1 Function ComputeSuf(P)
2 compute RI(P[: i]) for 1 ≤ i ≤ m;

3 suf [m]← m, j ← m, k ← m;

4 for i← m− 1 to 1 do
5 if i > k and suf [m− (j − i)] < i− k then
6 suf [i]← suf [m− (j − i)];
7 else
8 if i < k then
9 k ← i;

10 j ← i;

11 while k > 0 and P[k]〈RI(P[: j])〉 = P[k +m− j]〈RI(P[: m])〉 do
12 k ← k − 1;

13 suf [i]← j − k ;

14 return suf ;

15 Function ComputeGoodSuf(P)
16 suf ← ComputeSuf(P);

17 for i← 1 to m do GoodSuf [i]← m;

18 j ← 1;

19 for i← m to 1 do
20 if suf [i] = i then
21 while j ≤ m− i do
22 if GoodSuf [j] = m then
23 GoodSuf [j]← m− i;
24 j ← j + 1;

25 for i← 1 to m− 1 do
26 GoodSuf [m− suf [i]]← m− i;
27 return GoodSuf ;

28 Function ComputeBadSym(P)
29 compute RI(P[: i]) for 1 ≤ i ≤ m;

30 for i← 1 to m− 1 do
31 if BadSym(P[i]〈RI(P[: i])〉) = m then
32 BadSym.add(P[i]〈RI(P[: i])〉,m− i);
33 else
34 BadSym(P[i]〈RI(P[: i])〉)← m− i;

35 return BadSym;

88



7.5 Multi-track Boyer-Moore and Horspool algorithms

Algorithm 23: Multi-track Boyer-Moore algorithm

1 Function MTBM(T,P)
2 compute RI(T[: i]) for 1 ≤ i ≤ n;

3 compute RI(P[: i]) for 1 ≤ i ≤ m;

4 BadSym ← ComputeBadSym(P);

5 GoodSuf ← ComputeGoodSuf(P);

6 j ← 0;

7 while j ≤ n−m+ 1 do
8 i← m;

9 while i > 0 and T[i+ j]〈RI(T[: j +m])〉 = P[i]〈RI(P[: m])〉 do
10 i← i− 1;

11 if i ≤ 0 then
12 output j + 1;

13 j ← j + GoodSuf [0];

14 else
15 j ← j + max(GoodSuf [i],BadSym(T[i+ j]〈RI(T[: i+ j])〉)− (m− i));

Definition 7.18 (Good suffixes on multi-track). For multi-track P of length |P|len = m,

let A[i] = {0 < s < i | P[i − s + 1 : m − s] ./ P[i + 1 : m], P[i − s : m − s] 6./ P[i : m]}

and B[i] = {i ≤ s < m | P[1 : m− s] ./ P[s+ 1 : m]}. The good suffix array is defined as

GoodSuf P[m] = 1 and GoodSuf P[i] = minA[i] ∪B[i] ∪ {m} for 0 ≤ i < m.

Definition 7.19 (Bad symbol on multi-track). For multi-track P of length |P|len = m and

a multi-track symbol C, BadSym(C) is the first occurrence position of sort(C) in PR[2 :].

The function BadSym(C) returns m if there is no occurrence of sort(C) in PR[2 :].

In the implementation, suf and GoodSuf can be represented as arrays, while BadSym

can be realized in a trie of the multi-track symbols. We perform permuted-match instead

of exact match when computing GoodSuf . We also use another array suf to compute

GoodSuf .

Definition 7.20 (Suffixes). For a multi-track P of length |P|len = m, suf [i] is the maxi-

mum value of l such that P[i− l + 1 : i] ./ P[m− l + 1 : m] for 1 ≤ i ≤ m.

Algorithm 22 shows how to construct GoodSuf and BadSym. The array GoodSuf is
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Algorithm 24: Multi-track Horspool algorithm

1 Function MTH(T,P)
2 compute RI(T[: i]) for 1 ≤ i ≤ n;

3 compute RI(P[: i]) for 1 ≤ i ≤ m;

4 BadSym ← ComputeBadSym(P);

5 j ← 0;

6 while j ≤ n−m+ 1 do
7 i← m;

8 while i > 0 and T[i+ j]〈RI(T[: j +m])〉 = P[i]〈RI(P[: m])〉 do
9 i← i− 1;

10 if i ≤ 0 then
11 output j + 1;

12 else
13 j ← j + BadSym(T[j +m]〈RI(T[: j +m])〉));

computed by ComputeGoodSuf, which uses array suf computed by ComputeSuf. Note that

we compute RI at the beginning (Lines 2 and 29) of the algorithm and will not recompute

them when we use the values later.

Lemma 7.21. The function ComputeSuf computes the array suf in O(m(M + σ)) time.

Proof: First, RI(P[: i]) can be computed in O(m(M + σ)) time by using radix sort. The

for loop is executed m − 1 times and the while loop at line 12 is executed at most m

times through the whole run, because k is always reduced in each loop. Comparison of

two multi-track symbols of the pattern that executed in each loop can be computed in

O(M) time.

Lemma 7.22. The function ComputeGoodSuf computes GoodSuf in O(m) time.

Proof: All the for loops are executed at most m times. The while loop is executed at

most m times through the whole execution of the algorithm, since j is always increased

and does not exceed m.

Lemma 7.23. The function ComputeBadSym computes BadSym in O(m(M log σ + σ))

time.
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Proof: RI(P[: i]) can be computed in O(m(M + σ)) time by using radix sort. Each edge

in the trie of BadSym can be accessed in O(log σ) time by using binary search. Since

the depth of the trie is at most M , each BadSym(P[i]) for 1 ≤ i ≤ m can be added and

accessed in O(M log σ) time.

By using both GoodSuf and BadSym, MT-BM outputs the positions of the text that

are permuted-matched with the pattern. The matching algorithm of MT-BM is shown in

Algorithm 23.

Theorem 7.24. Given a multi-track text T and a pattern P, MT-BM outputs the positions

of the text that permuted-match with the pattern online in O(nN(m+ log σ) + n(N + σ))

time in the worst case with O(m(M log σ + σ)) time preprocessing.

Proof: From Lemmas 7.21, 7.22, and 7.23, Algorithm 23 needs O(m(M log σ + σ)) time

for preprocessing. Next, RI(T[: i]) can be computed in O(n(N + σ)) time by using radix

sort. In the outer while loop starting at line 7, the value of j is increased by at least 1,

so the loop is executed at most n−m+ 2 times. In each execution of the outer loop, the

inner while loop is executed at most m times, where multi-track symbols of the pattern

and the text can be compared in O(N) time. BadSym can be accessed in O(N log σ) time

and GoodSuf can be executed in O(1) time.

7.5.2 Multi-track Horspool algorithm

Similarly to the original Horspool algorithm, the multi-track Horspool algorithm (MT-

H) uses BadSym to shift the pattern. Algorithm 24 shows a pseudocode of MT-H. The

BadSym to shift the pattern that can be computed in the same way as BadSym of MT-BM

shown in Algorithm 22.

Theorem 7.25. Given a multi-track text T and a pattern P, MT-H outputs the positions

of the text that are permuted-matched with the pattern in O(nN(m + log σ) + n(N + σ))

time in the worst case with O(m(M log σ + σ)) time preprocessing.

91



7.5 Multi-track Boyer-Moore and Horspool algorithms

Algorithm 25: Track-trie construction algorithm

1 Function constructTrackTrie(P)
2 newNode ← root ;

3 weight(root)←M ;

4 for i← 1 to M do
5 activeNode ← root ;

6 for j ← m to 1 do
7 if δ(activeNode,P[j][i]) = Null then
8 newNode ← newNode + 1;

9 weight(newNode)← 1;

10 δ(activeNode,P[j][i])← newNode;

11 activeNode ← newNode;

12 else
13 activeNode ← δ(activeNode,P[j][i]);

14 weight(activeNode)← weight(activeNode) + 1;
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Figure 7.3: (a) Track trie of P = (bbaba, abbba, aaabb), (b) example of mismatch when
the track trie cannot find the transition, (c) example of mismatch when the number of
tracks is more than the weight of the node.

Proof: Similar to the proof of Theorem 7.24, beside MT-H uses BadSym only.

7.5.3 Boyer-Moore and Horspool matching algorithms with track-

trie

The two algorithms presented in the previous subsections decide if two multi-tracks

permuted-match by sorting them. In this subsection, we present another idea for this

task using a data structure called a track trie. The track trie TrackTrie(P) of a multi-track

P stores all the reversed strings of the tracks of P, that is, {PR
1 , P

R
2 , . . . , P

R
M}. Fig. 7.3(a)
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Algorithm 26: Track-trie matching algorithm

1 Function matchTrackTrie(T, j)
2 activeNode[k]← root for 1 ≤ k ≤M ;

3 temp(node)← 0 for all node in TrackTrie(P);

4 for i← m to 1 do
5 for k ← 1 to M do
6 if δ(activeNodes,T[i+ j][k]) = Null then
7 return i;

8 else
9 activeNodes [k]← δ(activeNodes[k],T[i+ j][k]);

10 temp(activeNodes [k])← temp(activeNodes [k]) + 1;

11 if temp(activeNodes [k]) > weight(activeNodes [k]) then
12 return i;

13 return 0;

shows the track trie of a multi-track pattern P = (aaabb, abbba, bbaba).

Algorithm 25 is the construction algorithm of TrackTrie(P). For a node s of TrackTrie(P)

and a symbol c ∈ Σ, the goto function δ(s, c) returns the child of s that has an edge labeled

c. We naturally extend it to the domain Σ∗ by δ(s, ε) = s and δ(s, aw) = δ(δ(s, a), w) for

any a ∈ Σ and w ∈ Σ∗. We also associate a weight with each node to find mismatch on a

text, as we will explain later.

Theorem 7.26. Algorithm 25 constructs TrackTrie(P) in O(mM log σ) time.

Proof: The function goto can be calculated in O(log σ) time by binary search. On

each execution of the inner for loop (line 6), Algorithm 25 executes goto to check child

nodes of activeNode. If there is no node with an edge labeled P[j][i], then a new node is

constructed, which can be done in O(1) time. On the other hand, if there is a node with

an edge labeled P[j][i], Algorithm 25 accesses the child node and then increases its weight

by one. The total number of iterations of the inner loop is mM .

For a given multi-track text T and a position i, Algorithm 26 finds a mismatch position

in two cases; (1) when a track cannot find its goto destination, and (2) when the number

of tracks that have the same string w is more than the weight of the node that represents
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the string δ(root, w). Those mismatch conditions are illustrated in Fig. 7.3 (b) and (c),

respectively. Fig. 7.3 (b) shows that the track trie cannot find a transition for the second

symbol b of the third track. On the other hand, Fig. 7.3 (c) shows that T2[3 :] has two

‘bba’ on its track, however the P[3 :] has only one ‘bba’ on its track, i.e. the node that

represents ‘bba’ has one on its weight.

Theorem 7.27. Given a multi-track text T and a position j, Algorithm 26 finds a mis-

match position in the pattern in O(mM log σ) time.

Proof: For each position i+ j on the text, Algorithm 26 executes goto to check whether

activeNodes [k] has a child node with an edge labeled T[i + j][k] for 1 ≤ k ≤ M . If

there is no child node with an edge labeled T[i+ j][k], then Algorithm 26 considers it as

mismatch and returns the mismatch position. On the other hand, if there is such a child

node, Algorithm 26 changes activeNodes [k] to the child node, and then checks whether

the number of tracks of T[i+j :] that contain T[k][i+j : i+m] as a prefix is more than the

weight of the child node. If the number of tracks exceeds the weight, then Algorithm 26

treats it as mismatch and returns the mismatch position. The total number of iterations

of the inner loop is at most mM .

Although the worst case time complexity remains the same, by using track-trie, both

MT-BM and MT-H can match the pattern to the text practically faster, because we do not

need to compute the reverse sorted index of the text. First, we construct the track-trie

of the pattern by using constructTrackTrie(P). Then, we replace line 10 (resp. line 9) of

Algorithm 23 (resp. Algorithm 24) by matchTrackTrie(T, j) to find a mismatch position.

7.6 Filtration algorithm on multi-track string

In this section we propose filtration algorithms for permuted pattern matching. The

filtration algorithm uses a function to transform a multi-track string into another sequence.

Then, the algorithm implement a pattern matching algorithm to the transformed pattern
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Algorithm 27: Filtration algorithm for permuted pattern matching

1 Function multiTrackFiltration(P)
2 T′ ← β(T);

3 P′ ← β(P);

4 constructBorderArray(P′);
5 i← 1;

6 j ← 1;

7 while i ≤ n do
8 while j > 0 and T′[i] 6= P′[j] do
9 j ← BorderP′ [j];

10 i← i+ 1;

11 j ← j + 1;

12 if j > m then
13 if T[i− j + 1 : i− 1]

./

v P then
14 output (i− j + 1);

15 j ← BorderP′ [j];

16 Function constructBorderArray(P′)
17 i← 1;

18 j ← 1;

19 BorderP′ [1]← 0;

20 while i ≤ m do
21 while j > 0 and P′[i] 6= P′[j] do
22 j ← BorderP′ [j];

23 i← i+ 1;

24 j ← j + 1;

25 if i ≤ m and P′[i] = P′[j] then
26 BorderP′ [j]← BorderP′ [i];

27 else
28 BorderP′ [j]← i;

and text to get candidate positions where the pattern may permuted-matches. Finally,

every candidate position is checked whether the pattern is permuted-matched in each

position or not.

The filtration algorithm uses a function φ that inputs a multi-track W and outputs a

sequence of length |W|len . The function φ must have a false-positive property, that is for

two multi-tracks X and Y, if X ./ Y then φ(X) = φ(Y). We can use any hash function
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such as Karp-Rabin fingerprint [47] and locality-sensitive hashing [44]. We will describe

the filtration algorithm by using a simple function β that is defined as follows.

Definition 7.28 (bucket function β). For W = (W1,W2, . . . ,WN), β(W) = (B1, B2, . . . , Bσ)

such that Bj[i] is the number of j-th symbol in Z[i].

For example, for a multi-track W = (abab, bbac, aabb, cabb, abba), β(W) is as follows,

W =



a b a b

b b a c

a a b b

c a b b

a b b a


, β(Z) =


3 2 2 1

1 3 3 3

1 0 0 1

 .

β(W) can be computed in O(n(N + σ)) time by counting all symbols in W.

Algorithm 27 shows an example of filtration algorithm for permuted pattern matching.

This algorithm uses β as a hash function and KMP algorithm as a patten matching

algorithm. First, the algorithm computes P′ = β(P) and T′ = β(T), and then constructs

the border array BorderP′ by the same procedure as the KMP algorithm. Next, the

algorithm performs pattern matching on P′ and T′. When mismatch is occurred, the

pattern is shifted by using BorderP′ . If P′ matches T′[i : j], then the algorithm checks

whether the pattern P permuted-matches T[i : j] or not, and outputs the position if true.

Theorem 7.29. Algorithm 27 runs in O(m(σ + M) + n(σ + N) + cmM) time, where c

is the number of candidates.

Proof: As described above, P′ = β(P) and T′ = β(T) can be computed in O(m(σ + M)

and O(n(σ + N), respectively. The border array BorderP′ can be constructed in O(mσ)

time and pattern matching can be performed in in O(nσ) time, since comparison P′[i] =

P′[i] needs O(σ) time. In addition, the algorithm takes O(cmM) time for checking the

candidates.
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Algorithm 28: Filtration algorithm for sub-permuted pattern matching

1 Function multiTrackFiltration(P)
2 T′ ← β(T);

3 P′ ← β(P);

4 constructBorderArray(P′);
5 i← 1;

6 j ← 1;

7 while i ≤ n do
8 while j > 0 and diff(P′[j],T′[i]) > 0 do
9 j = BorderP′ [j];

10 i← i+ 1;

11 j ← j + 1;

12 if j > m then
13 if T[i− j + 1 : i− 1]

./

v P then
14 output (i− j + 1);

15 j ← BorderP′ [j];

16 Function constructBorderArray(P′)
17 i← 1;

18 j ← 1;

19 BorderP′ [1]← 0;

20 AllBorderP′ [1]← {0};
21 for 1 < i ≤ m do
22 AllBorderP′ [i]← {0};
23 for b ∈ AllBorderP′ [i− 1] do
24 if diff(P′[i],P′[b+ 1]) ≤ N −M then
25 AllBorderP′ [i]← AllBorderP′ [i] ∪ {b+ 1};

26 BorderP′ [i]← max AllBorderP′ [i];

27 Function diff(X, Y )
28 sum ← 0;

29 for k = 1 to |X| do
30 sum ← sum + max(0, Y [k]−X[k]);

31 return sum;

We can extend Algorithm 27 to apply it to the sub-permuted pattern matching prob-

lem. This algorithm also uses β to transform the pattern and the text, and uses the KMP

algorithm on the transformed pattern and text. Moreover, this algorithm uses diff(X, Y )

function instead of X 6= Y to loosen the condition to perform sub-permuted pattern
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matching.

Algorithm 28 shows a pseudocode of the filtration algorithm for sub-permuted pattern

matching. First, it transforms P to multi-track bucket P′ and constructs the border array

BorderP′ of the multi-track bucket by using a function diff(X, Y ) =
∑σ

i=1 max(0, Y [i] −

X[i]). We need to find all borders of P′[1 : i] for 1 ≤ i ≤ m in order to compute the

border array of P′ in this algorithm. Then, it finds candidates of occurrence position by

using BorderP′ .

7.7 Duel-and-sweep algorithm for permuted pattern

matching

In this section, we will propose an algorithm for permuted pattern matching based on

the duel-and-sweep algorithm for pattern matching [4, 70]. Similarly to duel-and-sweep

algorithm described in Chapters 2 and 6, the duel-and-sweep algorithm for permuted

pattern matching consists of two stages, dueling stage and sweeping stage. In the dueling

stage, the duel-and-sweep algorithm for permuted pattern matching uses positions and

witness tries as witnesses. We use longest common extension queries and Z-arrays for

multi-track in order to compute the witnesses efficiently. In the sweeping stage, the

algorithm uses multi-track permuted matching automaton to check remaining candidates

efficiently. First, we will introduce the longest common extension and Z-array for multi-

track.

7.7.1 Longest common extension and Z-array for multi-tracks

The longest common extension (LCE) problem takes a string W and some position pairs

(i, j) and computes the longest prefix of W [i :] that matches with some prefix of W [j :] for

each pair (i, j), denoted by LCEW (i, j). For a string W , by O(|W |) time preprocessing,

LCEW (i, j) can be computed on O(1) time [43, 56, 60]. We can naturally extend this
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problem for multi-tracks.

Definition 7.30 (LCE query on multi-track). Given a multi-track W and some position

pairs, computes the longest prefix of W[i :] that matches with some prefix of W[j :] for

each position pair (i, j), denoted by LCEW(i, j).

Katsura et al. [48] proposed permuted pattern matching algorithm by using LCE

queries for string and generalized suffix arrays. We adapt their algorithm to answer LCE

queries on W. First, we compute the suffix array and LCP array of W1W2...W|W|num ,

then compute SI(W[i :]) for 1 ≤ i ≤ |W|len . Let SI(W[i :]) = (ri,1, ri,2, . . . , ri,|W|num )

and SI(W[j :]) = (rj,1, rj,2, . . . , rj,|W|num ). LCEW(i, j) can be computed by computing

min{LCP(Wri,1 ,Wrj,1), . . . , LCP(Wri,|W|num
,Wrj,|W|num

), |W|len}.

Lemma 7.31. LCEW(i, j) can be computed in O(|W|num) time with O(|W|num |W|len) pre-

processing time.

Proof: The suffix array and LCP array of W1W2...W|W|num , also SI(W[i :]) for 1 ≤ i ≤

|W|len can be computed in O(|W|num |W|len) time. LCP(Wri,k ,Wrj,k) can be computed in

O(1) time by using an LCE query on string W1W2...W|W|num . Since we need to compute

LCP(Wri,k ,Wrj,k) for 1 ≤ k ≤ |W|num , LCEW(i, j) can be computed in O(|W|num) time.

Next, we will describe the Z-arrays for multi-tracks. Z-array or Z-function of a string

is an array that store the length of the longest common prefix of suffixes of the string

with the string itself [37]. Later, Hasan et al. [38] proposed a modification to Z-array for

order-preserving pattern matching. We propose another modification of Z-array that can

be used for permuted pattern matching. For a multi-track P, the Z-array for a multi-track

of P is defined by

ZP[i] = max
1≤j≤|P|len−i+1

{j | P[1 : j] ./ P[i : i+ j − 1]} for each 1 ≤ i ≤ |P|len .

In other words, ZP[i] is the length of the longest prefix of P[i] that permuted matches

some prefix of P. Algorithm 29 shows a multi-track Z-array construction algorithm.
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Algorithm 29: Multi-track Z-array algorithm

1 Function constructMTZArray(P)
2 compute SI(P[i :]) for 1 ≤ i ≤ m;

3 ZP[1]← m;

4 L← 1;

5 R← 1;

6 for i = 2 to m do
7 ZP[i]← 0;

8 if i ≤ R then
9 ZP[i]← min(R− i+ 1, ZP[i− L+ 1]);

10 while i+ZP[i] ≤ m and P[ZP[i] + 1]〈SI(P[1 :])〉 6= P[ZP[i] + i]〈SI(P[i :])〉 do
11 ZP[i]← ZP[i] + 1;

12 if i+ ZP[i]− 1 > R then
13 L← i;

14 R← i+ ZP[i]− 1;

15 return ZP;

Lemma 7.32. For a multi-track P of length m and track count M , the multi-track Z-array

ZP of P can be computed in O(mM) time.

Proof: SI(P)[i :] for 1 ≤ i ≤ m can be computed in O(mM) time. The key point of the

computation time of the algorithm is the number of executions of line 11 in the while

loop. For each iteration of the for loop, if i > R, the number of executions of line 11 is the

same or less than the amount of increase in the value of R. Otherwise, there are two cases

when i ≤ R. The first case is ZP[i]← min(R−i+1, ZP[i−L+1]) = R−i+1. In this case,

the number of executions of line 11 is the same or less than the amount of increase in the

value of R. The second case is ZP[i]← min(R − i+ 1, ZP[i− L+ 1]) = ZP[i− L+ 1]. In

this case the line 11 will not be executed. Therefore, the number of executions of line 11

is the same or less than the amount of increase in the value of R overall. Since R ≤ m

and a comparison of multi-track symbol takes O(M) time, the algorithm runs in O(mM)

time.
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7.7.2 Witness table

The duel-and-sweep algorithm for permuted pattern matching uses one or two positions as

a witness. For each offset 0 < a < m, when the overlapped regions not permuted match,

from Lemma 7.2, we can use one position if there is a position i such that P[i] 6./ P[i+ a]

or a pair of positions 〈i, j〉 such that P[i]P[j] 6./ P[i+a]P[j+a] as a witness by Lemma 7.3.

Note that there is at least one witness for the second case by Lemma 7.3, but not for the

first case.

Consider dueling a pair of candidate positions x and x+a on the text. For the case that

one position i as a witness, we can duel the candidates by comparing sort(T[x+a+ i−1])

with sort(P[i]). If sort(T[x + a + i − 1]) = sort(P[i]) we eliminate x or we eliminate

x + a otherwise. For the case a pair of positions 〈i, j〉 as a witness, we can duel the

candidates by comparing sort(T[x + a + i − 1]T[x + a + j − 1]) with sort(P[i]P[j]). If

sort(T[x+ a+ i− 1]T[x+ a+ j − 1]) = sort(P[i]P[j]) we eliminate x or we eliminate x+ a

otherwise. However, for both cases, we need to sort the multi-track that be used for duel,

which is inefficient. In order perform duel faster, we use track-tries (see Subsection 7.5.3)

instead of sorting to compare the multi-tracks.

Next, we describe how to construct a witness table for P. Algorithm 30 shows a witness

table construction algorithm. The witness table WITP of P is an array of length m − 1,

such that WITP [a] contains a tuple of a witness and its trie for offset a. We find a witness

for offset a as follows. Let j = ZP[a+ 1] + 1. If j = m−a+ 1, then no witness exists for a

and define WITP [a] = NULL. Otherwise, if P[j]〈SI(P[j :])〉 6= P[a+ j]〈SI(P[a+ j :])〉 then

position j is a witness by Lemma 7.2 and WITP[a] = 〈j,TrackTrie(P[j])〉. If P[j]〈SI(P[j :

])〉 = P[a+ j]〈SI(P[a+ j :])〉 we need to find another position i such that 〈i, j〉 is a witness.

We can find such position by using following lemma.

Lemma 7.33. Let PR be the reversed multi-track of P and R(k) = m−k+1 for any integer

1 ≤ k ≤ m. The pair 〈i, j〉 where i = R(LCEP(R(j), R(a+ j)) + 1) and j = ZP[a+ 1] + 1

is a witness pair of offset a. Note that R(k) in PR is corresponded to position k in P.
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Algorithm 30: Algorithm for constructing the witness table WITP

1 Function MTWitness(P)
2 compute ZP and LCE query data structure for P;
3 for a = 1 to m− 1 do
4 j ← ZP [a+ 1] + 1;
5 if j = m− a+ 1 then
6 WITP [a]← NULL;

7 else if P[j]〈SI(P[j :])〉 6= P[a+ j]〈SI(P[a+ j :])〉 then
8 WITP [a]← (j, constructTrackTrie(P[j]));

9 else
10 i = R(LCER(R(j), R(a+ j)) + 1);
11 WITP [a]← (〈i, j〉, constructTrackTrie(P[i]P[j]));

Proof: From j = ZP[a+ 1] + 1 and i = R(LCER(R(j), R(a+ j)) + 1), we can derive that

P[i : j − 1] ./ P[a+ i : a+ j − 1], (7.2)

P[i+ 1 : j] ./ P[a+ i+ 1 : a+ j], (7.3)

P[i : j] 6./ P[a+ i : a+ j]. (7.4)

From equation (7.4), there is a pair of positions k and l such that P[k]P[l] 6./ P[a+k]P[a+l]

and i ≤ k < l ≤ j. On the other hand, from equation (7.2) and (7.3), P[k]P[l] ./

P[a + k]P[a + l] for i ≤ k < l ≤ j − 1 and i + 1 ≤ k < l ≤ j, respectively. Therefore, a

pair of positions 〈k, l〉 that satisfy P[k]P[l] 6./ P[a + k]P[a + l] for i ≤ k < l ≤ j is only

〈i, j〉 which is a witness for offset a.

Lemma 7.34. For a pattern P of length m and track count M , Algorithm 30 constructs

WITP in O(mM) time.

Proof: From Lemma 7.33, the algorithm constructs WITP correctly. The preprocessing

takes O(mM) time. Each multi-track symbol comparison and LCE query takes O(M)

time. Therefore, the algorithm runs in O(mM) time.
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7.7 Duel-and-sweep algorithm for permuted pattern matching

7.7.3 Dueling stage

Let Tx = T[x : x+m−1] denote the candidate that starts at the location x. In the dueling

stage, we duel pairs of overlapping candidates Tx and Tx+a such that WITP[a] 6= NULL.

The procedure of the dueling is described in Algorithm 31. We will explain dueling for the

case where the witness contains two positions, while duel for the case where the witness

contains one position can be performed similarly. Let (〈i, j〉, Ta) = WITP[a] be a witness

and its trie for offset a. We use Ta to determine whether Tx+a[i]Tx+a[j] ./ P[i]P[j] or not.

If true, the algorithm eliminates position x and returns x + a, otherwise the algorithm

returns x.

On the other hand, if Tx and Tx+a do not overlap or WITP[a] 6= NULL, i.e. P[1 :

m − a] ./ P[a + 1 : m], no dueling is performed on them. We say that a position x is

consistent with x + a if either 0 < a < m and WITP[a] = NULL or a ≥ m. Note that

the consistency property is determined by a and P only, and x and T are irrelevant. The

consistency property is transitive.

Lemma 7.35. For any a, b and x such that 1 ≤ a < a + b < m and 1 ≤ x < m− a− b,

if x is consistent with x+ a and x+ a is consistent with x+ a+ b, then x is consistent

with x+ a+ b.

Proof: Since x is consistent with x+ a, it follows that P[1 : m−a] ./ P[a+1 : m], so that

P[b+ 1 : m− a] ./ P[(a+ b) + 1 : m]. Moreover, since x+ a is consistent with x+ a+ b, it

follows that P[1 : m− b] ./ P[b+ 1 : m], so that P[1 : m− b− a] ./ P[b+ 1 : m− a]. Thus,

P[1 : m− (a+ b)] ./ P[(a+ b) + 1 : m], which implies that x is consistent with x+ a+ b.

The whole process of the dueling stage is shown in Algorithm 32. This stage eliminates

candidates until all surviving candidates are pairwise consistent. The algorithm uses a

stack to maintain candidates which are consistent with each other. A new candidate y

will be pushed to the stack if the stack is empty. Otherwise, y is checked by comparing it
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7.7 Duel-and-sweep algorithm for permuted pattern matching

Algorithm 31: Dueling for multi-track

1 Function MTDueling(x, a)
2 (v, Ta)←WITP[a];
3 if v is a pair 〈i, j〉 then
4 if matchTrackTrie(Ta,W[i]W[j]) then
5 return x+ a;
6 else
7 return x;

8 else
9 if matchTrackTrie(Ta,W[i]) then

10 return x+ a;
11 else
12 return x;

13 Function matchTrackTrie(T ,W)
14 activeNode[k]← root for 1 ≤ k ≤ |W|num ;
15 temp(node)← 0 for all node in T ;
16 for i← 1 to |W|len do
17 for k ← 1 to M do
18 if δ(activeNodes,W[i][k]) = Null then
19 return false;

20 else
21 activeNodes [k]← δ(activeNodes[k],W[i][k]);
22 temp(activeNodes [k])← temp(activeNodes [k]) + 1;
23 if temp(activeNodes [k]) > weight(activeNodes [k]) then
24 return false;

25 return true;

to the topmost element x of the stack. By Lemma 7.35, if x is consistent with y, all the

other elements in the stack are consistent with y. Thus we can push y to the stack. On

the other hand, if x is not consistent with y, we should exclude one of the candidates by

dueling them. If x wins the duel, we put x back to the stack, discard y, and get a new

candidate. If y wins the duel, we exclude x and continue the comparison of y with the

top element of the stack unless the stack is empty. If the stack is empty, y will be pushed

to the stack.

Lemma 7.36 ([5]). The dueling stage can be done in O(n) time by using WITP.
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7.7 Duel-and-sweep algorithm for permuted pattern matching

Algorithm 32: The dueling stage algorithm for multi-track

1 Function MTDuelingStage(P,T)
2 create stack ;
3 for y = 1 to n−m+ 1 do
4 while stack is not empty do
5 pop x from stack ;
6 if y − x ≥ m or WITP[y − x] = NULL then
7 push x and y to stack ;
8 break;

9 else
10 z ← MTDueling(x, y − x);
11 if z = x then
12 push x to stack ;
13 break;

14 if stack is empty then
15 push y to stack ;

7.7.4 Sweeping stage

The sweeping stage for permuted pattern matching can be performed efficiently by using

the consistent property of the remaining candidates. When checking Tx, we compare

P〈SI(P[1 :])〉 with Tx〈SI(T[x :])〉 from the left to the right. Suppose there is a mismatch

at position j when comparing P with Tx. If the next candidate is Tx+a where a < j, since

P[1 : j − a− 1] ./ P[a + 1 : j − 1] ./ Tx[a + 1 : j − 1] = Tx+a[1 : j − a− 1], we can start

comparison of P and Tx+a from the position where the mismatch occurred. Therefore,

the total number of comparison is bounded by O(nN), by applying the same argument of

the complexity of the multi-track KMP algorithm. Algorithm 33 shows how to perform

the sweeping stage.

The comparison can be performed more efficiently by using multi-track permuted

matching automaton. Although the theoretical complexity is the same, it can be computed

faster practically because we do not need to compute the sorted index array of the text.

Suppose there is a mismatch at position j when comparing P with Tx. Let Tx+a be the

next candidate. In this case, the pointers in the automaton should follow the failure link
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Algorithm 33: The sweeping stage algorithm for multi-track

1 Function SweepingStage()
2 while there are unchecked candidates to the right of Tx do
3 let Tx be the leftmost unchecked candidate;
4 if there are no candidates overlapping with Tx then
5 if T 6≈ P then
6 eliminate Tx;
7 else
8 let Tx+a be the leftmost candidate that overlaps with Tx;
9 if Tx ≈ P then

10 start checking Tx+a from the location m− a+ 1;

11 else
12 let j be the mismatch position;
13 eliminate Tx;
14 start checking Tx+a from the location j − a;

until their depths become j−a−1 and start matching from the position in the text where

mismatch occurred.

Lemma 7.37. The sweeping stage can be completed in O(nN) time.

By Lemmas 7.32, 7.36, and 7.37, we summarize this section as follows.

Theorem 7.38. Given a text T of length n and track count N , and a pattern P of

length m and track count M , The duel-and-sweep algorithm solves the OPPM Problem in

O(nN +mM) time.

7.8 Experiments

We performed some sets of experiments to evaluate the performance of the proposed

algorithms practically. We measured the running time of our algorithms and the AC-

automaton based algorithm [48]. All experiments are performed on a computer with Intel

Xeon CPU E5-2609 8 cores 2.40 GHz, 256 GB memory, and Debian Wheezy operating

system. We set the parameter values as follows, n = 100000, m = 10, N = M = 1000, and
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Figure 7.4: Running time of the KMP based algorithms on permuted pattern matching
with respect to (a) text length, (b) track count, (c) pattern length, and (d) alphabet size.

σ = 2, and changed one of the parameters in each experiment to see the relation between

the parameters and the running time of the algorithms. We used randomly generated

texts and patterns.

The first set of experiments compares the running time of KMP based algorithms,

namely the multi-track KMP algorithm, the multi-track AC-automaton algorithm, and

the multi-track permuted matching automaton algorithm. The purposes of these ex-

periments is to see the changes of the running time of the multi-track KMP algorithm

when extended to the multi-track AC-automaton algorithm and the multi-track permuted

matching automaton algorithm. The results of the experiments are shown in Fig. 7.4.

From the results, we can see that the multi-track AC-automaton algorithm is slower than

the multi-track KMP algorithm, because the multi-track AC-automaton algorithm uses

state transitions instead of compare multi-track symbols directly. This lost is small since

the multi-track AC-automaton algorithm focuses on the dictionary matching instead of
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Figure 7.5: Running time of the Boyer-Moore and Horspool based algorithms on permuted
pattern matching with respect to (a) text length, (b) track count, (c) pattern length, and
(d) alphabet size.

the single pattern matching. Next, we can see that the multi-track permuted matching

automaton algorithm is faster than the multi-track KMP algorithm, since the multi-track

permuted matching automaton algorithm does not need to sort the text. However, the

multi-track permuted matching automaton algorithm is slower than the multi-track KMP

algorithm when the alphabet size is big, because the multi-track permuted matching au-

tomaton algorithm needs O(log σ) time to find state transitions.

The next experiment compares the running time of the multi-track Boyer-Moore al-

gorithm and the multi-track Horspool algorithm. We also check the effectiveness of track

tries to reduce the matching time of both algorithms. Fig. 7.5 shows the result of the

experiment. While the multi-track Horspool is slightly faster than the multi-track Boyer-

Moore algorithm, there is no significant difference between these algorithms. We can also

see that track-tries significantly reduce the matching time of both algorithms, since we
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Figure 7.6: Running time of the filtration algorithms on permuted pattern matching with
respect to (a) text length, (b) track count, (c) pattern length, and (d) alphabet size.

do not need to sort the text when using track tries.

The third experiment set compares the running time of filtration algorithms. We use

three algorithms, the KMP-algorithm, the Boyer-Moore algorithm, and the Horspool algo-

rithm on filtration algorithm. Fig. 7.6 shows the running time of the filtration algorithms.

There is no significant difference in running time between the filtration algorithms. We

can see that the filtration algorithms are fast besides when the pattern length m = 1. The

algorithms become very slow because there are many of occurrence position candidates

when m = 1. The occurrence position candidates will be fewer if the pattern length is

longer.

Last, we compare proposed algorithms with AC-automaton based algorithm [48].

Fig. 7.6 shows the running time of the AC-automaton based algorithm [48] and pro-

posed algorithms. We choose the fastest algorithms among their groups. We can see that

the proposed algorithms are faster than the AC-automaton based algorithm overall. The
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Figure 7.7: Comparison of the running time of the AC-automaton based algorithm with
proposed algorithms on permuted pattern matching with respect to (a) text length, (b)
track count, (c) pattern length, and (d) alphabet size.

multi-track Boyer-Moore algorithm with track-trie is the fastest among other algorithms.
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Chapter 8

Conclusion and Future Work

In this dissertation, we proposed algorithms for four types of pattern matching, including

dynamic dictionary matching, parameterized pattern matching, order-preserving pattern

matching, and permuted pattern matching.

In Chapter 4, we discussed the dynamic dictionary matching problem and proposed

DAWG-based and AC-automaton-based algorithms to solve it. For the DAWG based

algorithm, we used an additional Nearest Marked Ancestor (NMA) queries data structure

to support DAWGs. In contrast, for the AC-automaton-based algorithm, no additional

data structure is used for matching and only we used DAWGs are used to update the

failure and output functions of the AC-automaton. Because we only use DAWGs and AC-

automaton, our AC-automaton-based algorithm is easier to implement and performs dic-

tionary matching faster than other algorithms. Furthermore, though our AC-automaton

update algorithm can be considered optimal for the semi-dynamic dictionary matching, it

is slower by a factor of O(σ/ log σ) for the dynamic dictionary matching problem because

of the increased time complexity in the case of the pattern deletion algorithm in DAWGs.

The task to find faster AC-automaton update algorithms for dynamic dictionary matching

remains a future work. In addition, finding an optimal algorithm for dynamic-dictionary

matching for which the lower bound on solving dynamic dictionary matching problem is

still unknown will be considered as well.
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In Chapter 5, we present a data structure called the parameterized position heap.

We can perform parameterized pattern matching efficiently by adding additional data

structures to these position heaps. In our study, we achieved an optimal time for con-

struction of parameterized position heaps; the construction time was the same as that of

parameterized suffix trees. However, the matching time is slower when the parameterized

position heap is used compared with the case when the suffix tree is used by O(m|Π|)

time. Though the difference is not significant if the alphabet size is constant or con-

siderably small, we will still consider finding a method to reduce the matching time to

O(m log(|Σ|+ |Π|) + occ).

In Chapter 6, we discuss our duel-and-sweep algorithm for order-preserving pattern

matching. The primary difference between our algorithm and the original duel-and-sweep

algorithm is we use a pair of positions for a witness instead of just one position used in

the original algorithm. Our duel-and-sweep algorithm is theoretically as fast as the KMP

algorithm for order-preserving pattern matching, and practically faster. Because the

original duel-and-sweep algorithm was proposed as a parallel computation algorithm, we

will consider developing a parallel version of our duel-and-sweep algorithm. In addition,

as a future work, we might consider developing a sampling algorithm for order-preserving

pattern matching, which has similar properties to the duel-and-sweep algorithm as a

future work.

Finally, in Chapter 6, we present some algorithms for permuted pattern matching on

multi-track strings. We primarily focused on the algorithms that preprocess the pattern

before performing permuted pattern matching, instead of constructing indexing structures

from the text. We showed that our proposed algorithms are faster than the AC-automaton

based algorithm. Moreover, we proposed an algorithm for dictionary matching on multi-

track strings, which, to the best of our knowledge, is the first algorithm for this problem.

However, because of its considerable difficulty owing to a larger number of permutations,

only a few algorithms for sub-permuted pattern matching have been proposed. Therefore,
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developing an algorithm for the sub-permuted pattern matching problem remains as a

future work.

In summary, we can see that some algorithms that had been proposed for a particular

pattern matching problem can be applied to some other variant of pattern matching prob-

lem as well; in doing so, however, some of the algorithms are easy to modify, whereas some

are not depending on the properties of the strings that are utilized in these algorithms.

Therefore, by analyzing the properties of the strings, pattern matching problems, and

algorithms, we can define pattern matching problem classes that can be solved a group

of algorithms, thus generalizing these algorithms.

113



References

[1] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibli-

ographic search. Communications of the ACM, 18(6):333–340, 1975.

[2] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems.

In Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat.

No.98CB36280), number 1, pages 534–543. IEEE Comput. Soc, 1998.

[3] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems.

Technical Report RS-98-7, BRICS, 1998.

[4] Amihood Amir, Gary Benson, and Martin Farach. An Alphabet Independent

Approach to Two-Dimensional Pattern Matching. SIAM Journal on Computing,

23(2):313–323, apr 1994.

[5] Amihood Amir, Martin Farach, Zvi Galil, Raffaele Giancarlo, and Kunsoo Park.

Dynamic dictionary matching. Journal of Computer and System Sciences, 49(2):208–

222, 1994.

[6] Amihood Amir, Martin Farach, Ramana M. Idury, Johannes A. Lapoutre, and Ale-

jandro A. Schaffer. Improved Dynamic Dictionary Matching. Information and Com-

putation, 119(2):258–282, jun 1995.

[7] Amihood Amir, Martin Farach, and S Muthukrishnan. Alphabet dependence in

parameterized matching. Information Processing Letters, 49(3):111–115, feb 1994.

114



REFERENCES

[8] Brenda S. Baker. A Program for Identifying Duplicated Code. Computing Science

and Statistics, 24:49–57, 1992.

[9] Brenda S. Baker. A theory of parameterized pattern matching. In Proceedings of

the twenty-fifth annual ACM symposium on Theory of computing - STOC ’93, pages

71–80, New York, New York, USA, 1993. ACM Press.

[10] Brenda S Baker. Parameterized Pattern Matching by Boyer-Moore Type Algorithms.

Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 541–550, 1995.

[11] Brenda S. Baker. Parameterized Pattern Matching: Algorithms and Applications.

Journal of Computer and System Sciences, 52(1):28–42, 1996.

[12] Anselm Blumer, J. Blumer, David Haussler, Andrzej Ehrenfeucht, M.T. Chen, and

Joel Seiferas. The smallest automaton recognizing the subwords of a text. Theoretical

Computer Science, 40(C):31–55, 1985.

[13] Anselm Blumer, J. Blumer, David Haussler, Ross McConnell, and Andrzej Ehren-

feucht. Complete inverted files for efficient text retrieval and analysis. Journal of the

ACM, 34(3):578–595, 1987.

[14] Robert S. Boyer and J S. Moore. A fast string searching algorithm. Communications

of the ACM, 20(10):762–772, 1977.

[15] Domenico Cantone and Simone Faro. An Efficient Skip-Search Approach to the

Order-Preserving Pattern Matching Problem. In Proceedings of the Prague Stringol-

ogy Conference 2015, pages 22–35, 2015.

[16] Ho-Leung Chan, Wing-Kai Hon, Tak Wah Lam, and Kunihiko Sadakane. Dynamic

dictionary matching and compressed suffix trees. In Proceedings of the sixteenth

annual ACM-SIAM symposium on discrete algorithms, pages 13–22, 2005.

115



REFERENCES
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[53] Marcin Kubica, Tomasz Kulczyński, Jakub Radoszewski, Wojciech Rytter, and
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