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Abstract

Water transport from the Earth's surface to the deep interior and water circulation and distribution in a global
scale are important for understanding the evolution and dynamics of the Earth. Water is transported into the deep
mantle via hydrous minerals in subducting plates. The discovery of three isostructural hydrous phases with very
high stability against temperature and pressure, 3-AI0OH, &-FeOOH, and MgSiO4H»-Phase H, suggests that a
significant amount of water could be stored in subducting plates down to the lower mantle. This high pressure
5-AlOOH-¢-FeOOH-Phase H solid solution seems to have a high bulk modulus owing to strong hydrogen bond
characterized by an order-disorder transition and symmetrization of hydrogen bond in the lower mantle. Therefore,
this solid solution may have the potential to cause a positive anomaly of ve. However, the possible existence,
stability field, and physical properties of a 5-AlIOOH-e-FeOOH—-Phase H solid solution under lower mantle
conditions have not been studied. To address these remaining issues, a series of high pressure experiments

regarding this hydrous phase were conducted.
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The phase equilibrium experiments concerning the compositions of natural plate rocks under lower mantle
conditions demonstrate that a 3-AlOOH-g-FeOOH-Phase H solid solution can be formed in hydrous plates
subducted to the mid-lower mantle. The stability of this solid solution is significantly influenced by bulk rock
compositions. A 3-AlIOOH—e-FeOOH-Phase H solid solution formed in a hydrous peridotite decomposes and
releases fluid H,O at 1350-1450 km in depth, whereas a solid solution formed in a hydrous oceanic crust
(MORB) is likely transported to at least a depth of 1640 km. These hydrous phases in subducting plates can likely
be the cause of seismic scatterers and the water reservoir in the deep lower mantle.

The compressibility of 3-AlIOOH-¢-FeOOH solid solution phases (hereafter, 6-(Al, Fe)OOH) was also
measured in this study. P-V profiles of 3-(Al1x, Fex)OOH (x = 0.047 and 0.123) show that this hydrous phase
undergoes two distinct structural transitions involving changes in hydrogen bond (an order-disorder transition and
symmetrization) and a transition from high- to low-spin states. A change of axial compressibility of the two
compositions of 6-(Al, Fe)OOH accompanied by an order-disorder transition occurs near 10 GPa. This pressure is
consistent well with the condition at which 3-AIOOH undergoes the same transition. Abrupt volume reduction due
to the spin transition was observed between 32-40 GPa in both &-phases, which is ~10 GPa lower than the
pressure condition of the spin transition in e-FeOOH, suggesting a negative correlation between pressure required
for the high- to low-spin transition and the Fe concentration can be applied to Fe** in the hydrous phase, as is also
the case for Fe?* ions in (Mg, Fe)O.

Finally, sound velocities in 8-(Al, Fe)OOH under the pressures corresponding to the lower mantle were
addressed. Debye sound velocity of 6-(Alo.g7, Feo.13)OOH has the minimum value at ~10 GPa, which could be
caused by an order-disorder transition and consequent phonon-softening. At 32-40 GPa, the vp and vg¢ are
abruptly reduced, while vs increases. Above 45 GPa, the vp and vg of the d-phase increase with increasing
pressure, whereas the vs is constant up to the lowermost mantle pressure. In addition, the ve and vs are 2-3% and
13-17 % slower and the v values are ~4% faster than average seismic velocities at 1900-2800 km in depth,
respectively. This results suggest that 3—4 vol.% of 3-(Alo.s7, Feo.13)OOH can reproduce all the negative anomalies

of vp and vs and the positive anomaly of v, observed at a depth of 2271-2571 km in LLVPs.
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