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Abstract

A simple estimation method, namely the Ordinary Least Squares (LS) is applied for

nearly all empirical analysis to estimate β. However, Jensen (1968) made clear that CAPM

is not able to explain abnormal returns and α is used to account for this unobserved

factors. More importantly Jensen′s Alpha is obtained as a mean value of residuals from a

simple regression. Nonetheless, LS is sensitive to outliers and this could make estimators

to be vulnerable. As empirical studies states, observed residuals are not symmetrically

distributed.

Can asymmetry in error term distribution explain Jensen’s Alpha? This research tries

to find the answer by applying robust Rank statistics, in comparison with Least Squares, to

fit a simple linear regression into Nikkei 225, FTSE 100 and S&P 500 stocks. Furthermore,

the Generalized Lehmann’s Alternative Model (GLAM) is applied to observed residuals to

analyze the location and asymmetry of the residuals distribution.

We found that residuals are, indeed, noticeably skewed. GLAM model shows that ma-

jority of stocks in all three markets experience asymmetry, especially during the financially

stressful periods in 2008. In addition, our asymmetry parameter θ possesses a statistically

significant relation to α and to the skew effect which is defined as a difference between α

and location (µ). Furthermore, in order to obtain the underlying F distribution we fitted

t distribution with varying degrees of freedom. Our results show that most of the stocks

experience smaller degrees of freedom meaning that R estimate is more efficient than its

counterpart LS. Moreover we found that R approach is suitable even in the case of high

degrees of freedom (close to normal) but large θ values. Next, we also found that LS

underestimates α and β for majority of stocks with smaller degrees of freedom.
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1 Introduction

Ordinary Least Squares (OLS) is primarily used for estimation of beta in a simple regres-

sion model which is called a market model in the field of finance. It is because OLS is the best

linear unbiased estimator (BLUE) and the best estimate among all the linear estimates (linear

functions of observations), thus, it has been used in almost every empirical study of the market

model.

In this study we apply an estimation method based on rank statistics (R estimate in short).

It provides us a nonlinear estimate (a nonlinear function of observations) of β and it has been

known to be robust against outliers. As it is well known that outliers can be often observed when

the distribution of error terms in a linear regression has a heavy tail.

Asymptotic accuracy of estimate of β can be measured by the asymptotic variance of these

estimators and the relative accuracy of OLS and R-estimate depends on the heaviness or lightness

of the tail of distribution. For instance, Chapter 5 in Lehmann (1983), page 384, shows that

R-estimator is better than of OLS when the distribution function of error term has a heavy tail,

but it reverses when the distribution is light, i.e. it is Normal or close to Normal. We will show

in our study that more than half of individual stocks in the major markets: Tokyo, London and

New York, have rather heavy tails. Our view is that more accurate estimate of β will provide us

more accurate residuals, so that the important parameter α can be more accurately estimated.

Study looks at the symmetry and asymmetry of the distribution of error terms in the market

model by applying GLAM which is a semi-parametric model. GLAM can describe a family of

distributions including an underlying symmetric distribution F which centers around a location

parameter µ and GLAM represent how much F is skewed (or asymmetric) along with a parameter

θ. Besides, paper shows theoretically and mathematically that the residuals can be used to

estimate θ (asymmetry parameter) and µ (location parameter) as well as F based on Zi in

Miura and Tsukahara (1993).

α is estimated simultaneously with β under OLS method. But method based on rank statis-

tics estimates β without having to estimate α. Then, α in this approach estimated by the sample

mean of residuals. This is concordant with OLS of α as it can be defined by expectation of [α

+ error term] in a simple linear regression model. This approach makes us able to decompose α

as a sum of location (µ) and asymmetry effect (θ).

We found that depending on the period a large part of α is contributed by a skew effect

whose degree is indicated by θ especially in US stocks.

Grouping stocks based on df clearly illustrated that in 5-15 df subgroup α estimated by LS is

often underestimated when the error term distribution has a heavy tail, compared with α based

on residuals brought by R approach.

Following the empirical study of relations among those parameters, we propose a certain

recommendation on when to use LS or R estimate so that the empirical work may have more

accuracy both in academics and practice.

This paper is organized as follows. Section 2 reviews previous studies related to this study

and section 3 reviews statistical properties of our methodologies. Section 4 presents data and its

descriptive summary. In addition, section meticulously introduces to LS and R methods as well

as to models that is employed by this study. Estimated β based on two approaches and residual

analysis are in section 5. Besides, this section also includes cross sectional study of GLAM and

skew-t distribution parameters. Our main results, Jensen’s Alpha decomposition and its relation

to asymmetry parameter also presented in section 5. Next, section 6 presents empirical findings

for estimation of underlying distribution of observed residuals. Lastly, section 7, sums up main
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findings and concludes with possible directions for future research.

2 Review of previous studies

Among others, study by Jensen (1968) made clear that CAPM is not able to explain

abnormal stock or portfolio returns and α, intercept of the linear regression, is added as an

additional variable to account for extra variability that is left unexplained by market return.

Empirical researches proved α has a non-constant nature and fluctuates during the time period

(B. Arnott., et al, (2018)). It is known as a Jensen’s Alpha and applied as one of the portfolio

strategies that exist out in the market today.

Nonetheless, LS alternatives and modifications of it are based on a number of assump-

tions and sensitive to outliers clustering found in Onder and Zaman (2003, 2005). Moreover,

Hettmansperger and Sheather (1992) showed that the Least Median Squares is instable when

centrally located data changes. Recently, Denhere and Bindele (2015) compared Rank based

estimation with LS and LAD estimators, and found that R estimators are robust compared to

parametric methods when data has outlying observations and fat-tailed error distribution. Be-

sides, we found that finance literature also lacks of study for an application of robust estimation

technique for CAPM β and Jensen’s Alpha estimation, such as a distribution free Rank based

methods.

Nonparametric methods gained popularity due to several advantages than traditional ap-

proaches and rank statistics is one of the widely used approach. Rank method has been de-

veloped extensively by a number of studies such as Jureckova (1971) and Jaeckel (1972). In

specific, Jureckova (1971) mathematically establishes the asymptotic linearity of rank statis-

tics and infers its asymptotic normality for a multiple linear regression case. Besides, Jackel

(1972) introduces dispersion measures and minimization procedure in order to derive regression

parameters. Asymptotic normality is also shown to be the same as in Jureckova (1971) case.

Especially, in the case of a simple linear regression, estimator is a weighted mean of pairwise

slopes (Yj − Yi)/(cj − ci) {j 6= i}.
Rank method does not require the underlying observations to follow any specific distribution

such as normal distributions and it provides distribution free estimation - which is the main

reason for its popularity. Moreover, being insensitive to outliers and efficiency properties are

the key reasons for applying these methods in the analysis rather than LS (Hettmansperger and

McKean (1977)).

Miura(1985a,b) computed estimates of beta based on monthly data for the period from 1952

January to 1981 December and showed the difference of the two estimates of beta based on LS

and nonparametric estimate based on R statistics. Also he fitted Log-Normal distribution to

the residuals and showed the relations between the estimated scale parameter of Log-Normal

distribution and the estimate of asymptotic variance of the two estimators. However, the model

was not adequate because the choice of the location was ad-hoc and it did not cover the case of

asymmetric distribution. Zhou(2001) followed the same scheme as Miura(1985a,b) to compute

beta based on daily data. In this paper we use Generalized Lehmanns Alternative model which

can take good care of location and asymmetry. This corrects an ad-hoc treatment of location in

the Log-Normal fitting in Miura(1985a,b) and Zhou(2001).
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3 Review of statistical properties

Study employs a simple linear regression in Eq. (1) where i = 1, ..., n. Error terms (εi) are

expected to be i.i.d and have a distribution G(x).

Yi = α+ βxi + εi (1) ηi = Yi − βxi = α+ εi (2)

η ∼ G(x− µ) ≡ h(F (x− µ) : θ) (3)

as defined later in Eq. (12)

3.1 Optimality of Least Squares (β estimation)

Least Squares estimate β is considered to be the best linear unbiased estimate (BLUE)

based on Gauss-Markov theorem. It states that β is the minimum variance and linear unbiased

estimator of true β, as long as the assumptions of classical linear regression model are hold

(Greene, 2012).

However, R-estimate of β is a non-linear function of Yi. It as been known that asymptotic

variance of R-estimate is smaller then LSE β when the distribution of εi (or ηi) has a heavy tail.

3.2 Asymptotic normality of estimates

Asymptotic normality of LS and R estimates are presented below in Eq. (4) and (5),

respectively. When n is large enough, both estimates will reach to the true parameter β. In

addition, variances of both estimates are presented in Eq. (6) and (7), respectively (Lehman

(1983, Chapter 5)).
√
n(β̂LS − β)→ N(0, σ2

β) (4)
√
n(β̂R − β)→ N(0, σ2

β) (5)

σ2
β,LS =

1

c2

∫ ∞
−∞

x2g(x)dx (6) σ2
β,R =

1

12c2{
∫∞
−∞ g2(x)dx}2

(7)

g(x) = G′(x) = h′(F (x) : θ)f(x) (8)

c2 =
1

n

n∑
i=1

(xi − x̄)2 (9) x̄ =
1

n

n∑
i=1

xi (10)

We further focus on error terms by applying Generalized Lehamnn’s Alternative Model.

3.3 The Generalized Lehmann’s Alternative Model

The GLAM method is semi-parametric and based on rank statistics. The following

definitions and assumptions of GLAM is from Miura and Tsukahara (1993) and we keep notations

unchanged for simplicity.

Let Θ be interval in real line. A function h(t; θ) for t ∈ (0, 1) and θ ∈ Θ which satisfies the

following (1) and (2) is called the Generalized Lehmann’s Alternative model:

(1) h = (0; θ) = 0 and h(1; θ) = 1 for any θ ∈ Θ. h(t; θ) is strictly monotone function of t.

(2) There exists θ∗ ∈ Θ such that h(t; θ∗) = t for t ∈ (0, 1). And for θ < θ′, h(t; θ) < h(t; θ′)

for all t.

X observations are assumed to be i.i.d and have an empirical distribution function given by

G(x : µ, θ). Deformation in G(x : µ, θ) is captured by the parameter θ.

h(t; θ) = 1− (1− t)θ (11)
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G(x : µ, θ) = h(F (x− µ); θ) = 1− (1− F (x− µ))θ (12)

3.4 Estimation of θ and µ based on η

To obtain µ and θ parameters we followed the estimation procedure presented in Miura

and Tsukahara (1993).

Regard the following Xi as our ηi. Our estimation of θ and µ based on the residuals after

estimating β. It will be described in the subsection 4.2.2 where estimation of β based on Rank

statistics is also described. Regard there ei(β0) ≡ ηi. The section 3.5 provides a mathematical

statement with a proof which makes a bridge between ei(β̂) and ei(β0), in other words makes

the estimation procedure in Miura and Tsukahara (1993) usable being based on the residuals

ei(β̂) rather than ηi ≡ Xi.

Let X1, ...Xn are i.i.d random variables following G(x : µ, θ). First, the empirical distribution

function for observation Xi is defined as follows.

Gn(x) = n−1
n∑
i=1

I[Xi<x] (13)

Next, the empirical distribution function is linearized.

X(1) < X(2)... < X(n) are ordered values of Xi’s for i = 1, ..., n. X(0) = X(1) − 1/n and

X(n+1) = X(n) + 1/n are set, respectively.

G̃n(x) =
x+ iX(i+1) − (i+ 1)X(i)

(n+ 1)(X(i+1) −X(i))
(14)

where, x ∈ (X(i), X(i+1)].

Following the linearization, Zi values are defined by the inverse of G̃n(x).

Zi(r) = G̃−1n (h(
i

n+ 1
; r)) (15)

for i = 1, ..., n and r is a tentative parameter for θ.

Then, R+
i (r, q) are estimated for a given tentative location parameter q.

R+
i (r, q) = (the number of {j : |Zj(r)− q| ≤ |Zi(r)− q|}) (16)

The rank statistics used for (θ, µ) inference are defined as follows.

Sθ,n(r, q) =
1

n

∑
i:Zi(r)>q

Jθ((1−
R+
i (r, q)

n+ 1
)/2) +

1

n

∑
i:Zi(r)≤q

Jθ((1 +
R+
i (r, q)

n+ 1
)/2) (17)

Sµ,n(r, q) =
1

n

∑
i:Zi(r)>q

Jµ((1− R+
i (r, q)

n+ 1
)/2) +

1

n

∑
i:Zi(r)≤q

Jµ((1 +
R+
i (r, q)

n+ 1
)/2) (18)

Score functions given by Eq. (43) and (44) are used for Eq. (17) and (18) to estimate θ and

µ parameters simultaneously. Statistics are simultaneously minimized as in Eq. (19) to obtain

optimal parameters of µ̂ and θ̂.
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Sθ,n ≈ 0

Sµ,n ≈ 0

Dn ,
{

(r, q) :

2∑
k=1

|Sk,n(r, q)| = min
} (19)

Asymptotic normality of θ̂ and µ̂ are given in great detail in Theorem 3.2 in Miura and

Tsukahara (1993).

√
n

(
θ̂n − θ0
µ̂n − µ0

)
→ N(0, D−1Σ(D−1)′) (20)

Here, D = [dk,l] and Σ are covariance matrix of T as given in Miura and Tsukahara (1993).

dk,1 =

∫ 1

0

{h2(t; θ0)

h1(t; θ0)
+
h2(1− t; θ0)

h1(1− t; θ0)
}dJk(t), (21)

dk,2 = −2

∫ 1

0

f(F−1(t))dJk(t) (22)

Tk =

∫ 1

0

{U(h(t; θ0))

h(t; θ0)
+
U(h(1− t; θ0))

h1(1− t; θ0)
}dJk(t), (23)

k = 1, 2.

We employ ηi from Eq. (3) for GLAM instead of Xi. The statistical properties of applicability

of ηi are meticulously presented in the next section.

3.5 Estimation based on residuals

Assume that we have an estimate β̂ of β which has
√
n - asymptotic normality. For

instance, β̂ can be either β̂LSE based on LSE or β̂R based on rank statistics.

Now we can write the rank statistics for θ and µ.

Sn,θ((r, q) : β̂n) =
1

n

∑
i:Z∗

i >q

Jθ((1 +
R+
i (r, q : β̂n)

n+ 1
)/2) +

1

n

∑
i:Z∗

i ≤q

Jθ((1−
R+
i (r, q : β̂n)

n+ 1
)/2)

Sn,µ((r, q) : β̂n) =
1

n

∑
i:Z∗

i >q

Jµ((1 +
R+
i ((r, q) : β̂n)

n+ 1
)/2) +

1

n

∑
i:Z∗

i ≤q

Jµ((1− R+
i (r, q : β̂n)

n+ 1
)/2)

(24)

where Jθ and Jµ are the score functions for θ and µ.

Proposition A-1

Let β0 be the true value of β.

For
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r = θ0 +
b1√
n

q = µ0 +
b2√
n

|b1| ≤ B

|b2| ≤ B

(25)

√
n
{
Sn,θ((r, q) : β̂n)− Sn,θ((r, q) : β0)

}
→ T (x̄)

∫ ∞
−∞

f(x)dJθ(F (x))
(26)

as n→∞ and

√
n
{
Sn,µ((r, q) : β̂n)− Sn,µ((r, q) : β0)

}
→ T (x̄)

∫ ∞
−∞

f(x)dJµ(F (x))
(27)

Proof for A-1 is given in Appendix.

4 Data and estimation procedure

4.1 Data

Paper relies on three stock market index constituents, Nikkei 225 (N225), FTSE 100 and

S&P500 for this study. N225 data is obtained from Quick Financial Data Provider and it is a set

of stock prices of all Nikkei 225 stocks in a daily frequency. Similarly FTSE 100 and S&P 500

are in daily frequency as well and obtained through Thomson Reuters Database. Time period

coverage by datasets varied depending on the market. N225 data time span is from Q1 1998

until Q3 2017, FTSE100 data time span is from Q1 1986 to Q3 2017 and S&P500 data time span

ranged from Q1 1994 to Q3 2018. Rate of returns are estimated as the difference of prices (Pt -

Pt−1) over price at t − 1. As a risk free rate - overnight call money rate of the Bank of Japan

is employed3 for N225 stocks, London Interbank Offered Rate (LIBOR) for FTSE 100 stocks

and 1-month US Treasury Bill rate for S&P500 stocks. The chosen risk free rate is in line with

previous researches for Japanese market (Kubota and Takehara (2010)). Descriptive statistics

for index and risk free rates are presented in Table (1).

Table 1

Statistic Quarters Mean St. Dev. Min Max

N225 79 0.0001 0.015 −0.114 0.142
Call money rate 79 0.001 0.002 −0.001 0.007

FTSE 100 131 0.0001 0.012 −0.088 0.098
1 month LIBOR 131 0.031 0.024 0.002 0.078

S&P 500 99 0.0003 0.012 −0.090 0.116
1 month Treasury bill 99 0.020 0.021 0.000 0.064

3https://www.boj.or.jp/en/statistics/market/short/mutan/index.htm/
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4.2 β estimation

4.2.1 LS Method

A simple linear regression model is given in Eq. (1). LS method relies on minimizing the

sum of squared residuals (29). Estimation window consisted of moving and non overlapping 3

month. For each stock all available rate of returns are divided into quarters with a given month

and year information. Number of returns are not the same for each quarter due to trading and

non trading day differences for every month. However, the available number of observations for

stock returns per quarter are found to be in the range of 59 and 63. This approach of analysis

ensures our estimates to be conducted for every single quarter of the year and makes it possible

to gain extra insight of a given stock behavior during the period. Hence, more than 100 β values

are estimated for each stock names depending on the availability of stock returns for all sample

period.

Ri,q,t −Rf,q,t = αi,q + βlsi,q(Rm,q,t −Rf,q,t) + εi,q,t (28)

SSRi,q(εi,q) =

T∑
t=1

((Ri,q,t −Rf,q,t)− αi,q − (Rm,q,t −Rf,q,t)βlsi,q)2 (29)

ui,q,t = (Ri,q,t −Rf,q,t)− αi,q − β̂LSi (Rm,q,t −Rf,q,t) (30)

i = {1, ..., 225}, q = {1, ..., N}, t = {1, ..., T} (31)

Here, Ri - stock rate of return, Rf - risk free rate, Rm - market rate of return, εi - LS

error term, ui - LS residual. i is the available stocks in our data set and varies depending on a

stock market, N is the a maximum number of quarters available for a given stock and T is the

maximum number of stock returns available for a given quarter.

4.2.2 R Method

Eq. (32) presents R approach. Similar to LS method, estimation window consisted of

moving and non overlapping 3 month. For each stock all available rate of returns are divided

into quarters with a given month and year information. However, in the case of rank statistics

not sum of squared residuals but the sum of dispersions in Eq. (34) are minimized. We employed

the simplest and commonly applied score function - Wilcoxon scores (Jaeckel (1972)) as in (33).

Ri,q,t −Rf,q,t = βRi,q(Rm,q,t −Rf,q,t) + ηi,q,t (32)

WT (Rη) =
Rη
T + 1

− 1

2
(⇔ Jβ(t) = t− 1

2
) (33)

Di,q(ηi,q) =

T∑
t=1

(
Rηi,q,t
T + 1

− 1

2
)((Ri,q,t −Rf,q,t)− (Rm,q,t −Rf,q,t)βRi,q) (34)

Here, Di(ηi) - sum of dispersion, Rηi - rank of ηi, WT (Rη) - Wilcoxon scores.

On the basis of observed values, the following vi,q,t are the estimates of ηi,q,t. vi is residual

obtained by R approach.
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vi,q,t = (Ri,q,t −Rf,q,t)− β̂Ri,q(Rm,q,t −Rf,q,t) (35)

i = {1, ..., 225}, q = {1, ..., N}, t = {1, ..., T} (36)

Here, i is the available stocks in our data set, N is the a maximum number of quarters

available for a given stock and T is the maximum number of stock returns available for a given

quarter.

Rank statistics for β is described below. Here, b is estimate.

Ri(b) = rank of ei(b) among {ej(b), j = 1, 2, ...n} =
∑n
i=1 I{ej(b) ≤ ei(b)}

Ri(b) does not change even some constant value is subtracted from ei and makes it possible

to estimate β without estimating α.

Sn,β(b) =
1

n

n∑
i=1

Jβ(
Ri(b)

n+ 1
)(xi − x̄) =

1

n

n∑
i=1

Jβ(
Ri(b)

n+ 1
)ci

ci = (xi − x̄)

Jβ(t, g) = −g′(G
−1(t))

g(G−1(t))

(37)

β̂ is the value of b which makes |Sn,β(b)| closest to zero.

4.3 GLAM

Following the estimation of β̂, residuals (ui, vi) are observed for every stock and quarterly

period. Here, we present the procedure to obtain θ̂ and µ̂.

Here J1 and J2 are score functions for θ and µ respectively. The optimal score functions can

be derived as following:

g(x : µ, θ) =
dG(x : µ, θ)

dx
(38)

gθ(x : µ, θ) =
dg(x : µ, θ)

dθ
(39)

gµ(x : µ, θ) =
dg(x : µ, θ)

dµ
(40)

Jθ(t) =
gθ(G

−1
µ.θ(t) : µ, θ)

g(G−1µ.θ(t) : µ, θ)
(41)

Jµ(t) = −
gµ(G−1µ.θ(t) : µ, θ)

g(G−1µ.θ(t) : µ, θ)
(42)

However, these optimal scores are not available since the fundamental form of F is unknown.

Here, the logistic distribution is employed to derive score functions.

Jθ(t) =
1

θ
+ ln(1− [1− (1− t)1/θ]) =

1

θ
+ ln(1− t)1/θ (43)

Jµ(t) = −1

s

[
(θ − 1)(−1)

[
1− (1− t)1/θ

]
+ 1− 2(1− t)1/θ

]
(44)
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This is because we used Jβ(t) = t− 1
2 in Eq. (33) for estimating β which is an optimal score

function for the case of Gµ,θ ≡ F (x − µ) with θ = 1 and F is logistic. This makes us keep a

consistency of our view on F .

Score functions given by Eq. (43) and (44) are used for Eq. (17) and (18) to estimate θ and

µ parameters simultaneously. Statistics are simultaneously minimized as in Eq. (45) to obtain

estimates of µ and θ.

Sθ,n ≈ 0

Sµ,n ≈ 0

Dn ,
{

(r, q) :

2∑
k=1

|Sk,n(r, q)| = min
} (45)

θ̂ and µ̂ are obtained by minimizing Eq. (45), as explained in Eq. (19).

4.4 Skew-t distribution

Random values from a normal distribution have no skewness on either side of the dis-

tribution and displays a bell-shape form. However, this behavior is not observed in residuals

(ε) from a simple linear regression Eq. (2) fitted into stock return. Hence, we applied a semi-

parametric approach - GLAM to capture deformation by asymmetry parameter θ.

To estimate a skewness a widely used skew-t distribution (Azzalini, A., 1985) is used as

well which is a parametric approach in order to compare with our semi-parametric approach by

GLAM. To make a ground for fair comparison we choose degrees of freedom 8 which makes t

distribution close to logistic distribution.

In Eq. (46) is presented a linear transformation of random variable Y which follows skew-t

distribution4. Here, ξ is location, w scale parameters and γ skew parameters. And again we

keep notations unchanged as in the original study.

Y ∼ St(ξ, w2, γ) (46)

Y = ξ + wX (47)

Probability distribution function of X is shown in Eq. (48) where υ is degrees of freedom, Γ

is a gamma function and Φ is a cumulative t-distribution function.

f(x) = 2φ(x)Φ(x) (48)

φ(x) =
Γ(υ+1

2 )√
υπΓ(υ2 )

(1 +
t2

υ
)−

υ+1
2 (49)

We fitted skew-t distribution into observed residuals (vi,t, ui,t) from a simple linear regression

and estimated all three parameters by Maximum Likelihood method. Our objective is to use γ

and ξ to compare with θ and µ from GLAM.

However, due to a singularity problem (Azzalini, A., 2013) of information matrix, we used

centralized parameters rather than direct parameters and estimated location ξ and skewness γ.

Comparison of different parameters is beyond the scope of this research.

4http://azzalini.stat.unipd.it/SN/Intro/intro.html
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5 Empirical results

5.1 β

β in a simple linear regression (1) is estimated by LS and R methods for N225, FTSE100

and S&P500 stock returns. β is estimated for non-overlapping 79 quarterly windows. Average

β̂ across Nikkei 225 stocks presented in Table (2). Thus, R and LS produce distinctive β̂ as well

as standard deviations, minimum and maximum values. Similarly, Tables (3) and (4) present

descriptive statistics of β for FTSE100 and S&P500 stocks. This overall averages do not provide

much insight. But, Figures (1) - (3) illustrate quarterly average β over time period of each

sample.

Tables (5) and (6) present descriptive statistics of estimated β by R and LS methods for a

sample of 6 Japanese stocks from various industries. Two approaches estimated comparable β,

nonetheless, discrepancy is clear and supports previous result in Table (2). Especially standard

deviation of β from R approach are smaller than its counterpart for most of the cases. Depending

on terms, estimated β is low as -0.001 or high as 2.2. However, this behavior is different depending

on stocks. A possible explanation for this variation in β is the nature of industry where companies

belong.

Table 2: Average β of N225, Q1 1998 - Q3 2017

Statistic N Mean St. Dev. Min Max

R 79 0.939 0.094 0.663 1.150

LS 79 0.946 0.092 0.700 1.138

Table 3: FTSE100, Q1 1998 - Q3 2017

Statistic N Mean St. Dev. Min Max

R 79 0.860 0.166 0.417 1.149
LS 79 0.875 0.166 0.433 1.183

Table 4: S&P500, Q1 1998 - Q3 2017

Statistic N Mean St. Dev. Min Max

R 79 0.993 0.137 0.597 1.269
LS 79 0.999 0.135 0.579 1.271

We can observe this nature of β by looking at the stocks one by one for each time period,

but lack of a statistical method to capture an overall image will not allow us except conditioning

or restricting analysis by industry-wise. So we randomly choose a widely known company stock

and present results. Results for other stocks are available upon request.

Quarterly estimated β for Canon stocks illustrated in Figure (4). In 1999, Canon stock

behaved quite distinctly than the rest of the market as it is clear from a very low β. Especially,

during the end of 2000 Canon β was fluctuating and hit the highest peak for the last 20 years

period of time. From 2005 until 2009, β has increasing trend in a small range, nonetheless,

European Sovereign Debt crisis in 2011 possibly caused stocks to plummet sharply in 2011 - 2012.

Afterwards, starting from 2013 Canon experienced less volatile and smaller β until the end of

data period. This non constant behavior of β is in line with previous studies (Jagannnathan and

Wang (1996), Lewellen and Nagel (2006)) in contrary to the static CAPM. LS and R estimates

are comparable and the divergence is minimal. Notably, for 2002 and 2011 LS estimate β are

quite different than its counterpart R estimate β.
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Figure 1: Quarterly average beta, N225
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Figure 2: Quarterly average beta, FTSE100
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Figure 3: Quarterly average beta, S&P500
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Figure 4: Beta Canon Inc

Table 5: Descriptive statistics of β, R method

Statistic N Mean St. Dev. Min Max

Toyota Motor Corp 79 0.913 0.234 0.303 1.519
Taisei Corp 79 0.894 0.324 0.127 2.006
Takashimaya Co 79 0.911 0.295 0.238 1.726
Nippon Express Co Ltd 79 0.814 0.239 0.093 1.267
Canon Inc 79 0.937 0.353 −0.001 2.222
Mitsubishi Corp 79 1.182 0.243 0.399 1.713

Table 6: Descriptive statistics of β, LS method

Statistic N Mean St. Dev. Min Max

Toyota Motor Corp 79 0.917 0.232 0.366 1.489
Taisei Corp 79 0.907 0.345 0.126 2.070
Takashimaya Co 79 0.909 0.296 0.258 1.808
Nippon Express Co Ltd 79 0.822 0.247 0.141 1.334
Canon Inc 79 0.934 0.353 −0.012 2.215
Mitsubishi Corp 79 1.192 0.242 0.420 1.667
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Cross sectional analysis of β

In order to get a deeper intuition regarding our estimates we look into cross sectional

distribution of β for a chosen quarter. Fig. (5) - (6) present histograms for 2008 Q2 and 2017 Q3,

for R and LS cases, respectively. Obviously, estimates are different during crisis and relatively

peaceful periods in market. LS histograms have fat tails and more width. In contrast, R β

histograms display slightly centralized distribution and it is stronger for Q3 in 2017.

Fig (9) - (10) illustrate the cross sectional scatter plots of two distinct β for the same quarter

as shown in previous histograms. Clearly, β form stronger similarity in Q2 of 2008 than Q3 in

2017.

Fig. (7) displays β difference between LS and R estimates. Histogram clearly illustrates the

persistent discrepancy between β across all N225 stocks in Q2 2008. Some of the stocks have

a significantly distinct β estimates. This is more obvious in Q3 2017 in Fig. (8). Maximum

and minimum of β difference is significantly bigger than estimates in crisis period. A possible

explanation for this lies in the fundamental variety of LS and R methods. In brief, during the

volatile market, LS and R β are at similar level, contrary to less volatile period estimates.
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Figure 9: Cross sectional beta scatter plot, Q2 2008
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Figure 10: Cross sectional beta scatter plot, Q3 2017
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5.2 Shape of residual distribution

In this subsection, we start to investigate the residuals from a simple linear regression.

Fig. (83), (84), (85) and (86) in Appendix illustrate histogram of residuals from LS and R

methods for Canon stocks as an example. Similar behavior of residuals could be observed for

other company stocks as well. As it is illustrated, histograms have a noticeable skewness and

have heavy tails.

In addition, Table (7) presents average skewness and kurtosis of residual distribution for

N225 stocks. Normal distribution has 0.03 skewness and 2.96 kurtosis which verifies a symmetry

of distribution. However, average skewness and kurtosis among N225 stocks are far from being

close to normal distribution. Tables (8) - (9) in Appendix 8.6 present average skewness and

kurtosis of residual distribution for stocks in USA and UK market, respectively.

Table 7: Descriptive statistics of average skewness and kurtosis, N225

Statistic N Mean St. Dev. Min Max

Skewness LS 79 0.262 0.157 −0.054 0.626
Skewness R 79 0.267 0.161 −0.058 0.646
Kurtosis LS 79 1.693 0.804 0.310 4.221
Kurtosis R 79 1.819 0.880 0.353 4.791

5.3 µ and θ

Relying on derived score functions for logistic distribution and statistics for parameter in-

ference, GLAM parameters θ and µ are estimated. The following Fig. (11) and (12) illustrate

estimates for θ and µ for Canon stocks.

θ for Canon stocks has a significant fluctuation during the sample period. Values are higher

than one for most of the observation and fluctuation becomes wider from 2006 until 2009. This

exceptional variation could be a possible reaction of Canon stock prices to financial market

distress around 2008. Interestingly, θ behavior changed after 2011, however, from 2017 it revives

noticeable fluctuations.

µ shows similar pattern. Fluctuations in a narrow corridor is followed by movements in wide

range during 2006 and 2009. Especially, in 2009 µ plummets to the lowest points twice in a year

and decline is obviously the effect of stagnation and downfall in financial markets occurred in

2009.
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Figure 11: θ Canon Inc
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Figure 12: µ Canon Inc

Following Fig. (13) and (14) depict estimated θ and µ for Mitsubishi Corp., respectively.
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θ for Mitsubishi stocks also has a significant fluctuation throughout the sample period. How-

ever, before 2007 variation usually happens in a smaller range and some quarters have quite low

θ estimates. Extreme fluctuation is persistent and periodic, especially after 2007 and a similar

behavior is observed until the end of observation period.

µ shows similar pattern with the case of Canon. High variation is observed only from 1998

until 2003. On the contrary, estimated parameter exhibits a clear increasing trend prior to the

crisis in 2008 - 2009. Afterwards, µ only has a fluctuation in a narrow range.
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Figure 13: θ Mitsubishi Corp.
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Figure 14: µ Mitsubishi Corp

As such each individual stock has different behavior of their estimated parameters, but the

time period at which the behavior changes seem common to all the stocks.

Tables (10) and (11) in Appendix 8.6 present descriptive statistics of estimated θ for 6

Japanese stocks based on R and LS approaches, respectively. Mean values of θ clearly indicate

that on average residuals have unsymmetrical distribution and θ is higher than 1 throughout our

sample period.

In addition, Tables (12) and (13) in Appendix 8.6 present descriptive statistics for estimated

µ parameters for 6 Japanese stocks based on R and LS, respectively. Clearly, mean values of µ

are small, around -0.001.

Results support our expectations meaning that a simple linear regression residuals are un-

symmetrical. Tables (14) and (19) in Appendix 8.6 present descriptive statistics of µ and θ across

N225 stocks. Obviously, results are not different from the case of 6 stocks, such as µ parameter

is -0.001 and θ is 1.039.
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Cross sectional analysis of µ and θ

Distribution of estimated µ across 225 stocks are presented below in Fig. (15) - (16) for

LS and R residuals, respectively. Starting with Fig. (15), in 2008 µ has a noticeable left skewed

shape for both approaches, nonetheless, this nature is weak in 2015. In addition, the range of

estimated µ is slightly larger for R case.

Similar skewed distribution is observed for θ across 225 stocks as well, but to the right side

as illustrated in Fig. (17) - (18). In addition, θ values noticeably form two clusterings around 1

and 1.05 in Q2 2008. This behavior is still weakly persistent in Q1 2015, especially in θ from R

residuals.

Scatter plots of θ estimated from LS and R residuals are illustrated in Fig. (21) - (22).

Clearly, residuals from both approaches yield similar θ values. In comparison, Fig. (19) - (20)

display estimated µ from LS and R residuals. Relation is stronger than θ case and plots are

similar for both quarters from 2008 and 2015.

In markets during financially stressful periods abnormal behavior in stock prices could be

observed. As our findings for θ and µ depicted, this nature of stocks is persists in residuals and

it is not explained by market excess return in a simple linear regression. Thus, asymmetry in

residual distribution caused by irregularity in stock return could leave traditional results in doubt.

Moreover, company specific and industry related factors are possible drivers of unsymmetrical

and non-normal shape of error term distribution, and GLAM accurately captures those factors

in stock returns.

Fig. (23) and (24) display differences of θs and µs estimated from LS and R residuals.

Histogram clearly supports the notion that both approaches deliver distinct residuals and this

discrepancy is consistent across 225 stocks in Q2 2008. Some of the stocks have a significantly

diverse θ and µ estimates, e.g., -0.08 (far left side of Fig. (23)).
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Figure 16: Cross sectional µ, N225, Q1 2015
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Figure 18: Cross sectional θ, N225, Q1 2015
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Figure 19: Cross sectional µ scatter plot, Q2 2008
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Figure 20: Cross sectional µ scatter plot, Q1 2015
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Figure 21: Cross sectional θ scatter plot, Q2 2008
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Figure 22: Cross sectional θ scatter plot, Q1 2015
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β and θ

Fig. (25) illustrate difference of estimated β for Canon stocks. Plot has no pronounced

time trend, however, the magnitude of contrast is quite significant. Especially, in 2011 and 2013

the divergence of two β is noticeable. Similar plot for θ parameter is presented in Fig. (26). θ

difference also has obscure trend by time but the range of fluctuation decays gradually.
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Figure 25: β difference, Canon Inc
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Figure 26: θ difference, Canon Inc

Moreover, β and θ do not show any sign of correlation as illustrated by Fig. (27) and

(28). Observed θ values form two distinct clusters with mean being lower and higher than one.

However, this behavior of θ is not related to β.
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Figure 27: β and θ, Canon Inc
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Figure 28: β and θ, Canon Inc
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5.4 Skew-t distribution results

Following the estimation of θ and µ, we fitted skew-t distribution into observed residuals

(vi,t,ui,t) and estimated w, γ and ξ. As as example Fig. (29) and (30) illustrate estimated

parameters after fitting into residuals for Canon stocks.

Skew-t distribution’s ξ parameter represents the location of the residual distribution and ξ

should be comparable with µ from GLAM. µ and ξ share a similar path in the beginning of the

period with high fluctuations. However, ξ plummets significantly in 2009, while µ shows only

high fluctuations (Fig. (12)). In addition, µ varies in the range of -0.002 and 0.002, but ξ has a

range of -0.004 and 0.004 which is almost two times wider. This obviously shows the fundamental

difference of both approaches to model error terms from a simple linear regression.

Shape parameter in Fig. (30) has a distinct behavior. Initially, γ fluctuates in a small

range but later reaches the highest point in 2009 and the lowest in 2016. Interestingly, for some

periods γ is zero which means that residual distribution has skewness on neither side and has a

symmetrical form. However, θ from GLAM in Fig. (11) fluctuates quite noticeably during the

time period with no sign of symmetricalness. Once again this could be due to a fundamental

difference inherited into two approaches.
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Figure 29: Location estimate ξ, Canon Inc
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Figure 30: Skew estimate γ, Canon Inc

Cross sectional distribution of estimated 225 γs for Q2 in 2008 are displayed in Fig. (31) and

(32), for R and LS residuals, respectively. Both histograms illustrate a similar distribution of

skewness parameters among 225 stocks. Moreover, γ forms two clusterings, one is more negative

and the other on a positive side, and it is stronger in case of LS residuals.

This is a possible indication that for some stocks residuals are left skewed and for others

residuals are right skewed, and it in concordance with our previous θ results. Similar behavior is

observed for other periods as well, such as in the Q1 of 2015 in Fig. (33) and (34) which show the

histogram of residuals. We choose to present findings for γ only for crisis and relatively peaceful

periods, nonetheless, result for the rest of the time period is available upon request.

Moreover, scatter plots of estimated γs for the same quarter as in histogram are illustrated

in Fig. (35) and (36). Clearly, γ estimated from both methods (R and LS) are very similar as

depicted in Figures.
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Figure 31: Cross sectional γ, Q2 2008
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Figure 32: Cross sectional γ, Q2 2008
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Figure 33: Cross sectional γ, Q1 2015
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Figure 34: Cross sectional γ, Q1 2015
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Figure 35: γ scatter, Q2 2008
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Figure 36: γ scatter, Q1 2015
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5.5 Jensen’s Alpha decomposition

Skew effect

β in a linear regression captures the sensitiveness of excess return to excess market return

and in line with CAPM. Nonetheless, a growing number of papers analyze the rate of return with

inclusion of intercept term in the regression known as “Jensen’s Alpha” and introduced by M.

Jensen (1968).

αi = E[Ri −Rf − βi(Rm −Rf )] (50)

Difference of α and location parameter µ gives a skew effect as shown below.

αi = E[η] = µi + E[ε] = µi +

∫ ∞
−∞

xdh(F (x) : θ) (51)

αi − µi =

∫ ∞
−∞

xdh(F (x) : θ) (52)

Fig. (37) - (40) illustrate the cross sectional distribution of skew-effect for different quarters.

In 2005 Q2, histograms are centered between 0 and 0.001, and has a fat tails on the right side.

Skew effect from R and LS do not differ significantly and has a very similar shape of distribution.

However, in 2008 skew effects are quite distinct and R case has a noticeable right tail.

Besides, Fig. (41) - (42) illustrate scatter plots of skew effect based on µ from GLAM.

Clearly, skew effect derived based on µ from LS and R residuals, are close to each other as shown

in plots
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Figure 37: skew effect (αi − µi), Q2 2005
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Figure 38: skew effect (αi − µi), Q2 2005
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Figure 39: skew effect (αi − µi), Q4 2008
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Figure 40: skew effect (αi − µi), Q4 2008
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Figure 41: skew effect scatter, Q2 2008
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Figure 42: skew effect scatter, Q4 2012

In addition, skew effect based on skew-t distribution’s location parameter as well in Eq. (55).

Fig. (43) - (46) illustrate cross sectional skew effect obtained by subtracting skew-t location

parameter µ from α. In Q2 2005, skew effects from LS and R are centered around 0 as well

as have a similar shape. In comparison, skew effect based on skew-t location parameter has a

smaller magnitude than GLAM counterpart but still it has a fat right tail. In 2008 Q4 skew effect

has more balanced distribution than Fig. (39) and (40). Possible explanation is the intrinsic

difference of GLAM and skew-t to capture the location parameter. GLAM seems to capture the

location more accurately and has asymmetrical skew effect during the crisis time.

Moreover, Fig. (47) - (48) display scatter plots of skew effect derived based on ξ from skew-t

distribution. In comparison with skew effect based on µ from GLAM, scatter plots show strong

relation of skew effect obtained based on LS and R residuals.
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Figure 43: skew effect (αi − ξi), Q2 2005
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Figure 44: skew effect (αi − ξi), Q2 2005
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Figure 45: skew effect (αi − ξi), Q4 2008
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Figure 46: skew effect (αi − ξi), Q4 2008
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Figure 47: Skew effect scatter, Q2 2008
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Figure 48: Skew effect scatter, Q4 2012

Skew effect regression on asymmetry

In order to have a comparison between GLAM and skew-t, skew effects regressed onto

asymmetry parameters as presented in Eq. (54) and (56), respectively.

Here, i = {1...225} stocks and q = {1..79} quarters.

skew effectglami,q = αi,q − µglami,q (53)

skew effectglami,q = κ0 + κ1θi,q + εi,q (54)

skew effectskew−ti,q = αi,q − ξskew−ti,q (55)

skew effectskew−ti,q = κ∗0 + κ∗1γi,q + εi,q (56)

Here, κ1 and κ∗1 is the sensitiveness of skew-effect on asymmetry parameter θ and γ. Fig.

(52) and (54) illustrate estimated κ1 and κ∗1 for both R and LS cases. Time period is given in

quarters from Q1 1998 until Q3 2017. Noticeably, both κs have a completely different path and

magnitude, due to the fact skew-effects are different in Eq. (53) and (55).

For instance, regression result for Q1 2009 is presented below in Eq. (57) (t - stats are given

in parenthesis) for Japanese stocks. For this regression only considered asymmetry and location

parameters that are obtained from R residuals. Clearly, when θ is equal to 1 which means

symmetry, skew effect is almost zero for GLAM case (κ0 and κ1 cancel each other). Similar

relation between skew effect and θ could be observed for other quarters as well.

Moreover, regression result for Q1 2009 presented below in Eq. (58) for USA stocks as well.

In comparison with N225 stocks, S&P500 stocks’ skew effect are less sensitive to asymmetry

(0.0219). One possible explanation is high liquidity levels of S&P500 stocks. However, similarly

to N225 stocks, S&P500 stocks do not experience skew effect when θ is equal to 1 which means

the intercept and coefficient sum up to zero.

skew effectglam,jpi = −0.0335 + 0.0333 ∗ θi + εi

(−13.90) (14.47)
(57)

skew effectglam,usai = −0.0197 + 0.0219 ∗ θi + εi

(−1.97) (2.26)
(58)

In comparison, below in Eq. (59) (t - stats are given in parenthesis) is presented regression

result for Q1 2009 for skew-t case for Japanese stocks. For this regression only considered

asymmetry and location parameters that are obtained from R residuals. Assuming symmetrical

error term distribution, skew effect is equal to the sum of κ∗0 and κ∗1 ∗ 0. More importantly,

28



skew-t’s γ parameter does not explain skew effect as shown in Eq. (59), κ∗1 is insignificant, in

comparison to Eq. (57), κ1 is statistically significant.

skew effectskew−ti = −0.0000123− 0.0000139 ∗ γi + εi

(−0.76) (−0.54)
(59)

Besides, comparison of both approaches (GLAM and skew-t parameters) based on p -values

of κ1 and κ∗1 from quarterly regressions’ results reveals that θ explains skew-effect in all quarters

across our data time span (49). Skewness parameter of skew-t fails to explain skew-effect in most

of the quarters and could not reject the null hypothesis that κ∗1 is equal to 0 (50).
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Figure 49: P-values of κ1, GLAM
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Figure 50: P-values of κ1, Skew-t
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Figure 51: κ0, GLAM
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Figure 52: κ1, GLAM
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Figure 53: κ0, Skew-t
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Figure 54: κ1, Skew-t
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α decomposition

Following the GLAM and skew-t distribution fit, we estimated location and asymmetry

parameters for each quarters and markets, respectively.

Jensen’s Alpha obtained as in Eq.s (60) and (61) (Jensen, 1968).

αLSi = E[Ri −Rf − βLSi (Rm −Rf )] (60)

αRi = E[Ri −Rf − βRi (Rm −Rf )] (61)

Next, we regressed α from a simple linear regression on µ, θ, ξ and γ for every quarter

separately to analyze if α is explained by location and asymmetry of residual distribution as in

Eq. (62) and (63).

αi,q = κ0 + κ1µi,q + κ2θi,q + εi,q (62)

αi,q = κ∗0 + κ∗1ξi,q + κ∗2γi,q + ε∗i,q (63)

Here, i = {1, ..., 225} stocks and q = {1, ..., 79} quarters.

Fig. (55), (56) and (57) illustrate κ0, κ1 and κ2, respectively, for Japanese stocks. Starting

with κ1 in Fig. (56), estimated coefficient for location parameter µ fluctuates noticeably around

one and this result is in line with the study of Jensen (1968). Jensen’s Alpha is equal to expected

value of error terms from a simple linear regression in Eq. (2) (αi = E[ηi]).

In Fig. (55) and (57), κ0 and κ2 have upward and downward sloping path, respectively, and

obviously coefficients have a negative correlation. As figures illustrate, during the crisis period

in 2008, α was quite sensitive to θ than other periods.

As an example, regression results for Q1 2009 presented in Eq. (64) for N225 stocks. For

this regression only considered asymmetry and location parameters that are obtained from R

residuals. Assuming no asymmetry (θ = 1) in error term distribution from a simple linear

regression, κ0 and κ2 sum up to zero and Jensen’s Alpha is only equal to 1.0229 ∗ µ. Similar

relation between α and θ could be observed for other quarters as well.

Regression results for Q1 2009 presented in Eq. (65) for S&P500 stocks as well. κ0 and κ2

sum up to zero in case of symmetry and α is only equal to 0.6484 ∗ µ. Clearly, α is less sensitive

to µ for SP500 than N225 case. This is possible due to the difference in nature of US stocks and

trading behavior of market participants.

αjpi = −0.0325 + 1.0229 ∗ µi + 0.0325 ∗ θi + εi

(−11.91) (32.27) (12.49)
(64)

αusai = −0.0169 + 0.6484 ∗ µi + 0.0185 ∗ θi + εi

(−1.986) (17.06) (2.24)
(65)

Fig. (58), (59) and (60) illustrate κ∗0, κ∗1 and κ∗2, respectively, for the case of skew-t and for

Japanese stocks. Similarly, Eq. (66) presents regression result for Q1 2009 for N225 stocks and

this regression only considered asymmetry and location parameters that are obtained from R

residuals. Skew-t’s γ parameter does not explain α as shown in Eq. (66), κ∗2 is insignificant.

αi = −0.000012 + 1.0093 ∗ ξi − 0.000036 ∗ γi + ε∗i

(−0.73) (215.49) (−1.30)
(66)
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Figure 55: κ0, GLAM
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Figure 56: κ1, GLAM
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Figure 57: κ2, GLAM
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Figure 58: κ0, Skew-t
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Figure 59: κ1, Skew-t
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Figure 60: κ2, Skew-t
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Following the regression result we can conclude that GLAM parameters µ and θ are supe-

rior to skew-t distribution parameters to decompose the total exposure to α into location and

asymmetry.
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6 F distribution and relative efficiency

6.1 Estimation of F distribution

In this section we estimate F which is assumed to be a symmetric around zero but

to have unknown form of distribution. Zi values are obtained based on optimal θ̂ estimated

in section 4. The proof applies the convergence arguments for estimated empirical distribution

functions in section 5 of chapter 5 of Shorack and Wellner (1986).

The advantage of GLAM is that we can estimate µ and θ without knowing the functional

form of F . However, in order to see the accuracy of estimators of β and a comparison of asymp-

totic variance of estimation error of these two methodology: LS and R-estimator, the functional

form of distribution F and the density f are required. The role of F in GLAM model includes,

as well as its symmetry, a representation of dispersion of the underlying distribution in the tails

of F , while the transformation function h(F ; θ) only represents how and how much the under-

lying distribution F is skewed/asymmetric to fit to the distribution of observed residuals. Thus

we choose t-distribution which degree of freedom parametrize the tail-heaviness and unimodal

symmetric shape of distribution ranging from Normal to almost close to Cauchy.

As indicated in M&T (1993) the empirical distribution function of Zi(r : β0) approximates

asymptotically the empirical distribution function of Zi(θ0 : β0) for i = 1, 2, ..., n.

That is, Zi(r : β̂n) also asymptotically approximate the i− th order statistics of

e1(β0), e2(β0), ..., en(β0) i.i.d ∼ G(x− µ) ≡ h(F (x− µ) : θ0) (67)

Note that ei(β) = ηi

We will prove here that the empirical distribution function of Zi(θ̂n : β̂n) estimates the

underlying unknown distribution function F asymptotically.

Now denote the empirical distribution function of Zi(r : β).

Ln,r(x : β) =
1

n

n∑
i=1

I{Zi(r : β) ≤ x} (68)

Proposition A-2

√
n{Ln,θ̂n(x : β̂n)− F (x− µ))} (69)

converges in distribution to a limit random variable LEF with N(0, σ2
F ), as n→∞.

Proof for A-2 is given in Appendix 8.5.

For each quarter and each stock, we fitted t-distribution to a set of Zi (with estimated θ).

Then we found that the estimated degree of freedom varies cross-sectionally from as small as 3

or 4 to as large as 40 and to 100-120 in every quarter during the year 1998-2017.

After obtaining Zi values we fitted t distribution and obtained degrees of freedom (df). Fig.

61 illustrates the cross sectional distribution of df for N225 stocks in the last quarter of 2002.

Undoubtedly, residuals do not have a specific distribution but it varies depending on the

stocks. Nonetheless, two distinct clusterings are emerged, one is centered around 20 df and the

other one around 100 df . Besides, based on Fig. 61 it is clear that majority of stocks experience

heavy tail (df is small than 20) and it is in line with our previous expectations regarding the

heavy tailed residual distribution.
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Figure 61: DF of t dist. fitted into R residuals, N225, Q4 2002

6.2 Asymptotic variance ratio

We obtain a parametric form of asymptotic variance for LS and R estimates of β by substi-

tuting the functional form of the density of t-distribution into the Eq. (6) and (7) in Section 2.

It shows that the asymptotic variances are functions of the degrees of freedom. Specifically, for

each quarter we estimated asymptotic variance for LS and R cases, respectively. Since, we used

the t - distribution for estimation, its degrees of freedom changed depending on the quarter and

stock.

Following the estimation of F we took the ratio of asymptotic variances σ̂2(β̂LS)/σ̂2(β̂R) by

substituting into F , the estimate of t distribution with the degree of freedom (see Eq. (6) and (7)).

Especially, variance ratio is higher when the degrees of freedom is smaller than approximately

20 (the tail is heavier than the Normal distribution and close to the Logistic). This behavior

reverses when the degrees of freedom is bigger than 20 (it is close to Normal distribution).

Figures 62 - 63 illustrate cross sectional scatter plots of degrees of freedom and variance

ratio. Besides, plots are colored based on the estimated θ̂. Thus, each dots in the plot represents

statistics for individual stock for a given quarter, respectively. As we mentioned earlier, we fitted

t distribution into residuals to estimate the suitable degrees of freedom, obtained variance ratio

and also estimated θ̂. Hence, plots jointly represents all these three estimates for comparison

purpose.

Obviously, LS is more efficient than R estimates (variance ratio is smaller than 0.95) when

underlying t distribution’s degrees of freedom is bigger than approximately 20. This is in line

with our expectation since t with high df (close to normal) LS is more efficient. However, in case

of strong asymmetry, R estimate is still more efficient (for instance, red dots) even df is larger

than 20.

For cases of df smaller than 20, R estimate is clearly efficient with high variance ratio. Small
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Figure 62: DF, variance ratio and θ relation, Q4 2007

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

0.95 1.00 1.05 1.10 1.15 1.20 1.25

0
20

40
60

80
10

0
12

0

Variance ratio

D
eg

re
es

 o
f f

re
ed

om

Q2 2017

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

● ●●●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●●● ●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
● ●● ●

●
● ●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

0.95

1.00

1.05

1.10

Figure 63: DF, variance ratio and θ relation, Q2 2007
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Figure 64: DF, variance ratio and θ relation, industry wise, Q2 2005
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Figure 65: DF, variance ratio and θ relation, industry wise, Q4 2012
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Figure 66: Average DF industry wise
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Figure 67: Average variance ratio industry wise
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degrees of freedom indicates a heavy tailed distribution than Normal. Thus, our results indicate

the efficiency of R estimates when residuals have heavier tails. Moreover, findings are in line

with Lehmann’s (1983) results given in Table 6.1 in Chapter 5. For instance, Table 6.1 shows

the relative efficiency ratio to be 1.24 (for t-distribution with df = 5) which is in line with our

findings.

Similarly, figures 64 - 65 illustrate the same relationship between 3 parameters (θ, variance

ratio and degrees of freedom) and also displays the industry of companies, respectively. Interest-

ingly, we can see a close patterns of stocks in one industry. For instance, “Capital Goods” stocks

have high θ and high variance ratio but “Materials” stocks have high θ and lower variance ratio

in Figure (64).

To investigate further by industry-wise, we estimated the average degrees of freedom and

variance ratio for industries, respectively. As Figures 66 - 67 illustrate, “Financial” and “Trans-

portation” company stocks have distinct patterns than the rest. More importantly, figures reveal

that for most of the industries, the observed residuals are asymmetric on average and it has been

increasing significantly in the last 5 years.
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Figure 68: DF and β diff., N225, Q2 2008
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Figure 69: DF and β diff., N225, Q2 2010
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Figure 70: DF and α diff., N225, Q2 2008
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Figure 71: DF and α diff., N225, Q2 2010
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Figure 72: DF and µ diff., N225, Q2 2008
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Figure 73: DF and µ diff., N225, Q2 2010
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Figure 74: DF and θ diff., N225, Q2 2008
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Figure 75: DF and θ diff., N225, Q2 2010

Figures 68 - 75 illustrate scatter plots of degrees of freedom and differences of estimates (β,

α, µ, θ) for N225 stocks. The relation is quite distinct depending on the degrees of freedom. High

group (60 - 120 df) of degrees of freedom have quite smaller differences of estimates while low

group (4 - 40) have larger difference of estimates. Actually, t distribution with high degrees of

39



freedom closer to normal and smaller degrees of freedom have heavy tails. Thus, figures clearly

illustrate that LS and R estimates are noticeably distinctive when the underlying distribution

has heavy tails.

In order to further investigate, we looked at the average θ (from R residuals). Based on

df stocks are grouped into 5 - 15, 15 - 40 and 40 - 120 groups. Next, each groups’ stocks are

further divided into two subgroups based on positive and negative α difference (LS α - R α).

Fig. (76) illustrates the average θ for each 6 groups, respectively. Clearly, following the end of

2008 (Q60) the average θs has a noticeable variation. Interestingly, the average θ increases for

groups of stocks with negative α difference and for the case of heavy tail group (df between 5-15)

the average θ is the highest.

In addition, Fig. (79) - (82) illustrate plots of θ and α difference for pre-crisis and post-crisis

quarters for groups of stocks with df 5-15 and 15-40, respectively. Obviously, θ and α difference

have a negative relation in post-crisis period.

Moreover, Fig. (77) illustrates the average θ for each 6 subsamples of stocks, respectively,

when 3 df groups mentioned above are divided based on positive and negative β (LS β - R β)

difference. This figure supports the previous result that in post-crisis period average θ for each

groups are quite different and average θ increases in post crisis period for groups with negative

β differences.

If we look at the number of stocks for each of 6 groups based on df and α difference (positive

or negative) it is clear from Fig. (78) that stocks with smaller df has been increasing during the

post crisis period.

Thus, when residuals have a noticeable asymmetry (average θ in Fig. (76) - (77)) LS under-

estimates α and β (negative α and β differences). This effect is even significant for cases when

residuals have heavy tailed distribution (smaller df groups).

R estimate of β is more suitable and accurate when residuals have heavy tailed distribution

or close to normal distribution but with noticeable asymmetry. R estimate is asymptotically

more efficient than its counterpart LS and leads to precise estimation of Jensen′s α. As our

results showed, majority of stocks experience heavy tailed distribution and rank statistics should

be employed in order to estimate precise β and α.
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Figure 76: Average theta for 6 subsample of stocks
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Figure 77: Average theta for 6 subsample of stocks
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Figure 78: Number of stocks
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Figure 79: θ and α diff. (5-df-15), Q2 2001
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Figure 80: θ and α diff. (15-df-40), Q2 2001
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Figure 81: θ and α diff. (5-df-15), Q4 2003
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Figure 82: θ and α diff. (15-df-40), Q4 2003
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7 Conclusion

This paper focused on a simple market model and applied two distinct approaches (LS

and R) to estimate β for the purpose of accuracy comparison. LS is common and simple method

in social sciences, on the contrary, rank is a distribution free, robust and widely applied approach

in statistics field. Thus, CAPM β is estimated by both methods for each stock in 3 markets.

Moreover, study showed mathematically that the residuals can be used to estimate θ and

µ. Thus, following the regression, the GLAM method is employed onto observed residuals to

estimate the asymmetry (θ) and location (µ) parameters. Estimated θ showed that majority of

stocks have a strong asymmetry over the sample period across stocks in Nikkei 225, FTSE 100

and S&P 500.

Study also found that asymmetry parameter θ is statistically significant to explain α from

a simple linear regression. Especially, during the crisis periods (2007-2009) sensitiveness of α to

θ more than tripled in Japanese stocks. Hence, decomposition of Jensen’s Alpha showed that

variation in α can be explained by the magnitude of asymmetry in error terms. In addition, α

also explained by location (ξ) and skew (γ) from skew-t distribution, nonetheless, as the results

showed skew parameter from skew-t distribution unable to explain α. Thus, obviously GLAM is

suitable to measure asymmetry for α decomposition than parametric approach - skew-t.

Paper introduced “Estimation procedure of F” based on Zi that enabled us to precisely

estimate the underlying distribution F by fitting t distribution and obtaining degrees of freedom

(df) for each stocks, respectively.

Furthermore, paper showed that df , asymmetry (θ) and variance ratio (σ2
β,LS/σ

2
β,R) have

a strong relation in common. Specifically, high df related with low variance ratio but variance

ratio is larger as well in case of high θ, meaning that R estimate is more efficient. Also, grouping

based on df and parameter (β, α) differences made clear that LS underestimates β and α when

residual distribution is heavy tailed.

Thus, R is more accurate than LS in such cases when the error term is heavy tailed (which is

the case for most of the stocks in our study) or have a significant asymmetry in its distribution

(high θ values).

Our research sheds light on analyzing Jensen’s Alpha from prospective of asymmetry in

error term distribution and applying robust non-parametric approaches to estimate stock β.

Application of θ indicator for portfolio construction could be a possible innovative approach and

this is a topic for future research.
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8 Appendix

Estimation of (θ, µ) and F based on residuals

Assume that we have an estimate of β which has asymptotic normality.

√
n(β̂ − β)⇒ N(0, σ2

β̂
) (70)

as n→∞.

Converges in distribution to a normal distribution with mean 0 and variance σ2
β̂
.

In the special construction, the convergence in distribution in the original probabil-

ity space can be represented as a convergence almost every where (p.93 in Shorack and

Wellner (1986), and p.757 in Pyke and Shorack (1968)). The advantage of this repre-

sentation is that we can write a limit of convergence as an explicit random variable. It

is very convenient for mathematical discussions of empirical processes.

We denote the limit of (70) by T in this Appendix.

8.1 Model

A simple linear regression model is

Yi = βxi + α+ εi

i = 1, 2, ..., n
(71)

where εi are i.i.d.

Least square method estimate α and β simultaneously, however, the estimate based

on rank statistics (R-estimate) can estimate β without concerning α. Hence, for R-

estimate the simple linear regression model can as well be written.

Yi = βxi + ηi

i = 1, 2, ..., n
(72)

where

ηi = α+ εi

E[εi] = 0
(73)

and

ηi ∼ Gµ,θ(x) = h(F (x− µ) : θ)

θ ∈ (0,∞)
(74)

We call the right hand side a Generalized Lehmann’s Alternative Model (in short

GLAM). The relation of residual variables in the expectation is as follows.
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E[ηi] =

∫ ∞
−∞

xdGµ,θ(x) = µ+

∫ ∞
−∞

xdG0,θ(x)

= µ+

∫ 1

0
th′(t : θ)f(F−1(t))dt

= α+ E[εi]

= α

(75)

Thus,

α = µ+

∫ 1

0
tf(F−1(t))d(h(t : θ)) (76)

Second term is zero when θ is equal to θ∗ for which h(t : θ∗) = t. Assume that F is

symmetric around zero.

Assume that functional form of F is unknown. We take the advantage of R-estimate

of µ and θ which works well for this semi-nonparametric model.

8.2 Empirical distribution functions

Denote,

ei(β) = Yi − βxi
i = 1, 2, ..., n

(77)

Then,

ei(β̂) = Yi − β̂xi
i = 1, 2, ..., n

(78)

ei(β̂) are the residuals. Denote β0 is a true parameter value. Then,

ei(β0) = Yi − β0xi = ηi = α+ εi

i = 1, 2, ..., n
(79)

are i.i.d (independent and identically distributed).

Let

Gn(x : β) =
1

n+ 1

n∑
i=1

I{ei(β) ≤ x} (80)

and let G̃n,β be its linearized version.

Since the proofs are very similar to those in Miura and Tsukahara (1993) (M&T

(1993), here after), we try to use the same notation so that it makes easier to see the

reference and to simplify the proof-writing.

Denote
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Zi(r : β) = G̃−1n (h(
i

n+ 1
: r) : β)

i = 1, 2, ..., n

(81)

Note that Zi(r : β0) is Zi(r) in M&T (1993)

Now denote the empirical distribution function of Zi(r : β).

Ln,r(x : β) =
1

n

n∑
i=1

I{Zi(r : β) ≤ x} (82)

Then,

Ln,r(x : β) = un(h−1(G̃n(x : β) : r)) (83)

where,

un(t) =
1

n

n∑
i=1

I{ i

n+ 1
≤ t}

t ∈ [0, 1]

(84)

Note that Gn(x : β0) and Ln,r(x : β0) is the same process as Gn(x) and Ln,r(x),

respectively in M&T (1993).

Lemma A-1, A-2 and A-3 in appendix tell us that the empirical distribution function

of residuals with estimated β̂ converges asymptotically to the empirical distribution

function of residuals with true value of β which are i.i.d random variables. Thus we can

go for Proposition A-1 and A-2 to use Zi(θ) in M&T (1993) for estimation of parameters

(θ, µ) and F in GLAM, where Zi(θ) in M&T (1993) is constructed based on i.i.d random

variables which correspond to residuals with true value of β.

Denote the rank of |Zi(r : β)− q|

R+
i (r, q : β) = the number of {j : |Zj(r : β)− q| ≤ |Zi(r : β)− q|} (85)

Note that R+
i (r, q : β0) is the same as R+

i (r, q) in M & T (1993).

Define, for x > 0, the empirical distribution of |Zi(r : β̂n)− q| be

Hn,r,q(x : β̂n) ,
1

n+ 1
(the number of {i : |Zi(r : β̂n)− q| ≤ x}) (86)

, for x > 0.

Then, we can write

R+
i (r, q : β̂n) = (n+ 1)Hn,r,q(|Zi(r : β̂n)− q|) (87)

β = β0 relates to i.i.d case in M&T (1993), while β = β̂n is for residuals. If we put

β̂n in the notation, it means that the empirical process is based on residuals.
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8.3 Lemmas

Lemma A-1

√
n{G̃n(x : β̂n)− G̃n(x : β0)}

⇒converges to

T x̄h1(F (x− µ) : θ)f(x− µ)

(88)

Proof.

Let ε′i = ηi − µ and β̂n is an estimate of β0.

I{ei(β̂n) ≤ x} = I{Yi − β̂nxi ≤ x} =

I{µ+ ε′i ≤ x+ (β̂n − β0)xi} = I{ε′i ≤ x− µ+ (β̂n − β0)xi}
(89)

and

I{ei(β0) ≤ x} = I{µ+ ε′i ≤ x} =

I{ε′i ≤ x− µ}
(90)

where,

ε′i ∼ G0,θ(x) = h(F (x) : θ) (91)

So,

√
n{G̃n(x : β̂n)− G̃n(x : β0)}

=
√
n

[
1

n+ 1

n∑
i=1

I{ε′i ≤ x− µ+ (β̂n − β0)xi} −
1

n+ 1

n∑
i=1

I{ε′i ≤ x− µ}

]
(92)

We know that,

√
n
{ 1

n+ 1

n∑
i=1

I{ε′i ≤ x− µ} − h(F (x− µ) : θ)
}

(93)

converges in distribution to U(Gµ,θ(x)) where U(·) is a Brownian Bridge (see Shorack

and Wellner (1986), p120).

Now
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√
n{G̃n(x : β̂n)− G̃n(x : β0)}

=
√
n
{
G̃n(x : β̂n)− 1

n+ 1

n∑
i=1

h(F (x− µ+ (β̂n − β0)xi) : θ)
}

+
√
n
{ 1

n+ 1

n∑
i=1

h(F (x− µ+ (β̂n − β0)xi) : θ)− h(F (x− µ) : θ)
}

−
√
n
{
Gn(x : β0)−Gµ,θ(x)

}
= 1©+ 2©− 3©

(94)

1© =
√
n

1

n+ 1

n∑
i=1

[
I{ε′i ≤ x− µ+ (β̂n − β0)xi} − h(F (x− µ+ (β̂n − β0)xi) : θ0)

]
2© =

√
n

1

n+ 1

n∑
i=1

[
h(F (x− µ+ (β̂n − β0)xi) : θ0)−

n+ 1

n
h(F (x− µ) : θ0)

]
3© =

√
n
{
Gn(x : β0)−Gµ,θ(x)

}
(95)

1© and 3© converges to the same Brownian Bridge U(Gµ,θ(x)), so that 1© - 3© con-

verges to 0.

2© =
1

n+ 1

n∑
i=1

d

dt
h(t : θ)

∣∣∣∣
t=F (x−µ)

f(x− µ)
√
n(β̂ − β)xi

=
1

n+ 1

( n∑
i=1

xi

) d
dt
h(t : θ)

∣∣∣∣
t=F (x−µ)

f(x− µ)
√
n(β̂ − β)

→ T x̄h1(F (x− µ) : θ)f(x− µ)

(96)

where T and x̄ are a limits of
√
n(β̂ − β) and 1

n

∑n
i=1 xi, respectively, and h1 is

d
dth(t : θ)

Lemma A-2

(1) For

r = θ +
s√
n

0 < s < C <∞
(97)

the following hold uniformly in s, as n→∞.

√
n{Ln,r(x : β̂n)− Ln,r(x : β0)} → T (Jβ, h, g)x̄f(x− µ),−∞ < x <∞ (98)

(2) Further

√
n{Hn,r,q(x : β̂n)−Hn,r,q(x : β0)} → T x̄{f(x+ q − µ) + f(−x+ q − µ)} (99)
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Proof.

Noting that as n→∞

h(G̃n(x : ·) : r) ≈ h(Gn(x : ·) : r)

r = θ +
s√
n
,

0 < |s| < C <∞

(100)

and that by definitions, of un(·) and Zi(r : β̂n)

Ln,r(x : β̂n) =
1

n

n∑
i=1

I{Zi(r : β̂n) ≤ x)} = un(h−1G̃n(x : β̂n) : r)) (101)

Then, we have

√
n{Ln,r(x : β̂n)− Ln,r(x : β̂0)}

=
√
n[

1

n

n∑
i=1

I{Zi(r : β̂n) ≤ x} − 1

n

n∑
i=1

I{Zi(r : β0) ≤ x}]

=
√
n[

1

n

n∑
i=1

I{ i

n+ 1
≤ h−1(G̃n(x : β̂n) : r)} − 1

n

n∑
i=1

I{ i

n+ 1
≤ h−1(G̃n(x : β0) : r)}]

≈
√
n[

1

h1(h−1(G(x)∗ : r))
{G̃n(x : β̂n) : r)− G̃n(x : β0) : r)}]

→ 1

h1(h−1(G(x)∗ : θ))
T (Jβ, h, g)x̄h1(F (x− µ) : θ)f(x− µ)

= T (Jβ, h, g)x̄f(x− µ)

(102)

where G(x)∗ is some value between G̃n(x : β̂n) and G̃n(x : β0)

Proof for the second statement
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√
n{Hn,r,q(x : β̂n)−Hn,r,q(x : β0)}

=
√
n(
n+ 1

n
)
[
{Ln,r(x+ q : β̂n)− Ln,r(−x+ q : β̂n)}

−{Ln,r(x+ q : β0)− Ln,r(−x+ q : β0)}
]

=
n+ 1

n

[√
n{Ln,r(x+ q : β̂n)− Ln,r(x+ q : β0)}

−
√
n{Ln,r(−x+ q : β̂n)− Ln,r(−x+ q : β0)}

]
=
n+ 1

n

[√
n{un(h−1(G̃n(x+ q : β̂n) : r))− un(h−1(G̃n(x+ q : β0) : r))}

−
√
n{un(h−1(G̃n(−x+ q : β̂n) : r))− un(h−1(G̃n(−x+ q : β0) : r))}

]
≈
√
n{h−1(G̃n(x+ q : β̂n) : r)− h−1(G̃n(x+ q : β0) : r)}

−
√
n{h−1(G̃n(−x+ q : β̂n) : r)− h−1(G̃n(−x+ q : β0) : r)}

≈ 1

h1(h−1(G∗n : r) : r)

√
n{G̃n(x+ q : β̂n)− G̃n(x+ q : β0)}

− 1

h1(h−1(G∗∗n : r) : r)
(−1)

√
n{G̃n(−x+ q : β̂n)− G̃n(−x+ q : β0)}

(103)

→ 1

h1(F (x+ q − µ) : θ)
T x̄h1(F (x+ q − µ) : θ)f(x+ q − µ)

− 1

h1(F (−x+ q − µ) : θ)
T x̄h1(F (−x+ q − µ) : θ)(−1)f(−x+ q − µ)

= T x̄{f(x+ q − µ) + f(−x+ q − µ)}

(104)

where G∗n is some value between G̃n(x+q : β̂n) and G̃n(x+q : β0) and G∗∗n is similarly

some value between G̃n(−x+ q : β̂n) and G̃n(−x+ q : β0).

Lemma A-3

(1) For

r = θ +
s√
n

0 < s < C <∞
(105)

we have the following uniformly in s, as n→∞.

√
n{Ln,r(x : β̂n)− F (x− µ)}

→ T (Jβ, h, g)x̄f(x− µ) +
U(h(F (x− µ) : θ))

h1(F (x− µ) : θ)
− sh2(F (x− µ) : θ)

h1(F (x− µ) : θ)

(106)

where U(t), 0 < t < 1 is the same as in Lemma A-1 which is the limit of
√
n[Gn(G−1µ,θ(t :

β0) : β0)− t], 0 < t < 1 and is a Brownian Bridge.

Further, we have the following
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√
n[Hn,r,q(x : β̂n)− {F (x− µ)− F (−(x− µ))}]

→ T x̄{f(x+ q − µ) + f(−x+ q − µ)}+ [
U(h(F (x− µ) : θ))

h1(F (x− µ) : θ)
− U(h(1− F (x− µ) : θ))

h1(1− F (x− µ) : θ)
]

−s[h2(F (x− µ) : θ)

h1(F (x− µ) : θ)
− h2(1− F (x− µ) : θ)

h1(1− F (x− µ) : θ)
]

(107)

where h1 = d
dth(t : θ) and h2 = d

dθh(t : θ).

Proof.

We have

√
n{Ln,r(x : β̂n)− F (x− µ)}

=
√
n{Ln,r(x : β̂n)− Ln,r(x : β0)}+

√
n{Ln,r(x : β0)− F (x− µ)}

= 1©+ 2©

(108)

The limit of 1© is provided by Lemma A-2, and the limit of 2© is given in M&T

(1993).

Further in a similar way, we have

√
n[Hn,r,q(x : β̂n)− {F (x− µ)− F (−(x− µ))}]

=
√
n[Hn,r,q(x : β̂n)−Hn,r,q(x : β0)] +

√
n[Hn,r,q(x : β0)− {F (x− µ)− F (−(x− µ))}]

= 1©+ 2©
(109)

As shown in Lemma A-2, 1© converge to T x̄{f(x+ q − µ) + f(−x+ q − µ)} and the

limit of 2© is shown in M&T (1993),
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8.4 Estimation of (θ, µ)

We will prove that Sn,θ((r, q) : β̂n) approximates Sn,θ((r, q) : β0). Then, by remarking

that Sn,θ((r, q) : β0) is the same rank statistic as in M&T (1993). The same comment

applies to the other statistic Sn,µ((r, q) : β̂n).

Thus, in order to prove that asymptotic linearity of (Sn,θ((r, q) : β̂n), Sn,µ((r, q) : β̂n)),

it is enough to work on (Sn,θ((r, q) : β̂n)− Sn,θ((r, q) : β0), Sn,µ((r, q) : β̂n)− Sn,µ((r, q) :

β0)) since M&T (1993) proved asymptotic linearity of (Sn,θ((r, q) : β0), Sn,µ((r, q) : β0)).

We define, as in M&T (1993) our estimate (θ̂, µ̂) of θ and µ based on the regression

residuals be the values in

D∗
n,β̂n

,
{

(r, q) : |Sn,θ(r, q : β̂n)|+ |Sn,µ(r, q : β̂n)| = min
}

(110)

Now, we go on to prove asymptotic linearity of Sn,θ(r, q : β̂n), Sn,µ(r, q : β̂n).

Our rank statistic can be written as

Sn,θ((r, q) : β̂n) =

∫ ∞
q

Jθ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β̂n)

+

∫ q

−∞
Jθ(

1

2
− 1

2
Hn,r,q(−(x− q) : β̂n)))dLn,r(x : β̂n)

Sn,µ((r, q) : β̂n) =

∫ ∞
q

Jµ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β̂n)

+

∫ q

−∞
Jµ(

1

2
− 1

2
Hn,r,q(−(x− q) : β̂n))dLn,r(x : β̂n)

(111)

Proof of A-1.

Sn,θ((r, q) : β̂n)− Sn,θ((r, q) : β0)

=

∫ ∞
q

Jθ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β̂n)

−
∫ ∞
q

Jθ(
1

2
+

1

2
Hn,r,q(x− q : β0))dLn,r(x : β0)

+

∫ q

−∞
Jθ(

1

2
− 1

2
Hn,r,q(−(x− q) : β̂n))dLn,r(x : β̂n)

−
∫ q

−∞
Jθ(

1

2
− 1

2
Hn,r,q(−(x− q) : β0))dLn,r(x : β0)

= [A] + [B]

(112)

We will prove for [A] only. The proof for [B] goes in a very similar way as for [A].

55



[
A
]

=
[ ∫ ∞

q
Jθ(

1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β̂n)

−
∫ ∞
q

Jθ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β0)

]
+
[ ∫ ∞

q
Jθ(

1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β0)

−
∫ ∞
q

Jθ(
1

2
+

1

2
Hn,r,q(x− q : β0))dLn,r(x : β0)

]
= [A1] + [A2]

(113)

Thanks to the mean - value theorem for a continuous function Jθ, we have

√
n
{
Jθ(

1

2
+

1

2
Hn,r,q(x− q : β̂n))− Jθ(

1

2
+

1

2
Hn,r,q(x− q : β0))

}
=
√
nJ ′θ(

1

2
+

1

2
x∗)

1

2
{Hn,r,q(x− q : β̂n)−Hn,r,q(x− q : β0)}

→ 1

2
J ′θ(F (x− µ))T x̄{f(x− µ) + f(−(x− µ))}

(114)

for some x∗ between Hn,r,q(x− q : β̂n) and Hn,r,q(x− q : β0).

Thus, for the first term [A1] in [A], we have

√
n
{∫ ∞

q
Jθ(

1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β̂n)

−
∫ ∞
q

Jθ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β0)

}
=
√
n

∫ ∞
q

Jθ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))

{
dLn,r(x : β̂n)− dLn,r(x : β0)

}
→
∫ ∞
µ

Jθ(F (x− µ))d
{
T ( lim

n→∞
x̄)f(x− µ)

}
(115)

The second term [A2] in [A] can be written as

∫ ∞
q

{
Jθ(

1

2
+

1

2
Hn,r,q(x− q : β̂n))− Jθ(

1

2
+

1

2
Hn,r,q(x− q : β0))

}
dLn,r(x : β0) (116)

As discussed in the above the integrand converges to 1
2J
′
θ(F (x − µ))T x̄{f(x − µ) +

f(−(x − µ))} in
√
n order as n → ∞. Also we know that Ln,r(x − q : β0) converges to

F (x− µ).

Thus, we have for the second term in [A], as n→∞
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√
n[A2] =

√
n

∫ ∞
q

{
Jθ(

1

2
+

1

2
Hn,r,q(x− q : β̂n))− Jθ(

1

2
+

1

2
Hn,r,q(x− q : β0))

}
dLn,r(x : β0)

→
∫ ∞
0

1

2
J ′θ(F (x− µ))T x̄{f(x− µ) + f(−(x− µ))}dF (x− µ)

(117)

Thus, as n→∞

√
n[A]→ T x̄

∫ ∞
0

Jθ(F (x))df(x) + T x̄

∫ ∞
0

J ′θ(F (x))f(x)dF (x)

(≡ 2T (x̄)

∫ 1

1
2

f(F−1(t))dJθ(t)

(118)

Assuming limx→I∞ f(x)Jθ(F (x) = 0).

For [B], it can be proved in a very similar way that

√
n[B]→ T (x̄)

∫ 0

−∞
Jθ(F (x))df(x) + T x̄

∫ 0

−∞
J ′θ(F (x))f(x)dF (x) (119)

Thus, we have

√
n([A] + [B])→ T x̄

∫ ∞
−∞

Jθ(F (x))df(x) + T x̄

∫ ∞
−∞

J ′θ(F (x))f(x)dF (x)

(≡ 2T x̄

∫ 1

0
f(F−1(t))dJθ(t))

(120)

Thus, we have, uniformly in b1 and b2, where

r = θ0 +
b1√
n

q = µ0 +
b2√
n

(121)

for |b1| ≤ B, |b2| ≤ B
as n→∞
Now for

r = θ0 +
b1√
n

q = µ0 +
b2√
n

|b1| ≤ B1

|b2| ≤ B2

(122)

57



Sn,µ((r, q) : β̂n)− Sn,µ((r, q) : β0)

=

∫ ∞
−∞

Jµ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β̂n)

−
∫ ∞
−∞

Jµ(
1

2
− 1

2
Hn,r,q(x− q : β̂0))dLn,r(x : β0)

=

∫ ∞
q

Jµ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β̂n)

−
∫ ∞
q

Jµ(
1

2
+

1

2
Hn,r,q(x− q : β0))dLn,r(x : β0)

+

∫ q

−∞
Jµ(

1

2
− 1

2
Hn,r,q(−(x− q) : β̂n))dLn,r(x : β̂n)

−
∫ q

−∞
Jµ(

1

2
− 1

2
Hn,r,q(−(x− q) : β0))dLn,r(x : β0)

= [C] + [D]

(123)

(This can be worked out in a very similar way as for Sn,θ)

[
C
]

=

∫ ∞
q

Jµ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β̂n)

−
∫ ∞
q

Jµ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β0)

+

∫ ∞
q

Jµ(
1

2
+

1

2
Hn,r,q(x− q : β̂n))dLn,r(x : β0)

−
∫ ∞
q

Jµ(
1

2
+

1

2
Hn,r,q(x− q : β0))dLn,r(x : β0)

= [C1] + [C2]

(124)

As discussed for [A], it can be proved that as n→∞

√
n[C1]→ T (x̄)

∫ ∞
0

Jµ(F (x))df(x) (125)

Also, we have that as discussed for [A], as n→∞.

√
n[C2]→ T x̄

∫ ∞
0

J ′µ(F (x))f(x)dF (x) (126)

Thus, we have that as n→∞

√
n[C]→

T x̄{
∫ ∞
0

Jµ(F (x))df(x) +

∫ ∞
0

J ′µ(F (x))f(x)dF (x)}
(127)

uniformly in (b1, b2) for |b1| ≤ B and |b2| ≤ B.

Very similarly as for [B], we have uniformly in b1 and b2,

√
n[D]→ T x̄{

∫ 0

−∞
Jµ(F (x))df(x) +

∫ 0

−∞
J ′µ(F (x))f(x)dF (x)} (128)
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as n→∞.

Thus, we have, uniformly in b1, b2.

√
n
{
Sn,µ((r, q) : β̂n)− Sn,µ((r, q) : β0)

}
→ T x̄{

∫ ∞
−∞

Jµ(F (x))df(x) +

∫ ∞
−∞

J ′µ(F (x))f(x)dF (x)}
(129)

Now, noting that M&T (1993) on page 97 proved that Sn,θ((r, q) : β0) and Sn,µ((r, q) :

β0) converges to T ∗1 and T ∗2 , respectively, we have Sn,θ((r, q) : β̂n) and Sn,µ((r, q) : β̂n)

converges to

T x̄{
∫ ∞
−∞

Jθ(F (x))df(x) +

∫ ∞
−∞

J ′θ(F (x))f(x)dF (x)}+ T ∗1 (130)

and

T x̄{
∫ ∞
−∞

Jµ(F (x))df(x) +

∫ ∞
−∞

J ′µ(F (x))f(x)dF (x)}+ T ∗2 (131)

, respectively.

The asymptotic linearity of Sn,θ((r, q) : β0) and Sn,µ((r, q) : β0) can be derived just as

M & T (1993) does without having affected by the asymptotic behavior of {Sn,µ((r, q) :

β̂n) − Sn,µ((r, q) : β0)} and {Sn,θ((r, q) : β̂n) − Sn,θ((r, q) : β0)} as seen in the above, of

course, since the estimation error β̂n−β0 bring out T , the asymptotic variance of θ̂n and

µ̂n are enlarged by the corresponding terms which include T , although their expectations

(means) are zero.

This means that the estimation for the parameters (θ, µ) can be well done, being

based on the residuals provided by any suitable estimate of β which has
√
n - order

asymptotic normality such as the usual least square estimate and R-estimate.

In order to see the limit of
√
n{θ̂n − θ0} where θ̂n is constructed using residuals,

we look at the limit of
√
nSn,θ((r, q) : β̂n) with r = θ0 + b1√

n
, |b1| ≤ B1, q = µ0 + b2√

n
,

|b2| ≤ B2, which is

T x̄{
∫ ∞
−∞

Jθ(F (x))df(x) +

∫ ∞
−∞

J ′θ(F (x))f(x)dF (x)}+ T ∗1

T x̄{
∫ ∞
−∞

Jθ(F (x))df(x) +

∫ ∞
−∞

J ′θ(F (x))f(x)dF (x)}1

2
T1

−1

2
d1,1b1 + d1,2b2

(132)

Under this asymptotic linearity the limit of
√
n(θn − θ0) can be obtained by solving

the following linear equation for b1
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[√
nSn,θ((r, q) : β̂n)
√
nSn,µ((r, q) : β̂n)

]
=

[
T x̄{

∫∞
−∞ Jθ(F (x))df(x) +

∫∞
−∞ J

′
θ(F (x))f(x)dF (x)}

T x̄{
∫∞
−∞ Jµ(F (x))df(x) +

∫∞
−∞ J

′
µ(F (x))f(x)dF (x)}

]
(133)

+

[∫∞
−∞{

U(h(F (x):θ0))
h1(F (x):θ0)

+ U(h(1−F (x):θ0))
h1(1−F (x):θ0)

}dJθ(F (x))∫∞
−∞{

U(h(F (x):θ0))
h1(F (x):θ0)

+ U(h(1−F (x):θ0))
h1(1−F (x):θ0)

}dJµ(F (x))

]
(134)

+

[
d11, d12

d21, d22

][
b1

b2

]
≡Mβ +M(θ,µ) +D(θ,µ) b∼

(135)

Thus,

b
∼
∗ =

[
b∗1
b∗2

]
= −D−1(θ,µ)(Mβ +M(θ,µ)) (136)

by setting the right side equal to zero.

Proposition A-1 makes a bridge between estimation for θ and µ based on residuals

e(β̂) and that based on e(β0). M&T (1993) defined estimators for θ and µ based on ε

(β0) and proved asymptotic Normality of estimators. So what we have added here is the

difference in the case where we estimate θ and µ based on residuals e(β̂n) instead of e(β0).

Proposition A-1 reveals that the limit of the rank statistics based on residuals differ from

β0 known case, only by a single term whose randomness comes from estimation of β.

This means that the estimation error based on residuals just adds a term caused by β

estimation part to the original estimation error based on the case of β known (as in

M&T (1993)).

By looking at the form of limit which is a simple sum of a few integrals of Brownian

Bridge, it is clear that their expectation is zero and Normality of distribution follows.

However, we will not provide their specific form of their asymptotic variances. This is

because we do not go further into the investigation variances of these estimators.

Remark

Denote the limit variable of
√
n(β̂ − β0) be T . In case of R-estimate of β with score

function Jβ, T can be written as

T = T (Jβ, h, g) =

∫ 1
0 Jβ(t)dW (t)∫ 1

0 Jβ(t)J(t, g)dt(limn→∞
∑n

i=1
x2i
n )

(137)

where

Jβ(t : g)dt =
g′(G−1(t))

g(G−1(t))
(138)

and G(t) is the distribution function of (ηi − µ).

Since β̂n is defined as the value of β that minimizes
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|Sn,β =
n∑
i=1

Jβ(
Ri(β)

n+ 1
)xi| (139)

where, Ri(β) is the rank of Yi − βxi among {Yj − βxj : j = 1, 2, ...n}.
Note that W (t) is a limit of the weighted empirical process Wn(t).

Wn,(t) =
1√
x′x

n∑
i=1

xi

[
I{G(ηi) ≤ t} − t

]
(140)
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8.5 Estimation of F

Lemma A-3 proved convergence of Ln,r(x : β̂n) − Ln,r(x : β0), uniformly in r for

|r| ≤ β. Here, we use θ̂n in place of r in order to estimate F . This means that we

estimate the unknown F after obtaining the estimates of β and θ. (Note that we do not

need estimate of µ here).

We will prove that Ln,θ̂n(x : β̂n) is an estimator of F and has
√
n - order asymptotic

normality

Proposition A-2.

Let θ̂n be the estimate of θ defined in Appendix 8.4 Eq. (110), just as in M&T

(1993).

√
n
{
Ln,θ̂n(x : β̂n)− F (x− µ)

}
→ N(0, σ2F ) (141)

in distribution as n→∞
Proof of A-2

Note that Ln,θ̂(x : β̂n) is using the estimate of θ discussed in Appendix 8.4,

Noting that F (x − µ) = h−1(Gµ,θ(x)), and also that Ln,θ̂(x : β̂n) = unh
−1(G̃n(x :

β̂n) : θ̂)

Ln,θ̂n(x : β̂n)− F (x− µ) =

+
[ 1

n+ 1

n∑
i=1

I{Zi(θ̂n : β̂n) ≤ x} − i

n+ 1

n∑
i=1

I{Zi(θ̂n : β0) ≤ x}
]

+
[ 1

n+ 1

n∑
i=1

I{Zi(θ̂n : β0) ≤ x} −
i

n+ 1

n∑
i=1

I{Zi(θ0 : β0) ≤ x}
]

+
[ 1

n+ 1

n∑
i=1

I{Zi(θ0 : β0) ≤ x} − F (x− µ)
]

= 1©+ 2©+ 3©

(142)

For 1©,

1© =
1

n+ 1

n∑
i=1

[
I{G̃−1

n,β̂n
h(

i

n+ 1
: θ̂n) ≤ x} − I{G̃−1n,β0h(

i

n+ 1
: θ̂n) ≤ x}

]
=

1

n+ 1

n∑
i=1

[
I{ i

n+ 1
≤ h−1(G̃n,β̂n(x) : θ̂n)} − I{ i

n+ 1
≤ h−1(G̃n,β0(x) : θ̂)}

]
=

n

n+ 1

[
un(h−1(G̃n,β̂n(x) : θ̂n))− un(h−1(G̃n,β0(x) : θ̂n))

]
=

n

n+ 1

[
un(h−1(G̃n,β0(x)∗ : θ̂n))

{
h−1(G̃n,β̂n(x) : θ̂n)− h−1(G̃n,β0(x) : θ̂n)

}]
(143)

where G̃n,β0(x)∗ is some value between G̃n,β̂n(x) and G̃n,β0(x)

Then, as n→∞
√
n 1© converges in distribution to
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h−1(G(x) : θ0)
[ d
dr
h−1(t : θ0)

∣∣∣∣
t = G(x)

]
lim
n→∞

{√
n
{
G̃n,β̂n(x)− G̃n,β0(x)

}}
= F (x− µ)

1

h1(h−1(G(x) : θ0) : θ0)
T ( lim

n→∞
x̄)h1(F (x− µ) : θ0)f(x− µ)

= F (x− µ)
1

h1(F (x− µ) : θ0)
T ( lim

n→∞
x̄)h1(F (x− µ) : θ0)f(x− µ)

= T ( lim
n→∞

x̄)F (x− µ)f(x− µ)

(144)

In the same way, we have

2© =
1

n+ 1

n∑
i=1

[
I{Zi(θ̂n : β0) ≤ x} − I{Zi(θ0 : β0) ≤ x}

]
=

1

n+ 1

n∑
i=1

[
I{G̃−1n,β0(h(

i

n+ 1
: θ̂n)) ≤ x} − I{G̃−1n,β0(h(

i

n+ 1
: θ0)) ≤ x}

]
=

n

n+ 1

[
un(h−1(G̃n,β0(x) : θ̂n))− un(h−1(G̃n,β0(x) : θ0))

]
=

n

n+ 1

[
un(h−1(G̃n,β0(x) : θ̂n)∗)

{
h−1(G̃n,β0(x) : θ̂n)− h−1(G̃n,β0(x) : θ0)

}]
(145)

where h−1(G̃n,β0(x) : θ̂n)∗ is some value between h−1(G̃n,β0(x) : θ̂n) and h−1(G̃n,β0(x) :

θ0)

Then, as n→∞ the limit of
√
n 2© is

lim
n→∞

un(h−1(G(x) : θ0))
[ d
dθ
h−1(t : θ)

∣∣∣∣ t = G(x)

θ = θ0

]√
n
{
θ̂n − θ0

}

= h−1(G(x) : θ0)
h2(h

−1(t : θ0) : θ0)

h1(h−1(t : θ0) : θ0)

∣∣∣∣
t = G(x)

lim
n→∞

√
n
{
θ̂n − θ0

}
= h−1(h(F (x− µ) : θ0) : θ0)

h2(h
−1(G(x) : θ0) : θ0)

h1(h−1(G(x) : θ0) : θ0)
lim
n→∞

(
√
n
{
θ̂n − θ0

}
)

= F (x− µ)
h2(F (x− µ) : θ0)

h1(F (x− µ) : θ0)
lim
n→∞

(
√
n
{
θ̂n − θ0

}
)

(146)

3© =
1

n+ 1

n∑
i=1

I{G̃−1n,β0(h(
i

n+ 1
: θ0)) ≤ x} − F (x− µ)

=
1

n+ 1

n∑
i=1

I{ i

n+ 1
≤ h−1(G̃n,β0(x) : θ0)} − F (x− µ)

=
n

n+ 1

n∑
i=1

un(h−1(G̃n,β0(x) : θ0))− F (x− µ)

(147)

Then,
√
n 3© converges, as n→∞, to
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lim
n→∞

√
n
{
un(h−1(G̃n,β0(x) : θ0))− un(F (x− µ)) + un(F (x− µ))− F (x− µ)

√
n
}

lim
n→∞

√
n
{
h−1(G̃n,β0(x) : θ0)− h−1(G(x)) + {un(F (x− µ))− F (x− µ)}

√
n
}

=
d

dθ
h−1(t : θ)

∣∣∣∣∣ t = G(x)

θ = θ0

√
n{G̃n,β0(x)−G(x)}

=
1

h1(h−1(G(x) : θ0) : θ0))
lim
n→∞

√
n{G̃n,β0(x)−G(x)}

=
limn→∞

√
n{G̃n,β0(x)−G(x)}

h1(F (x− µ) : θ0)
(148)

As shown in Lemma A-1 the limit of
√
n{G̃n,β0(x)−G(x)} is T (limn→∞ x̄)h1(F (x−

µ) : θ0)f(x− µ). Hence h1(F (x− µ) : θ0) cancels out and we have the limit of
√
n 3© is

T (limn→∞ x̄)f(x− µ).

Let LEF (limit variable of
√
n order error of estimation of F ) denote the limit of

√
n( 1©+ 2©+ 3©). We know it is normally distributed with mean 0 and variance σ2F .
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8.6 Tables

Table 8: Descriptive statistics of average skewness and kurtosis, S&P500

Statistic N Mean St. Dev. Min Max

Skewness LS 99 0.156 0.147 −0.285 0.573
Skewness R 99 0.159 0.151 −0.288 0.580
Kurtosis LS 99 2.909 1.144 1.119 5.286
Kurtosis R 99 3.063 1.175 1.188 5.562

Table 9: Descriptive statistics of average skewness and kurtosis, FTSE100

Statistic N Mean St. Dev. Min Max

Skewness LS 131 0.205 0.216 −0.486 0.888
Skewness R 131 0.210 0.228 −0.616 0.929
Kurtosis LS 131 2.353 0.743 1.103 5.436
Kurtosis R 131 2.527 0.816 1.168 5.711

Table 10: Descriptive statistics of θ, R

Statistic N Mean St. Dev. Min Max

Toyota Motor Corp 79 1.034 0.035 0.989 1.107
Taisei Corp 79 1.041 0.036 0.987 1.115
Takashimaya Co 79 1.036 0.031 0.984 1.104
Nippon Express Co Ltd 79 1.034 0.033 0.984 1.118
Canon Inc 79 1.041 0.035 0.987 1.116
Mitsubishi Corp 79 1.041 0.031 0.972 1.107

Table 11: Descriptive statistics of θ, LS

Statistic N Mean St. Dev. Min Max

Toyota Motor Corp 79 1.035 0.035 0.989 1.107
Taisei Corp 79 1.042 0.036 0.965 1.107
Takashimaya Co 79 1.036 0.033 0.982 1.108
Nippon Express Co Ltd 79 1.034 0.032 0.984 1.112
Canon Inc 79 1.040 0.033 0.982 1.108
Mitsubishi Corp 79 1.045 0.030 0.997 1.108

Table 12: Descriptive statistics of µ, R

Statistic N Mean St. Dev. Min Max

Toyota Motor Corp 79 −0.001 0.001 −0.004 0.002
Taisei Corp 79 −0.001 0.002 −0.006 0.004
Takashimaya Co 79 −0.001 0.002 −0.011 0.003
Nippon Express Co Ltd 79 −0.001 0.002 −0.005 0.002
Canon Inc 79 −0.001 0.001 −0.004 0.003
Mitsubishi Corp 79 −0.001 0.002 −0.006 0.004

Table 13: Descriptive statistics of µ, LS

Statistic N Mean St. Dev. Min Max

Toyota Motor Corp 79 −0.001 0.001 −0.004 0.002
Taisei Corp 79 −0.001 0.002 −0.006 0.007
Takashimaya Co 79 −0.001 0.002 −0.010 0.003
Nippon Express Co Ltd 79 −0.001 0.002 −0.005 0.004
Canon Inc 79 −0.001 0.001 −0.005 0.003
Mitsubishi Corp 79 −0.001 0.002 −0.005 0.004
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Table 14: Average µ of N225 stocks

Statistic N Mean St. Dev. Min Max

R 79 −0.001 0.001 −0.004 0.001

LS 79 −0.001 0.001 −0.004 0.001

Table 15: FTSE100 stocks

Statistic N Mean St. Dev. Min Max

R 79 −0.007 0.010 −0.035 0.002

LS 79 −0.006 0.010 −0.034 0.002

Table 16: S&P500 stocks

Statistic N Mean St. Dev. Min Max

R 79 −0.002 0.006 −0.019 0.011
LS 79 −0.002 0.006 −0.020 0.012

Table 17: Average θ of N225 stocks

Statistic N Mean St. Dev. Min Max

R 79 1.039 0.006 1.026 1.058

LS 79 1.039 0.006 1.026 1.060

Table 18: FTSE100 stocks

Statistic N Mean St. Dev. Min Max

R 79 1.026 0.005 1.016 1.040

LS 79 1.025 0.004 1.017 1.039

Table 19: S&P500 stocks

Statistic N Mean St. Dev. Min Max

R 79 1.031 0.005 1.022 1.045
LS 79 1.031 0.005 1.022 1.046
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8.7 Figures
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Figure 83: Residual hist. Q4 2002
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Figure 84: Residual hist. Q3 2008
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Figure 85: Residual hist. Q2 2015
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Figure 86: Residual hist. Q3 2017
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