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Abstract

This study considers semiparametric partially linear spatial autoregressive models with autoregressive

disturbances that contain an unspecified nonparametric component and allow for spatial lags in both

the dependent variables and disturbances. Having the nonparametric function approximated by basis

functions, we propose a three-step estimation procedure for the proposed model. We also establish the

consistency and asymptotic normality of the proposed estimators. Then, the finite sample performances

of the proposed estimators are examined using Monte Carlo simulations. As an empirical application,

we use the proposed model and estimation method to analyze Boston housing price data to evaluate the

effect of air pollution on the value of owner-occupied homes.

Keywords: Partially linear models, Series estimation, Spatial econometrics, Instrumental variables.

1 Introduction

Recently, the spatial autoregressive (SAR) model proposed by Clif and Ord (1973) has received increasing

attention in both theoretical and applied econometrics research. Specifically, the data in the field of regional,

urban, and environmental economics usually show the spatial dependency of cross-sectional units and SAR

models are used to capture this dependency. The class of SAR models is extended by considering spatial

interaction effects in both the dependent variables and disturbances. We call these models SAR models with

spatial autoregressive disturbances (SARAR).

Anselin (1988) and Lee (2004) propose the (quasi) maximum likelihood (ML) to estimate such parametric

spatial econometric models. However, one drawback of ML estimation is the computational load when the

sample size is large, because there is no closed-form expression of ML estimators; therefore, it is necessary

to calculate the determinant of a large matrix, whose size depends on the sample size. Another approach
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for the estimation of spatial econometric models consists of moment-based estimations. Kelejian and Prucha

(1998, 2010) introduce generalized spatial two-stage least squares (2SLS) estimation methods, while Lee and

Liu (2010) consider the generalized method of moments (GMM) estimation methods.

To avoid mis-specification of the data generating process in parametric models, the semiparametric ex-

tensions of spatial econometric models have received significant attention owing to the simple interpretation

of parametric terms and the flexibility of nonparametric terms. A popular semiparametric regression model

is the partially linear one, which contains explanatory variables nonlinearly rerated with dependent variables.

As semiparametric extensions of the SAR models, Su and Jin (2010) and Du et al. (2018) propose partially

linear SAR (PL-SAR), while Su (2012) considers partially linear SARAR (PL-SARAR) models. Zhang and

Sun (2015) further study the spatial dynamic panel extension of PL-SAR models. Another semiparametric

extension is the varying coefficient model, in which the impact of some explanatory variables depends on spa-

tial units. Zhang and Shen (2015) consider semiparametric varying coefficient-specified spatial panel models

and Hoshino (2018) proposes functional coefficient SAR models with endogenous regressors.

A popular method for estimating nonparametric terms in regression models is the kernel approach. Su

(2012) applies kernel methods and proposes the estimation method for the PL-SARAR models in which the

nonparametric terms are profiled out. However, as the sample size increases, the computational load of these

estimation methods increases significantly, making them less manageable. Another estimation method for

nonparametric terms is series estimation. One advantage of series methods is their computational simplic-

ity. As such, we apply moment-based estimation methods for the estimation of nonparametric terms by

approximating the nonparametric terms using basis functions such as polynomials and splines.

We consider the moment-based estiamtion method for PL-SARAR models for computational simplicity.

Accordingly, we propose a three-step estimation procedure by applying the 2SLS and nonlinear least squares

(NLS) methods for the parametric terms and series methods for the nonparametric term in the proposed

model. The consistency and asymptotic normality of the proposed estimators are established and the small

sample properties of the proposed estimators are then evaluated.

As an empirical analysis, we apply the SARAR and PL-SARAR models to Boston land price data to

evaluate the causal effect of air pollution on housing prices. In the model, the dependent variable is the median

value of owner-occupied homes and the explanatory variable is the nitrogen oxide (NOX) concentration. Our

empirical findings are as follows. First, housing prices show spatial correlations even after we control for the

potential determinants of housing prices. Second, air pollution has strong negative effects on housing prices

in both the parametric and semiparametric models. Finally, the effect of air pollution of housing prices is

not linear and the negative effect increases significantly when the proportion of NOX in the air is above a

threshold value.
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The rest of paper proceeds as follows. We introduce PL-SARAR models and propose a three-step estima-

tion method in section 2. The asymptotic properties of the proposed estimators are established in section 3.

Section 4 examines the small sample properties of the proposed estimators using Monte Carlo simulations.

In section 5, we apply the proposed models to Boston land price data to investigate the empirical properties

of the proposed model. Section 6 presents the concluding remarks. The proofs of Lemmas and Theorems are

provided in the Appendix.

Notation: We use In to denote an n × n identity matrix. For matrix An, ||An|| denotes its Frobenius

norm: ||An|| = {tr(A′
nAn)}1/2, where tr(·) is the trace operator. When An is a symmetric matrix, γmax(An)

and γmin(An) denote the largest and smallest eigenvalues of An, respectively.

2 Model Specification and Estimation

Let us consider the following PL-SARAR models:

yn,i = λ0

n∑
j=1

wn,i,jyn,j + x
′
n,iβ0 + g0(sn,i) + un,i, (1)

un,i = ρ0

n∑
j=1

mn,i,jun,j + εn,i,

where n is the number of spatial units, yn,i is an observed dependent variable, xn,i = (x
(1)
n,i, . . . , x

(dx)
n,i )′ is a

dx × 1 vector of exogenous regressors, sn,i is a nonparametric regressor, g0(·) is an unknown function, εn,i is

an independently and identically distributed (i.i.d.) disturbance with mean zero and variance σ2
0 , and wn,i,j

and mn,i,j are the (i, j)th elements of predetermined n×n spatial weight matrices Wn and Mn, respectively.

Scalar parameters λ0 and ρ0 are SAR parameters and β0 is a coefficient vector.

We apply the series approximation method to estimate the nonparametric term. Let {pk(·) : k = 1, 2, . . .}
be a sequence of basis functions such as polynomials, splines, and Fourier series. We assume that nonpara-

metric function g0(sn,i) can be approximated by PK(sn,i)
′α0, where P

K(·) = (p1(·), . . . , pK(·))′, K is the

number of basis functions, and α0 is a K × 1 vector of parameters. Therefore, the series approximation error

of the nonparametric function is given by:

vn,i = g0(sn,i)− PK(sn,i)α0,
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and model (1) is expressed as

yn,i = λ0

n∑
j=1

wn,i,jyn,j + x
′
n,iβ0 + PK(sn,i)α0 + vn,i + un,i, (2)

un,i = ρ0

n∑
j=1

mn,i,jun,j + εn,i.

For notational simplicity, we consider the following matrix notation of the proposed model. Let Yn =

(yn,1, . . . , yn,n)
′, Xn = (xn,1, . . . , xn,n)

′, Bn = (WnYn, Xn), δ0 = (ρ0, β0)
′, Pn = (PK(sn,1), . . . , P

K(sn,n))
′,

Vn = (vn,1, . . . , vn,n)
′, and εn = (εn,1, . . . , εn,n)

′. When In − ρ0Mn are nonsingular, model (2) is rewritten

as:

Yn = Bnδ0 + Pnα0 + Vn + (In − ρ0Mn)
−1εn. (3)

For the estimation of the parameters in model (3), we propose a three-step estimation procedure. In the

first step, we apply 2SLS to model (3) to estimate δ0 because the spatial lagged dependent variable, WnYn, is

correlated with the error term, (In − ρ0Mn)
−1εn. In the second step, we estimate the coefficient of the basis

function, α0, and the unknown function, g0(·), by ordinary least squares (OLS). In the third step, the spatial

autoregressive parameter and variance of disturbances, ρ0 and σ2
0 , respectively, are estimated by applying

NLS to the residuals obtained in the first and second steps.

The first step is the estimation of parameter δ0 by 2SLS because the correlation of the spatial lagged

dependent variable and the error term leads to the inconsistency of the OLS estimator (see, e.g., Kelejian

and Prucha (1998)). Let Zn be an n×dz matrix of instrumental variables. For example, we may use matrices

(Xn,WnXn,WnWnXn) as instrumental variables.

Following Zhang and Sun (2015) and Du et al. (2018), we partial out the series approximation. Let

Πn = Pn(P
′
nPn)

−1P
′
n denote the projection matrix onto the space spanned by Pn. Then, we obtain:

(In −Πn)Yn = (In −Πn)Bnδ0 + (In −Πn)Vn + (In −Πn)(In − ρMn)
−1εn. (4)

Applying 2SLS to model (4) with instrument variables Zn, we propose the following 2SLS estimator for

parameter δ0:

δ̂ = (B
′
n(In −Πn)Hn(In −Πn)B

′
n)

−1B
′
n(In −Πn)Hn(In −Πn)Y

′
n,

where Hn = Zn(Z
′
nZn)

−1Z
′
n.

4



In the second step, we consider the estimation of the coefficient on the series approximation, α0, by

applying the OLS method and derive the estimator of the unknown function, g0(·). Using OLS, we obtain

the following estimator for α and g0(sn,i):

α̂ = (PnPn)
−1Pn(Yn −Bnδ̂),

ĝ(sn,i) = PK(sn,i)α̂,

where δ0 is the 2SLS estimator obtained in the first step.

The third step represents the estimation of the spatial autoregressive parameter and the variance of the

disturbances, ρ0 and σ2
0 , respectively by NLS. Let un = Wnun, un = Wnun and εn = Wnεn. Moreover, we

denote the i-th elements of un, un, un, and εn by un,i, un,i, un,i, and εn,i, respectively.

The spatial correlation of the disturbance term indicates the following moment condition:

un − ρun = εn, (5)

un − ρun = εn. (6)

Following Kelejian and Prucha (1999), we define the two matrices for the NLS estimation based on (5)

and (6), respectively:

Gn =
1

n

⎛
⎜⎜⎜⎜⎝

2
∑n

i=1E(un,iun,i) −∑n
i=1E(u2n,i) n

2
∑n

i=1E(un,iun,i) −∑n
i=1E(u

2
n,i) tr(M ′

nMn)∑n
i=1E(un,iun,i + u2n,i) −∑n

i=1E(un,iun,i) 0

⎞
⎟⎟⎟⎟⎠ , (7)

gn =
1

n

⎛
⎜⎜⎜⎜⎝

∑n
i=1E(u2n,i)∑n
i=1E(u2n,i)∑n

i=1E(un,iun,i)

⎞
⎟⎟⎟⎟⎠ . (8)

We derive the objective function for the NLS estimation by replacing the disturbances in (7) and (8) with

the sample moments. Let ûn = Yn −Bnδ̂−Pnα̂, ûn =Wnûn and ûn =Wnûn. Moreover, we denote the i-th

elements of ûn, ûn, and ûn by ûn,i, ûn,i, and ûn,i, respectively. We also define

Ĝn =
1

n

⎛
⎜⎜⎜⎜⎝

2
∑n

i=1 ûn,iûn,i −∑n
i=1 û

2

n,i n

2
∑n

i=1 ûn,iûn,i −∑n
i=1 û

2

n,i tr(M ′
nMn)∑n

i=1(ûn,iûn,i + û
2

n,i) −∑n
i=1 ûn,iûn,i 0

⎞
⎟⎟⎟⎟⎠ ,
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ĝn =
1

n

⎛
⎜⎜⎜⎜⎝

∑n
i=1 û

2
n,i∑n

i=1 û
2

n,i∑n
i−1 ûn,iûn,i

⎞
⎟⎟⎟⎟⎠ .

Let η = (ρ, ρ2, σ2)′. Then, the NLS estimators for ρ and σ2, ρ̂ and σ̂2, respectively, are defined as the

minimizers of (Ĝn − gnη)
′(Gn − gnη). Therefore, the third step estimator is defined by

(ρ̂, σ̂2) = argmin

{
(Ĝn − ĝnη)

′(Ĝn − ĝnη)

}
.

3 Asymptotic Properties

Here, we consider the asymptotic properties of the proposed estimators. We introduce the following assump-

tions.

Assumption 1

1. All the diagonal elements of Wn and Mn are zero.

2. Matrices In − λWn and In − ρMn are nonsingular for all |λ| < 1 and |ρ| < 1.

3. The row and column sums of matricesWn,Mn, (In−λ0Wn)
−1 and (In−ρ0Mn)

−1 are uniformly bounded

in absolute value.

Assumption 2 Disturbance εi,n is i.i.d. with E(εi,n) = 0 and V (εi,n) = σ2
0 . Moreover, the disturbance

has a finite fourth moment.

Assumption 3

1. Exogenous regressors Xn are non-stochastic and the elements of Xn are uniformly bounded in absolute

value.

2. Instrumental variables Zn are non-stochastic and the elements of Zn are uniformly bounded in absolute

value.

3. Nonparametric regressor Sn = (sn,1, . . . , sn,n)
′ is non-stochastic and the set of possible values for sn,i,

S, is a compact space.
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Assumption 4

1. There exist α0 ∈ R
K and rs > 0 so that sups∈S |PK(s)′α0 − f(s)| = O(K−rs) for each K.

2. sups∈S ||PK(s)|| = O(K1/2).

3.
√
nK−rs → 0 and K2

n → 0 as n→ ∞.

4. There exist constants cPn
and cPn so that 0 < cPn

< γmin

(
P ′

nPn

n

)
≤ γmax

(
P ′

nP
′
n

n

)
< cPn <∞.

5. g0(s) is uniformly bounded in absolute value.

Assumption 5 Let B̃n = Wn(In − λ0Wn)
−1(Bn + g0(Sn)). There exist constants cB̃n

and cB̃n
so that

0 < cB̃n
< γmin

(
B̃nB̃

′
n

n

)
≤ γmax

(
B̃nB̃

′
n

n

)
< cB̃n

<∞.

We define

Σn,1 =
1

n
B̃′

n(In −Πn)Hn(In −Πn)B̃n,

Σn,2 =
1

n
B′

n(In −Πn)Hn(In −Πn)(I − ρ0Mn)
−1(I − ρ0Mn)

′−1(In −Πn)Hn(In −Πn)Bn.

Assumption 6 Σ1 = limn→∞ Σn,1 and Σ2 = limn→∞ Σn,2 exist and are bounded away from zero and

infinity.

Assumption 7 There exists constant cGn
so that 0 < cGn

< γmin(G
′
nGn).

Assumption 1.1 leads to the normalization of the proposed model and Assumption 1.2 to the existence

condition of the model. We say that the row sums of matrix An are uniformly bounded in absolute value if

there exists constant cA so that

max
1≤i≤n,n≥1

n∑
j=1

|an,i,j | < cA,

where an,i,j is the (i, j)th element of An. The uniform boundedness of column sums is similarly defined.

Assumption 1.3 limits the spatial correlation between the elements of Yn and εn. Assumption 2 provides the

essential features of the disturbances. Assumption 3 is the standard set of assumptions in spatial econometrics

literatures. Assumption 4.1 indicates the approximation error reduction at K−rs , assumption 4.2 imposes

a restriction on the basis functions, assumption 4.3 ensures that the series approximation bias does not

affect the limiting distribution of the proposed estimators, and assumptions 4.4 and 4.5 are required for the

derivation of the asymptotic properties of the proposed estimators. Assumption 5 limits spatial correlation to

a certain degree and is required to establish the asymptotic properties of the proposed estimator. Assumption
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6 is required to derive the limiting distribution of the first-step estimator. Assumption 7 is required for the

identifiability of the third-step nonlinear estimator.

First, we consider the asymptotic behaviors of the first-step estimator, δ̂. The limiting distribution of this

estimator is centered at δ0 and is asymptotically normal.

Theorem 1. If Assumptions 1–6 hold, then,

√
n(δ̂ − δ0)

d−→ N(0, σ2
0Σ

−1
1 Σ2Σ

−1
1 ).

Second, we consider the asymptotic properties of the second-step estimators, α̂ and ĝ(·). We define:

σ2(s) = σ2(PK(s)(P ′
nPn)

−1P ′
n(In − ρ0Mn)

−1(In − ρ0Mn)
′−1Pn(P

′
nPn)

−1P
′K(s)).

Then, the convergence rates of |α̂−α0| and sups |ĝ(s)−g0(s)| are derived. Moreover, the limiting distribution

of estimator ĝ(·) is centered at g0(·) and asymptotically normal for a given s ∈ S.

Theorem 2. If Assumptions 1–6 hold, then,

1. α̂ = α0 +Op(
√
K/N +K−rs).

2. sups |ĝ(s)− g0(s)| = Op(K/
√
n+K(1−2rs)/2).

3. (ĝ(s)− g0(s))
d−→ N(0, σ2(s)).

Finally, we show the consistency of the third-step estimator.

Theorem 3. If Assumptions 1–7 hold, then,

ρ̂
p−→ ρ0,

σ̂2 p−→ σ2
0 .

4 Monte Carlo Simulation

Here, we examine the small sample performances of the proposed three-step estimators through a set of

simulation experiments. We consider the following data generating process for the Monte Carlo simulations:

yn,i = λ0

n∑
j=1

wn,i,jyn,j + xn,iβ0 + g0(sn,i) + un,i,
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un,i = ρ0

n∑
j=1

wn,i,jun,j + εn,i,

where xn,i ∼ i.i.d. N(0, 1), sn,i ∼ i.i.d. Uniform[0, 1], g0(sn,i) = sin(3πsn,i) and εn,i ∼ i.i.d. N(0, σ2
0) for all

i = 1, . . . , n. Spatial weight matrix Wn is defined according to rook contiguity with row normalization (see,

e.g., Arbia (2014)). As basis functions for the approximation of the nonparametric function, we use cubic

B-splines (see, e.g., Hastie et al. (2009)). Following a simple rule-of-thumb, we set the numbers of the basis

functions as �n1/5	+ 2× 4, where �n1/5	 denotes the integer part of n1/5.

We set β0 = 2 and σ2
0 = 1 as true values. As pairs of spatial autoregressive parameters (λ0, ρ0), we

consider the following four cases: (λ0, ρ0) ∈ {(0.2, 0.2), (0.8, 0.8), (0.2, 0.8), (0.8, 0.2)}. For each parameter

value, we generate a sample of size n (= 400, 900) and calculate the estimators. This step is repeated 1000

times. For the estimators of λ0, ρ0, β0 and σ2
0 , we report the bias and root mean squared errors (RMSE). To

evaluate the estimation performance of the nonparametric term, we use the average RMSE (ARMSE):

ARMSE =
1

1000

1000∑
l=1

{
1

n

n∑
i=1

[ĝl(sn,i)− g0(sn,i)]
2

}1/2

,

where ĝl(·) indicates the estimate from the l-th replicated dataset.

Table 1 summarizes the estimation results of λ0, ρ0, β0, σ
2
0 , and g0(·). As the sample size of observations

increases, estimations become more accurate. The results demonstrate the consistency of the proposed

estimators. The ARMSE of the estimator for the nonparametric function, ĝ(·), is larger than the RMSE

of the estimator for the parametric functions because the convergence rate of ĝ(·) is slower than root-N.

Moreover, the bias and RMSE of the third-step estimator, ρ̂ and σ2
0 , are larger than those of the 2SLS

estimator, λ̂ and β̂, respectively. With regard to the magnitude of the spatial autoregressive parameters, λ0

and ρ0, their degree does not affect the estimation accuracy of the parametric terms. However, the bias and

RMSE of the estimators for the nonparametric function tend to increase as ρ0 increases.

5 Real Data Analysis

We apply the SARAR and PL-SARAR models to Boston housing price data collected by Harrison and

Rubinfield (1978) to investigate the empirical properties of the PL-SARAR model and evaluate the effect of

air pollution on house value. The data contain the median house prices in 506 Boston area census tracts,

NOX concentrations per town as an index of air pollution, and other potential determinants of house values.

The definitions of the variables are summarized in Table 2.
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Table 1: Small sample performances of the proposed estimators by biases and root mean square errors.

λ0 = 0.2, ρ0 = 0.2 λ0 = 0.8, ρ0 = 0.8 λ0 = 0.8, ρ0 = 0.2 λ0 = 0.2, ρ0 = 0.8
β0 = 1, σ2 = 1 β0 = 1, σ2 = 1 β0 = 1, σ2 = 1 β0 = 1, σ2 = 1
n = 400 n = 900 n =400 n=900 n = 400 n = 900 n=400 n=900

λ0 Bias -0.0001 -0.0010 -0.0128 -0.0072 -0.0008 -0.0006 0.0023 -0.0045
RMSE 0.0511 0.0343 0.0779 0.0514 0.0309 0.0197 0.1037 0.0714

ρ0 Bias -0.0321 -0.0126 -0.0202 -0.0108 -0.0329 -0.0160 -0.0326 -0.0111
RMSE 0.0893 0.0598 0.0856 0.0563 0.0899 0.0572 0.0848 0.0519

β0 Bias -0.0006 -0.0002 -0.0042 -0.0002 -0.0002 -0.0009 -0.0056 -0.0039
RMSE 0.0514 0.0349 0.0512 0.0349 0.0517 0.0337 0.0708 0.0462

σ2
0 Bias -0.0242 -0.0124 -0.0111 -0.0023 -0.0277 -0.0102 -0.0063 -0.0047

RMSE 0.0713 0.0478 0.0732 0.0515 0.0758 0.0489 0.0831 0.0566
g0(·) ARMSE 0.1622 0.1104 0.5729 0.4171 0.1775 0.1219 0.5159 0.3716

Table 2: Variable definitions.
Variable Definition

Dependent variable MEDV Median value of owner-occupied homes.
Explanatory variables CRIM Per capita crime rate by town.

RM Average number of rooms per dwelling.
AGE Proportion of owner units built prior to 1940.
TAX Full value property tax rate per USD 10,000 per town.

LSTAT Proportion of lower status of the population.
INDUS Proportion of non-retail business acres per town.

B Black proportion of population.
DIS Weighted distances from five Boston employment centers.
RAD Index of accessibility to radial highways.

PTRATIO Pupil-teacher ratio by town school district.
NOX Nitrogen oxide concentration per town.

We compare the partially linear with the parametric linear models. Model 1 is defined by:

MEDV = λWnMEDV + β1 + β2CRIM + β3RM + β4AGE + β5TAX + β6LSTAT

+β7INDUS + β8B + β9DIS + β10RAD + β11PTRATIO + g(NOX) + un,

un = ρWnun + εn,

where g(·) is an unknown function of NOX. We set the number of basis functions as 3 + 2 × 4 following

a simple rule-of-thumb. In model 2, we assume explanatory variable NOX is linearly correlated with the

dependent variable. Therefore, we replace g(NOX) in model 1 with β12NOX in model 2. According to Pace

and Gilley (1997) and Du et al. (2018), we define the (i, j)th element of the spatial weight matrix by:

wn,i,j = max

(
1− di,j

d0
, 0

)
,
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Figure 1: Estimates of nonparametric function g(NOX) in model 1 and its 95% confidence interval.

where di,j is the Euclidean distance calculated by the longitude and latitude coordinates of the two obser-

vations and d0 is the threshold distance, chosen as 0.025 in this analysis. Furthermore, we normalized the

weight matrix so that the sums of rows are equal to one. The parameters in model 1 are estimated by the

proposed three-step estimation method and the ones in model 2 are estimated by 2SLS (see, e.g., Kelejian

and Prucha (1998)).

Table 3 shows the estimation results of the regression coefficient, spatial autoregressive parameters, and

variances in innovation. The estimation results of models 1 and 2 are similar and the sign and statistical

significance of the regression coefficients are consistent with previous empirical research on Boston house

pricing data (see, e.g. Pace and Gilley (1997) and Arbia (2014)). Figure 1 shows the estimation results of the

nonparametric function in model 1. The solid line corresponds to the estimates of g(·) and the dotted ones

to the 95% confidence interval. Our empirical findings are as follows. First, a spatial correlation between

the dependent variables and disturbances exists even after we control for some of the potential determinants

of housing prices. This indicates that house values in surrounding areas have a positive effect on housing

prices and there may exist unobserved shocks following a spatial pattern. Second, air pollution has a strong

negative effect on housing prices in both the parametric and semiparametric models because the regression

coefficient on NOX in model 2 and the estimates of g(NOX) in Figure 1 take negative values. Third, the
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Table 3: Estimation results for the coefficients in models 1 and 2.

Model 1 Model 2
Variable Coefficient Std. error Coefficient Std. error
CRIM -0.1116 0.0382 -0.1025 0.0327
RM 4.1387 0.4522 3.8561 0.4133
INDUS -0.0449 0.0651 -0.0126 0.0616
AGE -0.0012 0.0155 0.0020 0.0134
DIS -0.8068 0.3227 -1.3219 0.3375
RAD 0.5106 0.1578 0.2916 0.0690
PTRARIO -0.9877 0.1682 -0.9638 0.1351
B 0.0091 0.0037 0.0099 0.0027
LSTAT -0.5531 0.0572 -0.5362 0.0510
TAX -0.0215 0.0056 -0.0120 0.0038
NOX — — -14.7740 4.1372
Constant 23.8648 7.7433 26.0959 7.2377
λ 0.5775 0.2847 0.4037 0.1892
ρ 0.8062 — 0.8518 —
σ2 25.0267 — 22.1511 —

effect of air pollution of house prices is not linear and the negative effect increases when the proportion of

NOX is over a threshold value. Figure 1 shows the proportion of NOX tends to negatively affect house prices

and this negative effect increases rapidly for values above 0.65. These results suggest that air pollution has

negative effects on house values but that people are tolerant of air pollution to a certain extent.

6 Conclusions

In this study, we consider the PL-SARAR model and series estimation methods are employed to estimate

the nonparametric term of the proposed model. For model estimation, we propose a three-step estimation

procedure. The first step is the estimation of the parametric regression coefficient and spatial autoregressive

parameters for the dependent variables using 2SLS. The series approximation coefficient for the nonparametric

function is then estimated by OLS in the second step. The third step entails the estimation of variances

and spatial autoregressive parameters in disturbances using NLS. We then establish the consistency and

asymptotic normality of the proposed estimators. Monte Carlo simulations indicate that the small sample

performances of the proposed estimator are reasonably good. Subsequently, we apply the proposed model

and estimators to Boston land price data. We find that the proportion of NOX in the air tends to negatively

affect house prices, the negative effect rapidly increasing for values above 0.65.

In future studies, some extensions of this study could be considered as follows. First, GMM could be used

for the estimation of spatial autoregressive parameters in the proposed model instead of 2SLS and NLS. Lee

and Liu (2010) indicate that GMM estimators are more efficient for the estimation of spatial autoregressive

12



parameters. Applying GMM estimation procedures to the proposed model improves the efficiency of estima-

tion. Second, the extension of the proposed model to spatial dynamic panel data models could be considered.

Such models can control the dynamics of economic activities and unobserved time invariant heterogeneity

across spatial units. This spatial dynamic panel extension would be helpful to investigate dynamic spatial

spillover and causal effects in the empirical analysis.
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Appendix

The following facts summarize some basic properties on matrix algebras.

Fact 1. If the row and column sums of n×n matrices C1 and C2 are uniformly bounded in absolute value,

then the row and column sums of C1C2 and C2C1 are also uniformly bounded in absolute value (see, e.g.,

Kelejian and Prucha (1998)).

Fact 2. Let C1 be a symmetric matrix and C2 be a positive semidefinite matrix. Then, γmin(C1)tr(C2) ≤
tr(C1C2) ≤ γ(max)(C1)tr(C2).

Fact 3. For an n × n matrix C, its spectral radius is bounded by maxi
∑n

j=1 |cn,i,j |, with cn,i,j being the

(i, j)-th element of Cn (see, the appendix of Hoshino (2018)).

The following lemmas are essential for the proofs of the main results of this paper.
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Lemma 1. Let An be an n × n matrix whose row and column sums are uniformly bounded in absolute

value, and Dn be a symmetric and idempotent matrix. Suppose that Assumptions 1-5 hold. Then,

B
′
nA

′
n(In −Dn)Hn(In −Dn)AnBn = B̃n

′A
′
n(In −Dn)Hn(In −Dn)AnB̃n +Op(

√
n),

where B̃n = (Wn(In − λ0Wn)
−1(Xnβ0 + g0(Sn)), Xn).

Proof. By the definition of the matrix Bn, we have

Bn = (WnYn, Xn),

= (Wn(In − λ0Wn)
−1(Xnβ0 + g0(Sn), Xn) + (Wn(In − λ0Wn)

−1(In − ρ0Mn)
−1εn, 0n×dx

),

= B̃n + ε̃n.

where B̃n = (Wn(In − λ0Wn)
−1(Xnβ0 + g0(Sn), Xn) and ε̃n = (Wn(In − λ0Wn)

−1(In − ρ0Mn)
−1εn, 0n×dx

)

and 0n×dx is an n× dx matrix whose components are zero.

Thus,

B
′
nA

′
n(In −Dn)Hn(In −Dn)Bn = (B̃n + ε̃n)

′A
′
n(In −Dn)Hn(In −Dn)(B̃n + ε̃n),

= B̃n
′A

′
n(In −Dn)Hn(In −Dn)AnB̃n + B̃′A

′
n(In −Dn)Hn(In −Dn)Anε̃n

+ε̃′n(In −Dn)Hn(In −Dn)AnB̃n + ε̃′nAn(In −Dn)Hn(In −Dn)Anε̃,

= R11 +R12 +R13 +R14,

where R11 = B̃n
′A

′
n(In −Dn)Hn(In −Dn)AnB̃n, R12 = B̃′A

′
n(In −Dn)Hn(In −Dn)Anε̃n, R13 = ε̃′n(In −

Dn)Hn(In −Dn)AnB̃n and R14 = ε̃′nAn(In −Dn)Hn(In −Dn)Anε̃.

Firstly, we consider R14. Let Tn = AnWn(In − λ0Wn)
−1(In − ρ0Mn)

−1. The row and column sums of

Tn is uniformly bounded in absolute value by Assumption 1 and Fact 1, and γmax(TnT
′
n) = O(1) by Fact 3.

Noting that the largest eigenvalue of an idempotent matrix is at most one, by Assumption 2 and Fact 2,

E(ε′nT
′
n(In −Dn)Hn(In −Dn)Tnεn) = σ2tr((Z ′

nZn)
1
2Z ′

n(In −Dn)TnT
′
n(In −Dn)Zn(Z

′
nZn)

1
2 ,

≤ σ2γmax(TnT
′
n)tr((Z

′
nZn)

1
2Z ′

n(I −Dn)Zn(Z
′
nZn)

1
2 ),

≤ σ2γmax(TnT
′
n)tr((Z

′
nZn)

1
2Z ′

nZn(Z
′
nZn)

1
2 ),

= O(1).
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Then, it follows by Markov’s inequality that R14 = Op(1).

Next, we consider R12. By assumption 5,

E||B̃′
nAn(In −Dn)Hn(In −Dn)Tnεn||2 = Etr(ε′nT

′
n(In −Dn)Hn(In −Dn)A

′
nB̃nB̃

′
nAn(In −Dn)Hn(In −Dn)Tnεn),

≤ nσ2cB̃n
γmax(A

′
nAn)tr(T

′
n(In −Dn)Hn(In −Dn)Hn(In −Dn)Tn),

≤ nσ2cB̃n
γmax(A

′
nAn)γmax(T

′
nTn)tr(Hn),

= O(n).

Thus, R12 = Op(
√
n) by Jensen’s inequality and Markov’s inequality. Similarly, we have R13 = Op(

√
n).

By combining the convergence rate of R12, R13 and R14, we have

B
′
nA

′
n(In −Dn)Hn(In −Dn)AnBn = R11 +Op(

√
n).

Lemma 2 Let An be an n × n matrix whose row and column sums are uniformly bounded in absolute

value, Dn be a symmetric and idempotent matrix. Suppose that Assumptions 1-5 hold. Then,

B′
nAn(In −Dn)Hn(In −Dn)AnVn = O(nK−rs),

Proof. By the definition of Bn, we have

B′
nA

′
n(In −Dn)Hn(In −Dn)AnVn = B̃′

nA
′
n(In −Dn)Hn(In −Dn)AnVn + ε̃′nAn(In −Dn)Hn(In −Dn)AnVn,

= R21 +R22,

where R21 = B̃′
nA

′
n(In −Dn)Hn(In −Dn)AnVn and R22 = ε̃′nAn(In −Dn)Hn(In −Dn)AnVn.

Firstly, we consider R21. By Assumption 4 and 5,

||B̃′
nA

′
n(In −Dn)Hn(In −Dn)AnVn||2 = tr(V ′

nA
′
n(In −Dn)Hn(In −Dn)AnB̃B̃′

nA
′
n(In −Dn)Hn(In −Dn)AnVn),

≤ ncB̃n
γmax(AnA

′
n)tr(V

′
nA

′
n(In −Dn)Hn(In −Dn)AnVn),

≤ ncB̃n
γmax(AnA

′
n)γmax(A

′
nAn)||Vn||2,

≤ n2cB̃n
γmax(AnA

′
n)γmax(A

′
nAn) sup

s∈S
|p(s)′B0 − f(s)|2,

= O(n2K−2rs).

Thus, R21 = O(nK−rs) by Jensen’s inequality.
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Next, we consider R22. Similarly, by assumption 4 and 5,

E||ε′nT ′
n(In −Dn)Hn(In −Dn)AnVn||2 = Etr(V ′

nAn(In −Dn)Hn(In −Dn)Tnεnε
′
nT

′
n(In −Dn)Hn(In −Dn)AnVn),

≤ σ2γmax(TnT
′
n)γmax(A

′
nAn)||Vn||2,

≤ σ2γmax(TnT
′
n)γmax(A

′
nAn)n sup

s∈S
|p(s)′B0 − f(s)|2,

= O(nK−2rs).

Thus, R22 = Op(
√
nK−rs) by Jensen’s inequality and Markov’s inequality.

By combining the convergence rate of R21 and R22, we have

B′
nAn(In −Dn)Hn(In −Dn)AnVn = O(nK−rs).

Proof of Theorem 1 By the definition of δ̂,

δ̂ = (B′
n(In −Πn)Hn(In −Πn)Bn)

−1B′
n(In −Πn)Hn(In −Πn)Yn,

= δ0 + (B′
n(In −Πn)Hn(In −Πn)Bn)

−1B′
n(In −Πn)Hn(In −Πn)V

+(B′
n(In −Πn)Hn(In −Πn)Bn)

−1B′
n(In −Πn)Hn(In −Πn)(I − ρ0Mn)

−1εn.

Thus,

√
n(δ̂ − δ0) =

(
1

n
B′

n(In −Πn)Hn(In −Πn)Bn

)−1
1√
n
B′

n(In −Πn)Hn(In −Πn)V

+

(
1

n
B′

n(In −Πn)Hn(In −Πn)Bn

)−1
1√
n
B′

n(In −Πn)Hn(In −Πn)(In − ρ0Mn)
−1εn.

By Lemma 1 and 2,

1

n
B′

n(In −Πn)Hn(In −Πn)Bn
p−→ Σ2,

1√
n
B′

n(In −Πn)Hn(In −Πn)V
p−→ 0.

By Slutsky’s theorem and a central limit theorem, we have

√
n(δ̂ − δ) =

(
R11

n
+O(n−1)

)−1(
1√
n
B′

n(In −Πn)Hn(In −Πn)(In − ρ0Mn)
−1εn +O(K−rs)

)
,

d−→ N(0, σ2Σ−1
2 Σ1Σ

−1
2 ).
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Proof of Theorem 2 Firstly, we consider the convergence rate of α̂. By the definition of α̂,

α̂ = (P ′
nPn)

−1P ′
n(Yn −Bnδ̂),

= α0 + (P ′
nPn)

−1P ′
nBn(δ0 − δ̂) + (P ′

nPn)
−1P ′

nVn + (P ′
nPn)

−1P ′
n(In − ρ0Mn)

−1εn,

= α0 +R31 +R32 +R33,

where R31 = (P ′
nPn)

−1P ′
nBn(δ0 − δ̂), R32 = (P ′

nPn)
−1P ′

nVn and R33 = (P ′
nPn)

−1P ′
n(In − ρ0Mn)

−1εn.

By the definition of Bn, we have

R31 = (P ′
nPn)

−1P ′
nB̃(δ0 − δ̂) + (P ′

nPn)
−1P ′

nε̃(δ0 − δ̂),

= R41 +R42,

where R41 = (P ′
nΠ)

−1Π′B̃(δ0 − δ̂) and R42 = (P ′
nPn)

−1P ′
nε̃(δ0 − δ̂).

Firstly we consider R41.

||(P ′
nPn)

−1P ′
nB̃n(δ0 − δ̂)||2 = tr((δ0 − δ̂)′B̃′

nPn(P
′
nPn)

−2P ′
nB̃n(δ0 − δ̂)),

≤ 1

n
c−1
Pn
tr((δ0 − δ̂)′B̃′

nP (P
′P )−1P ′B̃n(δ0 − δ̂)),

≤ c−1
Pn
cB̃n

tr((δ0 − δ̂)′(δ0 − δ̂)),

≤ cΠcB̃tr((δ0 − δ̂)′(δ0 − δ̂)),

= O(n−1).

Thus, R41 = O(n−1/2) by Jensen’s inequality.

Similarly, we consider R42.

E||(P ′
nPn)

−1P ′
nTnεn(λ0 − λ̂)||2 = (λ0 − λ̂)2σ2tr(T ′

nPn(P
′
nPn)

−2P ′Tn),

= (λ0 − λ̂)2σ2 1

n
c−1
Pn
tr(T ′

nTn),

= O(n−1)

Thus, R42 = Op(n
−1/2) by Jensen’s inequality and Markov’s inequality.

Therefore, we have R31 = Op(n
−1/2) by combining the convergence rate of R41 and R42.
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Next, we consider R32.

||(P ′
nPn)

−1P ′
nVn||2 = tr(V ′

nPn(P
′
nPn)

−2PnVn),

≤ 1

n
c−1
Pn
tr(V ′V ),

≤ c−1
Pn

sup
s∈S

|p(s)′B0 − f(s)|2,

= O(K−2rs).

Thus, R32 = O(K−rs) by Jensen’s inequality.

Finally, we consider R33.

E||(P ′
nPn)

−1P ′
n(In − ρ0Mn)

−1εn||2 = Etr(εn(In − ρ0Mn)
′−1Pn(P

′
nPn)

−2P ′
n(In − ρ0Mn)

−1εn,

≤ 1

n
σ2c−1

Pn
γmax((In − ρ0Mn)

′−1(In − ρ0Mn)
−1)tr(Pn(P

′
nPn)

−1P ′
n),

= O

(
K

n

)
.

Thus, R33 = Op(
√
K/

√
n)by Jensen’s inequality and Markov’s inequality.

Therefore, we obtain α̂ = α0 +Op

(√
K√
n
+K−rs

)
.

Next, we consider the uniform convergence rate of ĝ(·). By the triangle inequity and Cauchy-Schwarz

inequality, we have

sup
s

||ĝ(s)− g0(s)|| ≤ sup
s

||PK(s)(α̂− α0)||+ sup
s

||PK(s)α0 − g0(s)||,

≤ ||α̂− α0|| sup
s

||PK(s)||+O(K−rs),

= Op

(
K√
n
+K(1−2rs)/2

)
.

Finally, we consider the limiting distribution of ĝ(·). By the defintion of ĝ(s),

ĝ(s)− g0(s) = PK(s)α̂− (pKα0 +O(K−rs),

= pK(R31 +R32 +R33) +O(K−rs).

It follows by the above discussion that

||pKR31|| = ||PK(s)(P ′
nPn)

−1P ′
nB(δ − δ̂)||,

≤ ||PK(s)|| ||(P ′
nPn)

−1P ′
nB(δ − δ̂)||,
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= O

(√
K√
n

)
,

and

||pKR32|| = ||PK(s)(P ′
nPn)

−1P ′
nV ||,

≤ ||PK(s)|| ||(P ′
nPn)

−1P ′
nVn||,

= O(K(1−2rs)/2).

Thus,

ĝ(s)− g0(s) = PK(s)(P ′
nPn)

−1P ′
n(In − ρ0Mn)

−1εn +O

(√
K√
n

+K(1−2rs)/2

)
.

Let us consider the variance of the first term of the above equation.

σ2(s) = E(PK(s)(P ′
nPn)

−1P ′
n(In − ρ0Mn)

−1εnε
′
n(In − ρ0Mn)

′−1Pn(P
′
nPn)

−1P
′K(s)),

= σ2(PK(s)(P ′
nPn)

−1P ′
n(In − ρ0Mn)

−1(In − ρ0Mn)
′−1Pn(P

′
nPn)

−1P
′K(s)),

≤ σ2γmax((In − ρ0Mn)
−1(In − ρ0Mn)

′−1)(PK(s)(P ′
nPn)

−1P
′K(s)),

≤ σ2γmax((In − ρ0Mn)
−1(In − ρ0Mn)

′−1)cPn

1

n
(PK(s)P

′K(s)),

= O

(
K

n

)
.

Similarly, σ2(s) ≥ O(K/n), Thus σ2(s) = O(K/n).

By Slutsky’s theorem and a central limit theorem, we obtaine

ĝ(s)− g0(s)
d−→ N(0, σ2(s)).

Proof of Theorem 3 Let ûn = Yn −Bnδ̂ − Pnα̂. As the first step, we show that

1

n
û′nAnûn − E

1

n
u′nAnun = op(1),

where An is a matrix whose row and column sums are uniformly bounded in absolute values.
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Note that

1

n
û′nAnûn − E

1

n
û′nAnûn =

1

n
û′nAnûn − 1

n
u′nAnun,

+
1

n
u′nAnun − E

1

n
u′nAnun.

Firstly, we show that 1
nu

′
nAnun − E 1

nu
′
nAnun = op(1). By the definition of un

1

n
u′nAnun =

1

n
ε′n(In − ρ0Mn)

′An(In − ρ0Mn)εn,

=
1

n
ε′nA

∗
nεn,

where A∗
n = (In − ρ0Mn)

′An(In − ρ0Mn) and the row and column sums of A∗
n are uniformly bounded in

absolute value by Fact 1. Thus it follows that 1
nu

′
nAnun − E 1

nu
′
nAnun = op(1) immediately from the basic

property of laws of large numbers in Lee (2004).

Next, we consider that 1
n û

′
nAnûn − 1

nu
′
nAnun = op(1). By the definition of ûn,

ûn = Yn −Bnδ̂ − Pnα̂,

= Yn − λ̂WnYn −Xnβ̂ − Pnα̂,

= un + (λ0 − λ̂)WnYn +Xn(β0 − β̂) + (g0(Sn)− Pnα̂),

= un + (λ0 − λ̂)Wn(In − λ0Wn)
−1(In − ρ0Mn)εn

+(λ0 − λ̂)Wn(In − λ0Wn)
−1(Xnβ0 + g0(Sn)) +Xn(β0 − β̂) + (g0(Sn)− Pnα̂),

= un + ψ1 + ψ2 + ψ3 + ψ4,

where ψ1 = (λ0 − λ̂)Wn(In −λ0Wn)
−1(In − ρ0Mn)εn, ψ2 = (λ0 − λ̂)Wn(In −λ0Wn)

−1(Xnβ0 + g0(Sn)), ψ3 =

Xn(β0 − β̂) and ψ4 = (g0(Sn)− Pnα̂).

Thus,

1

n
û′nAnûn − 1

n
u′nAnun = φ1 + φ2 + φ3 + φ4 + 2φ5 + 2φ6 + 2φ7 + 2φ8 + 2φ9 + 2φ10

+2φ11 + 2φ12 + 2φ13 + 2φ14,

where φ1 = 1
nψ

′
1Anψ1, φ2 = 1

nψ
′
2Anψ2, φ3 = 1

nψ
′
3Anψ3, φ4 = 1

nψ
′
4Anψ4, φ5 = 1

nu
′
nAnψ1, φ6 = 1

nu
′
nAnψ2, φ7 =

1
nu

′
nAnψ3, φ8 = 1

nu
′
nAnψ4, φ9 = 1

nψ
′
1Anψ2, φ10 = 1

nψ
′
1Anψ3, φ11 = 1

nψ
′
1Anψ4, φ12 = 1

nψ
′
2Anψ3, φ13 =
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1
nψ

′
2Anψ4 and φ14 = 1

nψ
′
3Anψ4. We show that φi, i = 1, . . . , 14, are or order op(1). Here, note that

ρ̂− ρ0 = Op

(
1√
n

)
,

β̂ − β0 = Op

(
1√
n

)
,

g0(s)− Pnα̂ = Op

(
K√
n
+K(1−2rs)/2

)
,

= Op

(
K√
n
+

√
K√
n

√
nK−rs

)
,

= op(1).

For example,

Eφ1 = E
1

n
(λ0 − λ̂)2ε′n(In − ρ0Mn)

′(In − λ0Wn)
′−1W ′

nAn(λ0 − λ̂)Wn(In − λ0Wn)
−1(In − ρ0Mn)εn,

= E(λ0 − λ̂)2
1

n
ε′nÃnεn,

= σ2
0(λ0 − λ̂)2

1

n

n∑
i=1

ãn,i,j ,

= op(1),

where Ãn = (In−ρ0Mn)
′(In−λ0Wn)

′−1W ′
nAn(λ0− λ̂)Wn(In−λ0Wn)

−1(In−ρ0Mn) and ãn,i,j is the (i, j)th

element of the matrix Ãn. The remaining terms can be shown to be op(1) in the same way. Therefore,

1
n û

′
nAnûn − E 1

nu
′
nAnun = op(1)

We prove the consistency of the third step estimator following Kelejian and Prucha (1999). The objective

function of the nonlinear least squares estimator and its corresponding counterpart are given by

Rn(θ) = [Gn − gn]
′[Gn − gn],

R̂n(θ) = [Ĝn − ĝn]
′[Ĝn − ĝn],

where θ = (ρ, σ2)′.

Let θ0 = (ρ0, σ
2
0)

′. By Assumption 7,

Rn(θ)−Rn(θ0) = [ρ− ρ0, ρ
2 − ρ20, σ

2 − σ2
0 ]G

′
NGn[ρ− ρ0, ρ

2 − ρ20, σ
2 − σ2

0 ]
′,

≥ cGn
[ρ− ρ0, σ

2 − σ2
0 ][ρ− ρ0, σ

2 − σ2
0 ]

′,

= cGn
||θ − θ0||2.
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It follow that for every ε > 0 and any N ,

inf
θ:||θ−θ0||≥ε

[Rn(θ)−Rn(θ0)] ≥ cGn
ε2,

> 0.

Thus, the identifiability of θ is proved.

Let Fn = [Gn,−gn], F̂n = [Ĝn,−ĝn], ρ ∈ [−a, a] and σ2 ∈ [0, b].

|Rn(θ)− R̂n(θ)| =

∣∣∣∣[ρ, ρ2, σ2, 1][F ′
nFn − F̂ ′

nF̂n][ρ, ρ
2, σ2, 1]′

∣∣∣∣,
≤ ||F ′

nFn − F̂ ′
nF̂n|| [1 + a2 + a4 + b2].

The elements of Fn and F̂n are all of the form 1
n û

′
nAnûn and E 1

n û
′
nAnûn where the row and column sums

of An are uniformly bounded in absolute value. We have shown that 1
n û

′
nAnûn−E 1

n û
′
nAnûn = op(1). Thus,

Fn − F̂n = op(1). It follow that

sup
ρ,σ

|Rn(θ)− R̂n| ≤ ||F ′
nFn − F̂ ′

nF̂n||[1 + a2 + a4 + b2],

p−→ 0.

The consistency of ρ̂n and σ̂2
n follows form Lemma 3.1 in Potscher and Prucha (1997).
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