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1 Introduction

The measurement of income inequality has been an active field of investigation for over
a century, and early classical contributions include those of Lorenz (1905), Gini (1912),
Pigou (1912), and Dalton (1920). While much of the literature focuses on a relative notion
of inequality (that is, on scale-invariant measures), absolute indices (which are translation-
invariant) are examined as well. Centrist or intermediate measures that represent com-
promises between the relative and the absolute approach are discussed in Kolm (1976a,b),
Pfingsten (1986), and Bossert and Pfingsten (1990). The normative approach connects
inequality to welfare and can be traced back to Kolm (1969), Atkinson (1970), and Sen
(1973) in the case of relative measures, and to Kolm (1969) and Blackorby and Donaldson
(1980) if an absolute notion of inequality is adopted. Ethical measures of inequality in an
ordinal setting are analyzed by Blackorby and Donaldson (1984), Ebert (1987), and Dutta
and Esteban (1992).

In this paper, we follow an ordinal approach to inequality measurement and, therefore,
focus on inequality orderings. Our main results provide characterizations of some simple
measures of inequality that are familiar from the literature. The first of these are range-
based measures which perform inequality comparisons by means of the difference between
maximal and minimal income in the absolute case, and the ratio of the maximum and the
minimum in a relative setting. The max-mean orderings use the difference and the ratio of
the maximum and the arithmetic mean and the mean-min measures employ the arithmetic
mean and the minimal income. In addition, we examine inequality orderings that focus
on the income gaps (in the absolute case) or the income shares (for relative measures) of
the top or bottom quantile of an income distribution. All of these inequality orderings
satisfy three standard axioms, namely, S-convexity, continuity, and replication invariance.
However, as far we are aware, they have not been axiomatized yet.

Clearly, these measures are rather coarse because of their limited use of income dis-
tribution statistics, so that we do not advocate their use over all competing suggestions.
Nevertheless, as discussed by Leigh (2009, p. 162) in the context of justifying the use of
the top income shares, when some data is absent or reliable estimates of the entire income
distribution are not available, they can serve as a useful proxy for measuring inequality. In
particular, in light of the interdependence between different parts of the income distribution
resulting from economic activities, they could be a useful and easy-to-use tool for drawing
inferences about overall inequality from limited data; see Atkinson (2007, pp. 19-25) and
Atkinson, Piketty, and Saez (2011, pp. 7-12) for discussions regarding top income shares.
Therefore, we think that it is worthwhile to provide axiomatic characterizations of those
inequality orderings.

Among the orderings we consider, the range-based inequality orderings that compare
the distance between (or the ratio of) the maximal and the minimal income do not utilize
the average income. In this sense, these inequality orderings are coarser than the others. To
present axiomatic characterizations of these inequality orderings, we employ some suitably
adapted axioms that appeared in the literature on ranking sets of outcomes under complete
uncertainty. These properties, reformulated in the context of income inequality measure-
ment, are concerned with how we should rank income distributions when the information



on the realized income levels in the distributions is reliable but that on their frequency
distribution is not. Our characterizations of the other inequality orderings, on the other
hand, rely on properties regarding the composition of progressive and regressive transfers
in addition to standard axioms.

In addition to presenting their axiomatic characterizations, it is important to empirically
examine the usefulness of these inequality orderings. In analogy with Leigh’s (2007) study of
the relative performance of top income shares in comparison with other inequality measures,
we provide an empirical analysis of the correlation between the range-based and quantile-
based orderings and some classical indices including the Gini coefficient. We find that there
is some surprisingly significant agreement when considering the movements of the measures
and more commonly-employed inequality orderings.

In the following section, we introduce our basic notation and definitions. The range-
based measures, the max-mean orderings, the mean-min ordinal indices, and the quantile
shares and gaps are characterized in Section 3. In each case, axiomatizations of both the
requisite absolute ordering and its relative counterpart are provided. Section 4 contains
our empirical study and Section 5 concludes. The independence of the axioms used in our
characterizations is established in an appendix.

2 Notation and definitions

2.1 Range-based and related inequality orderings

Let N be the set of positive integers. The sets of all real numbers, all non-negative real
numbers, and all positive real numbers are denoted by R, R, , and R, . For n € N, let 1"
denote the n-dimensional vector consisting of n ones and, for all i € {1,...,n}, €' is the i
unit vector in R™. For simplicity, we suppress the dependence of this unit vector on n; the
dimension of e’ will always be apparent from the context. For all n € N and for all z € R”,
the arithmetic mean of x is denoted by pu(z); that is, u(z) = Y1, z;/n.

We distinguish two domains that are relevant in this paper. In the context of absolute
inequality orderings, incomes may take on any real value and, analogously, relative inequal-
ity orderings are restricted to positive incomes. Thus, we define the (variable-population)
domains D = U,enQ)", where Q € {R,R,,}. A vector x € D is interpreted as an income
distribution.

An inequality ordering is an ordering R C D? and we write xRy for (x,y) € R. Thus,
the expression z Ry means that the income inequality in x is at least as high as the inequality
in y. The asymmetric part of R is P and the symmetric part of R is I.

An absolute inequality ordering is invariant to equal absolute changes of all incomes.
That is, it is required to satisfy the axiom of translation invariance.

Translation invariance. For all n € N, for all z € R", and for all § € R,

(x+1") 1.

Analogously, a relative inequality ordering is invariant to changes in the scaling of all
incomes by a common positive factor.



Scale invariance. For all n € N, for all z € R? , and for all A € R,

Axlzx.

The first two orderings that we consider in this paper are the absolute range R, as-
sociated with 2 = R and the relative range R., with the domain generated by €2 = R,
defined as follows. For all n,m € N, for all z € R", and for all y € R™, we let

TRy < max{zy,...,v,} —min{zy,...,z,} > max{y,...,yn} —min{y, ..., ym}

Cowell (2011, p. 155) refers to a representation of this ordering as the range. The measure
that is obtained by dividing R?, by the mean income p(z) (which requires the domain to
be restricted to R, ;) is what he labels the standardized range. The latter also appears in
Sen (1973, p. 24).

The relative counterpart of the absolute range is the relative range R’ , defined by

Tn?

max{zy,...,T,} - max{yi, ..., Ym}
min{zy,...,z,} — min{yy, ..., yn}
for all n,m € N, for all z € R}, and for all y € R, .

The absolute maz-mean inequality ordering R; , is defined by letting, for all n,m € N,
for all x € R", and for all y € R™,

zR.,y <

Ry y & max{zy,..., .} — p(z) > max{yy, ..., ym} — p(y).

The scale-invariant counterpart of Ry, is the relative maz-mean inequality ordering Ry,
defined as

Ry max{zi,...,T,} > max{yi, ..., Ym}
p() 1(y)
for all n,m € N, for all z € R’ , and for all y € RT’, .

The absolute mean-min inequality ordering R, is given by

PRLy & p(x) = minfan,. 0} = ply) — min{y, . yn)

for all n,m € N, for all z € R", and for all y € R™. Chakravarty (2010, p. 34) refers to
a representation of this ordering as the absolute mazimin indexr because of its link to the
maximin social welfare function.

Finally, the relative mean-min inequality ordering Rj,, is obtained by defining, for all
n,m € N, for all x € R}, and for all y € R,

x
PRy e — p(x) ()
K min{zy,...,z,} — min{yy, ..., yn}
or, equivalently,
min{zy,...,x min
IR;ny N { 1, ’ n} S {yla Jym}
p(x) 1(y)
Hence, according to R}, inequality increases if and only if the ratio of the minimum income

to the mean income decreases. In analogy to the absolute case, Chakravarty (2010, p. 24)
uses the term relative mazimin index for a representation of Ry, .
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2.2 Quantile-based inequality orderings

In order to discuss the inequality orderings that are based on top and bottom income
shares and gaps, we need to employ a slightly modified framework. Let ¢ € N with ¢ > 3.
The set D of income distributions considered now is defined by D = U,cn2"?, where
2 € {R,R,,}. This modification guarantees that ¢ equal-sized groups of individuals in
an income distribution are well-defined. Note that, for any n € N and for any = € Q™
there exists a unique permutation 7, of {1,...,ng} such that () = (Zr, (1), - - - Tr,(ng)) is @
non-decreasing rearrangement of z and, for all 4,7 € {1,...,ng} withi < j, if . ;) = 2, (j)
then 7,(i) < m,(j). That is, 7 (i) is interpreted as the income rank of individual ¢ from
the bottom in z, where ties of income levels are broken with respect to individual names
represented by numbers. For any n € N, for any z € Q" and for any ¢ € {1,...,q}, we
define Gy(x) by

Giz)={ic{l,....ng} | ({ —Dn+1<7,i) < tn},

that is, Gy(z) is the group of individuals in the ¢ g-quantile in z. In this paper, the ¢ ¢-
quantile of income distribution x represents the /" worse-off group of individuals according
to the income ranking 7,1, rather than the ¢ cut-off point. Therefore, if ¢ = 10, G () is
the group of individuals in the bottom decile and Gio(z) is that in the top decile. For all
n €N, for all z € R}% | and for all £ € {1,...,q}, we write p,(z) as the mean income of
the (" g-quantile of x, that is, p(2) = 3., @ Ti/n-

According to the modification of the domain of an inequality ordering, we say that
an inequality ordering R on D is absolute if it satisfies the translation invariance axiom
reformulated as follows.

Translation invariance*. For all n € N, for all x € R", and for all § € R,
(x+61")]x.

Analogously, an inequality ordering R is said to be relative if it satisfies the following
reformulation of the scale-invariance property.

Scale invariance*. For all n € N, for all z € R}? | and for all A € R,
\elx.

We define the top income gap inequality ordering R} by letting, for all n,m € N, for all
x € R, and for all y € R™4,

aRly < pg(z) — p(z) = pely) — mly).

The scale-invariant analogue of R{ is the (relative) top income share inequality ordering
R}, defined as follows. For all n,m € N, for all € R, , and for all y € R"?,

DicGy(@) Ti N Dica, ) Vi
221 T Z;:ﬁ Yi
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Since the pioneering work by Piketty (2001), top income shares have been widely employed
in the literature on the empirical analysis of inequality in the long run; see, for instance,
Atkinson, Piketty, and Saez (2011) and Leigh (2009). Note that, since -, ) @i/ 2212, i =

tg(2)/(qu(x)), an ordinally equivalent representation of Rj is given by

Ry <

The bottom income gap inequality ordering Ry is given by letting, for all n,m € N, for
all x € R™, and for all y € R™4,

Ry < p(x) —m(z) > ply) — m(y).

Finally, we define a relative analogue of the bottom income gap inequality ordering. The
bottom income share inequality ordering is the inequality ordering R; defined as follows.

mq

For all n,m € N, for all x € R}?_, and for all y € R'{,

ZieGl(z) i < EiGGl(y) Yi
DD TR D 17

Analogously to the top income share inequality ordering, an ordinally equivalent represen-
tation of R} is given by

Ry <

Ry <

3 Characterizations

The use of translation invariance is restricted to absolute inequality orderings, whereas
scale invariance is employed in the relative case. All other axioms can be defined for both
options, that is, for 2 = R and for (2 = R, .. Each of the following subsections addresses
one type of ordering considered in this paper.

3.1 Range inequality orderings

Our first axiom in this subsection requires that the inequality ordering R is anonymous,
paying no attention to the names of the individuals. Clearly, this is a fundamental property
that requires no further discussion.

Anonymity. For all n € N and for all x,y € Q", if x is a permutation of y, then zIy.

In addition to anonymity, the results of this subsection make use of properties that
involve the comparison of income distributions of different dimensions. The first of these
is straightforward. Fquality indifference requires that all equal distributions are equally
unequal, independent of the number of people involved. As is the case for anonymity, the
intuitive appeal of this condition is immediate.



Equality indifference. For all n,m € N and for all «, 8 € Q',
al™Ip1™.

The first part of the following expansion-dominance axiom is borrowed from the litera-
ture on ranking sets of outcomes in the presence of complete uncertainty; see, for instance,
Kannai and Peleg (1984) and Bossert and Slinko (2006). In contrast to that literature, we
have to allow for incomes being equal within a distribution and, moreover, the role played
by lowest incomes is different from that played by worst elements in a set of possible out-
comes. Thus, our formulation differs from that in the literature on ranking sets. The second
part of the property reflects the coarse nature of the inequality orderings discussed here
by requiring that adding individuals with incomes between the extremes of a distribution
does not increase inequality.

Expansion dominance. (i) For all n,m € N, for all z € Q" and for all y € Q™, if
Y1 = ... =Yy > max{xy,...,z,}, then

(y,z)Pz.
(ii) For all n € N, for all z € Q" and for all & € [min{zy,...,z,}, max{z, ..., z,}],
TR(x, ).

Part (i) of the above expansion-dominance axiom is based on the observation that if an
income distribution is expanded by adding any number of individuals with a common
income level that is above the highest in the original distribution, the resulting larger
distribution should display a higher level of inequality. Again, this is intuitively plausible
because the new distribution increases maximal income without changing the distribution
among those who are present prior to the expansion. Part (ii) clearly is more controversial
because it reflects a feature of the range-based measures—mnamely, that they are insensitive
with respect to expansions of a distribution that leave the extreme values unchanged.

Another modification of a requirement from the literature on choice under complete
uncertainty is the following conditional version of an independence property. Again, the
axiom differs from the corresponding condition for set rankings because of the different
interpretation—primarily because equal income levels within a distribution have to be
accommodated.

Conditional independence. For all n,m € N, for all x € Q" for all y € Q™ and
for all « € Q' if xPy, min{zy,...,2,} = min{yy,...,ym}, @ > max{zy,...,r,}, and
a > max{yi,...,Yn}, then

(z, ) R(y, ).

Conditional independence is a robustness condition. Starting with two distributions x and
y (not necessarily of the same population size), if x is considered more unequal than y,
then the addition of an individual whose income exceeds the maximal income in y and is
at least as high as the maximal income in z should not overturn this strict relation.
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Our first observation shows that the conjunction of the four axioms of this subsection
implies that an income distribution x of any dimension must be as unequal as the distri-
bution that is composed of the maximal and the minimal values of x. See, for instance,
Kannai and Peleg’s (1984, p. 174) Lemma and Bossert and Slinko’s (2006, pp. 108-109)
Theorem 1 for analogous results in the context of set rankings.

Theorem 1. Let Q2 € {R,R, . }. If R satisfies anonymity, equality indifference, expansion
dominance, and conditional independence, then, for all n € N and for all x € Q7

xl(max{xy,...,z,},min{xy, ..., x,}).
Proof. Let n € N and x € Q. If 1 = ... = x,, the result follows from equality
indifference. Now suppose that there exist ¢,j € {1,...,n} such that z; # z;. Because
of anonymity, without loss of generality, we can assume that z; = max{xy,...,z,} and

z, = min{zy,...,z,}. If there exists j € {1,...,n — 1} such that z; = z,, let y be the
vector consisting of all components z; such that z; = x,,. By equality indifference, it follows
that
yl(z,) = (min{zy,...,z,}).

If there are more than two different levels of income, successively augment y with the
components of z that correspond to the next-highest income level, except those at the
top level 1 = max{x,...,x,}. Let z be the vector of incomes that includes all levels
strictly between z; and x,. Repeated application of part (i) of expansion dominance and
anonymity, along with transitivity, implies that we must have

(y,2)P(xy,).

If there exists @ € {2,...,n} such that x; = x; = max{zy,...,z,}, let w be the vector
consisting of those incomes except for x; itself. Augmenting the distribution (z,y) by w, it
follows that, by definition, (w, z,y) = (z2,...,x,). Using part (i) of expansion dominance,
anonymity, and transitivity again, we obtain

(T2, ..., xn)P(xy,).
By conditional independence, it follows that
r=(z1,...,2,)R(z1,2,) = (max{xy,...,z, },min{xy,...,x,}). (1)

Part (ii) of expansion dominance and anonymity (applied repeatedly if necessary) together
imply
(max{zy,...,z,}, min{z,...,z,})Re

and, combined with (1), it follows that
xl(max{xy,...,z,},min{xy, ..., z,}),

as was to be established. W

The following theorem characterizes all inequality orderings that satisfy the axioms
defined in this subsection.



Theorem 2. Let Q € {R,R,.}. R satisfies anonymity, equality indifference, expansion
dominance, and conditional independence if and only if there exists an ordering 7, (with
asymmetric and symmetric parts = and ~) on S = {(«a, 8) € Q* | a > B} such that

(i) for all n,m € N, for all x € Q™, and for all y € Q™,

rRy & (max{zy,...,z,},min{z,...,z,}) Z (max{ys, ..., Y}, min{ys, ..., ym});
(i) (a, @) ~ (8, B) for all a, B € Q;
(#11) 7 is increasing in its first argument.

Proof. ‘If” Anonymity follows from (i) in the theorem statement. Further, equality
indifference follows from combining (i) and (ii).
To prove that part (i) of expansion dominance is satisfied, suppose that n,m € N,

r € Q" and y € Q™ are such that y; = ... = y,, > max{zy,...,2,}. It follows that
max{Ti,...,Tn, Y1, Ym} = y1 > max{xy,...,x,}
and
min{xy, ..., T, Y1, ..., Ynt = min{zy, ..., x,}

so that, by (i) in the theorem statement and the increasingness of 7~ in its first argument
(see (iii) in the theorem statement), it follows that (z,y)Pz.

Next, we prove part (ii) of expansion dominance. Suppose that n € N, x € Q" and
a € [min{zy,...,z,}, max{z,...,x,}]. This implies that

max{zi,..., T, a} = max{xy,...,x,} and min{z,...,z,, a} = min{z, ..., z,}.

Thus, because 77 is reflexive, part (i) of the theorem statement implies that xR(z, «).

To conclude the proof of the ‘if’ part, we show that conditional independence is satisfied.
To that end, suppose that n,m € N, x € Q", y € Q™ and o € Q! are such that zPy,
min{z,...,z,} = min{yy,...,yn}, @ > max{zy,...,z,}, and @ > max{ys,...,ym}. It
follows that

max{zy,..., oy, a} =max{yy, ..., Ym,a} =«
and
min{xy, ..., oy, a} = min{z,...,z,} = min{yy, ..., yn} = min{ys, ..., ym, a}
so that
(max{wzy, ...,y a}, min{z, ..., z,, a}) Z (max{yy, ..., Ym, o}, min{ys, ..., ym, a})

because 77 is reflexive. By part (i), it follows that (z, a)R(y, «).

‘Only if.” Suppose that R satisfies the axioms in the theorem statement. Define the
relation 77 by letting, for all (o, 5), (¢/, 5) € S,

(@, 8) Z (o, B)
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if and only if there exist n,m € N, z € 2", and y € Q™ such that xRy and

a=max{zy,...,x,}, [ =min{zy,..., 2.}, = max{yy,...,ym}, S = min{y, ..., yn}

By Theorem 1 and the transitivity of R, this relation is a well-defined ordering, and property
(i) of the theorem statement follows by definition.

To establish that property (ii) is satisfied, suppose that «, 8 € Q'. By equality indiffer-
ence, it follows that a1™151™ for all n,m € N and, by property (i), it follows that

(o, @) ~ (B, ).

Finally, we prove property (iii). Suppose that o, a/, 8 € Q! are such that a > o’ > .
Let z = (o, o/, f) and y = (¢, 5). Thus,

max{xy, To,r3} = @ > o = max{y;,y2} and min{xy, xe, 23} = F = min{y;, y2}.

By part (i) of expansion dominance, it follows that xPy and, by property (i), we obtain
(ar, B) = (&, B) so that = is increasing in its first argument. M

We now prove the two main results of this subsection. Adding translation invariance
to the axioms of Theorem 2 characterizes the absolute range, whereas the relative range
is obtained if scale invariance is used in the place of translation invariance. Because the
‘if” parts of the proofs are straightforward, we only establish the reverse implications. The
same remark applies to analogous results later in the paper.

Theorem 3. Let Q) = R. R satisfies anonymity, equality indifference, expansion domi-
nance, conditional independence, and translation invariance if and only if R = RS,,.

Proof. Let n € N and x € Q". Translation invariance with § = — min{x, ..., z,} requires
that
(x1 —min{zy, ..., 2}, ..., 2, —min{zy, ..., 2, }) [z

and, by Theorem 2,
(max{xy,...,x,} —min{zy,...,2,},0) ~ (max{zy,..., 2z, }, min{zy,...,z,}).
Now let n,m € N, x € Q", and y € Q™. Using Theorem 2, it follows that
Ry < (max{xy,...,z,} —min{xy,...,2,},0) Z (max{yy, ..., yn} —min{y,...,ym},0)
and, because 77 is increasing in its first argument, this is equivalent to

Ry < max{zy,...,x,} —min{zy,...,z,} > max{y, ..., yn} —min{ys, ..., yn}
& xRy A

As a remark aside, note that Theorems 1, 2, and 3 remain true if 2 = R is replaced
with 2 = R ; this is apparent from inspecting their proofs.



Theorem 4. Let Q) =R, . R satisfies anonymity, equality indifference, expansion domi-
nance, conditional independence, and scale invariance if and only if R = R,

Proof. Let n € N and z € ". Scale invariance with A = 1/ min{zy, ..., z,} requires that

T Tn, T
min{zy,...,z,} min{z,...,v,}

and, by Theorem 2,

(max{xl, cey T} )

min{xy,...,z,}’

) ~ (max{zy,...,z,},min{zy,...,z,}).

Now let n,m € N, x € Q", and y € Q™. Using Theorem 2, we obtain

max{zy,...,T,} 1) . (nlax{y1,...,ym} 1)

min{zy,...,z,} " )~ \min{ys,...,Ym}’

ny@(

and, because 7 is increasing in its first argument, this is equivalent to

max{xy,...,T,} - max{yi, ..., Ym}
min{xy,...,z,} — min{yy,...,Yn}

Ry & & zR,y. B

3.2 Max-mean inequality orderings

We characterize the absolute and relative max-mean inequality orderings using four axioms
in addition to translation invariance and scale invariance, respectively.

For any n € N, an n x n matrix is doubly stochastic if all its elements are nonnegative
and its rows and columns sum to one. Given n € N and x € 2", multiplying x by an n x n
doubly stochastic matrix B yields an income distribution Bx € 2" that has the same total
income and is a smoothening of = in the sense that each component is a convex combination
of x. Indeed, it is known that for any rank-ordered distribution x € Q", Bx can be obtained
by a finite sequence of progressive transfers (Hardy, Littlewood, and Pélya, 1934; Marshall
and Olkin, 1979). The property of Schur-convezity (or S-convexity, for short) asserts that
such a smoothening of an income distribution does not increase inequality.

S-convexity. For all n € N, for all z € Q", and for all n x n doubly stochastic matrices
B, xR(Bx).

Note that S-convexity is equivalent to the conjunction of anonymity and the well-known
Pigou-Dalton transfer principle (Pigou, 1912; Dalton, 1920). Clearly, S-convexity is un-
controversial because the axiom captures the very notion of inequality measurement: if
incomes move closer together, inequality cannot increase.

Continuity requires that small changes in incomes do not lead to large changes in
inequality. This is another standard requirement commonly imposed on inequality orderings
and other (ordinal) social indicators.
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Continuity. For all n € N and for all x € Q" {y € Q" | yRz} and {y € Q" | xRy} are
closed in Q™.

Replication invariance, which first appeared in Dalton (1920) under the name of the
principle of proportionate additions to persons, requires that inequality be invariant under
any k-fold replica of an income distribution.

Replication invariance. For all n,k € N and for all z € Q", zI(z,...,x).
——

k times

Replication invariance in conjunction with translation invariance if 2 = R or scale
invariance if 2 = R, implies equality indifference. This can be verified as follows. Let
Q =R, n,meN, and o, 3 € Q'. Translation invariance implies a1™/31". By replication
invariance, we obtain S1"IS1™" and S1™"IB1™. Since R is transitive, it follows that
al™151™. Analogously, it can be verified that replication invariance and scale invariance
together imply equality indifference if Q@ =R, ..

The composite transfer principle for top income proposes specific consequences of a
composition of rank-preserving progressive and regressive transfers involving three income
recipients. Consider three individuals ¢, j, and n. Suppose that n is the best-off in the
entire population and 7 is worse off than j. The axiom asserts that a composition of a
progressive transfer from j to 7 and a regressive transfer from j to n increases inequality as
long as the ranking of all individuals is preserved. This axiom strengthens an idea embodied
in the joint transfer axiom in Sen (1974).

Composite transfer principle for top income. For all n € N and for all x,y € Q"
with xp <z and yx < ypyq for all k € {1,... ,n — 1}, if there exist i,5 € {1,...,n — 1}
with ¢ < j and §,¢ € R, such that z —y = d(e¢’ — ¢7) + (e™ — €7), then xPy.

The following theorem provides a preliminary result that is analogous to Theorem 1 of
the previous section.

Theorem 5. Let Q2 € {R, R, } and suppose that R satisfies S-convezity, continuity, repli-
cation invariance, and the composite transfer principle for top income. For all n,m € N,
forallz € Q™ and for ally € Q™, if max{xy,...,x,} = max{y1,...,yn} and p(x) = pw(y),
then xly.

Proof. Step 1. Let n € N with n > 3 and x,y € Q" be such that x; <z, and yr < ypia
for all k € {1,...,n — 1}, and suppose that there exist 6 € Ry, and i,j € {1,...,n — 1}
with i < j such that o —y = d(e’ — ¢’). We show that xRy.

Suppose, by way of contradiction, that xRy does not hold. Since R is complete, yPx
holds. It follows from the completeness and continuity of R that {z € Q" | yPz} is open
and x € {z € Q" | yPz}. Thus, there exists ¢ € Ry such that U.(x) C {z € Q" | yPz},
where U.(x) is the open ball with center at x and radius e.

Let £ = min{d,e}/2. Define 2 € Q" by z;, = x; — &, z; = 2; +£/2, Z, = x, + {/2, and
Zr =y forall k € {1,...,n}\ {i,4,n}. Note that z—y = (6§ —&)(e" — &) + (£/2)(e" — &7).
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Furthermore, z; < Z;4 forall k € {1,...,n—1}. By the composite transfer principle for top
income, we obtain zPy. However, this is a contradiction since z € U.(z) C {z € Q" | yPz}.

Step 2. Let n € N with n > 2 and z,y € ", and suppose that max{zy,...,z,} >
max{yi,...,yn} and p(z) = u(y). We show that zRy.

Since S-convexity implies anonymity and R is transitive, we can without loss of gener-
ality assume that x; < x;41 and y; < y;4q for all ¢ € {1,...,n — 1}. We distinguish two
cases.

(i) n = 2. Let 6 = x5 — y5. Since y — x = d(e! — €?), we obtain xRy by S-convexity.

(i) n > 3. First, we define z € Q" by 7, = x, and & = >0 'z;/(n — 1) for all
i€ {l,...,n—1}. It follows from S-convexity that

rRx.

We show that xRy, which proves that xRy because R is transitive. For any z € 2", we
define
B(z)={ie{l,....n—1} | 2 > yi}

and
Note that W (z) # & since &, = x, > y, and u(x) = p(x) = p(y). We further distinguish
two cases.

(a) B(z) = @. Since Z,, > y,, and u(z) = p(y), TRy follows from S-convexity.

(b) B(z) # @. Note that there exist m,m € {1,...,n — 1} with m < m such that

Bz)={i|1<i<m} and W(z)={i|m<i<n-—1}.
For all i € W(z), let
Yi — T

ZjeW(i) (y; — 55]‘)'
We define 7 € Q" by 7; = z; for all i € {1,...,n — 1}]\W(Z), &; = z; + ri(z, — y,) for all
i € W(z), and Z,, = y,,. It follows from S-convexity that

T, =

TRZT.

Note that B(z) = B(z) and W(Z) = W (Z) since u(z) = pu(y) and B(Z) # &. Further,
T < Zjyq foralli e {1,...,n —1}. Since

Z T = Z Yis

i€B(&)UW (2) i€B(F)UW (Z)

y is obtained from Z by a finite sequence of rank-preserving regressive transfers from indi-
viduals in B(Z) to individuals W (Z) choosing individuals in B(Z) in ascending order and
those in W () in descending order, respectively. Thus, it follows from Step 1 and the
transitivity of R that

TRy.

12



Since R is transitive, we obtain z Ry.

Step 3. Let n € N and z,y € Q", and suppose that max{z,...,z,} = max{y,...,yn}
and p(z) = p(y). We show that xly.

Again, from S-convexity and the transitivity of R, it follows that we can without loss
of generality assume that z; < x;,1 and y; < y;4q foralli € {1,...,n —1}.

If n =1, Iy follows from the reflexivity of R.

Now consider the case where n > 2. If x,, = xy, then x =y = (u(x), ..., u(x)). Thus,
it follows from the reflexivity of R that xly.

In what follows, we assume that x,, > x1, which implies y,, > y; as well. Suppose, by way
of contradiction, that Iy does not hold. Without loss of generality, we assume yPx. Since
R is complete and satisfies continuity, {z € Q™ | yPz} is open and = € {z € Q" | yPz}.
Thus, there exists ¢ € Ry such that U.(x) C {z € Q" | yPz}. We define z € Q" by
Zy=x1—¢€/2, Z, = x,+¢€/2,and Z; = x; for all i € {2,...,n — 1}. Note that z; < z;,; for
alli € {1,...,n—1}. Furthermore, z, > z, =y, and pu(z) = u(z) = p(y). Thus, it follows
from Step 2 that zRy. However, this is a contradiction since z € U.(x) C {z € Q" | yPz}.

Step 4. We complete the proof. Let n,m € N, z € Q" and y € Q™. Suppose that
max{r,..., 7, } = max{yy,...,ynm} and pu(x) = p(y). Let £ = nm and define z, w € R’ by

z=(x,...,z)and w = (y,...,y).
( ) )

——
m times n times
Note that
max{zy,..., 2} = max{zy,...,x,} = max{yy,...,yn}t = max{wy,...,w}
and

p(z) = plz) = ply) = p(w).
It follows from Step 3 that z/w. Since R satisfies replication invariance, we obtain x/z and
ylw. Because R is transitive, zly follows. W

Parallel to Theorem 2, the following result characterizes all inequality orderings that
satisfy the axioms introduced in this subsection. As the theorem shows, these orderings
only utilize the maximum and average incomes and are increasing in the maximum income.

Theorem 6. Let Q € {R, R, }. R satisfies S-convezity, continuity, replication invariance,
and the composite transfer principle for top income if and only if there exists a continuous
ordering 7, on S = {(«a, ) € Q* | a > B} such that

(i) for alln,m € N, for all x € Q", and for all y € Q™,
wRy < (max{zy, ..., oo}, p(z)) Z (max{ys, ... ym}, 1(y));

(i1) 7, is increasing in its first argument.
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Proof. ‘If.” Suppose that there exists a continuous ordering =~ on S satisfying properties
(i) and (ii) in the theorem statement.

From property (i), R satisfies replication invariance.

Further, by properties (i) and (ii), R satisfies the composite transfer principle for top
income.

To show that R satisfies S-convexity, let n € N, x € Q" and B be an n x n doubly
stochastic matrix. Since

max{(Bx)i,...,(Bx),} < max{xy,...,z,} and pu(Bz) = u(x),

it follows from properties (i) and (ii) that zR(Bx).

Next, to show that R satisfies continuity, let n € N and € Q" We show that
{y € Q" | yRx} is closed in Q™. Let (z');en be a sequence of vectors in {y € Q" | yRx} and
suppose that (z');cn converges to z. From property (i), it follows that, for all ¢t € N,

(max{z!, ..., 25}, w(z") = (max{xy, ..., 2.}, u(x)).

Since
lim max{z!,..., 2/} = max{z,...,2,} and lim pu(z") = u(z2),
t—o0 t—o00

it follows from the continuity of 77 that
(max{z1, ..., 2.}, 1(2)) 7o (max{zy, ..., x,}, p(z)).

From property (i), we obtain zRz. The proof that {y € Q" | xRy} is closed in Q" is
analogous.

‘Only if.” Define the binary relation 2Z on S by letting, for all («, 8), (¢/, ') € S,
(o, 8) Z (o, B)
if and only if there exist n,m € N, x € Q" and y € Q™ such that xRy and
a=max{ry,..., 1.}, f=p(x), ' =max{ys,...,yn}, 8 = ply).

To show that property (i) is satisfied, let n,m € N, x € Q" and y € Q™. By the definition
of 7,

- rRy = (max{zy,...,z,},pu(z)) Z (max{ys, ..., ym}, n(y)).
To show that the converse implication is true, suppose that

(max{zy, ..., zn}, w(x)) Z (max{yr, ..., ym}, 1(y)).
By the definition of =, there exist 7,m € N, Z € Q" and § € Q™ such that ZRg and
max{zi,...,o,} = max{Z,...,Ts} and p(xr)= u(),

max{yi,...,Yn}t = max{yy,...,0xnt and u(y) = u(y).

14



By Theorem 5, xIZ and yly. Since R is transitive, we obtain xRy. Thus, = satisfies
property (i).

Next, we show that - is an ordering on S. To this end, we show that, for any (a, 8) € 5,
there exist n € N and x € 2" such that

max{zy,...,r,} =« and p(zr) =p. (2)
Let (o, B) € S and n € N with n > 2. We define x € R" by

nb—a OB allie {1, n—1}.

T, =« and x; = =
n—1 n—

Note that x satisfies (2). It is straightforward that x € Q" if Q@ = R. We now suppose that
Q =R, .. Assuming that n is sufficiently large so that it satisfies

B>2,
n
it follows that, for all : € {1,...,n — 1},

nf—a a—a«

=0.

i n—1 n—1

Since @ > 3, we obtain x,, > 0. Thus, x € Q". Since R is an ordering and 7 satisfies
property (i), 7 is an ordering on S.

Now we prove that 7 is continuous. Let («,5) € S and consider any sequence
(', ")) en in {(/,3) € S| (¢,0) = (a,3)} that converges to (a*,3*) € S. Let

n € N with n > 2. We define the sequence (z'),cy in R™ by

nBt — at
1

t_
=

2t =a' and 2! = foralli e {1,...,n—1}.

Similarly, define x, z* € R™ by

x, =« and x; = nf—a forallie {1,...,n—1}
n—1
and . .
r, =a" and z} = np” — ot forallie {1,...,n—1}.
n —
It follows that
max{zy,...,zr,} = a, p(r) =5, max{z],...,z;} =", plz*) =57,
and, for all t € N,
max{z! ..., rh} =o' and p(z') = p".

First, we suppose that = R. Then, (2');cy is a sequence in Q" and z,z* € Q". Since
(o', ") = (o, B) for all t € N, it follows from property (i) of = that 2'Rx for all ¢ € N.
Since (x');en converges to z* and R satisfies continuity, we obtain z*Rz. From property
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(i) of 7z, we obtain (a*, 5*) = (a, 5). Thus, {(«/, ") € S| (¢/,3") Z (o, 5)} is closed. The
proof that {(«/, ") € S| (o, B) ZZ (¢, ')} is closed is analogous.

Now suppose that Q = R, ;. Since {(a!, 5"))en converges to (a*, 3*), there exist t* € N
and a sufficiently small € € R, such that, for all t > t*,

af—e<a'<a*+eand 0< B —e< B < B +e.

Let -
a*+¢ «
N = and \ = —
p*—¢ &}

Further, let A = max{\*, A\}. Note that

« o
— <A and — <A
B B
and, for all ¢t > t*,
t

% < A.
Thus, assuming that n is sufficiently large so that it satisfies n > A, it follows that
at xgaf € Ry foralli € {1,...,n — 1} and for all ¢ > t*. Therefore, (2! "),y is a
sequence in Q" and x,z* € Q™. Since (o', ') = (o, B) for all t € N, it follows from prop-
erty (i) of 7 that 2" **Rx for all £ € N. Since (z' ™),ey converges to z* and R satisfies
continuity, we obtain z*Rx. From property (i) of 22, we obtain (a*, %) 77 («, 8). Thus,
{(o, ") € S| (o, 5) 7 (o, 5)} is closed. The proof that {(¢/,5") € S | (o, 5) = (¢, 5)}
is closed is analogous.
Finally, to show that 2 satisfies property (ii), let (a, ), (¢/, 5) € S and suppose o > .

Let n € N with n > 3. We define z,y € R" by

x, =« and wi:nf:lazﬁ—i:f forallie {1,...,n—1}

and . .
Yy, = ' and yi:nﬁ—a: _d=b forallie {1,...,n—1}.

n—1 n—

Note that z; < z;41 and y; < y;0q for all i € {1,...,n — 1} because a > o/ > [. Let

d=a—a >0. Then, foralli e {1,...,n— 1},
)

—xp=——0.
Ye =
Since max{xy,...,r,} = «, max{yy,...,y,t = , p(r) = ply) = B, and 7 satisfies
property (i), it suffices to show that z,y € Q" and zPy.
First, we assume that {0 = R. To show that z Py, let ¢ € R, be such that

J

n—1

e <
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and define z € R™ by

pl(nzzs, L ; <
Zn = Un 5 =Tp — % - L,
Y 2\n—1 c 2\n—1 c

1 /n—-2 1 n
Zn—lzyn—1+§ n_15+€ ::rn_1+§ m(s—FE > Tp-1,

J
21:y1——1—€=$1—5<$17

)
=Y g = forall ¢ € {2,...,n—2}.

J

Note that z € Q™ and z; < z;4; for all i € {1,...,n — 1}. Furthermore, Y /', v; = > | zi.
From S-convexity, it follows that zRy. Since

1

x—z—e(el—en_l)—i——( n

n—1

5 (5—5) (e" — e b,

it follows from the composite transfer principle for top income that zPz. Since R is
transitive, we obtain x Py.
Next, we suppose that 2 = R, . Assuming that n is sufficiently large so that it satisfies

o
/6>_7
n

it follows that =,y € 2". Let ¢ € R, be such that

| { 5 }
£ < min , T
n—1

and define z € R™ by (3). By the same argument as in the case where 2 = R, we obtain
xPy. N

The subsection is concluded with characterizations of the absolute and relative max-
mean inequality orderings.

Theorem 7. Let ) = R. R satisfies S-convexity, continuity, replication invariance, the
composite transfer principle for top income, and translation invariance if and only if R =

a
R3,.

Proof. From Theorem 6, it follows that there exists a continuous ordering - on S satisfying
properties (i) and (ii) in Theorem 6. Thus, we can prove that R = R3,, applying the same

argument as in the proof of Theorem 3 using 0 = —p(z) instead of 6 = —min{zy,...,x,}.
|

Theorem 8. Let 2 =R, . R satisfies S-convexity, continuity, replication invariance, the
composite transfer principle for top income, and scale invariance if and only if R = Ry ,.

Proof. The proof that R = R}, is analogous to the proof of Theorem 7 using the same
argument as in the proof of Theorem 4. W
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3.3 Mean-min inequality orderings

We characterize the absolute and relative mean-min inequality orderings using an axiom
dual to the composite transfer principle for top income, which we call the composite transfer
principle for bottom income. Consider again three individuals ¢, 7, and 1. Now suppose
that j is better-off than ¢ and 1 is the worst-off in the entire population. The composite
transfer principle for bottom income asserts that a composition of a progressive transfer
from ¢ to 1 and a regressive transfer from ¢ to j decreases inequality as long as the ranking
of all individuals is preserved. This axiom is similar to the transfer sensitivity axiom in
Shorrocks and Foster (1987). See also Kamaga (2018) and Bossert and Kamaga (2020).
In the context of welfare measurement, the property employed by these authors is implied
by the conjunction of the strong Pareto principle and the well-known axiom of Hammond
equity; see Hammond (1979, p. 1132).

Composite transfer principle for bottom income. For all n € N and for all z,y € Q"
with xp < xpy1 and y, < ypyq for all k € {1,...,n— 1}, if there exist 4,j € {2,...,n} with
i <jand d,e € Ry, such that x —y = d(e' —€') + (e’ — ¢'), then yPu.

In analogy to the previous subsections, we begin with a preliminary result. This is
followed by a characterization of all inequality orderings that satisfy the axioms of the
previous subsection when the composite transfer principle for top income is replaced with
the corresponding principle for bottom income.

Theorem 9. Let Q € {R, R, .} and suppose that R satisfies S-convezity, continuity, repli-
cation invariance, and the composite transfer principle for bottom income. For alln,m € N,
for all x € Q™, and for ally € Q™, if min{zy, ..., x,} = min{yy, ..., yn}t and p(z) = u(y),
then xly.

Proof. Step 1. Let n € N with n > 3 and x,y € Q" be such that x, < xxy1 and yp < Yri1
for all k € {1,...,n — 1}. Suppose there exist 7,57 € {2,...,n} with i < j and ¢ € R,
such that = —y = e(e? — e'). We show that yRux.

Suppose, by way of contradiction, that yRx does not hold. Since R is complete, we
obtain zPy. It follows from the completeness and continuity of R that {z € Q" | zPz} is
open and y € {z € Q" | xPz}. Thus, there exists § € Ry, such that Us(y) C {z € Q" |
xPz}.

Let £ = min{d,e}/2. Define z € Q" by 21 = y1 —§/2, z;, = y; — £/2, Z; = y; + &, and
Zr =yp for all k € {1,... . n}\{1,7,5}. Note that z — z = (£/2)(e' — €') + (¢ — &)(¢? — ¢&).
Furthermore, z; < zy4; for all k£ € {1,...,n — 1}. By the composite transfer principle for
bottom income, we obtain zZPx. However, this is a contradiction since z € Us(y) C {z €
Q" | xPz}.

Step 2. Let n € N with n > 2 and z,y € Q™. We suppose that min{zy,...,z,} >
min{yi, ..., y,} and p(z) = u(y) and show that yRx.

Since S-convexity implies anonymity and R is transitive, we assume that x and y are
arranged in ascending order, so that min{xy,...,x,} = x; and min{yy,...,y.} = v1.

If n = 2, we immediately obtain yRx from S-convexity.
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Now assume that n > 3. We define y € Q" by 4, = y; and y; = 22:2 y;/(n — 1) for all
i €{2,...,n}. From S-convexity, it follows that

yRy.
For any z € Q", we define B(z) and W(z) by
B(z)={ie{2,...,n} |z >}
and
W(z)={ie{2,....,n} | zi < x;}.

Note that B(y) # @ since 21 > y; and p(x) = p(y). We distinguish two cases.

(a) W(y) = @. It follows from S-convexity that yRz. Since R is transitive, we obtain
yRzx.

(b) W(y) # @. Then there exist m,m € {2,...,n} with m < m such that
B(y)={i|2<i<m} and W(y) ={i|m <i<n}
For each i € B(y), define r; by
Yi — T
> jenem ¥ — 15)

We define gy € Q" by g; = y; for alli € {2,...,n}\B(9), 4; = ;i —ri(v1—y1) for all i € B(y),
and y; = x;. From S-convexity, we obtain

r, =

yRy.
Note that B(y) = B(y) and W(g) = W (y). Further, g5 < gy for all k € {1,...,n —1}.
By the construction of g, x is obtained from g by a finite sequence of regressive transfers
from individuals in B(g) to individuals in W (%) choosing individuals in B(y) in ascending
order and those in W (y) in descending order, respectively. Thus, it follows from Step 1
and the transitivity of R that

yRx.

Since R is transitive, we obtain yRz.

Step 3. Let n € N and z,y € Q", and suppose that min{zq,...,z,} = min{y;,...,y,}
and p(x) = pu(y). We show that zly.

We prove this claim by employing the same argument as in Step 3 of the proof of
Theorem 5. Specifically, by the definition of z € 2™ in Step 3 of the proof of Theorem 5,
we obtain z; < x1 = y; and u(Z) = pu(x) = p(y). Thus, using Step 2, the proof is analogous
to Step 3 of the proof of Theorem 5.

Step 4. Let nym € N, z € Q" y € Q™ and suppose that min{z,...,z,} =
min{yy, ..., yn}t and u(z) = pu(y). Applying the same argument as in Step 4 of the proof
of Theorem 5, it follows that x/y. M
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Note that, unlike Theorems 1, 2, and 3, the proof of Theorem 9 does not apply if 2 =R
is replaced with 2 = R, ; this is the case because Step 1 cannot be established on this
alternative domain. For that reason, we allow for negative income values in the absolute
case.

The following theorem axiomatizes the class of continuous inequality orderings that
only utilize the mean and minimum incomes and are decreasing in the minimum income.

Theorem 10. Let Q2 € {R, R, }. R satisfies S-convexity, continuity, replication invari-
ance, and the composite transfer principle for bottom income if and only if there exists a
continuous ordering = on S = {(a, 8) € Q* | @ > B} such that

(i) for alln,m € N, for all x € Q", and for all y € Q™,
Ry < (w(@),min{zy, ..., 2z.}) Z (u(y), min{y:, ..., yn});

(i1) 7, is decreasing in its second arqument.

Proof. ‘If.” Suppose that there exists a continuous ordering - on S satisfying properties
(i) and (ii) in the theorem statement. From properties (i) and (ii), R satisfies the composite
transfer principle for bottom income. Further, R satisfies S-convexity since for any n € N,
any x € (2", and any n x n doubly stochastic matrix B,

min{(Bz)1, ..., (Bz),} > min{z,...,z,} and p(Bz) = p(x).

The proof that R satisfies continuity and replication invariance is analogous to the proof
of Theorem 6.

‘Only if.” The proof of the existence of the binary relation 77 on S satisfying property
(i) is analogous to the proof of Theorem 6.

To show that = satisfies property (ii), let (o, 8), (a, 8') € S and suppose that g > f'.
Let n € N with n > 3. We define z,y € R" by

r1 = and xi:ns__lﬁ:a%—% for alli e {2,...,n}

and g o
y1 =f" and yizm—_:a—ka_ foralli € {2,...,n}.

n—1 n—1

Note that x,y € Q" x; < z;41, and y; < y;4q foralli € {1,... ,n—1}. Since min{xy,...,z,} =
B, minf{y,...,y.} = 5, u(x) = p(y) = a, and 7 satisfies property (i), it suffices to show
that yPx.

Let § = 8 — 8 > 0. Then, for all i € {2,...,n},

4]

n—1

Yi — T =

Let € € Ry, be such that

e<

n—1
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We define z € R™ by

1 /n—-2 1 n
2’1:1'1——<n_15+€>:y1+§<m(5—€> > Y1,

N}

and

for all i € {3,...,n — 1}. Note that z € Q" and z; < z;;; foralli € {1,...,n—1}. It
follows from S-convexity that
zRz.

Since

1 noe_ 12 no_ 2
2 y—2(n_16 8)(6 e?) +e(e" — e,

it follows from the composite transfer principle for bottom income that yPz. Since R is
transitive, we obtain yPz.

In either case (that is, @ = R or Q2 =R, ), for any (o, 5) € S and for any n € N with
n > 2, the vector z € R" defined by z; = f and z; = (na—f)/(n—1) for alli € {2,...,n}
satisfies x € Q") u(x) = «, and min{xy,...,z,} = B. Therefore, the proof that =~ is a
continuous ordering on S is analogous to the corresponding proof in Theorem 6 presented
for the case where Q =R. W

Finally, we characterize the absolute and relative mean-min inequality orderings.

Theorem 11. Let Q = R. R satisfies S-convezity, continuity, replication invariance, the
composite transfer principle for bottom income, and translation invariance if and only if
R=R? .

un

Proof. From Theorem 10, it follows that there exists a continuous ordering 2~ on S
satisfying properties (i) and (ii) in Theorem 10. Applying the same argument as in the
proof of Theorem 3 using 6 = —p(z) instead of § = —min{zy,...,z,}, we obtain that, for
any n,m € N, for any x € 2", and for any y € Q™

ny g (07 min{mlv s 7~Tn} - M(.’L‘)) i (07 nlin{yh s 7ym} - /“L(y))

Since 7 is decreasing in its second argument, this is equivalent to

rRy < min{xy,...,z,} — p(x) <min{yy, ..., yn} — py)
& p(r) —min{xy, ...,z } > p(y) — min{yy, ..., ym}
< zR),y B
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Theorem 12. Let ) =R, . R satisfies S-convezity, continuity, replication invariance, the
composite transfer principle for bottom income, and scale invariance if and only if R = R,

Proof. From Theorem 10, it follows that there exists a continuous ordering - on S
satisfying properties (i) and (ii) in Theorem 10. Applying the same argument as in the
proof of Theorem 4 using A = 1/u(z) instead of A = 1/ min{x,...,x,}, we obtain that,
for any n,m € N, for any = € ", and for any y € Q™

o () ()

Since 77 is decreasing in its second argument, this is equivalent to

min{wy,...,2,} - min{yy, ..., Ym}

TRy & <
p(z) p(y)
pz) - #y)
min{zy,...,z,} — min{yy,...,yn}
< 2R,y B

3.4 Top income gaps and shares

We begin by presenting the restatements of S-convexity, continuity, and replication invari-
ance defined on the requisite domain.

S-convexity*. For all n € N, for all x € "¢, and for all ng x ng doubly stochastic matrices
B, xR(Bx).

Continuity*. For all n € N and for all x € Q™ {y € Q" | yRx} and {y € Q" | Ry} are
closed in 29,

Replication invariance*. For all n, k € N and for all x € Q" z[(z,..., x).
——
k times

Transfer neutrality within quantiles postulates a consequence of a transfer between
individuals in the same quantile. It requires that inequality be invariant with respect
to a transfer within a quantile as long as the individuals involved remain in the same
quantile. This axiom is an inequality-measurement analogue of the incremental-equity
property introduced by Blackorby, Bossert, and Donaldson (2002) in the context of welfare
measurement.

Transfer neutrality within quantiles. For all n € N and for all z,y € Q" if Gy(x) =
Go(y) for all ¢ € {1,...,q} and there exist ¢ € {1,...,q} and i,j7 € Gp(z) such that
v —y; =y; —xj and xp =y, for all k € {1,...,ng} \ {7, 7}, then xIy.

The following theorem characterizes the class of inequality orderings that satisfy the
four axioms presented above. As the theorem shows, this class consists of all continuous
and S-convex orderings that only utilize the mean incomes of the quantiles.
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Theorem 13. Let Q) € {R,R, . }. R satisfies S-convexity*, replication invariance*, continu-
ity*, and transfer neutrality within quantiles if and only if there exists a continuous and
S-convex ordering 77* on S* ={z € Q1| 2y < 24y forall t € {1,...,q—1}} such that, for
all n,m € N, for all x € Q™ and for all y € Q™

wRy < (), pg(2)) Z° (1Y), - 1g(y)- (4)

Proof. ‘If.” Suppose that there exists a continuous and S-convex ordering ~* on S*
satisfying (4). First, we show that R satisfies S-convexity*. Let n € N and z,y € Q™.
Suppose that there exists an ng x ng doubly stochastic matrix B such that y = Bx. We
show that xRy. Since y = Bz, it follows that, for all k € {1,...,ng},

k k nq nq
Y we <Y yw and > we =Yy,
=1 i=1 i=1 i=1

see, for example, Hardy, Littlewood, and Pdlya (1934), Marshall and Olkin (1979), and
Dasgupta, Sen, and Starrett (1973). Thus, we obtain that, for all & € {1,...,q},

k k

Y wely) and Y plx) =D ply),

/=1 (=1

(]
S
&
IA

which implies that there exists a ¢ x ¢ doubly stochastic matrix B* such that

B (), pg()) = (1Y), -5 11g(y))-

Since 7Z* is S-convex, we obtain

(a (), oo ptq(2)) 227 (a(y), - -5 1g(y).

From (4), xRy follows.

Next, we show that R satisfies continuity*. Let n € N and = € Q™. We show that
{y € Q" | yRx} is closed in Q. Let (z'),en be a sequence of vectors in {y € Q" | yRx}
and suppose that (z");en converges to z. Since z' Rz for all ¢ € N, it follows from (4) that,
forall t € N,

(11(2); s p1g(21) 7 (@), - g ().
Since, for each ¢ € {1,...,q},
g (2) = pe(2),

it follows from the continuity of 72* that

(1(27), s 11q(27) 27 (pa (), - - -, pg()).

From (4), we obtain zRx. The proof that {y € Q" | xRy} is closed in 2" is analogous.
Next, to show that R satisfies replication invariance*, let n,k € N, z € R}, and
= (z,...,2) € R Note that for all ¢ € {1,....q}, u(z) = . Thus, we obtain
y = ( ) € RYY { qt, pe(x) = 1e(y)

k times

(pa(z), ooy pg(2)I(pa(y), - - -, 1g(y)), and xly follows from (4).

23



Finally, we show that R satisfies transfer neutrality within quantiles. Let n € N and
z,y € R} . Suppose that Gy(x) = Ge(y) forall £ € {1,...,q} and there exist ' € {1,...,q}
and 7,7 € Gp(z) such that x; —y; = y; —x; and z, = y, for all k € {1,...,ng} \ {4, j}.
Then, again, uy(x) = pe(y) for all £ € {1,...,q}. Thus, from the same argument as above,
xly follows.

‘Only if.” Step 1. We show that, for any n € N and for any z,y € R}%, xly if
(Ye—tynt1s - - Yem) = (pe(x), ..., pe(zx)) for all £ € {1,...,¢q}. This follows immediately
if n = 1 because R satisfies anonymity. Now assume that n > 2, and let z € R}Y.
Since R satisfies anonymity, without loss of generality, we assume x = (). Hence, for all
te{l,....,q}, Go(z) ={({—=1)n+1,...,¢n}. Forall £ € {1,...,q}, we define the subsets
By(x) and Wy(x) of Gy(x) by

Bi(z) = {i € Gu(@) | 2 > pue(z)}
and
Wilw) = {i € Gelw) | 2 < je(a)}.

Further, define y € R} by (yu—1yn+1,---:Yem) = (pe(x), ..., we(x)) for all £ € {1,...,q}.
Note that Gy(y) = Ge(x) for all £ € {1,...,q}. If By(x) = @ for all £ € {1,...,q}, then
x = y. Thus, we obtain x/y. We now suppose that there exists ¢ € {1,...,q} such that
By(x) # @. Note that for all ¢ € {1,...,q}, Bi(x) # @ implies W,(z) # &. Furthermore,
DieBo() (T — 1e(2)) = X icw, @ (He(z) — ;). Thus, y can be obtained from x by a finite
sequence of progressive transfers from individuals in By(z) to those in Wy(x). Since none
of these transfers change the quantile to which the donor and recipient belong, we obtain
xly by transfer neutrality within quantiles and the transitivity of R.

Step 2. To complete the proof, let n,m € N, z € R, and y € R}'{. We define z € R},
and g € R} by
(Ze—1ynt1s - - - Tem) = (o), . .., pe())
and
(Ye—vyms1s - Yem) = (pe(y), - - -, e(y))
for all £ € {1,...,q}. Since R is transitive, it follows from Step 1 that

rRy < ZRy.
Since R satisfies replication invariance, we obtain

(@), .., pyl2))

and
gL (Y) - - s pg(y))-
Therefore, by the transitivity of R, we obtain

Ry < (@), pe(2)R(pa(y), - - 1g(y))-
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We define the ordering 7=* on S* by the restriction of R to S* C D. Then, 7Z* satisfies (4).
Further, since R satisfies S-convexity* and continuity®, ~~* is continuous and S-convex on
S*.

The fifth axiom we use to characterize the top income gap inequality ordering and
its relative counterpart is the composite transfer principle for top quantile. This axiom
parallels the composite transfer principle for top income but the requirement is restricted
to income distributions involving ¢ individuals. Thus, it is logically weaker than the direct
reformulation of the composite transfer principle for top income.

Composite transfer principle for top quantile. For all x,y € Q7 with z, < z,,; and
Yo < ypuq for all £ € {1,...,q — 1}, if there exist 6, € Ry, and 7,5 € {1,...,¢ — 1} with
i < j such that z —y = d(e’ — e7) + e(e? — €7), then xPy.

Adding the composite transfer principle for top quantile to the axioms of Theorem 13,
we obtain the following preliminary result that is analogous to Theorem 5.

Theorem 14. Let Q € {R,R,,} and suppose that R satisfies S-convexity*, continuity®,
replication invariance®, transfer neutrality within quantiles, and the composite transfer
principle for top quantile. For all n,m € N, for all x € Q" and for all y € Q™ if

1q(@) = pq(y) and p(x) = p(y), then xly.

Proof. From Theorem 13, there exists a continuous and S-convex ordering 7* on S* that
satisfies (4). Note that for any n € N and for any x € Q"

p(@) = p (), ()

Thus, from Theorem 13, it suffices to show that, for all z,y € S*, if 2, = y, and p(x) = u(y),
then z ~* y. Note that this claim is analogous to the claim of Step 3 of the proof of Theorem
5. Further, Steps 1, 2, and 3 of the proof of Theorem 5 were established using vectors in
{z € O | x; <@y foralli € {1,...,n —1}}. Thus, letting n = ¢, we can prove the
claim by employing the same argument as in the proof of Theorem 5. W

The following theorem characterizes all inequality orderings that satisfy the axioms
introduced in this subsection. These inequality orderings only utilize the mean incomes of
the top quantile and the entire population and they are increasing in the mean income of
the top quantile.

Theorem 15. (a) Let Q2 = R. R satisfies S-converity*, continuity*, replication invariance®,
transfer neutrality within quantiles, and the composite transfer principle for top quantile if
and only if there exists a continuous ordering = on S = {(a, 8) € Q* | a > B} such that

(i) for alln,m € N, for all x € Q™ and for all y € Q™4
rRy & (pg(x), 1)) Z (g(y), 1(y));
(i1) 7, is increasing in its first argument.
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(b) Let Q = R, ;. R satisfies S-convexity*, continuity®, replication invariance*, transfer
neutrality within quantiles, and the composite transfer principle for top quantile if and only
if there exists a continuous ordering == on S = {(«, ) € Q* | a > 8 > a/q} such that

(i) for alln,m € N, for all x € Q™, and for all y € Q™1,

zRy & (pe(x), () Z (1q(y)s 1(v));

(11) 7 is increasing in its first argument.

Proof. (a) ‘If.” Suppose that there exists a continuous ordering - on S satisfying properties
(i) and (ii). We define the ordering Z=* on S* = {z € Q7| 2z, < 24y for all £ € {1,...,¢—1}}
as follows. For all z,y € S*,

"y e (w4, 1)) 2 (Yg 1Y)

Since 7 satisfies property (i) and p(z) = p((ui(x),. .., pue(z))) for all n € N and for all
x € Q" ~* satisfies (4) in Theorem 13. By the continuity of =, * is continuous on
S*. Since 7 satisfies property (ii), 7Z* is S-convex. Thus, from Theorem 13, R satisfies
S-convexity™, replication invariance®, continuity*, and transfer neutrality within quantiles.
Furthermore, from properties (i) and (ii), R satisfies the composite transfer principle for

top quantile.
‘Only if.” We define the binary relation 2Z on S by letting, for all («, 5), (/,8") € S,

(. B) Z (o, )
if and only if there exist n,m € N, x € Q™ and y € Q"¢ such that xRy and
a = (), B=p(x), o =py), 8= ny).

We can prove that 7~ satisfies property (i) by the same argument as in the corresponding
proof of Theorem 6 using Theorem 14 instead of Theorem 5.
For any (o, ) € S and for any ¢ € N with ¢ > 3, the vector = € R? defined by

qB —

T, = and zy = aforallﬁe{l,...,q—l}
satisfies p1,(z) = a and p(z) = B. Further, 2 € Q™ follows; note that if @ =R, (o, ) € S
satisfies § > a//q. Therefore, we can prove that 7~ is a continuous ordering by letting n = ¢
and applying the same argument as in the corresponding proof in Theorem 6 presented for
the case where 2 = R. Further, letting n = ¢, the proof that = is increasing in its first
argument is analogous to the corresponding proof in Theorem 6.

The proof of part (b) is analogous. W

Adding translation invariance and scale invariance, respectively, to the axioms of Theo-
rem 15, we obtain characterizations of the top income gap inequality ordering and the top
income share inequality ordering.
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Theorem 16. Let (2 = R. R satisfies S-convexity*, continuity”, replication invariance®,
transfer neutrality within quantiles, the composite transfer principle for top quantile, and
translation invariance® if and only if R = R.

Proof. Let n € N and z € Q™. Translation invariance with 6 = —pu(x) requires that

(01 = (), s g — ()L
and, by Theorem 15,
(hq(x) = p(),0) ~ (pg(x), p()).

Now let n,m € N, x € Q™ and y € 27, Analogously to the proof of Theorem 7, using
Theorem 15, it follows that

Ry < (pg(z) — p(x),0) Z (1e(y) — p1(y), 0)
S pg() — (@) = pe(y) — p(y)
& Ry B
Theorem 17. Let Q2 =R, . R satisfies S-convexity*, continuity®, replication invariance*,

transfer neutrality within quantiles, the composite transfer principle for top quantile, and
scale invariance® if and only if R = Rj.

Proof. Let n € N and x € 2". Scale invariance with A = 1/u(x) requires that
T Tng ) I
(u(z)’ ")

(A,fj((j))’ 1) ~ (pg(), p(x)).

Now let n,m € N, x € Q™ and y € 2%, Analogously to the proof of Theorem 8, using

Theorem 15, we obtain
Ry o <uq($)71) - (uq(y),l)
() 1(y)

Ba(T) _ 1e(y)
(@) = uly)
& zRjy. A

and, by Theorem 15,

3.5 Bottom income gaps and shares

We characterize the bottom income share inequality ordering and the mean-bottom in-
equality ordering using the composite transfer principle for bottom quantile, which is an
axiom dual to the composite transfer principle for top quantile. The composite transfer
principle for bottom quantile requires the same property as the composite transfer principle
for bottom income but the property applies only to income distributions for ¢ persons.
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Composite transfer principle for bottom quantile. For all z,y € Q7 with z, <z,
and yp < yp4q for all £ € {1,...,q — 1}, if there exist §,e € R, and 7,5 € {2,...,q} with
i < j such that x —y = d(e* — €') + e(e/ — €'), then yPu.

In analogy to the previous section, we characterize all inequality orderings that satisfy
the axioms of the previous subsection when the composite transfer principle for top quantile
is replaced with the composite transfer principle for bottom quantile. We begin with the
following preliminary result.

Theorem 18. Let Q € {R,R.,} and suppose that R satisfies S-convexity®, continuity®,
replication invariance”, transfer neutrality within quantiles, and the composite transfer prin-
ciple for bottom quantile. For all n,m € N, for all x € Q™, and for all y € Q™, if

(@) = p(y) and p(x) = p(y), then xly.

Proof. From Theorem 13, there exists a continuous and S-convex ordering ~* on S* that
satisfies (4). Thus, it remains to show that, for any =,y € S*, if 21 = y; and p(z) = u(y),
then x ~* y. Analogously to the proof of Theorem 14, we can prove this claim by letting
n = q and applying the same argument as in Steps 1, 2, and 3 of the proof of Theorem 9.
|

Theorem 19. Let Q € {R, R, }. R satisfies S-convexity*, continuity*, replication invari-
ance*, transfer neutrality within quantiles, and the composite transfer principle for bottom
quantile if and only if there exists a continuous ordering == on S = {(a, ) € Q* | a > (3}
such that

(i) for alln,m € N, for all x € Q™, and for all y € Q™1

rRy < (), m(x)) Z (1Y), m(y));

(11) 7 is decreasing in its second arqument.

Proof. ‘If.” Suppose that there exists a continuous ordering 7~ on S satisfying properties
(i) and (ii). From properties (i) and (ii), R satisfies the composite transfer principle for
bottom quantile. The proof that R satisfies the other axioms is analogous to the proof of
Theorem 15.

‘Only if.” The proof of the existence of the binary relation - on S satisfying property
(i) is analogous to the proof of Theorem 15.

In either case (that is, Q@ = R or Q =R, ), for any (o, 3) € S and for any ¢ € N with
q > 3, the vector x € RY defined by

qﬁ_—oz forall ¢ € {2,...,q}

ry =0 and z, =

satisfies © € Q") uy(x) = 3, and p(x) = a. Therefore, we can prove that - is a continuous
ordering satisfying property (ii) by letting n = ¢ and applying the same argument as in the
corresponding proof in Theorem 10. W
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Adding translation invariance and scale invariance, respectively, to the axioms of Theo-
rem 19, we obtain characterizations of the bottom income gap inequality ordering and the
bottom income share inequality ordering.

Theorem 20. Let 2 = R. R satisfies S-convexity”*, continuity”, replication invariance®,
transfer neutrality within quantiles, the composite transfer principle for bottom quantile,
and translation invariance® if and only if R = Rj.

Proof. From Theorem 19, it follows that there exists a continuous ordering - on S
satisfying properties (i) and (ii) in Theorem 19. Applying the same argument as in the
proof of Theorem 16 using § = —u(x), we obtain that, for all n,m € N, for all x € Q™
and for all y € Q™9

rRy < (0,pn(x) — p(x)) Z (0, ply) — plw)).

Since 7 is decreasing in its second argument, this is equivalent to

tRy & p(z) —p(r) < iy
< pla) —u(z) > ply) - ul(y)
S Ry B

Theorem 21. Let 2 =R, . R satisfies S-convexity*, continuity®, replication invariance*,
transfer neutrality within quantiles, the composite transfer principle for bottom quantile,
and scale invariance® if and only if R = Ry.

Proof. From Theorem 19, it follows that there exists a continuous ordering >~ on S
satisfying properties (i) and (ii) in Theorem 19. Applying the same argument as in the
proof of Theorem 17 using A = 1/u(x), we obtain that, for all n,m € N, for all z € Q"

and for all y € Q™.
ey o (L5 < (1500)

Since 77 is decreasing in its second argument, this is equivalent to

4 Empirical considerations

The measures characterized in this paper are easily understood and computed. They can
be considered somewhat coarse, and the purpose of this empirical section is to explore their



linear correlation with more standard indices of inequality. We employ a strategy that is
inspired by Leigh (2007) and, in particular, we estimate the equations

SIneq;; = a+ BIneq;y + €4, (5)
SIneqiy = o+ fInegy + v + €y, (6)
SIneq;; = o+ BIneqiy + v + 6, + €4, (7)

where SInegq;; is one of several standard indices of inequality in country 7 in year ¢ that
we compute to perform our comparisons. These alternative indices are given by (i) the
absolute Gini coefficient, the variance, and the Kolm index with parameter values of 10~*
and 5 - 10~* in the absolute case, and (ii) the Gini coefficient and the Atkinson index with
inequality-aversion parameter values of 0.5 and 1 for the relative measures. The variable
Inegq;,; indicates one of the inequality measures characterized in this paper. Equation (6)
also includes a country-specific term 7, while (7) controls for the year fixed effect ¢ in
addition.

We use all the waves of the Luxembourg Income Study (LIS) datasets that are available
as of May 2019, retaining the countries for which at least four years for the period 1974—
2016 are covered. This leaves us with 36 countries in total and a global sample of 299
observations; for the countries retained, see Table 5. We follow the LIS rules for their
provision of the key figures since we wish to be of guidance for researchers that decide
to use the indices already available from LIS. In particular, in this specification, (i) the
income measure is disposable household income equivalized by means of the square root
equivalence scale; (ii) the unit of analysis is the individual; (iii) incomes are bottom-coded
at 1% of equivalized mean income and top-coded at ten times mean income; (iv) missing
and zero incomes are excluded. As an alternative, to test the sensitivity of our results to
the LIS top-coding rules, we also provide the results without top coding and include all
the observations on the right tail of the income distribution. The incomes are expressed in
2011 constant US dollars. All variables are standardized to Z-scores (that is, to a mean of
zero and a standard deviation of one) to facilitate comparisons of the estimated coefficients.
As a result of this standardization, the slope § of the regression line in (5) is Pearson’s
correlation coefficient among the independent and dependent variables. This equivalence
does not hold in the other two estimated models since these are multivariate regressions.
Again, the reference value is one because an increase in one standard deviation of one index
is associated with an increase of one standard deviation in the other.

Table 1 displays the results for the absolute inequality indices, and Table 2 contains
those for the relative case following the LIS rules, while Tables 3 and 4 contain those
without top-coding. Owing to the presence of high collinearity among the inequality indices
(measured by a Variance Inflation Factor exceeding the reference value of ten by a large
margin), we cannot include all of them simultaneously in the regression. To avoid lengthy
tables, we report the estimation results of pairs of the classical and our inequality measures
in a single column. The classical measure we consider is indicated in the top row and the
inequality measures we characterize are listed in the first column. The equation numbers
(5), (6), and (7) in the top row indicate the three regression models without fixed effects,
with country fixed effects, and with country and year fixed effects, respectively.
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All coefficients are positive and significant in the LIS specification, while some coef-
ficients lose significance without top coding and also in one case for the Atkinson index.
Let us first focus on the discussion of the results with the full application of the LIS rules.
We observe many correlation coefficients among the indices above 0.9. For the absolute
case, the lowest observed correlation is never below 0.352 (between the Kolm index with
parameter value of 107* and the absolute mean-min indices in Table 1). The correlation
coefficients for the relative measures range between 0.18 (observed for the Gini and the
relative mean-min indices in Table 2) and 0.983 (between the Gini and the top income
share indices).

The linear associations between the absolute indices are surprisingly high; see Table 1.
Values very close to one are observed in all three models between all the absolute standard
measures and the absolute mean-min, top 10% gap, and bottom 10% gap indices; the only
exception is the correlation coefficient with the Kolm index with parameter value 1074,
reported in the first column of the table. The results improve with the introduction of
country and year fixed effects.

For the relative case in all models (Table 2), the value closest to one is observed for
the 10% top income share index, followed by the 10% bottom income share index. The
remaining indices do not perform that well, especially when year and country fixed effects
are incorporated. It is worth noting that the values of the coefficient of determination
(R-squared) are always above 0.9 as soon as the country dummies are introduced in the
model.

As expected, the full consideration of the highest incomes (see Tables 3 and 4) has an
effect on the results, lowering the correlation coefficients between the standard measures
and the coarser indices, apart from the two that exclude the maximum income from their
definitions (the top 10% gap and share and the bottom 10% gap and share). The absolute
and relative mean-min indices perform well, especially in the absolute case with the absolute
Gini coefficient and the two versions of the Kolm index.
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Table 2: Standard relative inequality measures and our relative inequality measures

Dependent  Gini Atkinson (parameter 0.5) Atkinson (parameter 1)
variables  (5) (6) (7) () (6) (7) () (6) (7)
Relative 0.327*** 0.123***  0.078*** 0.335***  0.108*** 0.066*** 0.341*** 0.112*** 0.070**
range (0.044)  (0.019)  (0.023)  (0.042)  (0.018)  (0.022)  (0.043)  (0.021)  (0.027)
0.107 0.957 0.967 0.112 0.954 0.964 0.116 0.941 0.953
Obs. 299 299 299 299 299 299 299 299 299

Relative 0.334*%  0.093***  0.051"** 0.342°* 0.078* 0.038*  0.331** 0.070"* 0.025
max-mean  (0.050)  (0.020)  (0.023)  (0.048)  (0.018)  (0.022)  (0.050)  (0.021)  (0.026)
0.111  0.95,  0.966  0.117  0.951  0.963  0.110  0.937  0.952
Obs. 299 299 299 299 299 299 299 299 299

Relative 0.180%  0.097***  0.059*** 0.180"*  0.090*"* 0.054*** 0.208"** 0.110"** 0.073**
mean-min  (0.025)  (0.018)  (0.018)  (0.022)  (0.016)  (0.016)  (0.022)  (0.019)  (0.020)
0.032  0.95,  0.967  0.032  0.952  0.96,  0.043  0.941  0.95]

Obs. 299 299 299 299 299 299 299 299 299
Top 10%  0.983** 0.822** 0.763"* 0.969*** 0.814** 0.770"** 0.965** 0.888"** (0.857***
share (0.010)  (0.040)  (0.039)  (0.016)  (0.045)  (0.046)  (0.018)  (0.049)  (0.056)
0.965  0.981  0.987  0.939  0.979  0.98/  0.932  0.972  0.978
Obs. 299 299 299 299 299 299 299 299 299
Bottom 0.8927  0.547***  0.ATI*™*  0.918* 0.620"* 0.554*** 0.927** 0.671"* 0.615*"*

10% share  (0.118)  (0.149)  (0.141)  (0.108)  (0.144)  (0.141)  (0.099)  (0.155)  (0.156)
0.792  0.971  0.979  0.843  0.976  0.982  0.860  0.968  0.976
Obs. 299 299 299 299 299 299 299 299 299

Notes. Each column presents the results of the corresponding pairs of classical and our inequality measures
according to the estimated equations (5) without fixed effects, (6) with country fixed effects, and (7) with
country and year fixed effects, respectively. Robust standard errors in parentheses. ***, ** and * denote
p < 0.01, p < 0.05, and p < 0.1, respectively. R-squared is in italic.
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Table 4: Standard relative inequality measures and our relative inequality measures (without

top-coding)

Dependent  Gini Atkinson (parameter 0.5) Atkinson (parameter 1)
variables (5) (6) (7) (5) (6) (M) (5) (6) (M)
Relative 0.057 0.023* 0.012 0.079 0.021 0.014 0.064 0.014 0.009
range (0.116)  (0.013)  (0.012)  (0.127)  (0.015)  (0.015)  (0.118)  (0.013)  (0.014)
0.003 0.944 0.962 0.006 0.956 0.954 0.004 0.9531 0.949
Obs. 299 299 299 299 299 299 299 299 299
Relative 0.056 0.023* 0.011 0.077 0.021 0.013 0.062 0.013 0.008
max-mean  (0.115)  (0.013)  (0.012)  (0.125)  (0.015)  (0.015)  (0.116)  (0.012)  (0.014)
0.003 0.944 0.962 0.006 0.936 0.954 0.004 0.931 0.949
Obs. 299 299 299 299 299 299 299 299 299
Relative 0.230***  0.100***  0.058"**  0.229***  0.089***  0.049*** 0.255"**  0.112*** 0.072***
mean min  (0.026)  (0.018)  (0.018)  (0.023)  (0.016)  (0.018)  (0.023)  (0.018)  (0.075)
0.053 0.949 0.963 0.052 0.936 0.955 0.065 0.937 0.963
Obs. 299 299 299 299 299 299 299 299 299
Top 10% 0.948***  0.600***  0.529***  0.909***  0.519***  0.455*"**  0.927***  0.637*** 0.528***
share (0.022)  (0.063)  (0.064)  (0.031)  (0.076)  (0.079)  (0.027)  (0.070)  (0.075)
0.599 0.962 0.973 0.827 0.949 0.962 0.858 0.951 0.963
Obs. 299 299 299 299 299 299 299 299 299
Bottom 0.896™**  0.564***  0.484™** 0.916*** 0.659*** 0.583*** 0.927*** 0.673*** 0.610***
10% share  (0.117)  (0.146)  (0.138)  (0.109)  (0.147)  (0.143)  (0.100)  (0.152)  (0.152)
0.803 0.969 0.978 0.839 0.970 0.977 0.860 0.967 0.974
Obs. 299 299 299 299 299 299 299 299 299

Notes. Each column presents the results of the corresponding pairs of classical and our inequality measures
according to the estimated equations (5) without fixed effects, (6) with country fixed effects, and (7) with
country and year fixed effects, respectively. Robust standard errors in parentheses.
p < 0.01, p < 0.05, and p < 0.1, respectively. R-squared is in italic.

5 Concluding remarks

* >k k *k
I

, and * denote

In this paper, we characterize some inequality measures that are based on simple summary
statistics such as the minimum, the maximum, and the mean of an income distribution.
Although most of these indices are well-known, there do not appear to be any axiomatiza-
tions available. Our theoretical results are supplemented with an empirical analysis that
is intended to show that there may be more to our contribution than merely filling a gap
in the literature. Especially in the case of some absolute measures, it turns out that there
are some strong correlations between these indices and inequality orderings that are of a
more complex nature. This latter observation, along with Leigh’s (2007) analysis, suggests
that there is a surprisingly high level of agreement across indices when it comes to practical
applications. Thus, it may be promising to extend our application to include a larger class
of measures and additional data sets.
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Appendix

Independence of the axioms in Theorems 2, 3, and 4

First, let 2 = R and define the inequality ordering R as follows. For all n,m € N, for all
x € Q" and for all y € Q™ if max{z,...,z,} = min{zy,...,2,} and max{y;,...,ym} =

min{yi, ..., Ym},
TRy & n <m,

and if max{xy,...,z,} > min{xy, ..., z,} or max{y,...,yn} > min{yr, ..., yn},
rRy & xR..y.

We show that R is a well-defined ordering on D. To show that R is complete, let n,m €
N, z € Q" and y € Q™. First, suppose that max{xy,...,z,} = min{z{,...,x,} and
max{y1,...,Ym}t = min{yy,...,yn}. Then, it follows that xRy or yRx since n < m or
n > m. Next, suppose that max{zi,...,z,} > min{x,...,z,} or max{yi,...,ym} >
min{yy, ..., Ym}. Then, it follows from the completeness of R’  that xRy or yRx.

Next, to show that R is transitive, let n,m,/ € N,z € Q", y € Q™ and z € Q°. Suppose
that xRy and yRz. We distinguish two cases.

(1) max{yi, ..., Ym} = min{ys, ..., Ym}. Hmax{zy,..., 2z} > min{z,..., 2}, we obtain
a contradiction to yRz. Thus, yRz implies

max{zy,..., 2} =min{z,..., 2} and m < /.
If max{zy,...,2,} = min{zy,...,2,}, Ry implies n < m < ¢ and we obtain zRz. If
max{zi,...,x,} > min{z,...,z,}, Rz follows since zP? z.
(i) max{y1,...,Ym} > min{yy,...,yn}t. If max{zy,...,z,} = min{zq,...,z,}, we

obtain a contradiction to xRy. Thus,

max{zy,...,zr,} —min{zy,...,z,} > max{yy,...,yn}t — min{yy, ..., yn} > 0.

Since yRz implies

max{yi,...,Ym} — min{yy,...,ym} > max{zy,..., 2z} —min{zy, ..., 2.},

we obtain zR%_ z, which implies xRz since max{z1,...,x,} —min{xy,...,z,} > 0.

The inequality ordering R defined above satisfies the axioms of Theorem 2 and 3 except
for equality indifference.

If Q = R, define the inequality ordering R as follows. For all n,m € N, for all
x € Q" and for all y € Q™ if max{zy,...,2,} = min{xy,...,z,} and max{y,,...,yn} =

min{yb s 7ym}7
TRy & n <m,

and if max{xy,...,x,} > min{zy,...,z,} or max{yy,...,yn}t > min{yy, ..., yn}t,

rRy < xR y.
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That R is an ordering on D can be proven by employing the same argument as that used
in the case {2 = R. This inequality ordering satisfies the axioms of Theorem 2 and 4 except
for equality indifference.

Second, let 2 = R and define the ordering R as follows. For all n,m € N, for all x € Q",
and for all y € Q™,

fL'Ry < T1— min{‘%'l? ce 7xn} > v — min{yh ce 7ym}

This inequality ordering satisfies the axioms of Theorems 2 and 3 except for anonymity.

If @ =R, define the ordering R as follows. For all n,m € N, for all x € Q" and for

all y € Q™
T n

- > — .
min{zy,...,z,} — min{yy, ..., yn}

This inequality ordering satisfies the axioms of Theorems 2 and 4 except for anonymity.

xRy <

Third, let 2 = R and define R as follows. For all n,m € N, for all z € Q", and for all
y € Q™
xRy & yR;, .

This inequality ordering satisfies the axioms of Theorems 2 and 3 except for expansion
dominance.

If Q =R, ., define the ordering R as follows. For all n,m € N, for all z € Q", and for
all y € Q™
xRy & yR, .

This inequality ordering satisfies the axioms of Theorems 2 and 4 except for expansion
dominance.

Fourth, let 2 = R and define R as follows. For all n,m € N, for all z € 2", and for all
y € Q™ xRy if and only if
(i) =Py or

xrn

max{xy,...,r,} —min{xy, ..., x,} - max{yi, ..., Ynm} — min{yy, ..., ym}

n m

(i) =12,y and
This inequality ordering satisfies the axioms of Theorems 2 and 3 except for conditional
independence.

If Q =R, ., define R as follows. For all n,m € N, for all x € 2", and for all y € Q™,
xRy if and only if

(i) =P}y or

n

1 1
max{xy,... ,xn}) n - <max{y1, . ’?Jm}) P

.. I d
(H> Hland A1 (Hlin{xlv s 7xN} Hlin{yl’ o 7ym}
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This inequality ordering satisfies the axioms of Theorems 2 and 4 except for conditional
independence.

Fifth, let 2 = R and define R as follows. For all n,m € N, for all x € Q", and for all
y e Qm,

rRy < (max{zi,...,z,})?—(min{z,...,2,})? > (max{y1, ..., ¥m})*—(min{ys, ..., ym})*
This inequality ordering satisfies the axioms of Theorem 3 except for translation invariance.

Finally, define R as the restriction of Rf, to U,enR’,. This ordering satisfies the
axioms of Theorem 4 except for scale invariance.

Independence of the axioms in Theorems 6, 7, and 8

From Theorems 10, 11, and 12, the composite transfer principle for top income is indepen-
dent of the other axioms in Theorems 6, 7, and 8. To prove that the axioms in Theorems
6, 7, and 8 are independent, consider the following examples.

First, let 2 = R and define R as follows. For all n,m € N, for all z € Q", and for all
y e,
rRy & max{xy,...,x,} +min{zy,...,2,} —2u(z)
2 nlax{yb cet 7ym} + nlin{yh cee 7ym} - 2/j’<y)
This inequality ordering satisfies the axioms of Theorems 6 and 7 except for S-convexity.

If Q =R, ., define R as follows. For all n,m € N, for all z € Q" and for all y € Q™,

max{xy,..., o, min{zr, ..., x,} < max{yi, ..., Ym fmin{yy, ..., yn}
p(x)? - 1(y)?

TRy &

This inequality ordering satisfies the axioms of Theorems 6 and 8 except for S-convexity.

Second, let 2 = R and define R as follows. For all n,m € N, for all x € 2", and for all
y € Q™ xRy if and only if

(i) zPgy or
(ii) =3,y and xRy, y.
This inequality ordering satisfies the axioms of Theorems 6 and 7 except for continuity.

If @ =R,,, define R as follows. For all n,m € N, for all z € 2", and for all y € Q™
xRy if and only if
(i) xP;,y or

x

(ii) zI;,y and 2R}y
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This inequality ordering satisfies the axioms of Theorems 6 and 8 except for continuity.

Third, let 2 = R and define R as follows. For all n,m € N, for all z € 2", and for all
y e Qm,
zRy < n(max{zy,...,z,} — p(x)) > m(max{ys, ..., ym} — p(y)).

This inequality ordering satisfies the axioms of Theorems 6 and 7 except for replication
invariance.

If Q =R, ., define R as follows. For all n,m € N, for all z € Q" and for all y € Q™,
max{zy, ... ,xn}>" - (max{yl, . ,ym})m
p() - 1(y) '

This inequality ordering satisfies the axioms of Theorems 6 and 8 except for replication
invariance.

ny@(

Fourth, let 2 = R and define R as follows. For all n,m € N, for all z € 2", and for all
y € Q"
TRy < max{xzy,...,z,} + p(r) > max{y,...,ym} + p(y).
This inequality ordering satisfies the axioms of Theorem 7 except for translation invariance.

Finally, consider the restriction of R7, to UnenR' . This ordering satisfies the axioms
of Theorem 8 except for scale invariance.

Independence of the axioms in Theorems 10, 11, and 12

From Theorems 6, 7, and 8, the composite transfer principle for bottom income is indepen-
dent of the other axioms in Theorems 10, 11, and 12. To prove that the other axioms in
Theorems 10, 11, and 12 are independent, consider the following examples.

First, let 2 = R and define R as follows. For all n,m € N, for all x € Q", and for all
y e,
Ry < max{zy,...,z,} +min{z,...,z,} — 2u(x)
< max{yr, ..., Ym} +min{yy, ..., yn}t — 2u(y).
This inequality ordering satisfies the axioms of Theorems 10 and 11 except for S-convexity.

If Q =R, ., define R as follows. For all n,m € N, for all x € 2", and for all y € Q™

max{zi,..., o, min{zy,...,z,} - max{y, ..., Ymmin{ys, ..., yn}
p(z)? - p(y)?

This inequality ordering satisfies the axioms of Theorems 10 and 12 except for S-convexity.

TRy &

Second, let 2 = R and define R as follows. For all n,m € N, for all x € Q", and for all
y € Q™ xRy if and only if
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(i) zPg,y or
(ii) zI},y and zRgy.
This inequality ordering satisfies the axioms of Theorems 10 and 11 except for continuity.

If Q =R,,, define R as follows. For all n,m € N, for all z € 2", and for all y € Q™,
xRy if and only if

(i) =P,y or
(ii) zI},y and xR} y.
This inequality ordering satisfies the axioms of Theorems 10 and 12 except for continuity.

Third, let 2 = R and define R as follows. For all n,m € N, for all z € ", and for all
y € Q"
ny g n(u(:") - min{xlv s wxn}) = m(:u(y> - min{ylv s 7ym})'

This inequality ordering satisfies the axioms of Theorems 10 and 11 except for replication
invariance.

If Q =R, ., define R as follows. For all n,m € N, for all z € Q", and for all y € Q™,

o () = ()

This inequality ordering satisfies the axioms of Theorems 10 and 12 except for replication
invariance.

Fourth, let 2 = R and define R as follows. For all n,m € N, for all z € 2", and for all
yeQm,
rRy < min{zy,...,z,} + p(r) <min{y, ..., ym} + p(y).
This inequality ordering satisfies the axioms of Theorem 11 except for translation invari-
ance.

Finally, consider the restriction of Rj, to UnenR’ . This ordering satisfies the axioms
of Theorem 12 except for scale invariance.

Independence of the axioms in Theorems 13, 15, 16, 17, 19, 20,
and 21

Transfer neutrality within quantiles is independent of the other axioms in Theorems 13,
15, 16, and 17 because the restriction of Rf, to U,enR™ (or UpenR' ) satisfy the other
axioms of Theorems 13, 15, and 16 and the restriction of R, to U,enRYY, satisfies the

other axioms of Theorem 17. Using R}, and R}, the same argument applies to Theorems
19, 20, and 21.
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The independence of the composite transfer principle for top quantile in Theorems 15,
16, and 17 follows from Theorems 19, 20, and 21.

The examples that show the independence of the other axioms of Theorems 15, 16,
and 17 are analogous to those that we used for checking that the corresponding axioms
of Theorems 6, 7, and 8 are independent. Specifically, the examples are given by replac-
ing max{x,...,x,} (respectively min{xy,...,z,}) with u,(z) (respectively ui(x)) in the
previous examples for Theorems 6, 11, and 12.

Likewise, replacing min{zy,...,x,} (respectively max{zy,...,z,}) with u;(z) (respec-
tively p,(2)) in the previous examples for Theorems 10, 11, and 12, the examples showing
the independence of the other axioms of Theorems 19, 20, and 21 are analogous to those
that we used for the corresponding axioms of Theorems 10, 11, and 12.

Data description

As noted in Section 4, we used all the waves of the LIS dataset and retained the countries
for which at least four years for the period 1974-2016 are covered. The countries retained
in the dataset are listed in Table 5.
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Table 5: Countries and years covered in the dataset

Australia
(1981, 1985, 1989, 1995, 2001,
2003, 2004, 2008, 2010, 2014)

Austria
(1987, 1994, 1995, 1997, 2000,
2004, 2007, 2010, 2013, 2016)
Belgium
(1985, 1988, 1992, 1995, 1997
2000)
Brazil
(2006, 2009, 2011, 2013, 2016)

Canada
(1981, 1987, 1991, 1994, 1997
1998, 2000, 2004, 2007, 2010,
2013)

Chile
(1990, 1992, 1994, 1996, 1998,
2000, 2003, 2006, 2009, 2011,
2013, 2015)

Colombia
(2004, 2007, 2010, 2013, 2016)

Czech Republic
(1996, 2002, 2004, 2007, 2010,
2013)

Denmark
(1987, 1992, 1995, 2000, 2004,
2007, 2010, 2013)

Estonia
(2000, 2004, 2007, 2010, 2013)

Finland
(1987, 1991, 1995, 2000, 2004,
2007, 2010, 2013, 2016)

France
(1978, 1984, 1989, 1994, 2000,
2005, 2010)

Germany
(1981, 1983, 1984, 1987, 1989,
1991, 1994, 1995, 1998,
2000-2015)
Greece
(1995, 2000, 2004, 2007, 2010,
2013)
Hungary
(1991, 1994, 1999, 2005, 2007
2009, 2012, 2015)
Ireland
(1987, 1994-1996, 2000,
2004, 2007, 2010)
Israel
(1979, 1986, 1992, 1997, 2001,
2005, 2007, 2010, 2012, 2014,
2016)
Ttaly
(1986, 1987, 1989, 1991, 1993,
1995, 1998, 2000, 2004, 2008
2010, 2014)
Luxembourg
(1985, 1991, 1994, 1997, 2000,
2004, 2007, 2010, 2013)
Mexico
(1984, 1989, 1992, 1994, 1996,
1998, 2000, 2002, 2004, 2008,
2010, 2012)
Netherlands
(1983, 1987, 1990, 1993, 1999,
2004, 2007, 2010, 2013)
Norway
(1979, 1986, 1991, 1995, 2000,
2004, 2007, 2010, 2013)
Paraguay
(2000, 2004, 2007, 2010, 2013,
2016)

Peru
(2004, 2007, 2010, 2013)

Poland
(1986, 1992, 1995, 1999, 2004,
2007, 2010, 2013, 2016)

Republic of Korea
(2006, 2008, 2010, 2012)

Russia
(2000, 2004, 2007, 2010,
2013-2016)

Serbia
(2006, 2010, 2013, 2016)

Slovakia
(1996, 2004, 2007, 2010, 2013)

Slovenia
(1997, 1999, 2004, 2007, 2010,
2012)

Spain
(1980, 1985, 1990, 1995, 2000,
2004, 2007, 2010, 2013, 2016)
Sweden
(1981, 1987, 1992, 1995, 2000,
2005)

Switzerland
(1982, 1992, 2000, 2002, 2004,
2007, 2010, 2013)
United Kingdom
(1991, 1994, 1995, 1999, 2004,
2007, 2010, 2013, 2016)
United States
(1974, 1979, 1986, 1991, 1994,
1997, 2000, 2004, 2007, 2010,
2013, 2016)
Uruguay
(2004, 2007, 2010, 2013, 2016)

Note. The years covered in the dataset appear in parentheses.
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