表

著者	井端洋 藤永貴
掲載誌名	DSSR Discussion Papers
シリーズ番号	108
ページ	1-45
年	2020-03
URL	http://hdl.handle.net/10097/00127278

表記について

<table>
<thead>
<tr>
<th>表記</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>表記</td>
<td>表記内容</td>
</tr>
<tr>
<td>表記</td>
<td>表記内容</td>
</tr>
<tr>
<td>表記</td>
<td>表記内容</td>
</tr>
</tbody>
</table>

表記について

<table>
<thead>
<tr>
<th>表記</th>
<th>表記内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>表記</td>
<td>表記内容</td>
</tr>
<tr>
<td>表記</td>
<td>表記内容</td>
</tr>
<tr>
<td>表記</td>
<td>表記内容</td>
</tr>
</tbody>
</table>
Discussion Paper No. 108

Estimation of Weak Factor Models

Yoshimasa Uematsu and Takashi Yamagata

March, 2020

Data Science and Service Research
Discussion Paper

Center for Data Science and Service Research
Graduate School of Economic and Management
Tohoku University
27-1 Kawauchi, Aobaku
Sendai 980-8576, JAPAN
Estimation of Weak Factor Models

Yoshimasa Uematsu∗ and Takashi Yamagata†

∗Department of Economics and Management, Tohoku University
†Department of Economics and Related Studies, University of York
‡Institute of Social Economic Research, Osaka University

March 2020 (2nd version)

Abstract

This paper proposes a novel estimation method for the weak factor models, a slightly stronger version of the approximate factor models of Chamberlain and Rothschild (1983), with large cross-sectional and time-series dimensions (N and T, respectively). It assumes that the kth largest eigenvalue of data covariance matrix grows proportionally to \(N^{\alpha_k} \) with unknown exponents \(0 < \alpha_k \leq 1 \) for \(k = 1, \ldots, r \). This is much weaker than the typical assumption on the recent factor models, in which all the r largest eigenvalues diverge proportionally to \(N \). We apply the SOFAR method of Uematsu et al. (2019) to estimate the weak factor models and derive the estimation error bound. Importantly, our method yields consistent estimation of \(\alpha_k \)'s as well. A finite sample experiment shows that the performance of the new estimator uniformly dominates that of the principal component (PC) estimator. We apply our method to analyze S&P500 firm security returns and find that the first factor is consistently near strong while the others are indeed weak. Another application demonstrates that forecasting bond yields based on our method outperforms that based on the PC.

Keywords. Approximate factor models, Weak factors with sparse factor loadings, Non-asymptotic error bound, Factor selection consistency.

1 Introduction

The approximate factor model with large cross-sectional and time-series dimensions (N and T, respectively) has become an increasingly important tool for the analysis of psychology, finance, economics, and biology, among many others. See, for example, Fan et al. (2018) for an excellent review of the high-dimensional factor models and their applications.

∗Department of Economics and Management, Tohoku University, 27-1 Kawauchi, Aobaku, Sendai 980-8576, Japan (E-mail: yoshimasa.uematsu.e7@tohoku.ac.jp). He gratefully acknowledges the partial support of Grant-in-Aid for JSPS Overseas Research Fellow 29-60 and JSPS KAKENHI 19K13665.
†Department of Economics and Related Studies, University of York, Heslington, York, YO10 5DD, UK and Institute of Social and Economic Research (ISER), Osaka University, Japan (E-mail: takashi.yamagata@york.ac.uk). He gratefully acknowledges the partial support of JSPS KAKENHI JP15H05728 and JP18K01545. The authors appreciate Kun Chen giving helpful suggestions and modification of the R package, rrpack.
Suppose that a vector of zero-mean stationary time series \(x_t \in \mathbb{R}^N \), \(t = 1, \ldots, T \), is generated from the factor model

\[
x_t = \mathbf{B}^* f_t^* + e_t, \tag{1}
\]

where \(\mathbf{B}^* = (b_1^*, \ldots, b_N^*)' \in \mathbb{R}^{N \times r} \) with \(b_i^* \in \mathbb{R}^r \) is a matrix of deterministic factor loadings, \(f_t^* \in \mathbb{R}^r \) is a vector of zero-mean latent factors, and \(e_t \in \mathbb{R}^N \) is an idiosyncratic error vector. For a while suppose \(r \) is given. Let \(\Sigma_x = \mathbb{E}[x_t x_t'] \), \(\Sigma_f = \mathbb{E}[f_t^* f_t^{*'}] \), and \(\Sigma_e = \mathbb{E}[e_t e_t'] \). Assuming uniform boundedness of \(\lambda_k(\Sigma_x) \) together with an exogeneity condition, we observe that

\[
\lambda_k(\Sigma_x) \asymp \lambda_k(\mathbf{B}^* \Sigma_f \mathbf{B}'^*) \quad \text{for each} \quad k = 1, \ldots, r
\]

and \(\lambda_k(\Sigma_x) \) are uniformly bounded for all \(k = r + 1, \ldots, N \).

In the studies on high-dimensional factor models, including Connor and Korajczyk (1986, 1993), Stock and Watson (2002), Bai and Ng (2002, 2006, 2013), Bai (2003) and Fan et al. (2018), it is typically assumed that all the \(r \) largest eigenvalues diverge proportional to \(N \), namely, \(\lambda_k(\mathbf{B}^* \Sigma_f \mathbf{B}'^*) \asymp N \) for all \(k = 1, \ldots, r \). We call the models with this condition the strong factor (SF) models. This SF assumption seems unduly restrictive, as it does not permit slower divergence rates than \(N \) nor different divergence rates among the \(r \) largest eigenvalues.

The original approximate factor model proposed by Chamberlain and Rothschild (1983) is an important exception, which assumes that \(\lambda_k(\mathbf{B}^* \Sigma_f \mathbf{B}'^*) \rightarrow \infty \) as \(N \rightarrow \infty \). Inspired by Chamberlain and Rothschild (1983), in this paper we will significantly relax the SF condition and consider estimation of the weak factor (WF) model in which

\[
\lambda_k(\mathbf{B}^* \Sigma_f \mathbf{B}'^*) \asymp N_k := N^\alpha_k \quad \text{with} \quad 0 < \alpha_k \leq 1 \quad \text{for each} \quad k = 1, \ldots, r. \tag{2}
\]

This condition allows different divergence rates of the signal eigenvalues, which can be slower than \(N \).

It is known in the literature that estimation of factor models, including (1), has an identification issue. To address it, we impose \(r^2 \) restrictions on the model. Since the column and row spaces of \(\mathbf{F}^* = (f_1^*, \ldots, f_r^*)' \) and \(\mathbf{B}'^* \) are identical to those of \(\mathbf{F}'^* \mathbf{H} \) and \(\mathbf{H}^{-1} \mathbf{B}'^* \), respectively, for any invertible matrix \(\mathbf{H} \), we choose a specific (but frequently employed) rotation without loss of generality:

\[
x_t = \mathbf{B}^0 f_t^0 + e_t, \tag{3}
\]

where \(f_t^0 = \mathbf{H} f_t^* \) and \(\mathbf{B}^0 = \mathbf{H}^{-1} \mathbf{B}'^* \) with \(\Sigma_f = \mathbb{E}[f_t^0 f_t^{0'}] = \mathbf{I}_r \) and \(\mathbf{B}^0 \mathbf{B}^0 = \mathbf{I} \) being a diagonal matrix. Because the eigenvalues of (2) are invariant to any rotation, we have

\[
N_k \asymp \lambda_k(\mathbf{B}^0 \mathbf{B}^0) = \lambda_k(\mathbf{B}^0 \mathbf{B}^0) \quad \text{for each} \quad k = 1, \ldots, r. \tag{4}
\]

For estimation purpose, we need an assumption that entails (4): we suppose that \(\mathbf{B}^0 \) is (approximately) sparse such that (4) and diagonality of \(\mathbf{B}^0 \mathbf{B}^0 \) simultaneously hold. Note that, even if sparseness of \(\mathbf{B}^0 \) is not rotation invariant, we can identify the \(r \) signal eigenvalues of model (1) as long as \(\mathbf{B}^0 \) is sparse. Also note that the sparse structure of \(\mathbf{B}^0 \) is row permutation invariant; see Bai et al. (2016).

Unlike the PC estimator, our estimator requires the sparsity-inducing \(\ell_1 \)-norm regularization. The numerical optimization is more complicated than that for the PC due to the imposition of both sparsity and orthogonality on the estimator. Despite this difficulty, we propose a novel estimator of the WF models by employing the recently developed framework, the sparse orthogonal factor regression (SOFAR) of Uematsu et al. (2019). Hereafter
the new estimator is called the WF-SOFAR estimator. As theoretical contributions, we will establish the estimation error bounds as well as validating the method of Onatski (2010) for determining the number of factors in our setting. Perhaps surprisingly, our WF-SOFAR can consistently estimate the WF models with α_k less than $1/2$. We also propose the adaptive version of the WF-SOFAR estimator, which yields factor selection consistency. This asymptotically guarantees the true support recovery of the sparse loadings. It is remarkable that this property enables us to consistently estimate each exponent α_k of the divergence rates as a corollary. The assumptions we will make are in line with the literature of the approximate factor models. Thus the statistical theory we will explore are substantially different from those in Uematsu et al. (2019). In particular, the theoretical investigation of the adaptive SOFAR is completely new to the literature. We apply our method to analyze S&P500 firm security monthly returns. The results show that the first factor is consistently near strong, while the second to the fourth exponents vary over months between 0.90 and 0.65. In another application, we compare the out-of-sample performance of forecasting bond yields using extracted factors via our method and the PC method. The statistical evidence suggests that our method outperforms the PC method.

The sparse factor loadings are frequently observed in macroeconomic and finance data. As an illustration, we have regressed each of 451 monthly security excess returns, which constitute the S&P500 index on December 2015, with 120 months observations back (among 500 securities) on the celebrated Fama and French (2015) five common factors, Market, SMB, HML, RMW and CMA, and an intercept. The numbers of securities, for which the Market, SMB, HML, RMW or CMA is significant at the 5% level t-test, are 446, 107, 126, 68 and 62, respectively. Apart from the market factor, the common factors are not significantly different from zero for large portions of the securities. This evidence strongly suggests sparse factor loadings for the firm security returns and supports our approach.

To our knowledge, this is the first study to propose a method that can estimate the WF models, separately identifying spans of B^* and F^*, while taking the possibly different rates (2) into account. There are some studies that consider WF models, but most of them have focused only on the case where all the divergence rates are identical. Such examples are seen in De Mol et al. (2008) and Lam et al. (2011); the former consider the Bayesian forecasts with the PC estimates for WF models, and the latter propose an efficient estimator for WF models with a specific correlation structure. Other related research includes Johnstone and Lu (2009), Onatski (2012), Bryzgalova (2016), and Lettau and Pelger (2018). They consider the properties of the PC estimator with the bounded maximum eigenvalue of Σ_x, i.e., $\alpha_k = 0$ for all k in our WF specification. The only exception we have found is Freyaldenhoven (2018), but his focus is different from ours; he investigates the properties of the PC estimator for the WF models with possibly different divergence rates of the eigenvalues, and proposes methods to estimate the number of common components diverging faster than a specific rate.

Specifically, we run the time series regression $r_{it} - r_{ft} = a_i + b_i (r_{mt} - r_{ft}) + s_i SMB_{it} + h_i HML_{it} + r_{it} RMW_{it} + c_i CMA_{it} + \epsilon_{it}$, where r_{it} is the i-th security monthly return at the month t, r_{ft} is the one-month treasury bill rate, r_{mt} is the market return, SMB_{it} is the return on a diversified portfolio of small stocks minus the return on a diversified portfolio of big stocks, HML_{it} is the difference between the returns on diversified portfolios of high and low B/M stocks, RMW_{it} is the difference between the returns on diversified portfolios of stocks with robust and weak profitability, and CMA_{it} is the difference between the returns on diversified portfolios of the stocks of low and high investment firms, which is called conservative and aggressive, and ϵ_{it} is the error term. Then we implement the t-tests for $b_i = 0$, $s_i = 0$, $h_i = 0$, $r_i = 0$ and $c_i = 0$, referring their absolute values to 1.96. The firm security return is computed as explained in Section 6.1, and other variables are obtained from the Kenneth R. French Data Library. See Fama and French (2015) for more details of the data and the regression.
The rest of this paper is organized as follows. Section 2 formally defines the WF models. Section 3 proposes the novel WF-SOFAR estimator and considers its adaptive extension. Section 4 investigates the theoretical properties, such as determination of the number of weak factors and the estimation error bounds of the (adaptive) WF-SOFAR estimator. Section 5 confirms the validity of our WF-SOFAR estimator by Monte Carlo experiments. Section 6 gives empirical illustrations of the WF-SOFAR. Section 7 concludes. The proofs for the main results are collected in Appendix, and the related lemmas and their proofs as well as other supplementary materials are relegated to Appendices in Online Supplements.

For any matrix $M = (m_{ti}) \in \mathbb{R}^{T \times N}$, we define the Frobenius norm, ℓ_2-induced (spectral) norm, entrywise ℓ_1-norm, and entrywise ℓ_∞-norm as $\|M\|_F = (\sum_{t,i} m_{ti}^2)^{1/2}$, $\|M\|_2 = \lambda_1^{1/2}(M'M)$, $\|M\|_1 = \sum_{t,i} |m_{ti}|$, and $\|M\|_{\max} = \max_{t,i} |m_{ti}|$, respectively, where $\lambda_i(S)$ refers to the ith largest eigenvalue of any symmetric matrix S. We denote by I_N and $0_{T \times N}$ the $N \times N$ identity matrix and $T \times N$ zero matrix, respectively. We use $\lesssim (\gtrsim)$ to represent $\leq (\geq)$ up to a positive constant factor. For any positive sequences a_n and b_n, we write $a_n \asymp b_n$ if $a_n \lesssim b_n$ and $a_n \gtrsim b_n$. For any positive values a and b, $a \wedge b$ and $a \vee b$ stand for $\min(a,b)$ and $\max(a,b)$, respectively. The indicator function is denoted by $1\{\cdot\}$.

2 Weak Factor Models

Consider the factor model in (3) more precisely. Stacking the vectors vertically like $X = (x_1, \ldots, x_T)'$, $F^0 = (f^0_1, \ldots, f^0_T)'$, and $E = (e_1, \ldots, e_T)'$, we rewrite it as the matrix form

$$X = F^0B'^0 + E = C^0 + E,$$

where C^0 is called the matrix of common components. By the construction, the model satisfies the restrictions: $E F^0 / T = I_r$ and $B^0'B^0$ is a diagonal matrix. Then the covariance matrix reduces to

$$\Sigma_x = B^0B'^0 + \Sigma_e.$$

As discussed in Introduction, we consider sparsity-induced WF models. Specifically, we assume sparse factor loadings B^0 such that the sparsity of kth column (i.e., the number of nonzero elements in $b^0_k \in \mathbb{R}^N$) is $N_k := N^{\alpha_k}$ for $k \in \{1, \ldots, r\}$, where $1 \geq \alpha_1 \geq \cdots \geq \alpha_r > 0$ and exponents α_k’s are unknown. Note that N_r must diverge since $\alpha_r > 0$ and $N \to \infty$. We may relax the exact sparseness by introducing the approximate sparse loadings; that is, $B^0 = (b_{ik})$ such that $\sum_{i=1}^{N} |b_{ik}| \asymp N_k$. This does not necessarily require exact zeros in B^0. However, we choose not to pursue this direction to avoid a complicated technical issue.

By the sparseness assumption and the diagonality of $B^0'B^0$, there exist some constants $d_1 \geq \cdots \geq d_r > 0$ such that

$$B^0'B^0 = \text{diag} \left(d_1^2 N_1, \ldots, d_r^2 N_r \right).$$

Then, under the assumption of uniform boundedness of $\lambda_j(\Sigma_e)$, we have

$$\lambda_j(\Sigma_x) \begin{cases} \asymp \lambda_j(B^0'B^0) = \lambda_j(B^0'B^0) = d_j^2 N_j & \text{for } j \in \{1, \ldots, r\}, \\ \text{is uniformly bounded} & \text{for } j \in \{r+1, \ldots, N\}. \end{cases}$$

Apparently, this specification fulfills the requirement of the WF structure (4).
For later use, we confirm the connection between \(C^0 = F^0B^0 \) and its singular value decomposition (SVD) \(C^0 = U^0D^0V^0' \). Here, \(U^0 \in \mathbb{R}^{T \times r} \) and \(V^0 \in \mathbb{R}^{N \times r} \) are respectively matrices of the left- and sparse right-singular vectors of \(C^0 \) that satisfy restrictions \(U^0'U^0/T = I_r \) and \(V^0'V^0 = N \) with \(N = \text{diag}(N_1, \ldots, N_r) \), and \(D^0 = \text{diag}(d_1, \ldots, d_r) \in \mathbb{R}^{r \times r} \) is composed of the singular values \(d_1 \geq \cdots \geq d_r > 0 \). In view of the restrictions on model (5), it is reasonable to set \(F^0 = U^0 \) and \(B^0 = V^0D^0 \). This construction yields \(F^0B^0' = C^0 \) and satisfies the restrictions.

3 Estimation

We propose our WF-SOFAR estimator based on the SOFAR framework of Uematsu et al. (2019) for the WF models. In this section, we denote by \(\hat{r} \) an estimate of the number of factors. The actual method of estimating \(r \) is introduced in Section 4.1.

3.1 WF-SOFAR estimation

Once the WF model is defined via the sparsity assumption on \(B^0 \), it is natural to introduce a sparsity-inducing penalty term, such as the \(\ell_1 \)-norm of \(B \), to obtain a sparse estimate of \(B^0 \) in the same fashion as the Lasso by Tibshirani (1996). In fact, the WF-SOFAR estimator is conceptually defined as

\[
(\hat{F}, \hat{B}) = \arg \min_{(F, B) \in \mathbb{R}^{T \times \hat{r}} \times \mathbb{R}^{N \times \hat{r}}} \left\{ \frac{1}{2} \| X - FB' \|_F^2 + \eta \| B \|_1 \right\}
\]

subject to \(F'F/T = I_{\hat{r}} \) and \(B'B \) diagonal.

where \(\hat{r} \) is the predetermined number of factors and \(\eta > 0 \) is a regularization coefficient. If \(\eta = 0 \) in (6), then the resulting estimator reduces to the PC estimator \((\hat{F}_{PC}, \hat{B}_{PC}) \). This means that the WF-SOFAR estimator closely approximates the PC estimator as \(\eta \to 0 \) even if the model does not exhibit sparseness.

It is well-known that the PC estimator is easily obtained by the eigenvalue problem on \(XX' \); specifically, for given \(\hat{r} \), \(\hat{F}_{PC} \) is obtained as \(T^{1/2} \) times the eigenvectors corresponding to the top \(\hat{r} \) largest eigenvalues of \((NT)^{-1}XX' \) and \(\hat{B}_{PC} = X'\hat{F}_{PC}/T \). On the other hand, the WF-SOFAR estimator is no longer computed by the eigenvalue problem. Even some algorithms used for the lasso, such as coordinate descent, cannot be directly applied to the problem due to the restrictions, sparsity and orthogonality (diagonality). In order to overcome this difficulty, we apply the SOFAR algorithm proposed by Uematsu et al. (2019) to solving (6). Roughly speaking, the algorithm provides estimates for the SVD of a coefficient matrix in a multiple linear regression, with simultaneously exhibiting both low-rankness in the singular values matrix and sparsity in the singular vectors matrices. Recall the connection between \((F, B) \) and \((U, D, V) \), which has been defined by the SVD of \(C \), in Section 2. Then for given \(\hat{r} \), the SOFAR algorithm can solve (6) to get \((\hat{F}, \hat{B}) = (\hat{U}, \hat{V}\hat{D}) \).

The algorithm to compute the WF-SOFAR estimate is based on the augmented Lagrangian method coupled with the block coordinate decent, and is numerically stable; see Uematsu et al. (2019) for more information on the computational aspects. The associated R package (rrpack) is available at https://cran.r-project.org/package=rrpack.
3.2 Adaptive WF-SOFAR estimation

It is interesting to observe which factors truly contribute to \(x_t \). In general, the lasso estimator tends to select more variables than necessary due to the bias caused by the regularization. To reduce the bias, Zou (2006) proposed the adaptive lasso. Here we introduce the adaptive WF-SOFAR based on a similar principle. Let \(\hat{B}^{\text{ini}} = (\hat{b}_{ij}^{\text{ini}}) \) denote the first-stage initial estimator, such as the PC estimator. Then the \((i,j)\)th element of the weighting matrix \(W = (w_{ij}) \) is defined as \(w_{ij} = 1/|\hat{b}_{ij}^{\text{ini}}| \). Then the adaptive WF-SOFAR estimator is defined as a minimizer of the second-stage weighted SOFAR problem:

\[
\left(\hat{F}^{\text{ada}}, \hat{B}^{\text{ada}} \right) = \arg \min_{(F,B) \in \mathbb{R}^{T \times p} \times \mathbb{R}^{N \times p}} \left\{ \frac{1}{2} \| X - FB \|_F^2 + \eta \| W \circ B \|_1 \right\}
\]

subject to \(F'F/T = I_p \) and \(B'B \) diagonal,

where \(A \circ B \) represents the Hadamard product of two matrices, \(A \) and \(B \), of the same size.

Estimating exponents \(\alpha_k \)'s is of great interest to empirical research since, as discussed in Bailey et al. (2016), they are interpreted as the strength of the influence of the common factors and of the cross-sectional correlations. Recall that the \(k \)th column of \(B^0, b_k^0 \), has \(N_k = N^{\alpha_k} \) nonzero entries. Similarly, let \(\hat{N}_k \) denote the number of nonzero elements in \(\hat{b}_k^{\text{ada}} \). As the lasso in a linear regression, we may expect that the adaptive WF-SOFAR estimate \(\hat{B}^{\text{ada}} \) can successfully recover the true sparsity pattern of \(B^0 \). If this is true, the estimators of exponents \(\hat{\alpha}_k \)'s can naturally be obtained as \(\hat{\alpha}_k = \log \hat{N}_k / \log N \) by a simple algebraic formulation. In the next section, we will prove this estimator is actually consistent for \(\alpha_k \).

4 Theory

We investigate the theoretical properties of the (adaptive) WF-SOFAR estimators. We first reveal the asymptotic behavior of the eigenvalues of \(XX' \) generated by the WF model in Section 4.1. This helps us to determine the number of weak factors. Next we derive the estimation error bound in Section 4.2. Furthermore, the asymptotic property of the adaptive WF-SOFAR estimator is derived in Section 4.3. For the sake of convenience, we assume the existence of some underlying divergent sequence \(n \) that satisfies the principle that \(N \) and \(T \) are both functions of \(n \) and that they simultaneously diverge as \(n \to \infty \) (i.e., \(N = N(n) \to \infty \) and \(T = T(n) \to \infty \) as \(n \to \infty \)). For example, we may simply suppose \(n = N \land T \to \infty \).

The theory is developed on the basis of sub-Gaussian assumption on the factors and errors. Following Rigollet and Hütter (2017), we introduce a sub-Gaussian random variable: a random variable \(X \in \mathbb{R} \) is said to be sub-Gaussian with variance proxy \(\sigma^2 \) if \(\mathbb{E}[X] = 0 \) and its moment generating function satisfies \(\mathbb{E}[^\exp(sX)] \leq \exp(\sigma^2 s^2/2) \) for all \(s \in \mathbb{R} \). This is denoted by \(X \sim \text{subG}(\sigma^2) \). Define \(L_n = (N \lor T)^\nu - 1 \) for an arbitrary constant \(\nu > 0 \). Throughout the paper, including all the proofs in Appendix, \(\nu \) is assumed to be fixed.

Assumption 1 (Latent factors). The factor matrix \(F^0 = (f_1^0, \ldots, f_T^0)' \) is specified as the vector moving average process of order \(L_n \) (VMA\((L_n) \)) such that

\[
f_t^0 = \sum_{\ell=0}^{L_n} \Psi_\ell \xi_{t-\ell}, \quad \lim_{n \to \infty} \sum_{\ell=0}^{L_n} \Psi_\ell' \Psi_\ell = \mathbf{I}_r,
\]

where \(\xi_t = (\xi_{t1}, \ldots, \xi_{tk})' \) with \(\{\xi_{tk}\}_{t,k} \) i.i.d. subG\((\sigma_\xi^2) \) that has \(\mathbb{E} \xi_{tk}^2 = 1 \), and where \(\Psi_0 \) is a nonsingular, lower triangular matrix.
Assumption 2 (Factor loadings). Each column b_k^0 of B^0 has the sparsity $N_k = N^{\alpha_k}$ with $0 < \alpha_r \leq \cdots \leq \alpha_1 \leq 1$ and $B^0B^0 = \text{diag}\{d_1^2N_1, \ldots, d_r^2N_r\}$ with $0 < d_r \leq \cdots \leq d_1 < \infty$. If $N_k = N_{k-1}$, there exists a constant $\delta > 0$ such that $d_k^2 - d_{k-1}^2 \geq \delta^{1/2}d_k^{k-1}$.

Assumption 3 (Idiosyncratic errors). The error matrix $E = (e_1, \ldots, e_T)'$ is specified as the VMA(L_n) such that

$$e_t = \sum_{\ell=0}^{L_n} \Phi_\ell \varepsilon_{t-\ell}, \quad \limsup_{n \to \infty} \sum_{\ell=0}^{L_n} \|\Phi_\ell\|_2 < \infty,$$

where $\varepsilon_t = (\varepsilon_{t1}, \ldots, \varepsilon_{tN})'$ with $\{\varepsilon_{ti}\}_{i,t} \text{i.i.d. subG}(\sigma_i^2)$ and Φ_0 is a nonsingular, lower triangular matrix.

Assumption 4 (Parameter space). The parameter space of B in optimization (6) is given by $\mathcal{B}(\tilde{N}) = \{B \in \mathbb{R}^{N \times r} : \|B\|_0 \lesssim \tilde{N}/2\}$ for $\tilde{N} \in [N_1, N]$. (Define $\bar{\alpha}$ to be such that $\tilde{N} = N^{\bar{\alpha}}$.)

Assumptions 1 and 3 specify the stochastic processes $\{f_t\}$ and $\{e_t\}$, respectively, to be stationary VMA(L_n), where $L_n \gg (N \vee T)^{\alpha}$ diverges with an arbitrary fixed constant $\nu > 0$. This construction is regarded as the asymptotic linear process, which includes a wide range of cross-sectional and time series dependent processes. By Assumption 3, we have $\lambda_1(\mathbb{E} e_t e_t') < \infty$. Assumption 2 is key to our analysis and provides the sparse structure of the factor loadings B^0 that leads to the WF models. The sparsity makes the divergence rate of $\lambda_k(B^0B^0)$ possibly slower than N. This can be called weak pervasiveness in contrast to the so-called pervasive condition of Fan et al. (2013) that assumes the SF model (i.e., $N_k = N$ for all $k \in \{1, \ldots, r\}$). Note that under Assumptions 1 and 2 the summability condition, together with the strong law of large numbers, gives $F^0 T^0 / T = I_r(1 + o(1))$ a.s. and the relative eigengap condition entails the eigen-separation required in $B^0 B^0$.

Assumption 4 is used only when the parameter estimation is considered. Note that B^0 is included in $\mathcal{B}(\tilde{N})$ for any $\tilde{N} \in [N_1, N]$ under Assumption 2. If \tilde{N} is set to N, $\mathcal{B}(N)$ coincides with the whole space, $\mathbb{R}^{T \times r}$. Whereas, if \tilde{N} is set to N_1, $\mathcal{B}(N_1)$ becomes as sparse as B^0.

The PC estimator always requires optimization on $\mathcal{B}(N)$ since it cannot be sparse, but the WF-SOFAR estimator can allow sparse $\mathcal{B}(\tilde{N})$ with $\tilde{N} \in [N_1, N]$ when the true loadings matrix is expected to be sparse. An important consequence of taking sparser space is that, as explained in Section 4.2, a wider class of the WF models can be allowed in estimation.

Lemma 1. Suppose that Assumptions 1–3 hold. Then the following inequalities simultaneously hold with probability at least $1 - O((N \vee T)^{-\nu})$:

(a) $\|E\|_2 \lesssim (N \vee T)^{1/2}$,

(b) $\|EB^0\|_{\max} \lesssim N^{1/2} \log^{1/2}(N \vee T)$,

(c) $\|E'T^0\|_{\max} \lesssim T^{1/2} \log^{1/2}(N \vee T)$,

(d) $\max_{i \in \{1, \ldots, N\}} \sum_{t=1}^T (e_{it}^2 - E e_{it}^2) \lesssim T^{1/2} \log^{1/2}(N \vee T)$.

Lemma 1 guarantees that the stochastic terms can be bounded by some deterministic sequences with high probability. As a result, we can deal with these stochastic terms as if they were deterministic sequences in the proofs. It is worth mentioning that the results are of independent interest in the literature of high-dimensional time series analysis.
4.1 Determining the number of weak factors

Before investigating the properties of the estimator, we first observe the asymptotic behavior of the eigenvalues of XX' under the WF model. This result yields important information for determining the number of weak factors, r. Write $T = N\tau$ for some constant $\tau > 0$ to understand the size of T relative to N. Recall that $N_j = N^{\alpha_j}$ for some $\alpha_j \in (0, 1]$.

Theorem 1. Suppose that Assumptions 1–3 and condition

$$\alpha_1 < 2\alpha_r$$

hold. Then for any finite integer $k_{\text{max}} > r$, the jth largest eigenvalue of $(N \vee T)^{-1}XX'$, denoted by λ_j, satisfies

$$\lambda_j \begin{cases} \geq \frac{N_j T}{N \vee T} & \text{for } j \in \{1, \ldots, r\}, \\ = O(1) & \text{for } j \in \{r + 1, \ldots, k_{\text{max}}\}, \end{cases}$$

with probability at least $1 - O((N \vee T)^{-\nu})$. Divergence of λ_r is ensured by condition

$$\alpha_r + \tau > 1.$$

(9)

Theorem 1 suggests the means of determining the number of weak factors. This presents a case in which the method of Onatski (2010) works. Namely, for $\delta > 0$, define

$$\hat{r}(\delta) = \max \{j = 1, \ldots, k_{\text{max}} - 1 : \lambda_j - \lambda_{j+1} \geq \delta\}.$$

Then, the following important corollary is obtained.

Corollary 1. Suppose that Assumptions 1–3 hold. If conditions (8) and (9) are true, then for any fixed positive constant δ, we have $\hat{r}(\delta) \to r$ with probability at least $1 - O((N \vee T)^{-\nu})$.

In practice, δ should appropriately be predetermined. In fact, Onatski (2010) suggested the edge distribution (ED) method based on a calibration; see that paper for full details. If δ is appropriately chosen, $\hat{r}(\delta)$ will successfully detect the true number of factors r even when the biggest gap is observed not between λ_r and λ_{r+1} but among $\lambda_1, \ldots, \lambda_r$. Meanwhile, the method of Ahn and Horenstein (2013), which was designed for SF models, is likely to fail in detecting r in the WF models because it defines \hat{r} as the point at which the largest gap is observed among $\lambda_1, \ldots, \lambda_{k_{\text{max}}}$; this is not always the case for the WF models. In Section 5, we will check the validity of Onatski’s ED estimator in our model through numerical simulations.

4.2 Non-asymptotic error bound for the WF-SOFAR estimator

We suppose that the WF model satisfies conditions (8) and (9) and that r is known in view of Corollary 1. Recall that $\tilde{N} = N^\tilde{\alpha}$ (see Assumption 4), and introduce an additional condition

$$\alpha_1 + (\tilde{\alpha} \vee \tau)/2 < \alpha_r + \alpha_r \wedge \tau.$$

(10)

This condition is necessary to derive a nontrivial error bound. Note that condition (10) with any $\tilde{\alpha} \in [\alpha_1, 1]$ implies (8) because $\alpha_1 < \alpha_r + \alpha_r \wedge \tau - (\tilde{\alpha} \vee \tau)/2 < \alpha_r + \alpha_r \wedge \tau \leq 2\alpha_r$. For notational convenience, we put $K_n = \{N_1 \log^{1/2}(N \vee T)\}/\{N_r(N_r \wedge T)\}.$
Theorem 2 (WF-SOFAR). Set $\eta_n \asymp T^{1/2} \log^{1/2}(N \vee T)$ in optimization (6). If Assumptions 1–4 and conditions (9) and (10) hold with any $\bar{N} \in [N_1, N]$ (i.e., $\tilde{\alpha} \in [\alpha_1, 1]$), then the following error bounds hold with probability at least $1 - O((N \vee T)^{-\nu})$:

$$T^{-1/2}\|\hat{F} - F^0\|_F \lesssim N_1^{1/2}K_n, \quad N^{-1/2}\|\hat{B} - B^0\|_F \lesssim \frac{N_1^{1/2}T^{-1/2}}{N^{1/2}}K_n.$$

In particular, the upper bounds converge to zero.

The convergence rates do not depend on the choice of \bar{N}. Through condition (10), however, it provides a class of the WF models that can consistently be estimated. In fact, the range of α_r restricted by (10) becomes the largest when $\bar{N} = N_1$ (i.e., $\tilde{\alpha} = \alpha_1$). This point is reconsidered in Remark 1 below in comparison with the PC estimation.

Theorem 3 (PC). If Assumptions 1–4 and conditions (9) and (10) hold with $\bar{N} = N$ (i.e., $\tilde{\alpha} = 1$), then the following error bounds hold with probability at least $1 - O((N \vee T)^{-\nu})$:

$$T^{-1/2}\|\hat{F}_{PC} - F^0\|_F \lesssim N_1^{1/2}K_n, \quad N^{-1/2}\|\hat{B}_{PC} - B^0\|_F \lesssim T^{1/2}K_n.$$

In particular, the upper bounds converge to zero.

First, when the model has strong factors only (i.e., $N_r = N$), the convergence rates in the theorems correspond to that obtained from Bai (2003) up to the logarithmic factor. We also observe that the convergence rates of the WF-SOFAR and the PC estimators become identical if $N_1 = N$. On the other hand, when the model has weak factors with $N_1 < N$, the WF-SOFAR can take advantage of utilizing the sparsity due to the ℓ_1-penalty and achieve the tighter upper bounds while the PC cannot. Therefore, the WF-SOFAR estimator is likely to converge at least as fast as the PC estimator even when all the factors are strong. Of course a precise discussion requires a lower bound, but it is beyond the scope of this paper and left for a future study.

Although the WF-SOFAR can choose $\bar{N} = N_1$ as already mentioned, the PC necessarily selects $\bar{N} = N$ since it does not exploit sparse parameter spaces. In view of (10), this leads to the fact that the WF-SOFAR can consistently estimate a wider class of the WF models than the PC can.

Remark 1. We consider the class of WF models that can consistently be estimated by the WF-SOFAR and the PC, respectively. Condition (10) with $\bar{N} = N_1$ (i.e., $\tilde{\alpha} = \alpha_1$) naturally brings the largest class of the WF models. In this case, the lower bound of α_r is $1/3$, which is achievable when $\alpha_1 = \alpha_r$ and $\tau = 2/3$. Likewise, the upper bound of the difference $\alpha_1 - \alpha_r$ is found to be $1/4$, which is attainable when $\tau \in (3/4, 1]$ and $\alpha_1 = 1$. Note that these results can be obtained not by PC but by WF-SOFAR. Contrary to the case of $\bar{N} = N_1$, condition (10) with $\bar{N} = N$ restricts α_r to be strictly larger than $1/2$. This is more restrictive than the case of $\bar{N} = N_1$ though the upper bound of the difference is the same.

In sum, the WF-SOFAR can consistently estimate the WF models with exponents α_k’s smaller than or equal to $1/2$ by supposing a sparse parameter space. The finite sample evidence in Section 5 shows that the WF-SOFAR estimator seems quite robust to the violation of the restrictions on the region of (τ, α_1, α_r) discussed in this remark.
4.3 Factor selection consistency of the adaptive WF-SOFAR estimator

We prove the factor selection consistency, which guarantees that the adaptive WF-SOFAR recovers the true sparsity pattern of the loadings and correctly select the relevant factors. As a corollary, we also establish consistency of the estimated exponents, $\hat{\alpha}_k$’s.

Before stating the theorem, define the index set of nonzero signals in B_0 as $S = \text{supp}(B_0) \subset \{1, \ldots, N\} \times \{1, \ldots, r\}$. For any (sparse) matrix $A = (a_{ik}) \in \mathbb{R}^{N \times r}$, we define $A_S = (a_{ik})_{(i,k) \in S}$ and $a_S = \text{vec} A_S \in \mathbb{R}^{rN}$. Write $b_{0n} = \min_{(i,k) \in S} |b_{0ik}|$. Introduce additional conditions:

$$\alpha_1 - \alpha_r < \tau / 4,$$ \hspace{1cm} (11)

$$1 \leq \frac{\eta_n / b_{0n}}{T^{1/2} \log^{1/2}(N \lor T)} \leq \frac{N_1(N_r \lor T)}{N_r(N_r \land T)}.$$ \hspace{1cm} (12)

Condition (11) further restricts the model in terms of the maximum difference of α_1 and α_r when $\tau < 1$. However, the difference can be $1/4$, which is the same as the maximum value obtained by constraint (10) only, as long as $\tau = 1$. The lower bound of α_r can also achieve $1/3$ even if (11) is additionally supposed. Condition (12) restricts the relation between η_n and b_{0n}.

Theorem 4 (Adaptive WF-SOFAR). If Assumptions 1–3 and conditions (9)–(12) hold, then for the weighting matrix W constructed by any estimator \hat{B}^{ini} such that

$$\|\hat{B}^{\text{ini}} - B^0\|_{\text{max}} \lesssim b_{0n} (\text{with high probability}),$$ \hspace{1cm} (13)

the adaptive WF-SOFAR estimator satisfies

$$T^{-1/2} \|\hat{F}_{\text{ada}} - F^0\|_F = O_p \left(N_1^{1/2} K_n \right),$$ \hspace{1cm} (14)

$$N^{-1/2} \|\hat{B}^\text{ada}_S - B^0_S\|_F = O_p \left(N_1^{1/2} T^{1/2} / N^{1/2} \right),$$ \hspace{1cm} (15)

$$\mathbb{P} \left(\text{supp}(\hat{B}^\text{ada}) = S \right) \to 1.$$ \hspace{1cm} (16)

If the PC estimator is used for the initial estimator, $b_{0n} \gtrsim T^{-1/2} \log^{1/2}(N \lor T)$ is allowed in (13) (see Lemma 6 in Appendix). The rates of convergence (14) and (15) are identical to those in Theorem 2, and hence they converge to zero. Finally, we prove that $\hat{\alpha}_k = \log \hat{N}_k / \log N$, which is defined in Section 3.2, is consistent for α_k because of (16).

Corollary 2. If the model selection consistency in (16) holds, then we have

$$\mathbb{P} \left(\hat{\alpha}_k = \alpha_k \text{ for all } k = 1, \ldots, r \right) \to 1.$$

It is well-known that the adaptive Lasso as well as penalized regressions with folded-concave penalties, such as the SCAD by Fan and Li (2001), can establish the asymptotic normality for the nonzero subvector of the estimator. Likewise, the asymptotic normality of the adaptive WF-SOFAR might be proved. However, we do not consider it due to the criticism by Leeb and Pötscher (e.g., Leeb and Pötscher (2008) and references therein). Instead, it is interesting to investigate “debiasing” the WF-SOFAR estimator in a manner similar to Javanmard and Montanari (2014). We leave the problem as a future challenge.
5 Monte Carlo Experiments

We investigate the finite sample behavior of estimators of the number of factors and the proposed WF-SOFAR estimators by means of Monte Carlo experiments. In this section, indexes \(i, t,\) and \(k\) run over \(1, \ldots, N, 1, \ldots, T,\) and \(1, \ldots, r,\) respectively, unless otherwise noted. Denote by \(N_k = \lfloor N^{\alpha_k} \rfloor,\) where \(\lfloor \cdot \rfloor\) is the floor function, with \(0 < \alpha_k \leq 1\) for each \(k.\)

We consider the following Data Generating Process (DGP):

\[
x_{ti} = \sum_{k=1}^{r} b_{ik} f_{tk} + \sqrt{\theta} \varepsilon_{ti}. \tag{17}
\]

The factor loadings \(b_{ik}\) and factors \(f_{tk}\) are formed such that \(N^{-1} \sum_{i=1}^{N} b_{ik} b_{i\ell} = 1\{k = \ell\}\) and \(T^{-1} \sum_{t=1}^{T} f_{tk} f_{t\ell} = 1\{k = \ell\},\) by applying Gram–Schmidt orthonormalization to \(b_{ik}^{*}\) and \(f_{tk}^{*},\) respectively, where \(b_{ik}^{*} \sim \text{i.i.d.} N(0, 1)\) for \(i = 1, \ldots, N_k\) and \(b_{ik}^{*} = 0\) for \(i = N_k + 1, \ldots, N,\) and \(f_{tk}^{*} = \rho_{fk} f_{t-1,k} + \varepsilon_{tk}\) with \(\varepsilon_{tk} \sim \text{i.i.d.} N(0, 1 - \rho_{fk}^2)\) and \(f_{0k}^{*} \sim \text{i.i.d.} N(0, 1).\) The idiosyncratic errors \(\varepsilon_{ti}\) are generated by \(\varepsilon_{ti} = \rho_{e} \varepsilon_{t-i,1} + \beta \varepsilon_{t-i,1} + \beta \varepsilon_{t-i,1} + \varepsilon_{ti},\) where \(\varepsilon_{ti} \sim \text{i.i.d.} N(0, \sigma_{\varepsilon_{ti}}^2)\) with \(\sigma_{\varepsilon_{ti}}^2\) being set such that \(\text{Var}(\varepsilon_{ti}) = 1.\) The DGP is in line with that considered in the existing representative literature of approximate factor models, such as Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein (2013), among many others. The main difference in our DGP from the literature is that the absolute sums of the factor loadings over \(i\) are allowed to diverge proportionally to \(N_k.\)

As the benchmark DGP, we set \(r = 2,\) \(\rho_{fk} = \rho_{e} = 0.5\) for all \(k, \beta = 0.2,\) and \(\theta = 1.\) We focus on the performance of the estimators for different values of exponents \((\alpha_1, \alpha_2).\) In particular, we consider the combinations \((0.9, 0.9), (0.8, 0.5)\) and \((0.5, 0.4)\). All the experimental results are based on 1,000 replications.

5.1 Determining the number of weak factors

Based on Corollary 1 and the discussion in Section 4.1, we confirm validity of Onatski’s ED estimator \(\hat{i}(\delta).\) As already explained, the estimator is the maximum value of \(k\) with which \(\lambda_k - \lambda_{k+1}\) exceeds the threshold \(\delta.\) Following the ED algorithm of Onatski (2010), we compute \(\hat{i}\) by calibration.\(^2\)

The other competitor statistics include the \(ER\) (eigenvalue ratio) and \(GR\) (growth ratio) estimators of Ahn and Horenstein (2013). We also consider the information criteria \(IC_3\) and \(BIC_3\) proposed by Bai and Ng (2002). Note that these competitors are designed for SF models. Especially, the \(ER\) and \(GR\) just identify the maximum gap between the ordered eigenvalues. Hence, when the gap of divergence rates, \(N_k - N_{k+1},\) is relatively large, these statistics might pick up \(k\) as the estimate of \(r,\) even when \(k < r.\)

5.1.1 Results

Table 1 reports the average of the estimated number of factors over the replications by the \(ED\) of Onatski (2010), \(GR\) of Ahn and Horenstein (2013), and \(BIC_3\) of Bai and Ng (2002).\(^3\) We set the maximum number of factors, \(k_{\text{max}},\) as five. All the combinations of

\(^2\)We have found no experimental results on the finite sample performance of the ED estimator with the WF models apart from ours.

\(^3\)To save the space, we do not report the results for ER and IC3 since the performance of ER is very similar to that of GR, and the performance of IC3 is mostly outperformed by BIC3. These results are available upon request from the authors.
\(N, T = 100, 200, 500, 1000 \) are considered. As can be seen in Table 1, when \(\alpha_1 \) and \(\alpha_2 \) are both close to unity, all the methods perform very well, picking up the true number of factors with very high probability. Indeed, in the case of exponents \((\alpha_1, \alpha_2) = (0.9, 0.9) \), \(GR \) and \(BIC_3 \) choose the correct number of factors for all the replications, while \(ED \) very slightly tends to overestimate the number of factors.

However, the performance of \(GR \) and \(BIC_3 \) deteriorates when the gap of the values between \(\alpha_1 \) and \(\alpha_2 \) widens, or when both values \(\alpha_1 \) and \(\alpha_2 \) are further away from unity; for example, see the cases when \((\alpha_1, \alpha_2) = (0.8, 0.5) \) and \((\alpha_1, \alpha_2) = (0.5, 0.4) \). They tend to underestimate \(r \). In contrast, \(ED \) performs very well, and its estimation quality is very similar to that when both exponents are close to unity. Even under the most challenging set up \((\alpha_1, \alpha_2) = (0.5, 0.4) \), \(ED \) consistently estimates the number of factors for sufficiently large \(T \) and \(N \).

We conclude that the finite sample evidence suggests that the \(ED \) method of Onatski (2010) provides a reliable estimation of the number of factors in WF models, while the methods of \(GR \) and \(BIC_3 \) may not be as reliable as the \(ED \), in general.

Table 1: Average of the chosen number of factors for WF models by edge distribution algorithm (\(ED \)), Growth Ratio (\(GR \)), and \(BIC_3 \) methods: \(r = 2, k_{\text{max}} = 5 \)

<table>
<thead>
<tr>
<th>(T, N)</th>
<th>(ED)</th>
<th>(GR)</th>
<th>(BIC_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha_1, \alpha_2) = (0.9, 0.9))</td>
<td>100 2.05 2.04 2.02 2.01</td>
<td>100 2.00 2.00 2.00 2.00</td>
<td>100 2.00 2.00 2.00 2.00</td>
</tr>
<tr>
<td>200</td>
<td>2.04 2.04 2.03 2.02</td>
<td>2.00 2.00 2.00 2.00</td>
<td>2.00 2.00 2.00 2.00</td>
</tr>
<tr>
<td>500</td>
<td>2.04 2.04 2.03 2.02</td>
<td>2.00 2.00 2.00 2.00</td>
<td>2.00 2.00 2.00 2.00</td>
</tr>
<tr>
<td>1000</td>
<td>2.02 2.04 2.03 2.02</td>
<td>2.00 2.00 2.00 2.00</td>
<td>2.00 2.00 2.00 2.00</td>
</tr>
<tr>
<td>((\alpha_1, \alpha_2) = (0.8, 0.5))</td>
<td>100 1.96 1.96 1.95 1.90</td>
<td>100 1.30 1.18 1.04 1.00</td>
<td>100 1.30 1.17 1.02 1.00</td>
</tr>
<tr>
<td>200</td>
<td>2.02 2.02 2.03 2.02</td>
<td>1.40 1.30 1.09 1.01</td>
<td>1.39 1.36 1.12 1.01</td>
</tr>
<tr>
<td>500</td>
<td>2.03 2.03 2.02 2.02</td>
<td>1.61 1.45 1.24 1.10</td>
<td>1.41 1.51 1.53 1.42</td>
</tr>
<tr>
<td>1000</td>
<td>2.02 2.03 2.02 2.02</td>
<td>1.52 1.45 1.24 1.10</td>
<td>1.43 1.51 1.53 1.42</td>
</tr>
<tr>
<td>((\alpha_1, \alpha_2) = (0.5, 0.4))</td>
<td>100 1.54 1.52 1.36 1.14</td>
<td>1.50 1.47 1.39 1.33</td>
<td>1.03 1.00 1.00 1.00</td>
</tr>
<tr>
<td>200</td>
<td>1.83 1.88 1.89 1.86</td>
<td>1.52 1.53 1.50 1.39</td>
<td>1.03 1.02 1.00 1.00</td>
</tr>
<tr>
<td>500</td>
<td>2.00 2.00 2.01 2.02</td>
<td>1.67 1.64 1.65 1.59</td>
<td>1.03 1.05 1.02 1.01</td>
</tr>
<tr>
<td>1000</td>
<td>1.92 2.00 2.01 2.02</td>
<td>1.60 1.64 1.65 1.59</td>
<td>1.04 1.05 1.02 1.01</td>
</tr>
</tbody>
</table>

5.2 Finite sample properties of the WF-SOFAR estimator

We investigate the finite sample properties of our WF-SOFAR estimator, and compare these with those of the PC estimator. Here we treat the number of factors, \(r \), as given. Initially we consider the exponents \((\alpha_1, \alpha_2) = (0.9, 0.9) \) and \((0.8, 0.5) \) and all the combinations of \(N, T = 100, 200, 500, 1000 \). Then, we investigate more challenging case, \((0.5, 0.4) \). In this case, we consider large sample sizes, \(N, T = 500, 1000 \), only. We report the results of the adaptive WF-SOFAR estimator with regularization coefficient \(\eta_n \) determined by \(BIC \), which we recommend to use.\(^4\)

\(^4\)Note that when the value of \(\alpha_1 \) is 0.8, the associated lowest bound of \(\alpha_r \) implied by condition (10) is 0.6.

\(^5\)We examined all the combinations of WF-SOFAR and adaptive WF-SOFAR with AIC, cross-validation, BIC and GIC. The results of which are available upon request from the authors.
For performance comparison purposes, we consider the \(\ell_2 \)-norm losses based on the scaled estimators: \(L(\hat{F}) = \| \sum_{k=1}^{r} T^{-1/2} [\text{abs}(\hat{f}_k) - \text{abs}(f^0_k)] \|_2 \), \(L(\hat{B}) = \| \sum_{k=1}^{r} N_{k}^{-1/2} [\text{abs}(\hat{b}_k) - \text{abs}(b^0_k)] \|_2 \), and \(L(\hat{C}) = \| \sum_{k=1}^{r} T^{-1/2} N_{k}^{-1/2} [\text{abs}(\hat{c}_k) - \text{abs}(c^0_k)] \|_F \), where \(\text{abs}(a) \) takes elementwise absolute value of a real vector \(a \). Due to the scaling, the performance of the estimators can be comparable across different combinations of the values of \(N, T \), and \(\alpha \)'s. Observe that these norm losses are not sensitive to the sign indeterminacy of the estimators (i.e. \(f^0_k b^0_k = (-f^0_k) (-b^0_k) \)) and the change of the order of the factor components if \(\alpha_1 = \alpha_2 \) (e.g., for \(r = 2 \), the estimated first factor can be of the true second factor).

5.2.1 Results

Table 2 reports the averages and standard deviations (s.d.) of \(\hat{\alpha}_1 \) and \(\hat{\alpha}_2 \) based on Corollary 2, and the average of the norm losses (multiplied by 100) of the scaled estimated factors, factor loadings, and common components by the WF-SOFAR (WS in the tables) and PC estimators over the replications. In this table, we consider \((\alpha_1, \alpha_2) = (0.9, 0.9) \) and \((0.8, 0.5) \). Each panel of the table has four column blocks for \(T = 100, 200, 500, 1000 \), and each column block for given \(T \) contains four row blocks for \(N = 100, 200, 500, 1000 \).

First, focus on \((\hat{\alpha}_1, \hat{\alpha}_2) \). In a nutshell, they are sufficiently accurate but tend to slightly underestimate when \(\alpha_k \) is closer to one and overestimate when it is around 0.5. The precision improves as \(T \) and \(N \) increase. For example, see the results when \((\alpha_1, \alpha_2) = (0.8, 0.5) \). The estimation precision is remarkable since given \(\alpha_1 = 0.8 \) the lower bound of \(\alpha_2 \) implied by condition (10) is 0.6, which is much larger than the actual value considered here, \(\alpha_2 = 0.5 \).

Now we turn our attention to the performance of the WF-SOFAR and PC estimates. In terms of the norm loss given above, the WF-SOFAR uniformly beats the PC across all the designs. Perhaps surprisingly, the WF-SOFAR estimate of the factors is much more accurate than the PC even in the most favorable experimental design to the PC, with \((\alpha_1, \alpha_2) = (0.9, 0.9) \). In terms of their ratios, the WF-SOFAR factor estimates become more accurate than the PC factor estimates as \(N \) rises with given \(T \). As expected, the accuracy of the WF-SOFAR estimates of factor loadings is uniformly superior to that of the PC estimates. This gap in accuracy becomes wider when the exponents are further from unity; see the case of \((\alpha_1, \alpha_2) = (0.8, 0.5) \), for instance. The norm loss of the WF-SOFAR stabilizes while that of the PC fast rises. However, when \(T \) grows with given \(N \), the accuracy of both the WF-SOFAR and the PC factor loadings estimates improves (but the former is always more accurate than the latter). Consequently, the accuracy of the WF-SOFAR estimator of common component is uniformly superior to that of the PC estimator.

Table 3 reports the same information as Table 2, but for more challenging models with \((0.5, 0.4) \). As the WF-SOFAR estimation naturally requires a larger sample size for these cases, we consider the combinations for \(N, T = 500, 1000 \) only. As can be seen in the table, remarkably, even when one of the exponent is 0.4, our WF-SOFAR method provides sufficiently accurate estimates of \(\alpha_1 \) and \(\alpha_2 \) as well as far superior estimates of factors, factor loadings and common components to the PC method.

To summarize, the WF-SOFAR estimator performs very well when the exponents are close to unity, thus, signal of common components is high, even with a smaller sample size. When the signal of common components is weak, namely when the value(s) of exponent(s) are around 0.5 or below, the WF-SOFAR estimator is sufficiently precise in terms of norm loss, but requires a larger sample size. Significantly, even when the gap between \(\alpha_1 \) and \(\alpha_2 \) is larger than the condition (10) implies, the WF-SOFAR estimator is sufficiently accurate in terms of norm loss and its accuracy improves as the sample size rises. Conversely, the PC
estimator fails to improve the performance when \(N \) rises due to its inability to identify zero elements in sparse loadings, and consequently the PC estimator is uniformly superseded by the WF-SOFAR estimator in terms of norm loss.

5.3 A hierarchical factor structure

Recently estimation of a hierarchical factor structure or a multi-level factor structure has been gaining serious interest in the literature. Ando and Bai (2017) and Choi et al. (2018) consider factor models with two types of factors, global factors and local factors. The factor loadings of global factors are non-zero values for all the cross-section units, whereas the local factors have non-zero loadings among the cross-section units of specific cross-sectional groups. Ando and Bai (2017) and Choi et al. (2018) propose sequential procedures to identify the global and local factors separately. In fact, the WF structure nests the hierarchical factor structure and hence our WF-SOFAR method can be readily applied to such models. In contrast to the existing approaches, given the total number of global and local factors, our approach permits us to consistently estimate the hierarchical model in one go.

For illustration, we generate the data of four factors models, \(x_{ti} = \sum_{k=1}^{r} b_{ik} f_{tk} + e_{ti} \), where \(f_{tk} \) and \(e_{ti} \) are generate as above. We set \(r = 4 \). The first factor is a global factor, i.e., \(b_{i1} \sim \text{i.i.d.} N(0, 1) \) for \(i = 1, \ldots, N \). The other three factors are local ones, i.e., \(b_{i2} \) is drawn from \(N(0, 1) \) for the first third, \(b_{i3} \) for the second third, and \(b_{i4} \) for the last third of cross-section units while the rests are zero. We obtained a simulated data with \(N = 450 \) and \(T = 120 \), and estimated the factor model given \(r = 4 \) by the PC and WF-SOFAR. To visualize the quality of the factor loadings, we provide heat maps of three \(N \times N \) matrices, \(\sum_{k=1}^{4} \omega_k \text{abs}(b_{ik} \hat{b}_{ik}') \), \(\sum_{k=1}^{4} \omega_k \text{abs}(\hat{b}_{ik} \hat{b}_{ik}') \) and \(\sum_{k=1}^{4} \omega_k \text{abs}(\hat{b}_{PC,k} \hat{b}_{PC,k}') \), which are reported in Figures 1-3, respectively. To clarify the difference between the global factor loadings and local ones, which overlaps in the heat maps, we use the weight \(\omega_1 = 1/8 \) and \(\omega_2 = \omega_3 = \omega_4 = 1 \). As is clear, the WF-SOFAR estimator successfully recover the hierarchical pattern while the PC estimator fails.

6 Empirical Applications

In this section we provide two empirical applications. In the first subsection, the WF-SOFAR is applied to firm security returns to analyse changes in the presence of systematic risks in the
Table 2: Performance of the WF-SOFAR (WS) and PC estimators for approximate factor models with two factor components with \((\alpha_1, \alpha_2) = (0.9, 0.9), (0.8, 0.5)\)

<table>
<thead>
<tr>
<th>Design ((\alpha_1, \alpha_2))</th>
<th>(T=100)</th>
<th>(T=200)</th>
<th>(T=500)</th>
<th>(T=1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N=100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\alpha}_1)</td>
<td>mean</td>
<td>s.d.</td>
<td>mean</td>
<td>s.d.</td>
</tr>
<tr>
<td></td>
<td>(0.9, 0.9)</td>
<td>0.86</td>
<td>0.02</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>(0.8, 0.5)</td>
<td>0.85</td>
<td>0.02</td>
<td>0.86</td>
</tr>
<tr>
<td>(\hat{\alpha}_2)</td>
<td>WS</td>
<td>PC</td>
<td>WS</td>
<td>PC</td>
</tr>
<tr>
<td>(L^2_F(\hat{F})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.2</td>
<td>11.6</td>
<td>5.1</td>
</tr>
<tr>
<td>(L^2_F(\hat{A})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.0</td>
<td>9.9</td>
<td>4.7</td>
</tr>
<tr>
<td>(L^2_F(\hat{C})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.2</td>
<td>14.5</td>
<td>5.6</td>
</tr>
<tr>
<td>(N=200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\alpha}_1)</td>
<td>mean</td>
<td>s.d.</td>
<td>mean</td>
<td>s.d.</td>
</tr>
<tr>
<td></td>
<td>(0.9, 0.9)</td>
<td>0.86</td>
<td>0.01</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>(0.8, 0.5)</td>
<td>0.86</td>
<td>0.01</td>
<td>0.87</td>
</tr>
<tr>
<td>(\hat{\alpha}_2)</td>
<td>WS</td>
<td>PC</td>
<td>WS</td>
<td>PC</td>
</tr>
<tr>
<td>(L^2_F(\hat{F})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6</td>
<td>10.1</td>
<td>3.5</td>
</tr>
<tr>
<td>(L^2_F(\hat{A})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.1</td>
<td>10.4</td>
<td>4.7</td>
</tr>
<tr>
<td>(L^2_F(\hat{C})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.8</td>
<td>13.1</td>
<td>4.1</td>
</tr>
<tr>
<td>(N=500)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\alpha}_1)</td>
<td>mean</td>
<td>s.d.</td>
<td>mean</td>
<td>s.d.</td>
</tr>
<tr>
<td></td>
<td>(0.9, 0.9)</td>
<td>0.87</td>
<td>0.01</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>(0.8, 0.5)</td>
<td>0.86</td>
<td>0.01</td>
<td>0.87</td>
</tr>
<tr>
<td>(\hat{\alpha}_2)</td>
<td>WS</td>
<td>PC</td>
<td>WS</td>
<td>PC</td>
</tr>
<tr>
<td>(L^2_F(\hat{F})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5</td>
<td>9.3</td>
<td>2.3</td>
</tr>
<tr>
<td>(L^2_F(\hat{A})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.4</td>
<td>11.2</td>
<td>4.5</td>
</tr>
<tr>
<td>(L^2_F(\hat{C})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>12.7</td>
<td>3.3</td>
</tr>
<tr>
<td>(N=1000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\alpha}_1)</td>
<td>mean</td>
<td>s.d.</td>
<td>mean</td>
<td>s.d.</td>
</tr>
<tr>
<td></td>
<td>(0.9, 0.9)</td>
<td>0.87</td>
<td>0.01</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>(0.8, 0.5)</td>
<td>0.86</td>
<td>0.01</td>
<td>0.87</td>
</tr>
<tr>
<td>(\hat{\alpha}_2)</td>
<td>WS</td>
<td>PC</td>
<td>WS</td>
<td>PC</td>
</tr>
<tr>
<td>(L^2_F(\hat{F})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.8</td>
<td>9.0</td>
<td>1.9</td>
</tr>
<tr>
<td>(L^2_F(\hat{A})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.4</td>
<td>12.0</td>
<td>4.7</td>
</tr>
<tr>
<td>(L^2_F(\hat{C})\times 100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>12.7</td>
<td>3.0</td>
</tr>
</tbody>
</table>
market over the decades. In the second subsection we compare the forecasting performance of predictive regressions based on the factors extracted by the WF-SOFAR and PC.

6.1 Firm security returns

In this subsection we apply our method to estimate approximate factor models using excess returns of firm securities which are used to compute the Standard & Poor’s 500 (S&P 500) index of large cap U.S. equities market. In particular, we obtain the 500 securities that constitute the S&P 500 index each month over the period from January 1984 to April 2018 from Datastream. The monthly return of security \(i \) for month \(t \) is computed as \(r_{ti} = 100 \times (P_{ti} - P_{t-1,i})/P_{t-1,i} + DY_{ti}/12 \), where \(P_{ti} \) is the end-of-the-month price of the security and \(DY_{ti} \) is the per cent per annum dividend yield on the security. The one-month US treasury bill rate is chosen as the risk-free rate \((r_{ft}) \), which is obtained from Ken French’s data library web page. The excess return is defined as \(r_{e,ti} = r_{ti} - r_{ft} \).

Following the literature, we estimate the factor model for the standardized excess return, \(r^*_{e,ti} \). In view of the experimental results shown earlier, we report the results based on the adaptive WF-SOFAR with \(\eta_h \) selected by BIC. For each window month, \(T = \) September 1998 to April 2018, we chose securities that contain the data extending 120 months back \((T = 120)\) from \(T \). This gives the different number of securities for each window \(T \) \((N_T)\). The average number of securities over the estimation windows is 443 \((\bar{N} = 443)\). In this exercise, we set the maximum number of factors as four. As will be shown below, three or four factors are estimated over the windows. We identify the factors and signs of the factors and factor loadings, given the estimates of the initial window month, \(T = \) September 1989, based on the correlation coefficients between the factors at \(T \) and the appropriately lagged \(t \).

We report \(\hat{\alpha}_\ell, \ell = 1, 2, 3, 4, \) of the security return covariance matrix, which are associated with the four factors. Observe that, as discussed earlier, the estimated exponents are invariant to the rotation of the estimated common components. Table 4 reports the summary statistics of \(\hat{\alpha}_\ell \)'s and the portion of non-zero factors, \(N_{\ell T}/N_T \) and Figure 4 plots \(\hat{\alpha}_\ell \) over the estimation window months, \(T = \) September 1989 to April 2018.

In turn we discuss the trajectories of \(\hat{\alpha}_\ell \) in some details by referring to Table 4 and Figure 4. The first factor does seem to be almost always “strong,” in that the divergence rate \(N_1 \) is
very close to N. As reported in Table 4, the average of α_1 over the month windows is 0.995 and standard deviation is very small (0.004) with the minimum value of 0.979. Actually, the values of the factor loadings to this factor have the same sign, which strongly suggests that this is the market factor. Apart from the first factor, which is always strong, the strengths of the common components vary over the months and can become quite weak. For example, for the second to the fourth factors, the maximum portion of nonzero factor loadings is between 44.5% and 59.5%, while the minimum portion is merely 12.0% to 17.6%. Furthermore, the divergence rates are very different over the factors. For example, for the window month of March 1998, $\{\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3\} = \{0.991, 0.774, 0.653\}$, and the corresponding numbers of non-zero factors are 425, 113 and 54 out of 450 securities. These strongly imply a potentially substantial efficiency gain in estimation of the approximate factor models through our WF-SOFAR over the PC.

In line with the well-observed phenomenon that the correlation among the securities in the financial market rises during periods of turmoil, sharp rises of exponents in some months can be observed. For example, α_2 goes up sharply around February 2000 then rises gradually. This period corresponds to the peak of the dot-com bubble and its burst on March 2000 (the main contributor to the factor loadings of the second factor is Technology industry, see Appendix D). Similarly, a sharp rise of α_3 is observed from July 2008 to April 2009. This period coincides with the 2008 financial crisis. In just ten months, it goes up by 0.12, from 0.74 to 0.86 (one of the main contributors to the factor loadings of the third factor is the Financial industry, see Appendix D).

It is also interesting that the orders in terms of values of the exponents, α_2, α_3, and α_4, change over the period. In particular, from September 1989, α_2 is larger than α_3 most of the time until December 2010, then α_3 is almost always larger than α_2. Since the estimate of α_4 first appeared in February 2004, it was mostly smaller than other exponents. It is estimated every month from March 2010 onward, seemingly becoming more and more strong toward the latest month, April 2018. After the sharp one-off drop in February 2015, α_4 rises to become the highest next to the first factor from November 2016 onward.

Table 4: Summary statistics of the estimated exponents, $\alpha_{\ell T}$, and the portion of non-zero factor loadings, $N_{\ell T}/N_T$, $\ell = 1, 2, 3, 4$, from September 1989 to April 2018.

<table>
<thead>
<tr>
<th>Exponents of Loadings</th>
<th>Portion of Non-zero Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>α_2</td>
</tr>
<tr>
<td>mean</td>
<td>0.995</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.004</td>
</tr>
<tr>
<td>max</td>
<td>1.000</td>
</tr>
<tr>
<td>min</td>
<td>0.979</td>
</tr>
</tbody>
</table>

Notes: The estimated α_{ℓ}, $\ell = 1, 2, 3, 4$ for the each month of 120 months window, $T =$ September 1989,....,April 2018.

6.2 Forecasting bond yields

We consider out-of-sample performance of forecasting regressions for bond yields using extracted factors via our WF-SOFAR and the PC, from a large number of macroeconomic
variables in line with the analysis of Ludvigson and Ng (2009). We use the same data set provided by Ludvigson and Ng. Specifically, the data consists of the continuously compounded (log) annual excess returns on an \(n \)-year discount bond at month \(t \), \(y_t^{(n)} \), and a balanced panel of \(i = 1, \ldots, N = 132 \) monthly macroeconomic series at month \(t \), \(x_{ti} \), spanning the period from January 1964 to December 2003. We consider the maturities \(n = 2, 3, 4, 5 \). For more details of the data, see Section 3 of Ludvigson and Ng (2009).

We consider one-year-ahead out of sample forecast comparisons. In order to minimize possible adverse effects of structural breaks, we set the rolling window at 252 months. The forecast comparison procedure is explained below. For the \(T \)th month rolling window and maturity \(n \), we extract factors \(\{ \hat{f}_{tk} \}_{k=1}^{T} \) from \(x_{ti} \) via our WF-SOFAR and the PC, \(i = 1, \ldots, N = 132 \), \(t = T, \ldots, T_T - 12 \), where \(t \) denotes months from January 1964 to December 2003. \(T \) and \(T_T \) denote the start and end months of the \(T \)th rolling window, respectively. Observe that \(r \) is estimated for each estimation window to avoid using “future” information.

Then, run the predictive regression

\[
y_t^{(n)} + 12 = \hat{\beta}_0^{(n)} + \sum_{k=1}^{T} \hat{\beta}_k^{(n)} \hat{f}_k + \hat{\varepsilon}_t^{(n)}, \quad t = T, \ldots, T_T - 12, \quad n = 2, 3, 4, 5
\]

and obtain the forecast error

\[
\hat{\varepsilon}_{T_T + 12 | T_T}^{(n)} = y_{T_T + 12}^{(n)} - y_{T_T + 12 | T_T}^{(n)}.
\]

\(^8\) The data file is obtained from Sydney Ludvigson’s web page: https://www.sydneyludvigson.com/s/RFS2009-u1e1.xls

\(^9\) In another experiment, we estimated the number of factors using a whole sample period and implemented a similar exercise. The forecast based on our estimator uniformly outperformed that based on the PC estimator.
with \(\tilde{y}^{(n)}_{T_1+12|T_i} = \tilde{\beta}_0 + \sum_{k=1}^{r^2} \tilde{\beta}_k \hat{f}_{T_k} \). This produces \(H = 217 \) forecast errors. To estimate \(r \) for each window, we set the maximum number of factors to nine and use the ED estimator. The estimate varies from one to six over the forecast windows. In Table 5, we report the mean absolute deviation of the forecast errors, \(MAE^{(n)} = H^{-1} \sum_{s=1}^{H} |\hat{\epsilon}^{(n)}_s| \), and Diebold-Mariano forecasting performance test statistics with associated \(p \)-values, based on the MAEs. As can be seen, the MAEs of the WF-SOFAR are smaller than those of the PC for all the maturities. The Diebold-Mariano forecasting performance test strongly rejects the null of the same forecasting performance for all the maturities, in favor of the alternative that our method outperforms the PC. The average values of exponents over the windows are \(\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\} = \{0.92, 0.82, 0.87, 0.78, 0.77, 0.74\} \), which suggests that even the (first) strongest factor is not strictly strong. As is evidenced in the previous section, the accuracy of our estimator is much higher than the PC estimator under such situations, and the better forecasting performance may not be too surprising in this empirical exercise.

Table 5: Mean absolute forecast errors and Diebold-Mariano forecast comparison test result

<table>
<thead>
<tr>
<th></th>
<th>WS</th>
<th>PC</th>
<th>Diebold-Mariano Statistic</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_{t+12}^{(2)})</td>
<td>1.164</td>
<td>1.191</td>
<td>-3.58</td>
<td>[0.0003]</td>
</tr>
<tr>
<td>(y_{t+12}^{(3)})</td>
<td>2.304</td>
<td>2.354</td>
<td>-3.54</td>
<td>[0.0004]</td>
</tr>
<tr>
<td>(y_{t+12}^{(4)})</td>
<td>3.354</td>
<td>3.429</td>
<td>-3.73</td>
<td>[0.0002]</td>
</tr>
<tr>
<td>(y_{t+12}^{(5)})</td>
<td>4.197</td>
<td>4.278</td>
<td>-3.20</td>
<td>[0.0014]</td>
</tr>
</tbody>
</table>

Notes: For the computation of the long-run variance for the Diebold-Mariano test statistic of Diebold and Mariano (1995), the window is chosen by the Schwert criterion with the maximum lag of 14.

7 Conclusion

This paper has considered estimation of the weak factor (WF) models induced by sparse factor loadings in a high-dimensional setting. We suppose sparse factor loadings \(\mathbf{B}^0 \) that lead to the WF structure, \(\lambda_k(\mathbf{B}^0\mathbf{B}^0)^\top \asymp N^{\alpha_k} \) with \(0 < \alpha_k \leq 1 \) for \(k = 1, \ldots, r \) (weak pervasiveness condition). This model is much less restrictive than the widely employed strong factor model in the literature, in which \(\lambda_k(\mathbf{B}^0\mathbf{B}^0)^\top \asymp N \) for \(k = 1, \ldots, r \). The proposed WF-SOFAR estimator and its adaptive version enable us to consistently estimate the WF models, separately identifying \(\mathbf{B}^0 \) and \(\mathbf{F}^0 \). As theoretical contributions, we have established the estimation error bound of the WF-SOFAR estimators, the factor selection consistency of the adaptive WF-SOFAR estimator, and consistent estimation of each exponent \(\alpha_k \) as well as validating the method of Onatski (2010) for the number of weak factors. All the theoretical results are supported by the Monte Carlo experiments and two empirical examples. In fact, they have revealed not only validity of the WF-SOFAR but also superiority to the PC in estimating the WF models.

References

Appendix

A Proofs of the Main Results

Proof of Theorem 1. We denote by $M_{k,\ell} \in \mathbb{R}^{T \times (\ell-k+1)}$ a submatrix of M constructed by its kth to ℓth columns. Following Ahn and Horenstein (2013), we evaluate the eigenvalues of XX' with recalling notation based on the SVD rather than F^0 and B^0. We define $P = V^0N^{-1}V^0$, $Q = I_N - P$, and $U^* = U^0 + EV^0N^{-1}(D^0)^{-1}$. Then, we can write $XX' = U^*D^0ND^0U^* + EQE'$ since $V^0V^0 = N = \text{diag}(N_1, \ldots, N_r)$ by the definition. We also define $W_{1,k}$ as the matrix of k eigenvectors corresponding to the first k largest eigenvalues of $U^*D^0ND^0U^*$. We first evaluate the r largest eigenvalues of XX'. Because $\lambda_k(U^0D^0ND^0U^0) = d_k^2N_kT$, it is sufficient to show that for any $k \in \{1, \ldots, r\}$,

\begin{align}
\lambda_k(XX') &= \lambda_k(U^*D^0ND^0U^*) + O(N \lor T), & (A.1) \\
\lambda_k(U^*D^0ND^0U^*) &= \lambda_k(U^0D^0ND^0U^0) + O\left(TN_1^{1/2}\log^{1/2}(N \lor T) + N \lor T\right). & (A.2)
\end{align}

Then (A.1) and (A.2) lead to

\begin{align*}
\lambda_k(XX') &= \lambda_k(U^*D^0ND^0U^*) + O(TN_1^{1/2}\log^{1/2}(N \lor T) + N \lor T) \\
&= d_k^2N_kT + O\left(TN_1^{1/2}\log^{1/2}(N \lor T) + N \lor T\right),
\end{align*}

which gives the desired result under condition (8). We show (A.1). Lemma A.5 of Ahn and Horenstein (2013) yields the upper bound

\begin{align*}
\sum_{j=1}^{k} \lambda_j(XX') &= \sum_{j=1}^{k} \lambda_j(U^*D^0ND^0U^* + EQE') \\
&\leq \sum_{j=1}^{k} \lambda_j(U^*D^0ND^0U^*) + k\lambda_1(EQE' + EPE') \\
&= \sum_{j=1}^{k} \lambda_j(U^*D^0ND^0U^*) + k\lambda_1(EE') \lesssim \sum_{j=1}^{k} \lambda_j(U^*D^0ND^0U^*) + T \lor N,
\end{align*}
where the last inequality follows from Lemma 1(a), with probability at least $1 - O((N \lor T)^{-\nu})$. Moreover, the lower bound is given by

$$
\sum_{j=1}^{k} \lambda_j(XX') \geq T^{-1} \text{tr}(W_{1:k}^TXX'W_{1:k}) - 2T^{-1} \text{tr}(W_{1:k}^TDD0^0U'sW_{1:k}) + T^{-1} \text{tr}(W_{1:k}^TEQE'W_{1:k}) \geq \sum_{j=1}^{k} \lambda_j(U^*D^0ND^0U^s').
$$

Hence, these two inequalities imply (A.1). Next, we verify (A.2). By the construction of U^*, the upper bound is

$$
\sum_{j=1}^{k} \lambda_j(U^*D^0ND^0U^s') = T^{-1} \text{tr}(W_{1:k}^TU^0D^0ND^0U^0'W_{1:k}) + 2T^{-1} \text{tr}(W_{1:k}^TU^0D^0V^0'E'W_{1:k}) + T^{-1} \text{tr}(W_{1:k}^TEPE'W_{1:k}) \leq \sum_{j=1}^{k} \lambda_j(U^0D^0ND^0U^0') + TN_1^{1/2} \log^{1/2}(N \lor T) + N \lor T,
$$

where the last inequality holds by Lemma 3 with probability at least $1 - O((N \lor T)^{-\nu})$. Similarly, the lower inequality is

$$
\sum_{j=1}^{k} \lambda_j(U^*D^0ND^0U^s') \geq \sum_{j=1}^{k} \lambda_j(U^0D^0ND^0U^0') - TN_1^{1/2} \log^{1/2}(N \lor T).
$$

Hence, these two inequalities imply (A.2).

Finally, we consider the lower and upper bounds of $\lambda_{r+j}(XX')$ for $j = 1, \ldots, k_{\text{max}}$. Because $\lambda_{r+j}(U^*D^0ND^0U^s') = 0$ for all $j \geq 1$, Lemma 3 entails

$$
\lambda_{r+j}(XX') \leq \lambda_{r+j}(U^*D^0ND^0U^s') + \lambda_1(EQE') = \lambda_1(EQE') \lesssim T \lor N
$$

with probability at least $1 - O((N \lor T)^{-\nu})$. This completes the proof.

\textit{Proof of Theorem 2}. The optimality of the WF-SOFAR estimator implies

$$
2^{-1}\|X - \hat{F}\hat{B}'\|_F^2 + \eta_n\|\hat{B}\|_1 \leq 2^{-1}\|X - F^0B^0'\|_F^2 + \eta_n\|B^0\|_1.
$$

By plugging model (5) and letting $\Delta = \hat{F}\hat{B}' - F^0B^0'$, this is equivalently written as

$$
2^{-1}\|E - \Delta\|_F^2 + \eta_n\|\hat{B}\|_1 \leq 2^{-1}\|E\|_F^2 + \eta_n\|B^0\|_1.
$$

Define $\Delta^f = \hat{F} - F^0$ and $\Delta^b = \hat{B} - B^0$. Expanding the first term and using decomposition $\Delta = \Delta^fB^0' + \Delta^f\Delta^b + F^0\Delta^b'$ lead to

$$
(1/2)\|\Delta\|_F^2 \leq \text{tr}E\Delta' + \eta_n\left(\|B^0\|_1 - \|\hat{B}\|_1\right)
$$

$$
\leq \left|\text{tr}(EB^0\Delta^f') + \text{tr}(EB^0\Delta^b') + \text{tr}(\Delta^bF^0'E) + \eta_n\left(\|B^0\|_1 - \|\hat{B}\|_1\right)\right|. \quad (A.3)
$$
We bound the traces in (A.3). By applying Hölder’s inequality and using properties of the norms, the first term is bounded as

$$\left| \text{tr} \, EB^0 \Delta f \right| \leq \|EB^0\|_{\text{max}} \|\Delta f\|_1 \leq (rT)^{1/2} \|EB^0\|_{\text{max}} \|\Delta f\|_F.$$

Similarly, the second and third terms of (A.3) are bounded as

$$\left| \text{tr} \, E \Delta^b \Delta f \right| + \left| \text{tr} \, E \Delta^b F^0' E \right| \leq \|E \Delta^b\|_{2} \|\Delta f\|_* + \|\Delta^b\|_1 \|F^0' E\|_{\text{max}}$$

$$\leq r^{1/2} \|E \Delta^b\|_{2} \|\Delta f\|_F + \|\Delta^b\|_1 \|F^0' E\|_{\text{max}}.$$

From these inequalities, the upper bound of (A.3) becomes

$$(1/2) \|\Delta\|^2_F \leq (rT)^{1/2} \|EB^0\|_{\text{max}} \|\Delta f\|_F + r^{1/2} \|E \Delta^b\|_{2} \|\Delta f\|_F$$

$$+ \|\Delta^b\|_1 \|F^0' E\|_{\text{max}} + \eta_n \left(\|B^0\|_1 - \|\hat{B}\|_1 \right).$$

From Lemmas 1 and 4, there exist some positive constants $c_1 - c_3$ such that the event

$$\mathcal{E} = \left\{ \|E \Delta^b\|_{2} \leq c_1 \|\Delta^b\|_F (N \lor T)^{1/2} \log^{1/2}(N \lor T) \right\}$$

$$\cap \left\{ \|EB^0\|_{\text{max}} \leq c_2 N_1^{1/2} \log^{1/2}(N \lor T) \right\} \cap \left\{ \|F^0' E\|_{\text{max}} \leq c_3 T^{1/2} \log^{1/2}(N \lor T) \right\}$$

occurs with probability at least $1 - O((N \lor T)^{-\nu})$ for any fixed constant $\nu > 0$. Set the regularization parameter to be $\eta_n = 2 c_1 T^{1/2} \log^{1/2}(N \lor T)$. Then on event \mathcal{E}, we have $\|F^0' E\|_{\text{max}} \leq \eta_n / 2$, and (A.4) is further bounded as

$$\|\Delta\|^2_F \lesssim (N_1 T)^{1/2} \log^{1/2}(N \lor T) \|\Delta f\|_F + (\tilde{N} \lor T)^{1/2} \log^{1/2}(N \lor T) \|\Delta^b\|_F \|\Delta f\|_F$$

$$+ \eta_n \left(\|\Delta^b\|_1 + 2 \|B^0\|_1 - 2 \|\hat{B}\|_1 \right).$$

We then focus on the last parenthesis of (A.5). Define index set $\mathcal{S} = \{(i, k) : b^0_{ik} \neq 0\}$, the support of B^0. Note that $|\mathcal{S}| = \sum_{k=1}^r N_k \leq r N_1$. The last parenthesis of (A.5) is rewritten and bounded as

$$\|\Delta^b\|_1 + 2 \|B^0\|_1 - 2 \|\hat{B}\|_1 = \|\Delta_S^b\|_1 + 2 \|\Delta_{S'}^b\|_1 + 2 \|B_{S}^0\|_1 - 2 \|\hat{B}_{S}\|_1 - 2 \|\hat{B}_{S'}\|_1$$

$$\leq \|\Delta_S^b\|_1 + 2 \|\Delta_{S'}^b\|_1 + 2 \|B_{S}^0\|_1 - 2 \|\hat{B}_{S}\|_1 - 2 \|\hat{B}_{S'}\|_1$$

$$= 3 \|\Delta_S^b\|_1 - 2 \|\hat{B}_{S'}\|_1 \leq 3 (r N_1)^{1/2} \|\Delta_S^b\|_F \leq 3 (r N_1)^{1/2} \|\Delta^b\|_F.$$

Therefore, the upper bound of (A.5) is given by

$$\|\Delta\|^2_F \lesssim (N_1 T)^{1/2} \log^{1/2}(N \lor T) \|\Delta f\|_F$$

$$+ (\tilde{N} \lor T)^{1/2} \log^{1/2}(N \lor T) \|\Delta^b\|_F \|\Delta f\|_F + N_1^{1/2} \eta_n \|\Delta^b\|_F.$$

Meanwhile, Lemma 5 establishes the lower bound of (A.6). Consequently, we obtain

$$\kappa_n \left(\|\Delta f\|^2_F + \|\Delta^b\|^2_F \right) \lesssim (N_1 T)^{1/2} \log^{1/2}(N \lor T) \|\Delta f\|_F$$

$$+ (\tilde{N} \lor T)^{1/2} \log^{1/2}(N \lor T) \|\Delta^b\|_F \|\Delta f\|_F + N_1^{1/2} \eta_n \|\Delta^b\|_F$$

$$= \alpha_n \|\Delta f\|_F + \mu_n \|\Delta^b\|_F \|\Delta f\|_F + \beta_n \|\Delta^b\|_F$$

$$\leq \alpha_n \|\Delta f\|_F + \mu_n \left(\|\Delta^b\|^2_F + \|\Delta f\|^2_F \right) + \beta_n \|\Delta^b\|_F.$$
where \(\kappa_n = N_r(N_r \wedge T)/N_1 \), \(\alpha_n = (N_1 T)^{1/2} \log^{1/2}(N \vee T) \), \(\mu_n = (\tilde{N} \vee T)^{1/2} \log^{1/2}(N \vee T) \), and \(\beta_n = N_1^{1/2} \eta_n \). By condition (10), we have

\[
\|\Delta f\|_F^2 + \|\Delta^b\|_F^2 \leq \frac{(\alpha_n/\kappa_n)\|\Delta f\|_F + (\beta_n/\kappa_n)\|\Delta^b\|_F}{1 - \mu_n/\kappa_n}.
\]

Rearranging this inequality gives

\[
\|\Delta f\|_F + \|\Delta^b\|_F \leq \frac{3}{2} \left(\frac{\alpha_n/\kappa_n + \beta_n/\kappa_n}{1 - \mu_n/\kappa_n} \right).
\]

Finally, since \(\eta_n = 2c_3 T^{1/2} \log^{1/2}(N \vee T) \), we observe that

\[
\alpha_n + \beta_n = (N_1 T)^{1/2} \log^{1/2}(N \vee T) + N_1^{1/2} \eta_n \leq (N_1 T)^{1/2} \log^{1/2}(N \vee T).
\]

This completes the proof. \(\square \)

Proof of Theorem 4. Throughout this proof, we omit the superscript of the adaptive estimators \((\hat{F}^a, \hat{B}^a)\) and simply write them as \((\hat{F}, \hat{B})\). Recall \(S = \text{supp}(B^0) \), which is a subset of \(\{1, \ldots, N\} \times \{1, \ldots, r\} \). For any matrix \(B = (b_{ik}) \in \mathbb{R}^{N \times r} \), define \(B_S \in \mathbb{R}^{N \times r} \) as the matrix whose \((i,k)\)th element is \(b_{ik} \mathbb{1}\{i,k \in S\} \). Similarly, define \(B_{S^c} \in \mathbb{R}^{N \times r} \) whose \((i,k)\)th element is \(b_{ik} \mathbb{1}\{i,k \notin S^c\} \). By the definition, note that \(B^0_S = B^0 \) and \(B^0_{S^c} = 0 \). Recall that the objective function for obtaining the adaptive WF-SOFAR estimator is given by

\[
Q_n(F, B) := \frac{1}{2} \|X - FB\|^2_F + \eta_n \|W \circ B\|_1 \tag{A.7}
\]

subject to \(FF^T = I_r \) and \(BB^T \) being diagonal. The strategy of this proof consists of two steps. In the first step, we show that the oracle estimator \((\hat{F}, \hat{B}_S)\), which is defined as a minimizer of \(Q_n(F, B_S) \), is consistent to \((F^0, B^0_S)\) with some rate of convergence. In the second step, we prove that the oracle estimator is indeed a minimizer of the unrestricted problem, \(\min Q_n(F, B) \) over \(\mathbb{R}^{r \times r} \times \mathbb{R}^{N \times r} \).

(First step) We derive the rate of convergence of the oracle estimator. To this end, it suffices to show that as \(n \to \infty \), there exists a (large) constant \(C > 0 \) such that

\[
P \left(\inf_{\|U\|_F=C,\|V_S\|_F=C} Q_n(F^0 + r_n U, B^0_S + r_n V_S) > Q_n(F^0, B^0_S) \right) \to 1, \tag{A.8}
\]

where \(U \in \mathbb{R}^{r \times r} \) and \(V \in \mathbb{R}^{N \times r} \) are deterministic matrices, and

\[
r_n = \frac{N_1(N_1 T)^{1/2} \log^{1/2}(N \vee T)}{N_r(N_r \wedge T)}.
\]

This implies that the oracle estimator \((\hat{F}, \hat{B}_S^0)\) lies in the ball

\[
\{ (F, B_S) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{N \times r} : \|F - F^0\|_F \leq Cr_n, \|B_S - B^0_S\|_F \leq Cr_n \}
\]

with high probability, which gives the desired rate of convergence. In this proof, write \(\ell_n = \log(N \vee T) \) for notational simplicity.
To show (A.8), we first have

\[Q_n(F^0 + r_n \mathbf{U}, B^0_S + r_n \mathbf{V}_S) - Q_n(F^0, B^0_S) \]
\[= 2^{-1}||X - (F^0 + r_n \mathbf{U})(B^0_S + r_n \mathbf{V}_S)'||_F^2 - 2^{-1}||X - F^0B^0_S||_F^2 \]
\[+ \eta_n ||W \circ (B^0_S + r_n \mathbf{V}_S)||_F \]
\[- \eta_n ||W \circ B^0_S||_F \]
\[\geq - \text{tr}(r_n F' E S + r_n E' UB^0_S + r_n^2 E' U V_S) \]
\[+ 2^{-1}||r_n F^0 V'_S + r_n UB^0_S + r_n^2 U V_S||_F^2 \]
\[- r_n \eta_n ||W_S \circ V_S||_F \]
\[= (I) + (II) + (III). \quad (A.9) \]

By Lemma 7 (a)–(e), we bound (I) as

\[|(I)| \leq r_n \left| \text{tr} V'_S E F' + r_n \left| \text{tr} B^0_S E' U \right| + r_n^2 \left| \text{tr} V'_S E' U \right| \]
\[\lesssim r_n \left(T^{1/2} ||V_S||_F + N^{1/2}_r ||U||_F \right) \ell_n^{1/2} + r_n^2 ||U||_F ||V_S||_F \ell_n^{1/2}. \]

Next, we bound (II) from below as

\[(II) = 2^{-1}||r_n F^0 V'_S + r_n UB^0_S + r_n^2 U V_S||_F^2 \]
\[\geq 2^{-1}||r_n UB^0_S||_F^2 + 2^{-1}||r_n F^0 V'_S||_F^2 - r_n^3 \text{tr} V_S U' F^0 V'_S - r_n^3 \text{tr} B^0_S U' U V'_S \]
\[= (i) + (ii) + (iii) + (iv) + (v). \]

In view of the Rayleigh quotient, (i) and (ii) are further bounded from below as

\[(i) + (ii) = 2^{-1}||UB^0_S||_F^2 + 2^{-1}||F^0 V'_S||_F^2 \]
\[= 2^{-1}r_n^2 \left(\left(\min_{u \in \mathbb{R}^r \setminus \{0\}} \frac{((I) \circ B^0) u \|v\|_2^2}{u \|v\|_2^2} \right) \|U\|_F^2 \right) + \min_{v \in \mathbb{R}^{N} \setminus \{0\}} \frac{(I) \circ F^0 v \|v\|_2^2}{v \|v\|_2^2} \]
\[\lesssim r_n^2 \left(N_r \|U\|_F^2 + T \|V_S\|_F^2 \right). \]

Meanwhile, by Lemma 7 (d)–(f), (iii) + (iv) + (v) is bounded from above as

\[|(iii) + (iv) + (v)| \lesssim r_n^3 \left(\|U\|_F \|V_S\|_F \ell_n^{1/2} + N^{1/2}_1 \|U\|_F^2 \|V_S\|_F \right) + r_n^2 N^{1/2}_1 \|U\|_F \|V_S\|_F \ell_n^{1/2}. \]

Combining these bounds of (i)–(v) yields

\[(II) \gtrsim (i) + (ii) - |(iii) + (iv) + (v)| \gtrsim r_n^2 \left(N_r \|U\|_F^2 + T \|V_S\|_F^2 \right) \]
\[- r_n^3 \left(\|U\|_F \|V_S\|_F \ell_n^{1/2} + N^{1/2}_1 \|U\|_F^2 \|V_S\|_F \right) - r_n^2 N^{1/2}_1 \|U\|_F \|V_S\|_F \ell_n^{1/2}. \]

We then consider (III) in (A.9). Lemma 8 yields

\[|(III)| = r_n \eta_n ||W_S \circ V_S||_F \leq r_n \eta_n ||W_S||_F ||V_S||_F \lesssim N^{1/2}_1 r_n (\eta_n / b_n^0) ||V_S||_F, \]

where \(b_n^0 = \min_{(i,k) \in S} |b^n_{ik}| \), with high probability.
Putting together the pieces obtained so far with (A.9), we have

\[
\begin{align*}
\inf_{\|U\|_F = C, \|V\|_F = C} Q_n(F^0 + r_n U, B^0_S + r_n V_S) - Q_n(F^0, B^0_S) \\
\geq \inf_{\|U\|_F = C, \|V\|_F = C} \left\{ (II) - (|I| - |(III)|) \right\} \\
\geq \inf_{\|U\|_F = C, \|V\|_F = C} \left\{ \left(r_n^2 (N_r \|U\|_F^2 + T \|V\|_F^2) \right) - r_n^3 (\|U\|_F^2 \|V\|_F^2) + N_1^{1/2} \|V\|_F^2 \right\} \\
= r_n^2 \left(N_r + - T - N_1^{1/2} \ell_1^{1/2} \right) C^2 - r_n^3 N_1^{1/2} C^3 - r_n \left(N_r + - T - N_1^{1/2} \ell_1^{1/2} \right) C. \\
\end{align*}
\]

By condition (8), which is implied by (10), and the fact that \(r_n \geq N_1^{1/2} T^{1/2} / (N_r \lor T) \geq 1 \), we have

\[
\begin{align*}
\inf_{\|U\|_F = C, \|V\|_F = C} Q_n(F^0 + r_n U, B^0_S + r_n V_S) - Q_n(F^0, B^0_S) \\
\geq r_n^2 (N_r \lor T) C^2 - r_n^3 N_1^{1/2} C^3 - r_n (N_r \lor T) C. \\
\end{align*}
\]

Furthermore, in (A.10), the first term dominates the second as the ratio, \(r_n^3 N_1^{1/2} / \{r_n^2 (N_r \lor T)\} \ell_1^{1/2} \), converges to zero by condition (11). Also, the first term dominates the third in (A.10) by the upper bound of conditions (12) as long as \(C > 0 \) is taken to be large enough. In consequence, the lower bound (A.10) tends to positive for such \(C > 0 \) and (A.8) holds.

(Second step) Set \(\hat{F} = \hat{F}^0 \) and \(\hat{B} = \hat{B}^0_S \). If the estimator \((\hat{F}, \hat{B})\) is indeed a minimizer of the unrestricted problem, \(\min_{Q_n(F, B)} \) over \(\mathbb{R}^{T \times r} \times \mathbb{R}^{N \times r} \), the proof completes. Note that \(\text{supp} \hat{B} = S \) by the construction. Taking the same strategy as in Fan et al. (2014), we check the optimality of \((\hat{F}, \hat{B})\). By a simple calculation, the (sub-)gradients of \(Q_n \) with respect to \(F \) and \(B \) are given by

\[
\nabla_F Q_n(F, B) = FB'B - XB, \quad \nabla_B Q_n(F, B) = BF'F - X'F + \eta_n T,
\]

where the \((i, k)\)th element of \(T \in \mathbb{R}^{N \times r} \) is defined as

\[
t_{ik} = \begin{cases}
 w_{ik} \text{sgn}(b_{ik}) & \text{for } b_{ik} \neq 0, \\
 w_{ik}[-1, 1] & \text{for } b_{ik} = 0.
\end{cases}
\]

Then \((\hat{F}, \hat{B})\) is a strict minimizer of (7) if the following conditions hold:

\[
\begin{align*}
\hat{F}B'S - XB = 0_{T \times r}, \\
T\hat{B}_S - (X'\hat{F})_S + \eta_n W_S \circ \text{sgn} \hat{B}_S = 0_{N \times r}, \\
\|W_S \circ \{(T\hat{B}_S - (X'\hat{F})_S)_S\}\|_{\text{max}} < \eta_n,
\end{align*}
\]

where \(\hat{F}'\hat{F} = T \mathbf{1}_r \) has been used, and \(W^- \in \mathbb{R}^{N \times r} \) is the matrix with its \((i, k)\)th elements given by \(1 / w_{ik} \). Since \((\hat{F}, \hat{B}_S)\) is a minimizer of \(Q_n(F, B_S) \), it satisfies the Karush–Kuhn–Tucker (KKT) conditions. Therefore, we only need to check condition (A.13), which is verified by Lemma 9. This completes the proof of Theorem 4.
Supplementary Material for

Estimation of Weak Factor Models

YOSHIMASA UEUMATSU* and TAKASHI YAMAGATA†

*Department of Economics and Management, Tohoku University
†Department of Economics and Related Studies, University of York
†Institute of Social Economic Research, Osaka University

B Proofs of Lemma 1, Theorem 3, and Corollary 2

Proof of Lemma 1. (a) The tth row of E, $e_t \in \mathbb{R}^N$, is specified as $e_t = \sum_{\ell=0}^{L} \Phi_\ell \varepsilon_{t-\ell}$, where $\varepsilon_t \in \mathbb{R}^N$ is composed of i.i.d. subG(σ_ε^2) by Assumption 3. We also define $\tilde{E}_\ell = (\varepsilon_{1-\ell}, \ldots, \varepsilon_{T-\ell})' \in \mathbb{R}^{T\times N}$. Then, we can write $E = \sum_{\ell=0}^{L} \tilde{E}_\ell \Phi_\ell$, so that the spectral norm is bounded as

$$\|E\|_2 \leq \sum_{\ell=0}^{L_n} \|\tilde{E}_\ell\|_2 \|\Phi_\ell\|_2 \leq \max_{\ell \in \{0, \ldots, L_n\}} \|\tilde{E}_\ell\|_2 \sum_{\ell=0}^{\infty} \|\Phi_\ell\|_2.$$

By Assumption 3, the last infinite sum is bounded from above. Because of the union bound and sub-Gaussianity (see Section 4 and Theorem 5.39 of Vershynin 2012), there is a positive constant M such that

$$\mathbb{P}\left(\max_{\ell \in \{0, \ldots, L_n\}} \left\| (N \lor T)^{-1/2} \tilde{E}_\ell \right\|_2 > M \right) \leq L_n \max_{\ell \in \{0, \ldots, L_n\}} \mathbb{P}\left(\left\| (N \lor T)^{-1/2} \tilde{E}_\ell \right\|_2 > M \right) \leq 2(N \lor T)^{\nu} \exp(-c_1|N \lor T|) \leq \exp(-c_2|N \lor T|)$$

for some constants $c_1, c_2 > 0$, where the last inequality holds since ν is a fixed positive constant. Thus, $\left\| (N \lor T)^{-1/2} \tilde{E}_\ell \right\|_2$ is bounded by a constant with probability at least $1 - \exp(-c_2(N \lor T))$.

(b) By the definition, the (t, k)th element of EB^0 is given by $e'_t b^0_k = \sum_{\ell=0}^{L_n} \varepsilon'_{t-\ell} \Phi'_\ell b^0_k$. Let $\tilde{b}_{t,k,i}$ denote the ith element of $\Phi'_\ell b^0_k$. Then, we have

$$\|EB^0\|_{\text{max}} = \max_{t \in \{1, \ldots, T\}, k \in \{1, \ldots, r\}} \left\| \sum_{\ell=0}^{L_n} \sum_{i=1}^{N} \varepsilon_{t-\ell,i} \tilde{b}_{t,k,i} \right\|_\infty \leq \sum_{\ell=0}^{L_n} \max_{t \in \{1, \ldots, T\}, k \in \{1, \ldots, r\}} \left\| \Phi'_\ell b^0_k \right\|_2^{-1} \sum_{i=1}^{N} \varepsilon_{t-\ell,i} \tilde{b}_{t,k,i} \left\| \Phi'_\ell b^0_k \right\|_2 \leq \sum_{t \in \{1, \ldots, T\}, k \in \{1, \ldots, r\}, \ell \in \{0, \ldots, L_n\}} \left\| \Phi'_\ell b^0_k \right\|_2^{-1} \sum_{i=1}^{N} \varepsilon_{t-\ell,i} \tilde{b}_{t,k,i} \max_{k} \sum_{\ell=0}^{L_n} \left\| \Phi_\ell \right\|_2 \left\| b^0_k \right\|_2 \leq N_1^{1/2} \max_{t,k,\ell} \left\| \Phi'_\ell b^0_k \right\|_2^{-1} \sum_{i=1}^{N} \varepsilon_{t-\ell,i} \tilde{b}_{t,k,i} \sum_{\ell=0}^{\infty} \left\| \Phi_\ell \right\|_2.$$
Since \(\{ \varepsilon_{t, i, b_{t, k, i}} \}_{i=1}^{N} \) is a sequence of independent \(\text{subG}(\sigma_2^2) \) for each \(t, k, \ell \), we can further see that \(\| \Phi'_{i, k} b_k \|_2^{-1} \sum_{i=1}^{N} \varepsilon_{t, i, b_{t, k, i}} \sim \text{subG}(\sigma_2^2) \) by Lemma 2(b). Thus, the union bound yields

\[
\mathbb{P} \left(\max_{t, k, \ell} \left| \left\| \Phi'_{i, k} b_k \right\|_2^{-1} \sum_{i=1}^{N} \varepsilon_{t, i, b_{t, k, i}} \right| > x \right)
\leq r T \left(L_n + 1 \right) \max_{t, k, \ell} \mathbb{P} \left(\left| \left\| \Phi'_{i, k} b_k \right\|_2^{-1} \sum_{i=1}^{N} \varepsilon_{t, i, b_{t, k, i}} \right| > x \right)
\leq 2 \nu \left(N \lor T \right)^{\nu + 1} \exp \left(- \frac{x^2}{2 \sigma_2^2} \right).
\]

Setting \(x = \left(2 \sigma_2^2 (2 \nu + 1) \log(N \lor T) \right)^{1/2} \) leads to

\[
\max_{t, k, \ell} \left| \left\| \Phi'_{i, k} b_k \right\|_2^{-1} \sum_{i=1}^{N} \varepsilon_{t, i, b_{t, k, i}} \right| \leq \left(2 \sigma_2^2 (2 \nu + 1) \log(N \lor T) \right)^{1/2},
\]

which holds with probability at least \(1 - O((N \lor T)^{-\nu}) \). This together with the first inequality achieves the result.

(c) Let \(\tilde{Z}_k = (\zeta_{1-k}, \ldots, \zeta_{-T})' \in \mathbb{R}^{T \times r} \). Then, by Assumptions 1 and 3, we can write \(\mathbf{E}' = \sum_{t, m=0}^{L} \Phi_{t, m} \tilde{Z}_m \mathbf{P}_{m} \). By the triangle inequality and property of matrix norms, we observe that

\[
\| \mathbf{E}' \|_{\max} \leq \sum_{t, m=0}^{L} \| \Phi_{t, m} \tilde{Z}_m \mathbf{P}_{m} \|_{\max} \leq r^{1/2} \sum_{t, m=0}^{L} \| \mathbf{P}_{m} \|_{2} \max_{i,j \in \{1, \ldots, N\}, k \in \{1, \ldots, r\}} \| \phi_{t, i, i} \tilde{E}_{t} \|_{2} \| \zeta_{m, k} \|_{\max}
\]

\[
\leq r^{1/2} \sum_{t, m=0}^{L} \| \mathbf{P}_{m} \|_{2} \max_{i,k} \| \phi_{t, i, i} \|_{2}^{1} \| \tilde{E}_{t} \|_{2} \| \zeta_{m, k} \|_{\max} \| \phi_{t, i, i} \|_{2}
\]

\[
\leq r^{1/2} \max_{i,k} \| \phi_{t, i, i} \|_{2} \| \tilde{E}_{t} \|_{2} \| \zeta_{m, k} \|_{\sum_{m=0}^{\infty} \| \mathbf{P}_{m} \|_{2} \sum_{m=0}^{\infty} \| \tilde{E}_{t} \|_{2}},
\]

where \(\phi_{t,i} \) and \(\zeta_{m,k} \) are the \(i \)-th row vector of \(\Phi_{t} \) and \(k \)-th column vector of \(\tilde{Z}_m \), respectively. We can see that for each \(i \) and \(\ell \), the row vector

\[
\phi_{t,i} \tilde{E}_{t} = \left(\sum_{j=1}^{N} \phi_{t,i,j} \varepsilon_{1-t,j}, \ldots, \sum_{j=1}^{N} \phi_{t,i,j} \varepsilon_{T-t,j} \right)
\]

is composed of independent \(\text{subG}(\sigma_2^2) \). Since \(\zeta_{m,k} = (\zeta_{1-m,k}, \ldots, \zeta_{T-m,k})' \) consists of i.i.d. \(\text{subG}(\sigma_2^2) \), Lemma 2(a) entails that

\[
\| \phi_{t,i} \|_{2}^{1} \tilde{E}_{t} \| \zeta_{m,k} \| = \sum_{t=1}^{T} \left(\| \phi_{t,i} \|_{2}^{1} \sum_{j=1}^{N} \phi_{t,i,j} \varepsilon_{t-j} \right) \zeta_{t-m,k}
\]

is the sum of i.i.d. \(\text{subG}(4 \sigma_2^2 \sigma_3) \). Therefore, the union bound and Bernstein’s inequality for
the sum of sub-exponential random variables give

\[
\mathbb{P}
\left(\max_{\ell,m,i,k} \left| T^{-1} \| \phi_{\ell,i} \|_2^{-1} \phi'_{\ell,i} \tilde{E}'_{\ell,m,k} \right| > x \right)
\leq rN(L_n + 1)^2 \max_{\ell,m,i,k} \mathbb{P} \left(\left| T^{-1} \| \phi_{\ell,i} \|_2^{-1} \phi'_{\ell,i} \tilde{E}'_{\ell,m,k} \right| > x \right)
\leq 2r(N \vee T)^{2\nu+1} \exp \left\{ - \frac{T}{2} \left(\frac{x^2}{16e^2\sigma_\xi^2\sigma_\nu^2} \wedge \frac{x}{4e\sigma_\xi\sigma_\nu} \right) \right\}
\]

for all \(x > 0 \). Putting \(x = (32e^2\sigma_\xi^2\sigma_\nu^2(3\nu + 1)T^{-1} \log(N \vee T) \)^{1/2} gives

\[
\max_{\ell,m,i,k} \left| \| \phi_{\ell,i} \|_2^{-1} \phi'_{\ell,i} \tilde{E}'_{\ell,m,k} \right| \leq (32e^2\sigma_\xi^2\sigma_\nu^2(3\nu + 1)T \log(N \vee T))^{1/2},
\]

which holds with probability at least \(1 - O((N \vee T)^{-\nu}) \). Combining this with the first bound yields the result.

(d) To obtain the result, we apply the Hanson–Wright inequality in Rudelson and Vershynin (2013). Let \(\xi = (\xi_1, \ldots, \xi_m) \in \mathbb{R}^m \) denote a random vector of \(m \) independent copies of \(\varepsilon \sim \text{subG}(\sigma_\nu^2) \). Then the inequality states that for any (nonrandom) matrix \(\Phi \in \mathbb{R}^{m \times m} \),

\[
\mathbb{P} \left(\max_{i,j} \left| \Phi_{i,j} \right| > u \right) \leq 2 \exp \left\{ -u^2 K^2 \| \Phi \|_F^2 \right\},
\]

where \(u \) and \(K \) are positive constants such that \(\sup_{k \geq 1} k^{-1/2} (\mathbb{E} | \varepsilon_k |^k)^{1/k} \leq K \). In our setting, we can take \(K = 3\sigma_\nu \) (e.g., Rigollet and Hütter (2017), Lemma 1.4).

Let \(\phi'_{\ell,i} \) denote the \(i \)th row vector of \(\Phi_{\ell,i} \). Then we have

\[
\max_{i} \left| T^{-1} \sum_{t=1}^{T} \left(e_{i,t}^2 - \mathbb{E} e_{i,t}^2 \right) \right| = \max_{i} \left| T^{-1} \sum_{t=1}^{T} \sum_{\ell=0}^{L_n} \left(e_{i,t-\ell} \phi_{\ell,i} \phi'_{\ell,i} \varepsilon_{t-\ell} - \mathbb{E} e_{i,t-\ell} \phi_{\ell,i} \phi'_{\ell,i} \varepsilon_{t-\ell} \right) \right|
\]

where \(i \in \{0, \ldots, L\} \).

The first term (sum of the diagonal elements) is bounded as

\[
\max_{i} \left| T^{-1} \sum_{t=1}^{T} \sum_{\ell=0}^{L_n} \left(e_{i,t-\ell} \phi_{\ell,i} \phi'_{\ell,i} \varepsilon_{t-\ell} - \mathbb{E} e_{i,t-\ell} \phi_{\ell,i} \phi'_{\ell,i} \varepsilon_{t-\ell} \right) \right| \leq T^{-1} \sum_{t=1}^{L_n} \max_{i} \left| e_{i,t} \mathcal{A}_{\ell,i} \mathcal{E}_\ell - \mathbb{E} e_{i,t} \mathcal{A}_{\ell,i} \mathcal{E}_\ell \right|,
\]

where \(\mathcal{E}_\ell = (e_{1-\ell}, \ldots, e_{T-\ell})' \in \mathbb{R}^{NT} \) and \(\mathcal{A}_{\ell,i} = \text{diag}(\phi_{\ell,i}, \phi'_{\ell,i}, \ldots, \phi_{\ell,i}, \phi'_{\ell,i}) \in \mathbb{R}^{NT \times NT} \). For any \(\ell \in \{0, \ldots, L\} \) and \(u > 0 \), the Hanson–Wright inequality in (A.14) with the union bound gives

\[
\mathbb{P} \left(\max_{i} \left| e_{i,t} \mathcal{A}_{\ell,i} \mathcal{E}_\ell - \mathbb{E} e_{i,t} \mathcal{A}_{\ell,i} \mathcal{E}_\ell \right| > u \right) \leq N \max_{i} \mathbb{P} \left(\left| e_{i,t} \mathcal{A}_{\ell,i} \mathcal{E}_\ell - \mathbb{E} e_{i,t} \mathcal{A}_{\ell,i} \mathcal{E}_\ell \right| > u \right) \leq 2N \exp \left(-c \frac{u^2}{K^4 \max_{i} \| \mathcal{A}_{\ell,i} \|_F^2} \right)
\]

The remainder terms are similarly treated as in (A.14).
Setting $u = ((\nu + 1)/c)^{1/2}K^2 \max_i \|A_{\ell i}\|_F \log^{1/2}(N \lor T)$ yields

$$T^{-1} \sum_{\ell=0}^{L_n} \max_i |\hat{\epsilon}_i^\ell A_{\ell i} \hat{\epsilon}_\ell - E\hat{\epsilon}_i^\ell A_{\ell i} \hat{\epsilon}_\ell| \leq K^2 T^{-1} \sum_{\ell=0}^{L_n} \max_i \|A_{\ell i}\|_F \log^{1/2}(N \lor T)$$

$$\lesssim T^{-1/2} \log^{1/2}(N \lor T) \sum_{\ell=0}^{L_n} \max_i \|\phi_{\ell,i} \phi_{\ell,i}'\|_F = T^{-1/2} \log^{1/2}(N \lor T) \sum_{\ell=0}^{\infty} \max_i \|\phi_{\ell,i} \phi_{\ell,i}'\|_2$$

with probability at least

$$1 - 2N \exp\left(-(\nu + 1) \log(N \lor T)\right) = 1 - O((N \lor T)^{-\nu}).$$

The second term (sum of the off-diagonal elements) is bounded in the same way, and we omit it. For detail, see the proof of Lemma 7 in Fan et al. (2019). This completes all the proofs. \(\square\)

Proof of Theorem 3. Following the proof of Theorem 2, we derive the bound. From (A.4) with putting $\eta_n = 0$, we have

$$(1/2)\|\Delta_{PC}\|_F^2 \leq T^{1/2} \|EB\|_{\max} \|\Delta_{PC}^f\|_F + \|E \Delta_{PC}^b\|_F^2 \|\Delta_{PC}^f\|_F + N^{1/2} \|\Delta_{PC}^b\|_F \|F^0 E\|_{\max}. \quad (A.15)$$

Lemmas 1 and 4 states that the event

$$\mathcal{E} = \left\{ \|EB\|_{\max} \lesssim N^{1/2} \log^{1/2}(N \lor T) \right\} \cap \left\{ \|E \Delta_{PC}^b\|_F \lesssim T^{1/2} \log^{1/2}(N \lor T) \right\}$$

occurs with probability at least $1 - O((N \lor T)^{-\nu})$ for any fixed constant $\nu > 0$. On event \mathcal{E} together with Lemma 5, (A.15) becomes

$$\kappa_n \left(\|\Delta_{PC}^f\|_F^2 + \|\Delta_{PC}^b\|_F^2 \right) \lesssim \alpha_n \|\Delta_{PC}^f\|_F + \mu_n \left(\|\Delta_{PC}^b\|_F^2 + \|\Delta_{PC}^b\|_F^2 \right) + \beta_n \|\Delta_{PC}^b\|_F,$$

where

$$\kappa_n = \frac{N_r (N_r \lor T)}{N_1}, \quad \mu_n = (N \lor T)^{1/2} \log^{1/2}(N \lor T)$$

$$\alpha_n = (N_1 T)^{1/2} \log^{1/2}(N \lor T), \quad \beta_n = (NT)^{1/2} \log^{1/2}(N \lor T).$$

The desired result is obtained by rearranging this inequality as in the proof of Theorem 2. In fact, we have

$$\|\Delta_{PC}^f\|_F + \|\Delta_{PC}^b\|_F \lesssim \frac{3}{2} \left(\frac{\alpha_n/\kappa_n + \beta_n/\kappa_n}{1 - \mu_n/\kappa_n} \right).$$

Finally, we observe that

$$\alpha_n + \beta_n = (N_1 T)^{1/2} \log^{1/2}(N \lor T) + (NT)^{1/2} \log^{1/2}(N \lor T) \lesssim (NT)^{1/2} \log^{1/2}(N \lor T).$$

This completes the proof of Theorem 3. \(\square\)
Proof of Corollary 2. Recall that \(\hat{a}_j = \log \hat{N}_j / \log N \) with \(\hat{N}_j = |\text{supp}(\hat{b}_{j\text{ada}})| \) and \(a_j = \log N_j / \log N \) by the definition. Because \(\{\text{supp}(\hat{b}_{\text{ada}}) = \text{supp}(B^0)\} \subset \{\hat{N}_j = N_j \text{ for all } j = 1, \ldots, r\} \), we have

\[
\mathbb{P}(\hat{a}_j = a_j \text{ for all } j = 1, \ldots, r) = \mathbb{P}(\hat{N}_j = N_j \text{ for all } j = 1, \ldots, r) \geq \mathbb{P}(\text{supp}(\hat{B}_{\text{ada}}) = \text{supp}(B^0)).
\]

The last probability tends to one by the factor selection consistency. This completes the proof of Corollary 2.

C Related Lemmas and their Proofs

Lemma 2. Assume \(X_i \sim \text{ind. sub}G(\alpha_i^2) \) and \(Y_i \sim \text{ind. sub}E(\gamma_i) \). Then, for any deterministic sequences \((\phi_i)\) and \((\psi_i)\), the following statements are true:

(a) \(X_iX_j \sim \text{sub}E(4\alpha_1\alpha_j) \) for \(i \neq j \).
(b) \(\sum_{i=1}^n \phi_iX_i \sim \text{sub}G(\sum_{i=1}^n \phi_i^2\alpha_i^2) \).
(c) \(\sum_{i=1}^n \psi_iY_i \sim \text{sub}E(\sum_{i=1}^n \psi_i^2\gamma_i^2)^{1/2}, \max_i |\psi_i| |\gamma_i| \).

Proof. This proof was achieved in Uematsu and Tanaka (2019).

Lemma 3. Suppose the same conditions as Theorem 1. Then, for any \(H \in \mathbb{R}^{T \times k} \) (\(k \leq r \)) such that \(H'HH = TI_k \), the following inequalities simultaneously hold with probability at least \(1 - O((N \vee T)^{-\nu}) \):

(a) \(T^{-1} \left| \text{tr}(H'U^0D^0V^0'E'H) \right| \lesssim TN_1^{1/2} \log^{1/2}(N \vee T) \),
(b) \(T^{-1} \text{tr}(H'EPE'H) \lesssim N \vee T \),
(c) \(\lambda_1(\text{EQE}') \lesssim T \vee N \),
(d) \(T^{-1} \text{tr}(H'EQE'H) \lesssim T \vee N \).

Proof. Recall the notation based on the SVD of \(C^0 \): \(U^0 = F^0 \) and \(V^0D^0 = B^0 \). We derive the results on the event that Lemma 1 hold, which occurs with probability at least \(1 - O((N \vee T)^{-\nu}) \). Prove (a). Low rankness of each matrix and Lemma 1(b) give

\[
\left| \text{tr}(H'U^0D^0V^0'E'H) \right| \leq \|HH'\|_F \|U^0\|_F \|D^0V^0'E'\|_F \lesssim \|HH'\|_F \|U^0\|_F \|D^0V^0'E'\|_2 \lesssim TT^{1/2}T^{1/2} \|D^0V^0'E'\|_{\text{max}} \lesssim T^2N_1^{1/2} \log^{1/2}(N \vee T).
\]

Prove (b). Since the rank of \(P \) is at most \(r \), Lemma 1(a) gives

\[
\text{tr}(H'EQE'H) \lesssim \|HH'\|_F \|EPE'\|_2 \leq \|E\|_2^2 \|P\|_2 \lesssim T(N \vee T).
\]

Prove (c). By the argument of the proof of Lemma A.8 in Ahn and Horenstein (2013) and Lemma 1(b), the bound

\[
\lambda_1(\text{EQE}') \leq \lambda_1(\text{EQE}' + EPE') = \lambda_1(EE') = \|E\|_2^2 \lesssim T \vee N.
\]

Prove (d). From the triangle inequality and result (c), we have

\[
\text{tr}(H'EQE'H) \lesssim \|HH'\|_F \|EQE'\|_2 \leq \|HH'\|_F(\|EE'\|_2 + \|EPE'\|_2) \lesssim T(T \vee N).
\]

This completes all the proofs of (a)–(d). □
Lemma 4. Suppose the same conditions as Theorem 2. Then we have
\[\| E\Delta^b \|_2 \lesssim \| \Delta^b \|_F (\tilde{N} \lor T)^{1/2} \log^{1/2} (N \lor T) \]
with probability at least \(1 - O((N \lor T)^{-\nu}) \).

Proof. In the upper bound of (A.3), we consider a tighter bound of the second trace. The second trace in the upper bound of (A.3) is bounded as
\[\| \text{tr} E\Delta^b \Delta^f \| \leq \| E\Delta^b \|_2 \| \Delta^f \|_\ast. \]
Because \(\tilde{B} \) and \(B^0 \) lie in the set \(B(\tilde{N}) = \{ B \in \mathbb{R}^{N \times r} : \| B \|_0 \lesssim \tilde{N}/2 \} \) for \(\tilde{N} \in [N_1, N] \) by Assumption 4, we have
\[\| \Delta^b \|_0 \leq \| \tilde{B} \|_0 + \| B^0 \|_0 \lesssim \tilde{N}/2 + \tilde{N}/2 \leq \tilde{N}. \]
Define a set of sparse vectors \(\mathcal{V}(\mathcal{A}) = \{ v \in \mathbb{R}^N \setminus \{0\} : \| v \|_0 = |\mathcal{A}| \} \) with \(\mathcal{A} \subset \{1, \ldots, N\} \). Then, by the definition of the spectral norm, we have
\[\| E\Delta^b \|_2 = \max_{u \in \mathbb{R} \setminus \{0\}} \frac{u' \Delta^b' E\Delta^b u}{u'u} \leq \max_{u \in \mathbb{R} \setminus \{0\}} \frac{u' \Delta^b' E\Delta^b u}{u'u} \]
\[\leq \max_{|\mathcal{A}| \leq \tilde{N}} \max_{v \in \mathcal{V}(\mathcal{A})} \frac{v' E' E v}{v'v} \| \Delta^b \|_2^2 = \max_{|\mathcal{A}| \leq \tilde{N}} \max_{v \in \mathcal{V}(\mathcal{A})} \| E_A \|_2 \| \Delta^b \|_2^2 \]
\[\leq \max_{|\mathcal{A}| \leq \tilde{N}} \| E_A \|_2 \| \Delta^b \|_2^2 \leq \max_{|\mathcal{A}| \leq \tilde{N}} \max_{\ell \in \{1, \ldots, L_n\}} \| E_{\mathcal{A},\ell} \|_2 \left(\sum_{\ell=0}^{L_n} \| \Phi_\ell \|_2 \right)^2 \| \Delta^b \|_2^2 \]
where \(v_A \in \mathbb{R}^{|\mathcal{A}|} \) consists of elements \(\{ v_i : i \in \mathcal{A} \} \) and \(E_A \in \mathbb{R}^{T \times |\mathcal{A}|} \) is composed of the corresponding columns. Note that the second inequality holds since \(\| \Delta^b u \|_0 \lesssim \tilde{N} \), and in the last inequality \(E_{\mathcal{A},\ell} \) is defined in the proof of Lemma 1. We also observe that \(\sum_{\ell=0}^{\infty} \| \Phi_\ell \|_2 < \infty \) by Assumption 3. By Theorem 5.39 of Vershynin (2012) with the union bound, for some positive constants \(c_1 \) and \(c_2 \) such that \(c_1 < c_2 \) and \(C \), we have
\[\mathbb{P} \left(\max_{|\mathcal{A}| \leq \tilde{N}} \max_{\ell \in \{0, \ldots, L_n\}} \| E_{\mathcal{A},\ell} \|_2 > C(\tilde{N} \lor T)^{1/2} \log^{1/2} (N \lor T) \right) \]
\[\leq \left(\frac{N}{c_1 \tilde{N}} \right) (L_n + 1) \max_{|\mathcal{A}| \leq \tilde{N}} \max_{\ell \in \{0, \ldots, L_n\}} \mathbb{P} \left(\| \tilde{E}_{\mathcal{A},\ell} \|_2 > C(\tilde{N} \lor T)^{1/2} \log^{1/2} (N \lor T) \right) \]
\[\lesssim N^{c_1 \tilde{N}} (N \lor T)^{\nu} \exp \left\{ -c_2(\tilde{N} \lor T) \log(N \lor T) \right\} \]
\[= O \left((N \lor T)^{-\tilde{N} \lor T} \right) = O \left((N \lor T)^{-\nu} \right). \]
Thus, we have with probability at least \(1 - O((N \lor T)^{-\nu}) \),
\[\| E\Delta^b \|_2 \lesssim \| \Delta^b \|_2 (\tilde{N} \lor T)^{1/2} \log^{1/2} (N \lor T) \leq \| \Delta^b \|_F (\tilde{N} \lor T)^{1/2} \log^{1/2} (N \lor T), \]
giving the desired bound. \(\square \)

Lemma 5. Suppose the same conditions as Theorem 2. Then we have
\[\| \Delta \|_F \gtrsim \kappa_n \left(\| \tilde{F} - F^0 \|_F^2 + \| \tilde{B} - B^0 \|_F^2 \right), \]
where \(\kappa_n = N_r(N_r \land T)/N_1. \)
Proof. Recall the notation based on the SVD of C^0 and \hat{C}: $U^0 = F^0$, $V^0D^0 = B^0$, $\hat{U} = \hat{F}$, and $\hat{V}D = \hat{B}$. To establish the statement, we derive the following two inequalities:

(a) $\|\Delta\|^2_F \geq \frac{N^2}{N^1} \|\hat{U} - U^0\|^2_F$,

(b) $\|\Delta\|^2_F \geq \frac{T N^r}{N^1} \|\hat{V}' - D^0V^0'\|^2_F$.

Using them, we can immediately obtain the result.

First we prove (a). We define matrices: $\hat{U}_* = T^{-1/2}\hat{U}$, $\hat{D}_* = \hat{D}\hat{N}^{1/2}$, $\hat{V}_* = \hat{V}\hat{N}^{-1/2}$, $U_0^* = T^{-1/2}U_0$, $D_0^* = D_0^0\hat{N}^{1/2}$, and $V_0^* = V_0^0N^{-1/2}$, where \hat{N} is any p.d. diagonal matrix. Then, we can see that

$$T^{-1/2}\Delta = \hat{U}_*\hat{D}_*\hat{V}'_* - U_0^*D_0^0V_0^0' =: \Delta_*.$$

For this expression, we can apply the proof of Lemma 3 in Uematsu et al. (2019). That is, under Assumptions 1 and 2, we have

$$\|\hat{U}_* - U_0^0\|^2_F = \frac{r}{\delta} \sum_{k=1}^{r} \|\hat{u}_{sk} - u_{sk}^0\|^2 \lesssim d_{s1}^2 \|\Delta_*\|^2_F \sum_{k=1}^{r} \frac{1}{\delta d_{sk}} \leq \|\Delta_*\|^2_F \sum_{k=1}^{r} \frac{1}{\delta d_{sk}^2 N_k^1} \lesssim \|\Delta_*\|^2_F \sum_{k=1}^{r} \frac{N_k^1}{N_k^{1/2}}.$$

Rewriting this inequality with the original scaling gives result (a).

Next we prove (b). We begin with rewriting Δ_* as

$$\hat{U}_*\hat{D}_*\hat{V}'_* - D_0^0V_0^0' = \Delta_* - (\hat{U}_* - U_0^0)D_0^0V_0^0'.$$

The triangle inequality and unitary property of the Frobenius norm entail that

$$\|\hat{D}_*\hat{V}'_* - D_0^0V_0^0'\|_F \leq \|\Delta_*\|_F + \|\hat{U}_* - U_0^0\|D_0^0V_0^0'.$$

We can bound the second term of the upper bound as in the proof of (a). That is, we have

$$\|\hat{U}_* - U_0^0\|D_0^0\|V_0^0'\|_F \leq \|\Delta_*\|_F (cd_{s1}^2 / \delta) \sum_{k=1}^{r} d_{sk}^2 \leq \|\Delta_*\|_F \sum_{k=1}^{r} (d_kN_k^{1/2})^{-2} \lesssim \|\Delta_*\|_F \sum_{k=1}^{r} \frac{N_k^1}{N_k} \lesssim \|\Delta_*\|_F \sum_{k=1}^{r} \frac{N_k^1}{N_k} = T^{-1} \|\Delta\|_F^2 \left(1 + \frac{N_k^1}{N_k} \right).$$

Combining these inequalities gives

$$\|\hat{D}_*\hat{V}'_* - D_0^0V_0^0'\|_F \leq \|\Delta_*\|_F^2 \left(1 + \frac{N_k^1}{N_k} \right).$$

Noting that the left-hand side is equal to $\|\hat{D}\hat{V}' - D^0V^0'\|_F$, we obtain

$$\|\Delta\|_F^2 \geq T \left(1 + \frac{N_k^1}{N_k^1} \right)^{-1} \|\hat{D}\hat{V}' - D^0V^0'\|_F^2 \geq \frac{T N_k^r}{N_k^1} \|\hat{D}\hat{V}' - D^0V^0'\|_F^2 \geq \frac{T N_r^r}{N_k^1} \|\hat{D}\hat{V}' - D^0V^0'\|_F^2.$$

This completes the proof. \square
Lemma 6. Suppose that Assumptions 1–4 with $\tilde{N} = N$ and conditions (9) and (10) hold. Then we have
\[
\|\tilde{B}_{PC} - B^0\|_{\max} \lesssim T^{-1/2} \log^{1/2}(N \lor T)
\]
with probability at least $1 - O((N \lor T)^{-\nu})$.

Proof. Let $\hat{\Delta} = \hat{F}_{PC} - F^0$. Define
\[
\mathcal{F} = \{ \Delta = (\delta_{tk}) \in \mathbb{R}^{T \times r} : \| \Delta \|_F \leq C r_{nPC} \} \quad \text{with} \quad r_{nPC} = \frac{N_1(NT)^1/2 \log^{1/2}(N \lor T)}{N_r(N_r \lor T)}
\]
where C is some positive constant introduced in the proof of Theorem 4. By the definition of the PC estimator under PC1 restriction, we have
\[
\tilde{B}_{PC} = T^{-1}X\hat{F}_{PC} = T^{-1}(B^0F^{0'} + E')\hat{F}_{PC}
\]
\[
= T^{-1}(B^0F^{0'} + E')F^0 + T^{-1}(B^0F^{0'} + E')\Delta
\]
\[
= B^0 + T^{-1}E'F^0 + T^{-1}B^0F^{0'}\Delta + T^{-1}E'\Delta.
\]
Then the triangle inequality implies that
\[
\|\tilde{B}_{PC} - B^0\|_{\max} \leq T^{-1}\|E'F^0\|_{\max} + T^{-1}\|B^0F^{0'}\|_{\max} + T^{-1}\|E'\|_{\max}. \tag{A.16}
\]
From Lemma 1(c), the first term of (A.16) is bounded by $T^{-1/2} \log^{1/2}(N \lor T)$ (up to a positive constant factor) with probability at least $1 - O((N \lor T)^{-\nu})$. We then consider the remaining two terms. For any $\Delta \in \mathbb{R}^{T \times r}$, we have
\[
\|B^0F^{0'}\|_{\max} \leq r \|B^0\|_{\max} \|F^{0'}\|_{\max} \lesssim \max_k \sum_\ell \left\| \Psi_{\ell, k} \right\| \| \Delta \|_F \log^{1/2}(N \lor T)
\]
By Lemma 2 with Assumption 1, we have $z_{\ell, jk} := \sum_\ell \gamma_{\ell - \ell, jk} \sim \text{subG}(\sigma_j^2 \| \delta_k \|_2^2)$ for each fixed δ_k, j, and ℓ. By the independence of $z_{\ell, jk}$ across j and Lemma 2 again, we have $\sum_j \psi_{\ell, i, j} z_{\ell, jk} \sim \text{subG}(\sigma_i^2 \| \delta_k \|_2^2) \| \Psi_{\ell, i, k} \|_2^2$ for each i, k, and ℓ. Therefore, for any fixed Δ and ℓ, the subG tail inequality with the union bound entails that
\[
\max_k \left\| \Psi_{\ell, k} \right\| \lesssim \max_i \| \Psi_{\ell, i} \|_2 \| \Delta \|_F \log^{1/2}(N \lor T)
\]
with probability at least $1 - O((N \lor T)^{-\nu})$. Because $\max_i \| \Psi_{\ell, i} \|_2 \leq \| \Psi_{\ell} \|_2$ by the definition of the spectral norm, we have
\[
\sup_{\Delta \in \mathcal{F}} \| F^{0'} \Delta \|_{\max} \leq C \sum_\ell \| \Psi_{\ell} \|_2 r_{nPC} \log^{1/2}(N \lor T) \lesssim r_{nPC} \log^{1/2}(N \lor T)
\]
with probability at least $1 - O((N \lor T)^{-\nu})$. Moreover, by the same argument as above with Assumption 3, we have
\[
\sup_{\Delta \in \mathcal{F}} \| E' \Delta \|_{\max} \leq r_{nPC} \log^{1/2}(N \lor T) = \frac{N_1N_1^{1/2}T \log^{1/2}(N \lor T)}{N_r(N_r \lor T)} \cdot T^{-1/2} \log^{1/2}(N \lor T)
\]
with probability at least $1 - O((N \lor T)^{-\nu})$. Consequently, by Theorem 3 with condition (10), the bound in (A.16) becomes

\[
\|\hat{B}_{PC} - B^0\|_{\text{max}} \lesssim T^{-1/2} \log^{1/2}(N \lor T) + \frac{N_1 N^{1/2} \log^{1/2}(N \lor T)}{N_r (N_r \lor T)} \cdot T^{-1/2} \log^{1/2}(N \lor T) = T^{-1/2} \log^{1/2}(N \lor T) + o(1) T^{-1/2} \log^{1/2}(N \lor T)
\]

with probability at least $1 - O((N \lor T)^{-\nu})$. This completes the proof of Lemma 6.

Lemma 7. Suppose the same conditions as Theorem 4. Then, for any deterministic matrices $U = (u_{tk}) \in \mathbb{R}^{T \times r}$ and $V = (v_{tk}) \in \mathbb{R}^{N \times r}$, the following inequalities simultaneously hold with probability at least $1 - O((N \lor T)^{-\nu})$:

\[
\begin{align*}
(a) \ & \quad |\text{tr} \ E B^0 U| \lesssim N_1^{1/2} \|U\|_F \log^{1/2}(N \lor T), \\
(b) \ & \quad |\text{tr} \ E' F^0 V_S| \lesssim T^{1/2} \|V_S\|_F \log^{1/2}(N \lor T), \\
(c) \ & \quad |\text{tr} \ V_S^t E' U| \lesssim \|U\|_F \|V_S^t f\|_F \log^{1/2}(N \lor T), \\
(d) \ & \quad |\text{tr} \ V_S^t U' F^0 V_S'| \lesssim \|U\|_F \|V_S^t f\|_F \log^{1/2}(N \lor T), \\
(e) \ & \quad |\text{tr} \ B^0 U' U V_S'| \lesssim N_1^{1/2} \|U\|_F^2 \|V_S^t f\|, \\
(f) \ & \quad |\text{tr} \ B^0 U' F^0 V_S'| \lesssim N_1^{1/2} \|U\|_F \|V_S^t f\| \log^{1/2}(N \lor T).
\end{align*}
\]

Proof. Recall that $V_S \in \mathbb{R}^{N \times r}$ is defined as the matrix whose (i, k)th element is $v_{tk}1\{i, k \in S\}$, where $S = \text{supp}(B^0)$; see the proof of Theorem 4.

(a) First note that the (t, k)th element of $E B^0$ is given by $e_t^0 b_k^0$. We observe that

\[
|\text{tr} \ E B^0 U'| = |\text{vec}(E B^0)' u| \leq r \max_k \left| \sum_{t=1}^T e_t^0 b_k^0 u_{tk} \right|
\]

where we have written as $u = \text{vec}(U)$. From Assumption 3, recall that $e_t = \sum_{\ell=0}^L \Phi_{t, \ell} \varepsilon_{t, \ell}$, where $\varepsilon_t = (\varepsilon_{t1}, \ldots, \varepsilon_{tN})'$ with $\{\varepsilon_{ti}\}_{i,t} \sim \text{i.i.d. subG}(\sigma_x^2)$. Let $\hat{b}_{tk,i}$ denote the ith element of $\Phi_{t, k}^0 b_k^0$ as in the proof of Lemma 1(b). Then, we have

\[
\max_k \left| \sum_{t=1}^T e_t^0 b_k^0 u_{tk} \right| = \max_k \left| \sum_{t=1}^T \sum_{\ell=0}^L \sum_{i=1}^N \varepsilon_{t, \ell, i} \hat{b}_{tk,i} u_{tk} \right|
\]

\[
\leq \sum_{\ell=0}^L \max_k \left| \sum_{t=1}^T \sum_{i=1}^N \varepsilon_{t, \ell, i} \hat{b}_{tk,i} u_{tk} \right| \leq \sum_{\ell=0}^L \max_k \|\Phi_{\ell, k}^t b_k^0\|_2 \left(\sum_{t=1}^T \sum_{i=1}^N \varepsilon_{t, \ell, i} \hat{b}_{tk,i} u_{tk} \right) \|\Phi_{\ell, k}^t b_k^0\|_2 \leq \max_{k, \ell} \|\Phi_{\ell, k}^t b_k^0\|_2 \left(\sum_{t=1}^T \sum_{i=1}^N \varepsilon_{t, \ell, i} \hat{b}_{tk,i} u_{tk} \right) \|\Phi_{\ell, k}^t b_k^0\|_2 \leq \max_{k, \ell} \|\Phi_{\ell, k}^t b_k^0\|_2 \left(\sum_{t=1}^T \sum_{i=1}^N \varepsilon_{t, \ell, i} \hat{b}_{tk,i} u_{tk} \right) \|. \]

Since $\{\varepsilon_{t, \ell, i}, \hat{b}_{tk,i}\}_{i,t}$ is a sequence of independent subG($\sigma_x^2 \hat{b}_{tk,i}^2$) for each t, k, ℓ, we can see that

\[
\{\|\Phi_{\ell, k}^t b_k^0\|_2^{-1} \sum_{i=1}^N \varepsilon_{t, \ell, i} \hat{b}_{tk,i}\}_{t} \sim \text{indep. subG}(\sigma_x^2) \text{ by Lemma 2. Moreover, Lemma 2 gives}
\]

\[
Z_{kl} := \sum_{t=1}^T u_{tk} \|\Phi_{l, k}^t b_k^0\|_2^{-1} \sum_{i=1}^N \varepsilon_{t, \ell, i} \hat{b}_{tk,i} \sim \text{subG}(\sigma_x^2 \|u_k^1\|_2^2).
\]
Therefore, the subG tail inequality and the union bound entail
\[
\Pr \left(\max_{k,t} |Z_{k,t}| > x \right) \leq r(L + 1) \max_{k,t} \Pr \left(|Z_{k,t}| > x \right)
\]
\[
\leq 2r(N \vee T)^\nu \exp \left(-\frac{x^2}{2\sigma_z^2 \max_k \|u_k\|_F^2} \right) \leq 2r(N \vee T)^\nu \exp \left(-\frac{x^2}{2\sigma_z^2 \|U\|_F^2} \right).
\]
Setting \(x^2 = 4\sigma_z^2 \|U\|_F^2 \nu \log(N \vee T)\) leads to getting the bound
\[
\max_{k,t} |Z_{k,t}| \leq 2\sigma_z \|U\|_F \nu^{1/2} \log^{1/2}(N \vee T)
\]
with probability at least \(1 - O((N \vee T)^{-\nu})\). Thus the desired upper bound
\[
|\text{tr} \mathbf{E} \mathbf{B}^0 \mathbf{U}'| \leq N^{1/2} \log^{1/2}(N \vee T) \|\mathbf{U}\|_F
\]
holds with probability at least \(1 - O((N \vee T)^{-\nu})\).

(b) As in the proof of Lemma 1, we write \(\tilde{E}_t = (\varepsilon_{1-t}, \ldots, \varepsilon_{T-t})' \in \mathbb{R}^{T \times N}\) and \(\tilde{Z}_t = (\zeta_{1-t}, \ldots, \zeta_{T-t})' \in \mathbb{R}^{T \times r}\). Then we can write \(\mathbf{E}' \mathbf{F} = \sum_{t=0}^{L_n} \Phi_{\ell,m} \tilde{E}_t \tilde{Z}_m \psi_m \varepsilon_{ik}\) under Assumptions 1 and 3. By the same way as in (a), we have
\[
|\text{tr} \mathbf{E}' \mathbf{F}^0 \mathbf{V}'_S| = \sum_{(i,k) \in S} \sum_{\ell,m=0}^{L_n} \phi_{\ell,i} \tilde{E}_{\ell,m} \psi_m \varepsilon_{ik} v_{ik} \leq \sum_{\ell,m=0}^{L_n} \sum_{(i,k) \in S} \phi_{\ell,i} \tilde{E}_{\ell,m} \psi_m \varepsilon_{ik} v_{ik} = \sum_{\ell,m=0}^{L_n} \text{tr} \Theta_{\ell,m} \tilde{E}_{\ell,m} \tilde{Z}_m \psi_m \varepsilon_{ik} v_{ik}
\]
where \(\Theta_{\ell,m} := \sum_{(i,k) \in S} v_{ik} \phi_{\ell,i} \psi_m \varepsilon_{ik}\), with its \((h,j)\)th component given by \(\theta_{\ell,m,h,j}\) for \(h = 1, \ldots, r\) and \(j = 1, \ldots, N\). Recall that \(\tilde{E}_t' = (\varepsilon_{1-t}, \ldots, \varepsilon_{T-t})\) and \(\tilde{Z}_m' = (\zeta_{1-m}, \ldots, \zeta_{T-m})\) from the proof of Lemma 1. Then we have
\[
\sum_{\ell,m=0}^{L_n} |\text{tr} \Theta_{\ell,m} \tilde{E}_\ell \tilde{Z}_m| = \sum_{\ell,m=0}^{L_n} \sum_{t=1}^{T} \left(\sum_{j=1}^{N} \theta_{\ell,m,hj} \varepsilon_{t-\ell,j} \right) \zeta_{t-m,h} \leq r \max_{h} \sum_{\ell,m=0}^{L_n} \sum_{t=1}^{T} \left(\sum_{j=1}^{N} \theta_{\ell,m,hj} \varepsilon_{t-\ell,j} \right) \zeta_{t-m,h} \|\theta_{\ell,m,h}\|_2
\]
\[
\leq \max_{h} \sum_{\ell,m=0}^{L_n} \sum_{t=1}^{T} \left(\sum_{j=1}^{N} \theta_{\ell,m,hj} \varepsilon_{t-\ell,j} \right) \zeta_{t-m,h} \|\theta_{\ell,m,h}\|_2 \leq \max_{h} \sum_{\ell,m=0}^{L_n} \sum_{t=1}^{T} \left(\sum_{j=1}^{N} \theta_{\ell,m,hj} \varepsilon_{t-\ell,j} \right) \zeta_{t-m,h} \|\theta_{\ell,m,h}\|_2 ^2,
\]
where \(\theta'_{\ell,m,h}\) is the \(h\)th row vector of \(\Theta_{\ell,m}\). By the same reason as in the proof of Lemma 1(c), Lemma 2 entails that the inside of the absolute value is the sum of i.i.d. sub\(E(4\sigma_z \sigma_z\varepsilon)\) random variables. Thus, the same bound in that proof can be used. Thus, applying the union bound, we obtain with probability at least \(1 - O((N \vee T)^{-\nu})\),
\[
\max_{h} \sum_{t=1}^{T} \left(\sum_{j=1}^{N} \theta_{\ell,m,hj} \varepsilon_{t-\ell,j} \right) \zeta_{t-m,h} \leq (96 \sigma_z^2 \sigma_z^2 \nu T \log(N \vee T))^{1/2}.
\]
Finally, we evaluate \(\max_h \sum_{\ell,m=0}^{L_n} \| \theta_{\ell,m,h} \|_2 \). By the construction, we have

\[
\max_h \sum_{\ell,m=0}^{L_n} \| \theta_{\ell,m,h} \|_2 = \max_h \sum_{\ell,m=0}^{L_n} \left(\sum_{j=1}^{N} \left(\sum_{(r,k) \in S} v_{ikj, \theta_{r,k} \phi_{\ell,j}} \right) \right)^{1/2} \\
\leq \max_h \sum_{\ell,m=0}^{L_n} \left(\sum_{k=1}^{r} \psi_{m,h,k}^2 \sum_{i,j=1}^{N} \phi_{\ell,j}^2 \right)^{1/2} \| v_s \|_2 \leq \sum_{m=0}^{\infty} \| \Psi_m \|_2 \sum_{\ell=0}^{\infty} \| \Phi_\ell \|_F \| V_s \|_F.
\]

Thus the desired upper bound holds with probability at least \(1 - O((N \vee T)^{-\nu}) \).

(c) We observe that

\[
| \text{tr} \ V'_s E' U | = \left| \sum_{k=1}^{r} \sum_{t=1}^{T} v'_k e'_{t u_{tk}} \right| \leq \left| \sum_{k=1}^{r} \sum_{t=1}^{L} \sum_{l=1}^{T} v'_k \Phi_{l-t} e_{t u_{tk}} \right|
\]

By Assumption 3 and Lemma 2, we have \((v'_k \Phi_{l-t})_{l} \sim \text{indep. subG}(\sigma_k^2, v'_k \Phi_\ell) \) for each \(k \) and \(\ell \). Thus, by Lemma 2 again, we further have \(\sum_{t=1}^{T} v'_k \Phi_{l-t} e_{t u_{tk}} \sim \text{subG}(\sigma_k^2, v'_k \Phi_\ell \| u_k \|_2^2) \) for each \(k \) and \(\ell \). Therefore, the subG tail probability gives

\[
\left| \sum_{k=1}^{r} \sum_{t=1}^{T} v'_k \Phi_{l-t} e_{t u_{tk}} \right| \lesssim \left| v'_k \Phi_\ell \| u_k \|_2 \right| \sim 1 \leq \| v'_k \Phi_\ell \|_2 \| u_k \|_2 \log^{1/2}(N \vee T) \leq \| \Phi_\ell \|_2 \| V_s \|_F \| U \|_F \log^{1/2}(N \vee T)
\]

with probability at least \(1 - O((N \vee T)^{-\nu}) \). Consequently, we have

\[
| \text{tr} \ V'_s E' U | \lesssim \sum_{\ell=0}^{\infty} \| \Phi_\ell \|_2 \| V_s \|_F \| U \|_F \log^{1/2}(N \vee T) \lesssim \| V_s \|_F \| U \|_F \log^{1/2}(N \vee T),
\]

which yields the result.

(d) By the property of norms, we obtain

\[
| \text{tr} \ V'_s V_s U' F_0 | \leq \| V'_s V_s \|_F \| U' F_0 \|_2
\]

\[
\leq r^{3/2} \| V'_s V_s \|_F \| U' F_0 \|_{\max} \lesssim \| V'_s \|_F^2 \max_{j,k} \sum_{t=1}^{T} u_{tk} f_{tk}^0.
\]

By Assumption 1, the last stochastic part is evaluated as

\[
\max_{j,k} \left| \sum_{t=1}^{T} u_{tk} f_{tk}^0 \right| = \max_{j,k} \left| \sum_{\ell=0}^{L_n} \sum_{m=1}^{r} \psi_{\ell,km} \sum_{t=1}^{T} u_{tk} \zeta_{t-\ell,m} \right|
\]

\[
\leq r \max_{k,m} \left| \sum_{\ell=0}^{L_n} \sum_{m=1}^{r} \psi_{\ell,km} \max_{j,m} \sum_{t=1}^{T} u_{tk} \zeta_{t-\ell,m} u_{tk} \right| \leq r \max_{j,m,\ell} \left| \sum_{t=1}^{T} \zeta_{t-\ell,m} u_{tk} \right| \max_{k,m} \sum_{\ell=0}^{L_n} \left| \psi_{\ell,km} \right|
\]

\[
\lesssim \max_{j,m,\ell} \left| \sum_{t=1}^{T} \zeta_{t-\ell,m} u_{tk} \right| \sum_{t=0}^{\infty} \| \Psi_\ell \|_2,
\]

where \(\{ \zeta_{t,m} \}_{t,m} \sim \text{i.i.d. subG}(\sigma^2) \) and \(\sum_{t=0}^{\infty} \| \Psi_\ell \|_2 \) is bounded. By Lemma 2(b), we have \(\sum_{t=1}^{T} \zeta_{t-\ell,m} u_{tk} \sim \text{subG}(\sigma^2, u_j^2) \) for any \(j, m, \ell \). Thus, the subG tail inequality together
with the union bound establishes that
\[
\mathbb{P}
\left(
\max_{j,m,l} \left| \sum_{t=1}^{T} \zeta_{t-l,m} u_{tj} \right| > x \right) \leq r^2(L_n + 1) \max_{j,m,l} \mathbb{P}
\left(\left| \sum_{t=1}^{T} \zeta_{t-l,m} u_{tj} \right| > x \right)
\lesssim (N \lor T)^{\nu} \exp\left(-\frac{x^2}{2\sigma^2 \max_j \|u_j\|^2_2}\right).
\]

Setting \(x = 2 \nu^{1/2} \sigma \max_j \|u_j\|_2 \log^{1/2}(N \lor T) \) yields
\[
\max_{j,m,l} \left| \sum_{t=1}^{T} \zeta_{t-l,m} u_{tj} \right| \leq 2 \nu \sigma \max_j \|u_j\|_2 \log^{1/2}(N \lor T) \lesssim \|U\|_F \log^{1/2}(N \lor T)
\]
with probability at least \(1 - O((N \lor T)^{-\nu}) \). This together with the first inequality yields the result.

(c) We observe that
\[
\|\text{tr} \, B^0 \, U' UV' S \| \leq \|V_S^\prime B^0\|_F \|U' U\|_F \lesssim N_1^{1/2} \|U\|_F^2 \|V_S\|_F,
\]
giving the proof.

(f) By the property of norms, we obtain
\[
\|\text{tr} \, V_S^\prime B^0 \, U' F^0\| \leq \|V_S^\prime B^0\|_* \|U' F^0\|_2
\leq r^{3/2} \|V_S^\prime B^0\|_F \|U' F^0\|_{\max} \lesssim N_1^{1/2} \|V_S\|_F \max_{j,k} \left| \sum_{t=1}^{T} u_{tj} f_{tk}^0 \right|.
\]
Thus by the same argument as the proof of (d), we conclude that the stochastic part is bounded by \(\|U\|_F \log^{1/2}(N \lor T) \), which occurs with probability at least \(1 - O((N \lor T)^{-\nu}) \). This completes the proofs of (a)–(f).

\begin{lemma}
Suppose the same conditions as Theorem 4. Then we have with high probability
\[
\|W_S\|_F \leq \frac{2(r N_1)^{1/2}}{b_n^0}.
\]
\end{lemma}

\begin{proof}
Let \(b_n^0 = \min_{(i,k) \in S} |b_{i\ell}^0| \) and \(\hat{b}_n = \min_{(i,k) \in S} |\hat{b}_{i\ell}^{\text{ini}}| \). For any \(x > 0 \), we have
\[
\mathbb{P} \left(\|W_S\|_F > x \right) \leq \mathbb{P} \left(\|W_S\|_F > x \mid \hat{b}_n > b_n^0 / 2 \right) + \mathbb{P} \left(\hat{b}_n \leq b_n^0 / 2 \right).
\]
With setting \(x = 2(r N_1)^{1/2} b_n^0 \), we verify that the upper bound of (A.17) tends to zero. The first probability of the upper bound is bounded as
\[
\mathbb{P} \left(\|W_S\|_F > \frac{2(r N_1)^{1/2}}{b_n^0} \mid \hat{b}_n > b_n^0 / 2 \right) \leq \mathbb{P} \left(\frac{r N_1}{b_n^0} > \frac{4r N_1}{(b_n^0)^2} \mid \hat{b}_n > b_n^0 / 2 \right)
\leq \mathbb{P} \left(\frac{2}{b_n^0 b_n^0} > \frac{4}{(b_n^0)^2} \mid \hat{b}_n > b_n^0 / 2 \right) = \mathbb{P} \left(b_n^0 / 2 > \hat{b}_n \mid \hat{b}_n > b_n^0 / 2 \right) = 0.
\]
By condition (12) and Lemma 6, the second probability of the upper bound of (A.17) is bounded as
\[
\mathbb{P} \left(\hat{b}_n \leq b_n^0 / 2 \right) \leq \mathbb{P} \left(\|B_{\text{ini}} - B^0\|_{\max} \geq b_n^0 / 2 \right) = o(1).
\]
These two bounds together with (A.17) imply the result.
\end{proof}
Lemma 9. Suppose the same conditions as Theorem 4. Then we have

\[
\left\| W_{S_c}^{-} \circ (X^i \hat{F})_{S_c} \right\|_{\text{max}} < \eta_n
\]

with probability at least \(1 - O((N \lor T)^{-\nu})\).

Proof. Let \(\Delta = (\delta_{ik}) = F - F^0 \) and \(\hat{\Delta} = \hat{F} - F^0\). Define

\[
\mathcal{F} = \{ \Delta \in \mathbb{R}^{T \times r} : \|\Delta\|_F \leq C r_n \} \quad \text{with} \quad r_n = \frac{N_1(N_1T)^{1/2} \log^{1/2}(N \lor T)}{N_T(N_r \land T)},
\]

where \(C\) is some positive constant introduced in the proof of Theorem 4. Then we have

\[
\left\| W_{S_c}^{-} \circ (X^i \hat{F})_{S_c} \right\|_{\text{max}} \leq \left\| W_{S_c}^{-} \right\|_{\text{max}} \left\| (X^i \hat{F})_{S_c} \right\|_{\text{max}}
\]

\[
= \left\| \hat{B}_{S_c}^i \right\|_{\text{max}} \left\| (B^0 \hat{F}^{0\prime} \hat{\Delta})_{S_c} + (E \hat{\Delta})_{S_c} + (E F^0)_{S_c} \right\|_{\text{max}}
\]

\[
\leq \left\| \hat{B}_{S_c}^i - B^0 \right\|_{\text{max}} \left(\sup_{\Delta \in \mathcal{F}} \left\| (B^0 \hat{F}^{0\prime} \Delta)_{S_c} \right\|_{\text{max}} + \sup_{\Delta \in \mathcal{F}} \left\| (E \Delta)_{S_c} \right\|_{\text{max}} + \left\| (E F^0)_{S_c} \right\|_{\text{max}} \right)
\]

\[
\leq \left\| \hat{B}_{S_c}^i - B^0 \right\|_{\text{max}} \left(\sup_{\Delta \in \mathcal{F}} \left\| B^0 \hat{F}^{0\prime} \Delta \right\|_{\text{max}} + \sup_{\Delta \in \mathcal{F}} \left\| E \Delta \right\|_{\text{max}} + \left\| E F^0 \right\|_{\text{max}} \right).
\]

Therefore, by the same argument as the proof of Lemma 6, we observe that

\[
\eta_n^{-1} \left\| W_{S_c}^{-} \circ (X^i \hat{F})_{S_c} \right\|_{\text{max}} \leq \eta_n^{-1} \left\| \hat{B}_{S_c}^i - B^0 \right\|_{\text{max}} \left(T^{1/2} + r_n \right) \log^{1/2}(N \lor T),
\]

where \(T^{1/2} + r_n = T^{1/2}(1 + o(1))\) by condition (10). Lemma 6 and condition (13) yield

\[
\eta_n^{-1} \left\| W_{S_c}^{-} \circ (X^i \hat{F})_{S_c} \right\|_{\text{max}} \leq \eta_n^{-1} \left\| \hat{B}_{S_c}^i - B^0 \right\|_{\text{max}} T^{1/2} \log^{1/2}(N \lor T)
\]

\[
\leq (2\eta_n)^{-1} \frac{F_0^{\prime \prime} T^{1/2} \log^{1/2}(N \lor T)}{2\eta_n}.
\]

with high probability. By the lower bound of condition (12) with taking sufficiently large positive constant factor in \(\eta_n\), the desired strict inequality is obtained.

D Additional Results of Empirical Example 1: Firm Security Returns

In addition to reporting the divergence rates, we summarize the estimates of the factor loadings, focusing on analysis of the contributions of industrial sectors to the non-zero factor loadings. Such contributions can be regarded as measures of sensitivities of industrial sectors to the factor. Also we look into the signs of the factor loadings. Notice that the firm securities with negative loadings react to the factor in the opposite direction to those with positive loadings. Therefore, given the systematic risk factor, the different sign of the factor loadings could be interpreted as the different investment positions, for example, being long and short. Note that our analyses on the measures of sensitivities of industrial sectors and the signs of the factor loadings are conditional on the identification restrictions on the factors and factor loadings.

For the above purposes, all the firms are categorized to one of the ten industrial sectors based on Industry Classification Benchmark (ICB)\(^{10}\). (i) **Oil & Gas**; (ii) **Basic Materials**; (iii)

\(^{10}\)Refer to FTSE Russell for more details about ICB.
A function which takes unity if the sum of the absolute value of the factor loadings which belong to each industrial sector is computed and reported. Specifically, we compute the following statistics for factor ℓ and industry s for given estimation window:

$$
T_{b_{\ell},s}^- = \frac{\sum_{i=1}^{N} \hat{b}_{i\ell} 1\{\hat{b}_{i\ell} < 0\} 1\{i \in s\}}{\sum_{i=1}^{N} \hat{b}_{i\ell} 1\{\hat{b}_{i\ell} < 0\}}, \quad T_{b_{\ell},s}^+ = \frac{\sum_{i=1}^{N} \hat{b}_{i\ell} 1\{\hat{b}_{i\ell} > 0\} 1\{i \in s\}}{\sum_{i=1}^{N} \hat{b}_{i\ell} 1\{\hat{b}_{i\ell} > 0\}}
$$

where $\hat{b}_{i\ell}$ is the estimated factor loading of ith firm security, and $1\{A\}$ is the indicator function which takes unity if A is true and zero otherwise. We regard the portion $T_{b_{\ell},s}^-$ and $T_{b_{\ell},s}^+$ as the statistical measure of the negative and positive sensitivities of the sth industry to the ℓth factor. The average of the portion of the industrial sectors in S&P500 and the average of $T_{b_{\ell},s}^-$ and $T_{b_{\ell},s}^+$ for the four factors over the estimation windows $\tau = Sept 1998, ..., April 2018$, are reported in Figure SP2.

Figure SP2(a) shows the portion of the industrial sectors to which the securities consists of S&P500 belong, and the measure $T_{b_{\ell},s}^+$ for the first factor. All the loadings to the first factor have the same sign (and it is chosen to be positive), which strongly suggests that this is the market factor. As one might expect, the ‘beta’ (the factor loading) of defensive industries, Oil & Gas, Health Care, Telecoms and Utilities is relatively small. The ‘beta’ of cyclical industries such as Industrials, Financials and Basic Materials, is noticeably high. The averages of the measures of negative and positive industrial contributions to the second factor loadings are reported in Figure SP2(b). It shows that Utility and Financials account for around 43% and 23% of negative loadings, respectively, while Technology, Industrials and Basic Materials share 40%, 17% and 14% of positive loadings, respectively. The averages of $T_{b_{\ell},s}^-$ and $T_{b_{\ell},s}^+$ for the third factor are reported in Figure SP2(c). It is clear that this is the Oil & Gas factor, which share the 67% of the negative loadings. Financials, Consumer Services and Consumer Goods share 29%, 23% and 19% of positive loadings, which means that these industrial sectors move opposite direction to the Oil & Gas with respect to the third factor. In view of Figure SP2(d), the dominating industry of the fourth factor is Utility, which share 43% of positive loading, together with Health Care with 17% of the share. No dominant industry is found for negative loadings, which are equally shared by cyclical industries.

In turn we discuss each factors in more details by analyzing Table SP1, Figures SP1 and SP2. The first factor does seem to be almost always “strong,” in that the absolute sum of factor loadings is proportional to N. As reported in Table SP1, the average of α_1 over the month windows is 0.995 and standard deviation is very small (0.004) with the minimum value of 0.979. Also as is shown later, all the values of the factor loadings to this factor have the same sign, which strongly suggests that this is the market factor. Now we turn our attention to the rest of the factors. The divergence rates for the rest of the common components, α_2, α_3 and α_4, exhibit very different trajectory over the months, and their orders in terms of value change (i.e., their plots cross).

Let us see the trajectory of α_2. From Figure SP2(b), under our identification condition, the second factor can be understood of Utility and Financials versus Technology, Industrials and Basic Materials. In Figure SP1 it is seen that α_2 moves around 0.80 until October 1998, but from this month it sharply goes down and stay below 0.75 to October 1999. Then it sharply goes up to achieve 0.83 in February 2000. Indeed, this period corresponds to the
turbulence of Basic Material stock index during 1998-2003, the fall of Industrials stock index around 2001-2 and the dot com bubble towards the peak in 2000. Since then, during most of the 2000s, α_2 goes above 0.85. After achieving the peak of 0.895 in April 2009, it steadily decreases and stabilizes around 0.75 from November 2012 onward, during which often this factor is not estimated but the fourth factor is.

Now let us analyze the move of α_3. From Figure SP2(c), under our identification condition, the third factor can be understood of Oil&Gas versus Financials, Consumer Services and Consumer Goods. According to Table SP1, α_3 has the lowest average. In Figure SP1, it looks co-moving with α_2, around 0.1 below, between September 1989 and July 2008. The exceptions are the periods from 1991 to 1992 and from 1999 to 2000, during which α_3 and α_2 are very close. A sharp rise of α_3 is observed from July 2008 to April 2009. This period coincides with the 2008 financial crisis. In just ten months, it goes up by 0.12, from 0.74 to 0.86. This can be interpreted that the Oil&Gas industry was sharply affected by the crisis. α_3 exceeds α_2 in December 2010, and this change of the order remains to the latest data point, April 2018.

Now let us analyze the move of α_4. From Figure SP2(d), under our identification condition, the fourth factor can be understood of Utility and Health Care versus cyclical industries. As shown in Figure SP1, the first estimate of the fourth factor appears in February 2004, with the value of α_4 being 0.80. Since its appearance, often it is not estimated but it is from March 2010 onward, seemingly becoming more and more stronger toward the latest month, April 2018. Since its first appearance, the value of α_4 is mostly between 0.75 and 0.80. After the sharp one off drop in February 2015, α_4 rises to become the highest next to the first factor from November 2016 onward.

E Some Extensions

Recently estimation of a hierarchical factor structure or a multi-level factor structure has been gaining serious interest in the literature. Ando and Bai (2017) and Choi et al. (2018) consider factor models with two types of factors, global factors and local factors. The factor loadings of global factors are non-zero values for all the cross-section units, whereas the local factors have non-zero loadings among the cross-section units of specific cross sectional groups. Ando and Bai (2017) and Choi et al. (2018) propose sequential procedures to identify the global and local factors separately. In fact, the WF structure nests the hierarchical factor structure and hence our WF-SOFAR method can be applied to readily estimate such models. In contrast to existing approaches, given the total number of global and local factors, our approach permits us to consistently estimate the number of local groups, the number of global and local factors and its memberships in one go. For further information and additional simulation results, see Section 5.3.

In this paper we have focused on the estimation of the common factors and the exponents of the divergence rates of the r largest eigenvalues. It is of interest to estimate the stock return covariance matrix for optimal portfolio allocation and portfolio risk assessment. This can be achieved by consistently estimating the covariance matrix of idiosyncratic errors, in line with Fan et al. (2008) and Fan et al. (2011), which is an interesting extension of this paper.

Another possible extension of interest is to consider the estimation of panel data models with unobservable multiple interactive effects. Pesaran (2006) and Bai (2009), among others,
Figure 5: the portion of the industrial sectors in S&P500 and in the Figure 6: the portion of the industrial sectors in the positive/negative 1st factor loadings second factor loadings

Figure 7: the portion of the industrial sectors in the positive/negative third factor loadings Figure 8: the portion of the industrial sectors in the positive/negative fourth factor loadings
develop the estimation methods of the panel data model:

\[y_{ti} = x_{ti}' \beta + u_{ti}, \quad u_{ti} = f_t' b_i + \varepsilon_{ti}. \]

For the PC based estimators, such as Bai (2009), \(u_{it} \) is typically assumed to have the strong factor structure (i.e., \(\sum_{i=1}^{N} b_i b_i' / N \) tends to a fixed matrix), which may not hold in practice, and the WF structure seems more appropriate. The iterative procedure proposed by Bai (2009) based on the WF-SOFAR estimation of \(f_t' b_i \), instead of the PC estimation, would potentially improve the precision of the estimates of \(\beta \).