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ABSTRACT

AUTOMATIC PROFICIENCY EVALUATION OF SPOKEN ENGLISH

BY JAPANESE LEARNERS FOR DIALOGUE-BASED LANGUAGE

LEARNING SYSTEM BASED ON DEEP LEARNING

Jiang Fu

The rapid development of globalization leads to an increase in the demand for the second lan-

guage (L2) learners to study foreign languages. English is the most universal language for speech

communication along the world. Traditional classroom English teaching indoors contributes to timely

interaction between the teachers and the students. However, such a language teaching method tends

to be costly and time-consuming. With the widely used electrical devices and the Internet, it is pos-

sible to provide a variety of materials for the needs of English self-study. This method is still hard

for them to check the language proficiency as there is no teacher to give feedback directly. In most

cases, this boring way of learning alone can make learners lose interest in learning a new language.

Due to the increasing computing power and modern information technology in the past two decades,

computer-assisted language learning (CALL) system has attracted much attention in the field of lan-

guage teaching, as an efficient tool for the L2 learners.

Speech-based computer-assisted language learning (CALL) systems should recognize the utter-

ances of the learner with high accuracy and evaluate the language proficiency of the specific speaker

with appropriate methods. In this thesis, we discuss the automatic proficiency assessment of the sec-

ond language (L2) for non-native speakers. For the language proficiency evaluation, pronunciation

evaluation and grammatical error detection (GED) are both important components in CALL systems.

Regarding the automatic assessment on language pronunciation, there are many existing works
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on pronunciation evaluation by applying the goodness of pronunciation (GOP) method. Based on

the automatic speech recognition (ASR) technology, we introduce an automatic pronunciation profi-

ciency evaluation system that combines various kinds of non-native acoustic models and native ones,

such as Gaussian mixture model (GMM)-hidden Markov model (HMM) and deep neural network

(DNN)-HMM. Most of the existing works assume that we know the transcription of an utterance

(the reference sentence) when evaluating the utterance, especially in reading and repeating tasks.

To realize a reference-free pronunciation evaluation, we propose a novel machine score named as

the reference-free error rate (RER) to evaluate English proficiency. In our experiments, the DNN-

based non-native acoustic models outperformed the traditional acoustic models on non-native speech

recognition. Thus, we calculated the RER by regarding the recognition result from the DNN-based

non-native acoustic model as “reference” and the result from the native acoustic model as “recogni-

tion result”. The proposed RER has high correlation with human proficiency scores, which indicates

the effectiveness of RER for automatically estimating the pronunciation proficiency. By combining

the RER with other machine scores such as the log-likelihood scores, we obtained high correla-

tion (reading aloud task: r = 0.826, p < 0.001,N = 190; constrained interactive dialogue task:

r = 0.803, p < 0.001,N = 26; spontaneous English conversation task: r = 0.799, p < 0.001,N = 28)

to the human scores.

Automatic speech recognition (ASR) and grammatical error detection (GED) are both vital tasks

in the modern speech-based CALL system. Compared with a traditional GED system on typing in

sentences from the learners, the GED task on speech is different. We designed the oral translation task

for learners’ English grammatical usage as the sub-module in our CALL system. To realize a reliable

speech-based CALL system with adequate feedback provided for the L2 learners, it is necessary to

recognize the learner’s speech as accurately as possible including the grammatical errors at the first

stage. To correct oral translation in our system, the recognized sentences by ASR contain ASR errors

and grammatical errors. Without the errors in the training data, to some extent, the system would

recognize the wrong sentence into the right one. Previous works established handcrafted grammatical

error rules and implemented these rules on the prompted right source sentences for generating new

sentences with errors, which might cause a problem that it is unclear whether the proposed rules are
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“optimum” in some senses, as the rules were heuristically established, the generated sentences do

not necessarily reflect the comprehensive situation of English spoken by L2 learners. For the GED

task in our CALL system, we describe methods for improving the recognition accuracy of speech

with grammatical errors. We introduce the process of sentence generation with grammatical errors

by adopting the state-of-the-art neural machine translation (NMT) for training a new language model.

Then we compare five language models with different training data: 1) baseline LM (language model),

2) rule-based LM, 3) NMT-based LM, 4) rule & NMT-based LM, 5) gold LM (closed-condition). As

a result, by comparing the five different language models, the proposed method gives more accuracy

on speech recognition rate, which indicates that if the language model contains the human transcribed

text of the recorded speech (sentences with realistic errors), the ASR could get a high recognition rate

for non-native speech. Therefore, the NMT models generated related errors, which would promote

the performance of ASR in the spoken GED module of our CALL system. To a certain extent, it is

worth to use the NMT for generating sentences with errors, which will increase the efficiency of the

entire CALL system and save labor costs.

Keywords:
Automatic proficiency assessment, Non-native speech, Speech recognition, Computer assisted lan-

guage learning (CALL), Grammatical Error Detection (GED), Neural Machine Translation (NMT)

English study, Deep neural network (DNN)
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1 . Introduction

Based on the English learning of non-native speakers, this thesis explores the development of a

dialogue-based computer-assisted language learning (CALL) system centered on modern deep learn-

ing (DL) technology. In this initial chapter, we first review the importance of English learning, then

describe the methods of learning English and give the introduction of the CALL system with new

features. At the end of this chapter, we describe our research objective and give the structure of the

entire thesis.

(1) English among L2 learners

With the rapid development of globalization entering into the modern world, humans have more

opportunities to communicate with each other. There is an increasing need for English study to the

second language (L2) learner whose mother tongue is not English. As one of the most important

information carriers, English has become the most widely used language in all fields of human life,

yielding the English ability an essential skill. According to some incomplete statistics3),4),5) 1, we list

some points of English usage scenarios:

1. English is the official language of 60 countries.

2. One out of five people in the world can speak or at least understand English.

3. English is the language occupying the 75% media shows.

Figure 1.1 shows the distribution of English speakers in each region2. As the native English
1 https://en.wikipedia.org/wiki/English-speaking world#cite note-Two thousand million-2
2 https://www.babbel.com/en/magazine/how-many-people-speak-english-and-where-is-it-spoken

1
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Fig. 1.1 Distribution of people able to speak English in each region.

speakers in Asia are relatively less, to some extent, it is difficult to calculate the number in east Asia.

In Figure 1.1, the number of English speakers in Asia is rough and under discussion.

The birth of the Internet has given us more access to information acquisition and knowledge

learning. According to a recent web server survey3, as of January 2020, there were approximately 1.3

billion websites on the Internet. Based on the historical trends in the usage of content languages for

websites from January 2019 to January 20204, English increases from 54% to 57.4%. By comparing

the occupation of different languages used for websites, English obviously ranks the top one among

all languages, which reaches 57.4%. The usage of Japanese and Chinese occupies 2.8% and 1.4%,

which has a little decrease compared with that of one year ago. Therefore, it is possible to calculate

approximately 730 million English content websites. Through learning English well, we would have

the ability to view more than 700 million English-language based websites.

Besides, in terms of research, the number of English documents is also very large. Learning

English well helps us with academic research.

Take the google scholar search as an example, since this thesis is also a research in the field of

3 https://news.netcraft.com/archives/2020/01/21/january-2020-web-server-survey.html
4 https://w3techs.com/technologies/history overview/content language
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communication, search Japanese word “Tsushin” will obtain about 3.7 million results (as the word in

Japanese and Chinese are the same, the number in actual situation will be much less) and on the other

hand, searching English word “communication” gets about 6.65 million results.

As the most widely spoken language in the world, English covers all aspects of human life.

Whether it is a simple information exchange or rigorous literature, the usage of English accounts

for a large proportion. To the non-native English speakers, learning English well is like opening a

door to a new world. We can no longer be banned from the original channels of access to information

and knowledge, and finally, achieve the goal of diversified learning and value.

Speak English in Japan As discussed in the above, no official data shows the exact number of

English speakers in Japan. The real situation relies on the education of the school and the English

proficiency level of the Japanese learners. According to a survey in 20135, among the 1200 Japanese

respondents aged from 20 to 49, 41.6% of them can’t speak English and 30.4% of them can barely

emerge few of English words. It is estimated that 20% of the respondents might be able to communi-

cate using English. Regarding the studying willingness, 57% of them expressed the confirmation of

learning English.

The “English education reform implementation plan in response to globalization”6 was proposed

by the Ministry of Education, Culture, Sports, Science and Technology in Japan since 2013, along

with the decision to host the 2020 Tokyo Olympic Games, which have made rapid progress in accel-

erating English education for Japanese learners.

(2) Previous methods of learning English

Difficulty in English study for Japanese learners First and foremost, before digging into the En-

glish learning methods, we should discuss the difficulties in English study for Japanese learners.

Here are three major reasons why Japanese learners suffer from learning English:

5 http://economic.jp/?p=29982
6 http://www.mext.go.jp/b menu/houdou/24/09/attach/1326084.htm
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1. Japanese and English are very different languages, due to the fundamental differences in gram-

matical and expression aspects, as well as the differences in pronunciation.

2. English study time for Japanese is not sufficient.

3. Japanese students rarely speak English as there are seldom chances for communication in daily

life.

a) Classroom English teaching

Traditional language classroom teaching with human teachers contributes to timely interaction

between the teachers and the students, which might be the most ideal way for language learners.

It is possible to practice English conversation with the teacher and obtain the appropriate feedback

to various errors, therefore, this seems to be the most effective way of promoting the listening and

speaking skills.

Regarding the rapid development of the Internet and communication technology, it is possible for

the learner in his or her home studying English with a human teacher on the other side via computer’s

communication software. This Internet teaching can be regarded as one way of one-on-one language

teaching. However, since one-on-one language teaching is extremely expensive, the practical En-

glish study classroom is always a form of collective large class education, involving only one teacher

with dozens of students. Hence, it is common that all of the students in one classroom receive the

same English education which ignores the different language proficiency level and the learning ability

among the students. The teaching method might be suitable for knowing the level of the correspond-

ing student to a certain extent, but the effectiveness of normal education is still under consideration.

Moreover, due to the nature of such a classroom, there might be constrained conditions on the time

and the place which seems to be a not perfect way for English study.

b) Self-learning for English

Self-learning is a way that uses the available commercially teaching materials, textbooks and

video lessons, which are studied by the student himself or herself. Especially the nowadays Internet

age makes it possible to provide a variety of materials which meets the needs of self-study. The
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student can study at his or her own pace. The biggest advantage of self-study is to cultivate self-

discipline. If you choose the right materials, plus strong self-study and self-discipline, such learning

is largely effective.

However, the self-study method only trains on the language skills of “reading”, “writing” and

“listening”, to which, the “speaking” ability is not developed which can be the key skill for the English

communication to Japanese learners. When conducting the self-study, especially in the process of

“reading” or “self-speaking”, it is not easy for the language learners to check where the pronunciation

or grammatical errors are. For the pronunciation aspect, they may record the speech from themselves

and compare it with the right pronunciation. However, it is still hard for them to check as there is no

teacher to give feedback directly, and that will cost much of time with low efficiency. In most cases,

this boring way of learning alone can make people lose interest in learning a new language.

(3) Computer-assisted language learning system

Due to the increasing computing power and modern information technology in the past two

decades, the educational field and learning style have been changed, the language learners can use

applications on the computers or the smartphones for a new language learning. Such a foreign lan-

guage learning program is called computer-assisted language learning (CALL) system. Regarding

the definition of a CALL system, any method or process in the system that a learner can use, as a

result, improves his or her language proficiency6). The CALL system links various kinds of research

aspects, such as psychology, artificial intelligence, human-computer interaction and linguistics.

The CALL system has attracted much attention in the field of language teaching, as an efficient

tool for L2 learners. The CALL systems have easier access and more flexibility with lower cost and

saving time than the traditional classroom based-language learning. The state-of-the-art speech-based

CALL system can recognize the words or sentences uttered by the L2 speakers via automatic speech

recognition (ASR) technology.
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Table 1.1 The features between the reading aloud CALL and the dialogue-based CALL.

Reading aloud CALL 　 Dialogue-based CALL

Prepared material to read; recorded

speech to repeat　

Scenario; free-conversation

Boring, tiresome　 Friendly, emotional

Difficult to system maintain　 Self-study (Chat bot; AI assistant)

a) Traditional language learning system

The origins of CALL can data back to the 1960s7). Traditional CALL systems always presented

a stimulus on the screen of the computer to the learner who had to respond with the answer by type

in with the keyboard or the mouse. Further in the traditional CALL system is that audio content and

dictionaries are embedded there as a simple feature machine8).

b) Dialogue-based CALL system

The dialogue-based CALL system is derived from the speech-based CALL system. The early

speech-based CALL are systems only equipped with repeating and reading tasks, in which some

reference-dependent automatic scoring methods were developed9),10).

However, a CALL system only giving practice of reading and repeating is always restricted and

constrained for language study. To improve the learner’s oral communication skills, a few interac-

tive conversational CALL systems were researched11),12),13). Table 1.1 shows the different features

between reading aloud CALL and dialogue-based CALL system.

The Speech Rater12) sponsored by ETS is not only for research development, but also taken as a

commercial application on the English test. The system aimed at automatically evaluates spontaneous

speech based on a large vocabulary continuous speech recognition (LVCSR) methodology.

POSTECH’s interactive English CALL system13) is intended for Koreans, with which the learners

can practice English conversation in constrained situations such as shopping and asking directions.

This system prepared the example for each dialogue in advance, the learner’s pronunciation would be

scored with feedback after compared with that prepared example.
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Table 1.2 The scenario in shopping.

Speaker 　 Speech

System:　 Can I help you?

Learner:　 I want two lemons，three peaches，and two

　　　 packs of cherries，please．

System:　 Is that all?

Learner:　 Yes．

System:　 OK．That would be nine hundred and eighty yen．

Learner:　 Here you are．

System:　 Thank you very much．Here’s your change．

Table 1.3 The scenario in breakfast.

Speaker 　 Speech

System:　 What do you have for breakfast?

Learner: I often have toast and milk．How about you?

System:　 I have rice and miso soup．

Learner: Anything else?

System:　 I also have an egg，natto，and tofu．

Learner:　 Oh，you eat a lot!

System:　 I’m hungry in the morning．

What we want to do in this study is to build a dialogue-based CALL, which can be a conversational

partner to L2 learners for practicing English, anytime and anywhere. Our dialogue-based CALL

system also prepared the sub-module by adopting the prompt samples for conversation2), where more

details and evaluation will be shown in Chapter 3. Table 1.2 and Table 1.3 describe the content of the

samples in our CALL system.
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c) Automatic language proficiency evaluation

Pronunciation evaluation A large number of researchers have investigated pronunciation eval-

uation in terms of various scoring methods ranging from phonemic domain9),14),15),16) to prosodic

domain17),18),19).

There are three main types of automatic pronunciation evaluation on the phonemic side:

1. Evaluating the overall goodness of one sentence or a pronounced specific word. Franco et al.9)

indicated that the combination of machine evaluation scores from ASR system, e.g., phone log-

posterior probability scores based on Gaussian mixture model (GMM)-hidden Markov model

(HMM), segment duration scores and timing scores, achieved a high correlation with human

rating scores in sentence-level. In addition, the correlation between the mentioned machine

scores and human scores had a comparable result to human-to-human correlation when an ade-

quate amount of evaluated speech data is available20). Speech recognition technology was also

used in the pronunciation evaluation system to increase human-machine score correlation21).

2. Evaluating goodness of a specific phoneme. L2 learners can use this system to derive a score for

one arbitrary L2 phoneme they selected in their non-native speech evaluation. In this branch,

Kim et al.22) set a series of particular phonemes to examine how well the machine scores cor-

relate with the corresponding human scores rating of single phone utterances. To validate the

automatic pronunciation evaluation results, Witt and Young23) developed a system for scoring

pronunciation of each phoneme in an utterance and detecting pronunciation errors. The most

well-known approach might be the Goodness of Pronunciation (GOP)24), which is an approxi-

mation of the probability of the target phoneme.

3. Detecting and diagnosing mispronounced phonemes. Compared with evaluating goodness of

a specific phoneme, such kind of system could give a direct and accurate output on whether

the pronounced phoneme is acceptable and unacceptable, or the comparison between correct

phoneme and wrong one. Besides the general approach, the discriminative approach is often

applied in these systems for pronunciation modeling. Franco et al.25) proposed a method to con-

duct automatic mispronunciation detection with phone segment score and a log-likelihood ratio
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score calculated from two dissimilar acoustic models trained by non-native speech, one from

acceptable correct native-like speech and the other one from extremely non-native speech. Re-

garding the performance improvement in mispronunciation detection, Ito et al.26) developed a

decision tree-based clustering method for phoneme-level classification. In addition, approaches

using the deep neural network (DNN)-based acoustic models significantly improved the results

of mispronunciation detection and diagnosis27),28),29),30).

We aim at improving the performance of pronunciation evaluation in type 1.

Evaluation of language pronunciation on L2 learners, to some extent, is an important objective as

well as a difficult mission. Even in the case of traditional human evaluation, the inevitable variability

in the evaluation standard of multiple teachers leads to less objective and consistent assessments.

As an approach of pronunciation evaluation, the GOP is widely used in phone level pronunciation

scoring of non-native speech31) and utterance verification assessment32). GOP is originally calculated

through the GMM, and then a different GOP estimation method based on DNN has been proposed33).

To improve the evaluation accuracy, the native and non-native acoustic models are used for mea-

suring whether a specific utterance sounds native-like or non-native like31),34),14). The acoustic model

in an ASR system trained from native speech database is regarded as a baseline to measure how close

the given non-native speech is to the target native pronunciation, as the native acoustic model includes

nearly whole phonemic features of the native language. The phoneme-level log-likelihood score and

posterior probabilities generated from the native acoustic model achieved a high correlation to hu-

man score by using linear regression for non-native speech35), and the log-posterior probabilities of

aligned phonemes in the GOP are also obtained from an acoustic model trained with native speech.

However, the speech from non-native speakers is more or less influenced by the accent, rhythm, or

other phonemic characteristics of their mother tongue (L1). The DNN-based acoustic models trained

from non-native English speech uttered by Japanese native speakers gave very high accuracy for rec-

ognizing English speech by Japanese speakers36). There exists a plenty of studies that use both native

and non-native acoustic models to conduct automatic pronunciation evaluation37),14),38),16).
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The learner

How much they are?

(1) System gives a prompt

����/HDUQHU¶V�XWWHUDQFH

(3) Recognition

(4) Evaluation

d How much they are ?

E How much are they ?

(5) Feedback
Your pronunciation score: 

3.2

Fig. 1.2 A example of our dialogue-based CALL system with adequate feedback on pronunciation

and grammatical errors.

Grammatical error detection To realize a speech-based CALL system, language proficiency eval-

uation in such a CALL system is always a challenging task. Regarding the English speech from

L2 learners, in most cases, it contains mispronunciations and grammatical errors largely due to the

influence of the learners’ mother tongues.

The evaluation on pronunciation above means how to pronounce the word correctly at the phonemic-

level, however, which has no correlation with the content of the speech. As a complete automatic

advanced CALL system, it not only judges the pronunciation, but also further understands what the

learner is saying to judge whether the learner has errors on the content or grammatical aspect. That is

the speech-based grammatical error detection (GED) task in the dialogue-based CALL system.

For most of the GED system, they are often applied to the written texts with errors. Spoken

speech has much difference to the written text, such as the special action features happened in the

spoken utterance, no punctuation there regarded as no grammatical error, and no spelling mistakes in

the word.
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For the GED task in the spoken dialogue-based system, the quality of ASR is always depended

on its two main components: acoustic models (AMs) and language models (LMs). The AMs describe

how the sounds are pronounced in a language and the LMs cover the probabilities of words or se-

quences of words. Not only the AMs with extremely high performance is needed, but also language

modeling is very important as the language model contains a lot of verbal information (correct or

wrong grammar and expression). A good language model helps to improve the speech recognition

rate, which further makes the GED system better.

With respect to the above two aspects of the English proficiency evaluation, an example of our

dialogue-based CALL system is showed in Figure 1.2. This system has the function of talking based

on ASR technology. By received what the learner has said, it is normal for the system to translate the

speech into text and then make an analysis on the speech. Finally, appropriate feedback and score are

proposed to the learner with the content on the screen.

(4) Purpose

a) Problem in previous work

For pronunciation evaluation, most systems assume that the transcription of a learner’s utterance

can be exploited at the time of evaluation. It can be realized by letting a system specify the sentence

to be read. However, the text-dependent evaluation cannot be used for evaluation on any spontaneous

speech, which is essential to combine a spoken-dialog-based CALL system with pronunciation eval-

uation. Moustroufas and Digalakis14) proposed a system that used acoustic models in both L1 and

L2 and compared the sentence-level likelihood scores from these acoustic models for any utterance.

Still, there is nearly no other advanced method for pronunciation evaluation on non-native speech.

Regarding the grammatical error detection on spoken language, since an ordinary English corpus

does not contain many grammatical mistakes, a language model trained using such as corpus does not

model grammatical mistakes. Thus, Anzai39) developed a rule-based method to artificially generate

sentences with grammatical errors that Japanese learners tend to make. They developed error rules

according to the corpus that contains mistakes in spoken English sentences40), and applied the rules
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to correct English sentences to generate training data for the language model. A problem of their

method is that it is unclear whether the developed rule is “optimum” in some sense. As the rules

were heuristically developed, the generated sentences do not necessarily reflect the tendency of actual

sentences spoken by Japanese learners.

b) Purpose in this research

The first objective of our research is to develop a highly accurate evaluation system for sentence-

level pronunciation evaluation that can be used for any utterance, assuming both L1 and L2. For

developing the reference-text-independent pronunciation scoring in a dialogue-based CALL system,

we propose a novel machine score (Reference-free Error Rate, RER) that is based on speech recog-

nition results using native and non-native acoustic models. The DNN-HMM acoustic models are

utilized for improving the accuracy of evaluation. We investigate pronunciation evaluation by com-

bining multiple machine scores including log-likelihood scores and the proposed RER.

The second target is to exploit the neural machine translation (NMT), which is able to convert

correct English sentences into those with grammatical errors, to obtain the training data for language

modeling. In that way, we can promote the speech recognition rate unless the generated sentences

from NMT have realistic grammatical errors. Furthermore, the output of the ASR system could be

directly utilized for a normal grammar checker. To this end, we compare the proposed language

model with the conventional ones and analyze the performance of the proposed language model in

grammatical error detection task.

(5) Thesis outline

In the second chapter, a more detailed description of previous work and the key technology used in

the modern dialogue-based CALL systems are described. Next, the two main proficiency evaluation

outlined above will be tackled in the third and fourth chapters. In the third chapter, an automatic

pronunciation proficiency evaluation system for English utterances from Japanese native speakers is

built by utilizing both native and non-native acoustic models. To this end, the RER is proposed as

a new machine score for the regression-based prediction of proficiency. Meanwhile, in the fourth
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chapter, language modeling with different training data would be discussed and investigated. Neural

machine translation (NMT) would be applied for the generation of the training data, which is used

as the proposed language model. Finally, in the fifth chapter, the conclusions of the thesis will be

described.



2 . Previous work

In this chapter, the five key points in the dialogue-based CALL system are explained along with the

previous work: automatic speech recognition (ASR) module, grammatical error detection (GED) task,

machine translation (MT), modeling toolkits and required data sets in the system. These main compo-

nents are related with the fundamental speech technologies needed in a dialogue-based CALL system,

or more or less required to establish the system. Towards to an initial comprehensive understanding

of the specific CALL system, this chapter just meets the demand.

(1) Automatic speech recognition

Automatic speech recognition (ASR) has attracted the human interest for almost 60 years. The

goal of this technology can be served as a bridge for smooth communication between human and hu-

man, or human and machine. Since the 1960s, the University of Tokyo, NEC Lab in Japan, Carnegie

Mellon University in the United States, and scientists from the former Soviet Union have successively

proposed several basic concepts for speech recognition, laying a solid foundation for the future devel-

opment of ASR. The most brilliant achievement of ASR in 1980s is that the center of technology has

shifted from pattern matching to statistical model methods, and in particular, Hidden Markov Model

(HMM) have made great progress41),42),43).

However, ASR has not been a vital form of human-machine communication in the past, largely

due to the backward information technology and very small amount of available speech data. Speech

technology substantially changes the way we live and work. Through some tiny digital devices, voice

interaction became the main type of human-machine communication. Here are the reasons for this

trend:

14
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1. The continuous improvement of computing power and modern information technology, making

it possible to train a more complex and powerful acoustic model and language model.

2. With the ubiquitous Internet, we can collect a lot of speech resources.

For developing a friendly human-machine dialogue-based CALL system, utilizing the modern

ASR technology is necessary and important.

The purpose of ASR is to convert speech into text. Specifically, it is to input a speech signal and

find out a sequence of words (consisting of words or characters), so that it matches the speech signal

to the highest degree. This degree of matching is generally expressed in terms of probability. Let x be

the speech signal and w represent the sequence of words, then the question can be solved as follows:

ŵ = arg max
w

P(w|x) (2.1)

It is generally believed that calculating P(w|x) is difficult, and normally the speech is generated

after having words, namely first comes the words, and then the sounds of them are sent out. Therefore,

from Bayesian formula, the above equation is transformed as follows:

ŵ = arg max
w

P(x|w)P(w)
P(x)

(2.2)

Here, the denominator P(x) can be omitted as it is a constant to w. Therefore, the equation can be

equaled as:

ŵ ≈ arg max
w

P(x|w)P(w) (2.3)

The above equation is the core formula in speech recognition. The probability of P(w) expresses

how likely a sequence of words itself; P(x|w) is the probability of a speech after a given text. Calcu-

lating the values of these two items is the task of the acoustic model (P(x|w)) and the language model

(P(w)). Therefore, how to train an acoustic model and a language model is a big issue in order to

improve the accuracy of speech recognition. The description of acoustic model and language model

will be explained in the next.
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Fig. 2.1 Standard 3-state phone Hidden Markov Model.

a) Acoustic model

The task of an acoustic model (AM) is to compute the observation likelihood P(x|w), which is

the probability of uttering the speech after a given text. Here, the primary task is to know what kinds

of sounds or symbols should be assigned to each word. The lexicon is another dictionary module in

ASR, which converts the word-level string to a phoneme-level string. For the process in ASR, the

lexicon is considered to be a component alongside the acoustic model and language model. With the

help of the lexicon, the AM knows which sound uttered successively with the given string of text.

In order to compute the likelihood of matching between speech and phoneme-level string, it is also

necessary to know the start and the end of each phoneme (typically in a real ASR, the linguistic units

are always sub-parts of phonemes). This can be done by a dynamic programming (DP) algorithm,

which is called Viterbi algorithm. By solving the above work, Hidden Markov model (HMM) is

widely applied to the acoustic model. The hidden Markov model is based on the Markov chain and

adds observed events. Wherein, the hidden layer is mapped to the observed layer by an emission

probability or an observation probability, and the transition between the hidden states is obtained by

a transition probability. Figure 2.1 shows a standard 3-state phone HMM. Here, S 0 and S 4 represent

the non-emitting start and end states for the specific phoneme, respectively. S 1, S 2 and S 3 are the

left-to-right three states. ai j(1 ≤ i, j ≤ 5) is the probability for each sub-phone of taking a self-loop

or going to the next sub-phone. bi(o)(2 ≤ i ≤ 4) means the emission probability, expressing the

probability of a feature vector being generated from the corresponding sub-phone state S i(1 ≤ i ≤ 3).
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Fig. 2.2 The process of extracting Mel-Frequency Cepstral Coefficient (MFCC) feature.

Through the decoding in HMM by Viterbi algorithm, not only considers the matching degree

between each segment of speech and phoneme, but also considers the transition probability between

individual phonemes.

In the process of pointing out the phoneme boundary and calculating the matching, the acoustic

model should have the original speech signal represented in a typical form, in which the stage is

feature extraction. Mainstream speech recognition systems44) usually use Mel-Frequency Cepstral

Coefficient (MFCCs), filter banks (FBANK) or Perceptual Linear Prediction (PLP) as features. The

extraction of MFCCs is showed in Figure 2.2. The speech signal goes through a pre-emphasis filter

and is sliced into (overlapping) frames. Then a window function is applied to each frame. Afterward,

a Fourier transform is conducted on each frame and the power spectrum is calculated which leads to

filter banks. Subsequently, compute the filter banks by applying triangular filters. To obtain MFCCs,

the Discrete Cosine Transform (DCT) is applied to the filter banks. Finally, after adding energy and

delta and double-delta features, 39 MFCCs are obtained. MFCCs are useful in many cases due to the

cepstral coefficients are nearly uncorrelated which will make the acoustic model much simpler.

GMM-HMM From the speech training data, a large number of feature vectors and their corre-

sponding phonemes can be extracted. From this data, we can train a classifier from feature to

phoneme. The most commonly used classifier in previous years is the Gaussian Mixture Model

(GMM). The general principle of GMM is to estimate the distribution of the feature vector to each
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Table 2.1 Example of monophone training and triphone training. Here, “speech” is an example word.

Training type 　 speech

Monophone　 S P IY CH

Triphone　 SIL-S+P S-P+IY P-IY+CH IY-CH+SIL

phoneme. Then, in the recognition phase, calculate the probability that the feature vector of each

frame generated by the corresponding phoneme, and multiply the probability of each frame. GMM is

expressed as follows:

b j(o) =
M∑

m=1

c jmN(o|µ jm,Σ jm) (2.4)

N(o|µ jm,Σ jm) =
1√

(2π)n|Σ jm|
exp

(
−1

2
(o − µ jm)⊤Σ−1

jm(o − µ jm)
)

(2.5)

Here, o represents the feature parameter corresponding to one frame of speech. c jm, µ jm and Σ jm

are respectively the mixing parameter, mean, and covariance matrix of the m-th Gaussian component

of the j-th state. b j(o) is the observation likelihood that the speech feature parameter o belongs to the

j-th state, and n is the dimension of the observation vector. By multiplying the probability P(o|S i) of

each frame, P(x|w) can be achieved.

The HMM model assumes that a phoneme contains 3 to 5 states, the pronunciation of the same

state is relatively stable, and one state can transit to a different one with a certain probability. The

feature distribution of a state can be described by a probability model, where the model can be GMM.

Therefore, in the GMM-HMM framework, HMM describes the short-term steady dynamics of speech,

and GMM is used to describe the internal pronunciation features of each state of the HMM.

In the pronunciation process, due to the influence of collaborative pronunciation, the pronuncia-

tion of the same phoneme varies in different positions. The monophone is context-independent. In

order to be able to represent this difference, the concept of triphone is proposed. Table 2.1 explains

the training classification of monophone and triphone. The triphone is determined by the Left and

right phonemes, therefore, it is context-dependent.



19

Fig. 2.3 The DNN-HMM model for speech recognition.

DNN-HMM Although GMM-HMM has achieved a lot of success in the past, with the develop-

ment of deep learning, the deep neural network (DNN) model shows a significant performance over

the GMM model45), instead of GMM for HMM state modeling. As the speech signal is continuous,

there are no obvious boundaries between individual phonemes, syllables, and words. Each phoneme

pronunciation is also affected by the context. The advantage of DNN is that it no longer needs to

make assumptions about the distribution of speech data, and stitches adjacent speech frames includ-

ing the time series structure information, which makes the classification on probability of the state

significantly improved. At the same time, DNN also has a strong environment learning ability, which

can improve the robustness to noise. In simple terms, DNN is the state probability corresponding to

the input string of features. Figure 2.3 shows the explanation of DNN-HMM model for speech recog-

nition. Compared with traditional GMM, DNN-based acoustic model is able to directly calculate the

value of P(S i|o). Through Bayesian formula, the P(x|w) is obtained by multiplying the P(o|S i) of

each frame.

b) Language model

When it comes to the language model (LM), the most familiar usage scenario nowadays is the

intelligent keyboard input. By inputting several advanced characters with the smart input method, it
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can directly give the fully right words or appropriate next word in a sentence. That is the credit of the

language model.

Language model is a model that assigns probabilities into sentences or sequences of words. In a

word, the purpose of the language model in automatic speech recognition is to give the text sequence

with the highest probability according to the output of the acoustic model. The language model

generally uses the chain rule to disassemble the probability of a sentence into the product of the

probability of each word. Let string w be composed of words: w1, w2, · · ·, wn, then P(w) can be

broken into:

P(w) = P(w1, w2, · · · , wn) = P(w1)P(w2|w1)P(w3|w1, w2) · · · P(wn|w1, w2, · · · , wn−1) (2.6)

In the above formula, each individual item is the conditional probability of the current word wn

given previous string of words. However, when the strings are too long, the probability is not easy to

estimate. Therefore, based on the Markov assumption, the most common practice is to think that the

probability distribution of each word depends only on the last few words in history. Such a language

model is called a n-gram language model. The n-gram language model is represented as:

P(w) =
n∏

i=1

P(wi|wi−N+1, · · · , wi−1) (2.7)

Here, N is the number of dependent words. When N is 1, 2, and 3, the n-gram models are called

unigram, bigram, and trigram language models, respectively.

• Small N: If words frequently occurred in the training corpus, that would have higher reliability.

• Large N: More constriction on the next appeared word, with greater discrimination, but needs

a lot of training data.

The larger the N in the n-gram language model, the more training data is needed. In theory, the bigger

n shows the better; from the experience, the general speech recognition system use trigram models.

Usually, the language model is constructed by calculating the Maximum Likelihood Estimate

(MLE), which is the best estimate of the training data. The formula is as follows:
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P(wi|wi−2, wi−1) =
N(wi−2, wi−1, wi)

N(wi−2, wi−1)
(2.8)

N(w) means the frequency of a word sequence w appeared in the training corpus. The larger the

size of the training corpus is, the more reliable the results of the parameter estimation would be. But

even if the training data is very large, such as a few GB, there will still be many linguistic strings that

have not appeared in the training corpus, which will result in many parameters being 0. This problem

is also known as data sparseness. Data sparseness can be solved by Data Smoothing method.

Here are some open source language model tools:

1. The SRI Language Modeling Toolkit (SRILM) 1

2. The IRST Language Modeling Toolkit (IRSTLM) 2

3. The MIT Language Modeling Toolkit (MITLM) 3

4. An n-gram Language Model Library from UC Berkeley (BerkeleyLM) 4

(2) Grammatical error detection

Learning a new language is not an easy task. Especially in the text written by learners taking

English as a second language (L2), there are a large number of grammatical errors. Considering the

machine has a high performance to automatically detect these errors and assist the L2 learners for

English study attracts the attention of researchers.

In general, grammatical error detection (GED) is the task of automatically detects grammatical

errors in the written text. To a certain extent, another similar parallel task to GED is the error correc-

tion. Both of these two tasks take the text from language learner to be compared with the reference

text from the human annotator or the grammar checker. Regarding the error detection, it is only con-

cerned with pointing out parts of text in which are grammatically incorrect. This can be an alternative

1 http://www.speech.sri.com/projects/srilm/
2 https://hlt-mt.fbk.eu/technologies/irstlm
3 https://github.com/mitlm/mitlm
4 https://code.google.com/archive/p/berkeleylm/
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choice of reporting the result to the learners or not. As the GED systems are not always accurately

correct to the input sentences, it is better not to report unclear result to the leaner. On the other hand,

the task of error correction should give direct comments and suggestions to identify an error in the

sentence. For the vast majority of cases in CALL system, there is no actual difference between these

two tasks, both need to detect the errors and give the suitable feedback to the language learners.

Specifically, a GED system identifies and corrects any grammatical errors that exist in the sentence

by analyzing the context of the input sentence, and finally outputs a sentence without grammatical

errors. The output sentence retains the semantics of the original sentence. Of course, if there is no

error in the input sentence, the GED system should return the original sentence directly. The following

paragraph gives an intuitive example.

Incorrect: Book of my class intresed to me.

Correct human: A book in my class interested me.

Correct GED1: Books for my class interested me.

Correct GED2: The books of my class were interested to me.

From this example, the L2 learner wrote a sentence with errors that including spell error, article

error or preposition usage error. Compared with the feedback from a human teacher, the GED systems

performed not perfect.

a) Grammatical errors

Generally speaking, the common errors in L2 learners’ study include spelling errors and gram-

matical errors46). The spelling errors open occur in the written text from the language learner, which

are easily handled with the application of word processors (e.g., Microsoft Word5). On the aspect of

grammatical errors, there are a variety of types of classification, such as word missing, word order

errors, unnecessary use of word, and misuse of articles, prepositions, noun number and verb form.

Here are some detailed descriptions on three main typical grammatical errors:

5 https://products.office.com/en-us/word
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1. Article errors: The concept of article is the word come before a noun which is general or

specific, including a, an, the, this, that and so on. It is a common issue to misuse the article

word for a new language study.

2. Preposition errors: Almost refer to the relationship between one word to another, especially

after the verb. The difficulty here is that there are not many rules for the preposition, therefore,

it needs the L2 learners to remember those usages.

3. Verb errors: In this category, subject-verb agreement and the verb tense shift should be noticed.

Spoken speech has much difference to written text, such as the influences in the spoken utterance,

no punctuation there regarded as no grammatical error, and no spelling mistakes in the word. Each of

these requires some modifications to the standard written text GED setup.

b) Approaches of GED system

In recent years, the GED systems have changed the methods from rule-based to statistical-based,

which can be roughly divided into three stages. Here is a brief introduction.

Rule-based approach This type of method corrects errors by handing rules in coding source of the

system. The world’s first GED system, Writer’s Workbench47), is based entirely on matching and

replacement of strings. For some specific categories of errors, rule-based methods are easy to imple-

ment and very effective. Until now, that kind of method is still widely used. However, considering

the complexity of the languages, the rule-based approach is not suitable as a general method of GED

system.

Traditional machine learning method With the accumulation of corpus resources, data-driven

methods have become the mainstream of GED since the 1990s. People used machine learning tech-

niques (naive Bayes classifier, support vector machine (SVM)) to design separate classifiers for dif-

ferent error categories48). The effect of such methods on errors such as articles and prepositions is

obvious, but there are some other problems. It only uses the local context information in the sentence
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and considers different error categories independently, thus can’t do anything for some interactive

errors.

Machine translation (MT) based approach The idea of regarding GED task as a kind of transla-

tion from the wrong sentence into the right one was first derived from Brockett et al.49). However, this

outstanding method gradually became the mainstream of GED until 2014, and then developed rapidly.

This method is initially applied with the traditional statistical machine translation (SMT)-based GED

system50). After that, with the replacement of SMT by Neural Machine Translation (NMT), the MT-

based method becomes a core component of the state-of-the-art GED system.

c) Evaluation metrics on GED system

As we have seen the grammatical error detection example in the above paragraph, a GED system

is able to detect one or a few kinds of errors in the given text. However, the output sentence from the

GED system is not always exactly grammatically correct. Therefore, evaluating the performance of a

GED system is necessary. A GED system is generally evaluated by a comparison between the output

from the system (to be seen as a hypothesis) and a gold standard reference from the human annotator.

Before ready to do the comparison, each position of the system edited string can be divided into a

true positive (T P), a true negative (T N), a false positive (FP) and a false negative (FN).

TP: This item means the perfect match in the position where both the GED system’s output and

the gold standard reference. Here, both of the system and the human annotator indicated that

part in the text was not right.

TN: This item also means the perfect match in the position where both the GED system’s output

and the gold standard reference. Different from TP, both of the systems and the human annotator

didn’t do any change to the part in the text.

FP: This item means the GED system predicted a change in a part of the text, while the gold

standard reference gave nothing changed.

FN: This item means the GED system didn’t show a change in a part of the text, while the gold

standard reference showed that was false.
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Table 2.2 An example for evaluation on GED systems.

Learner he like speak English on * classroom

Annotator he likes speaking English in the classroom

GED system he liked speaking English on the classrooms

Evaluation T N T P T P T N FN T P FP

This definition referred to Chodorow’s work in their evaluation for GED systems51). Table 2.2

shows an example of this evaluation standard.

By counting the four different items, these counts are used for evaluation metrics such as precision

(P), recall (R) and F-measure (F). The definition of these metrics are showed as follows:

P =
NT P

NT P + NFP
(2.9)

R =
NT P

NT P + NFN
(2.10)

F =
2PR

P + R
(2.11)

P is the proportion of actual errors’ number among all the number of the errors predicted by the

GED system. It shows the quality of the GED system. R is the proportion of the actual errors from

the GED system among all the errors in the text from the learner. F reacts the intermediate ratio of P

and R.

(3) Machine translation

In the last section of grammatical error detection, machine translation (MT) based GED system

is mentioned. This section will show more details on the MT as not only the machine translation is

an efficient method applied in the GED system, but also it can be adopted into the language modeling

of ASR for the dialogue-based CALL system (especially presented in the fourth chapter).
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Machine translation (MT) automatically translates a natural language text (source language) into

another natural language text (target language) by the power of machine. Meanwhile, machine trans-

lation is a relatively vague concept. In general, all technologies and services that use machines to

help humans with translate activities can be classified as machine translation, such as an online dic-

tionary, translation assistant, etc. In the vast majority of cases, machine translation is a system that

can be utilized for a complete sentence or paragraph translation, excluding the only online dictionary

function. Besides the input length of the text to the MT, the MT can be specified to a new sentence

pair. Regarding the GED system, the input-output sentence pair is not a normal natural language to

another natural language, just as a wrong to right sentence pair.

a) Traditional methods

Machine translation can be traced back to the 1950s, the United States began to develop translation

machines from Russian to English. At that time, the machine translation was very simple, that is, the

corresponding words were automatically translated one by one referred from the dictionary. That

time was also an early exploration period in which machine translation was based on the bilingual

dictionary and grammar. This is called rule-based machine translation (RBMT).

With the development of statistics, the researchers began to apply statistical models to machine

translation, which is based on the analysis of bilingual text corpus to generate translation, known as

statical-based machine translation (SMT)52). The SMT method performed better than the RBMT and

dominated the field for nearly 20 years. Here, in the SMT, there are some similar points between the

SMT and the speech recognition. Image a translation task: suppose the source language is x and the

target language is y. The goal of machine translation is to find y, so that P(y|x) is the largest, which is

showed below:

ŷ = arg max
y

P(y|x) (2.12)

Further, from Bayesian formula, this equation can be split into the product of two probabilities:

where P(y) is the language model (LM) introduced earlier, in which the simplest method can be

n-gram; P(x|y) is the translation model from the target language y to the source language x.
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ŷ = arg max
y

P(x|y)P(y) (2.13)

Where the problem of translation is changed into how to calculate for the translation model P(x|y)
and the language model P(y). In general, for an SMT, to train these models, two kinds of training data

is required: parallel corpus, in which language x and language y are mutually corresponding, also

knows as bilingual corpus; monolingual corpus, for example, only for language y. The translation

model P(x|y) can be trained as a phrase table similar to a dictionary, followed by a probability to

measure the likelihood of two phrases in source and target languages. In this way, the phrase table

establishes a bridge between the two languages. Alignment in this process can be thought of as the

mapping of words and words or phrases and phrases between two different languages. Alignment

itself is very complicated as there are one to one, one to many, many to one and many to many. The

monolingual corpus is used to train the language model P(y). The language model measures whether

a sentence is fluent and authentic in the target language y. The combination of these two models,

together with other features, constitutes a statistical machine translation. The summary of SMT is as

follows:

1. Requires a large number of feature engineering to construct the SMT system.

2. Takes a lot of time and effort for manual maintenance.

3. The main problem of SMT is that it is not only a complex system, it also needs to have mul-

tiple machine learning models (translation model (P(x|y)), language model (P(y)), etc.) to be

established.

b) Neural machine translation

Due to the diversity and complexity of natural language, it is very challenging to translate one

language into another. At present, under the conditions of large-scale corpus and modern computing

power, neural machine translation (NMT) has showed great potential and has been developed into a

new machine translation method. This method only needs bilingual parallel corpus, which is conve-

nient for training large-scale translation models. NMT has a tremendous research value, which has

become a hot spot in current machine translation research. From the academic view, neural machine
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translation is a method of using deep neural networks (DNN) to obtain mapping relationships be-

tween natural languages. In 2013, Kalchbrenner and Blunsom53) firstly proposed a new end-to-end

encoder-decoder architecture for machine translation, which can be the birth of NMT. The nonlinear

mapping of NMT is different from the linear SMT model, and the state vector between the encoder

module and the decoder module is used to describe the equivalence relation of semantics.

The encoder-decoder architecture in NMT can be called a sequence-to-sequence (seq2seq) model,

which typically involves two recurrent neural networks (RNNs).

The purpose of RNNs is to process sequence data54). In the traditional neural networks, from

the input layer to the hidden layer, and then to the output layer, the layers are fully connected and

the nodes between each layer are disconnected. But this common neural networks is powerless for

many problems. For example, if we want to predict what the next word of a sentence is, the previous

word or several words are needed as the words in a sentence are not independent. RNNs are called

recurrent neural networks, where the current output of a sequence is also related to the previous

output. The specific form of expression is that the networks memorize the previous information and

apply it to the calculation of the current output, namely the nodes between the hidden layers are no

longer unconnected but connected, and the input of the hidden layer includes not only the output of

the input layer but also includes the output of the hidden layer at the previous moment. In theory,

RNNs can process sequence data of any length. However, in practice, in order to reduce complexity

which is a little similar with n-gram language model, it is often assumed that the current state is only

related to a few of previous states. Figure 2.4 shows a typical RNNs.

Firstly, look at the picture on the left. x is a vector that represents the value of the input layer

(a series of words representation in NMT), and h is a vector that represents the value of the hidden

layer. U is the weight matrix of the input layer to the hidden layer, and V is the weight matrix of

the hidden layer to the output layer. y is also a vector, which represents the value of the output

layer. Here, the weight matrix W is the weight of the value in the hidden layer last time, which is

as well regarded as the input weight at current. Expanding the graph by the timeline, it equals the

right side one. RNNs contain the input set which is labeled with {x0, x1, · · · , xt−1, xt, xt+1, · · ·} , the

output set which is labeled with {y0, y1, · · · , yt−1, yt, yt+1, · · ·}, and hidden units set which is marketed
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Fig. 2.4 Structure of a simple RNNs.

as {h0, h1, · · · , ht−1, ht, ht+1, · · ·}. These hidden units have done the most important work in RNNs.

The following formulas represent the calculation method of the RNNs.

ht = f (Uxt +Wht−1) (2.14)

yt = so f tmax(Vht) (2.15)

Where f is generally a nonlinear activation function, such as tanh or ReLU. When calculating h0,

the hidden layer state of the first word, h1 is assumed to be needed, but it does not exist, therefore it

is generally set to be 0 in the implementation.

The NMT of seq2seq is showed in Figure 2.5. It consists of two RNNs. The blue part on the

left is called the encoder RNNs, which is responsible for encoding the source language (Encoding).

The red part on the right is called the decoder RNNs, which is responsible for the target language

(Decoding). The encoder RNNs learns the implicit features of the source language. The hidden state

of the last neuron of the encoder RNNs is the initial implicit state of the decoder RNN. The decoder

RNNs is called as a conditional language model because its initial implicit state is based on the output

of the encoder RNNs. The decoder RNNs is used to generate the target language. The decoder RNNs

continuously predicts the next word until the prediction output word ends tag with ⟨EOS ⟩. The input

to the encoder RNNs is the word embedding of the source language, and the input to the decoder

RNN is the word embedding of the target language.



30

Encoder Decoder

Source Embedding Target Embedding

0.1

0.3

0.2

0.8

0.7

0.2

0.1

Source sentence

Target sentence

Fig. 2.5 Pipeline illustration of a encoder-decoder neural machine translation (NMT).

The training process of seq2seq is end-to-end, that is, the encoder RNN and the decoder RNN are

trained as a whole, and there are not many sub-modules that are trained separately like SMT.

Advantages of NMT over SMT:

1. Better performance and better use of the context.

2. Simpler model which only requires a neural network with end-to-end training.

3. Less human maintenance and feature engineering. Regarding a different language, the network

structure can remain the same, just change the training parallel bilingual corpus.

Insufficiency in NMT:

1. The neural network is hard to explain and difficult to debug.

2. Difficult to control with adding some artificial rules, which may cause some unexpected effects

and safety issues.
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(4) Modeling toolkit

a) Kaldi for automatic speech recognition

Like many great technology applications, there are many combinations of modules behind ASR.

As introduced in the explanation of ASR, the acoustic model (AM) and language model (LM) are

mostly based on the hidden Markov model (HMM) and n-gram model. Improvements to its imple-

mentation process (training the models) often save development costs to a certain extent and speed

up the iteration of technology. Choosing the appropriate modeling toolkit in ASR would be a con-

tribution to our dialogue-based CALL system. The emergence of Kaldi55) is based on the above

motivation.

The goal of Kaldi is to have a modern and flexible code that is easy to understand, modify and

extend.

The four open-source speech recognition toolkits listed here are all derived from academic re-

search.

1. As the name suggests, CMU Sphinx is a product from Carnegie Mellon University. There

are two versions of C and Java on the GitHub platform. Its research and development (R&D)

history dates back approximately 20 years and is currently being updated on the GitHub6.

2. Hidden Markov Toolkit (HTK) began at Cambridge University in 1989 and was once commer-

cialized but is now back at Cambridge University. HTK is not a strictly open-source tool, and

it is slow to update7.

3. Kaldi is an open-source toolkit based on a 2011 workshop, which is written in C++ and licensed

under the Apache License v2.0. The source code of Kaldi is hosted by GitHub8. There are

currently about 7700 stars and 3400 forks. The code is continuously maintained and updated,

which is a very popular algorithm toolkit in the field of speech recognition.

6 https://github.com/cmusphinx
7 https://github.com/ibillxia/htk 3 4 1
8 https://github.com/kaldi-asr/kaldi
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Fig. 2.6 Comparison of developer interest among different speech recognition toolkits.

4. Julius began in 1997 with high-performance, large vocabulary continuous speech recognition

(LVCSR) decoder software for speech-related researchers and developers9.

Figure 2.6 shows the developers’ interest among the four ASR toolkits. Kaldi attracts a lot of

attention from the developers. On the other hand, Kaldi users have more ways to interact, including

mail, Google forums10, and GitHub repository.

b) Keras: Deep Learning framework

Keras is a well-known high-level neural network API that can run on top of TensorFlow, CNTK,

or Theano for researchers11. Keras was first released in March 2015 and was supported by its ease

of use and succinct simplicity. Keras is a framework supported by Google. Keras is easy to learn

and conduct experiments with standard layers, eliminating the need for developers to consider the

complexity of deep learning.

9 https://github.com/julius-speech/julius
10 https://groups.google.com/forum/#!forum/kaldi-help
11 https://keras.io/
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Table 2.3 Assessment criteria for the sentences in ERJ database1).

1 (Very poor) Inaccurate, and apt to be misunderstood

2 (Poor) Inaccurate, and considerable practice needed

3 (Fair) Fair and common

4 (Good) Accurate, but some practice needed

5 (Excellent) Good and near-native speaker level

(5) Data sets

As data-driven approaches are applied in this research, here, we introduce the data sets used in our

system. The data sets can be roughly divided into two categories: the speech data trained/evaluated

in ASR and the text data used for training NMT.

a) ERJ database

In this dialogue-based CALL system, the automatic proficiency evaluation in the phonemic cat-

egory of non-native speech would be conducted. Therefore, regarding the human score, the seg-

mental score of sentence utterances pronunciation was selected in ERJ (English Read by Japanese)

database1),56). The ERJ database is widely used for many research studies on the development of

the CALL systems15),57),58), non-native speech recognition59) and synthesis60). Every Japanese stu-

dent was asked to be fully prepared with sufficient practice before recording. They were informed to

read each given sentence as accurately as possible, and they had three chances to re-record or skip

those sentences failed to be recorded during the main recording time. They can choose to challenge

to re-record those failed sentences after the main recording time. English speech utterance samples

spoken by 100 male and 102 female Japanese students are included in the database. Five phonetically

trained American English teachers were recruited as rating experts. They were informed to listen ten

sentences read by each Japanese student and give a 1-5 scale segmental score to every sentence. The

5-grade scales are showed in Table 2.3.
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b) TIMIT database

As a native speech database, the TIMIT database61) is widely used for research in the field of

speech technology62),63). The TIMIT database collected by Texas Instruments includes 630 speakers

and 2343 different sentences. Each of the 630 individuals from the eight major dialect regions in the

United States spoke out the given ten sentences. All the sentences were manually segmented and

marked at the phoneme level.

c) TMNED corpus

Another non-native speech database as an evaluation set in our system is Tohoku multi-modal

non-native English dialogue (TMNED) corpus recorded in Tohoku university2). For constructing this

corpus, Wu2) let the learners take English conversation with the CALL system based on scenarios

learned in advance. Since university students in Japan have few opportunities to use English for con-

versation and communication, to a certain extent, most of them don’t have much confidence to speak

English out directly. To construct the corpus with high quality for research use, the learners took lots

of effort to remember the content of the conversations before video recording. The original conversa-

tion text and the human transcription from the learners’ speech are nearly the same. Therefore, this

corpus contains restricted English speech of two different dialogue topics spoken by 13 undergraduate

students (9 males and 4 females). Each dialogue covers three sentences from the system and three

responding sentences from the learner. 26 dialogues were collected from this corpus. The human

evaluation step of the collected speech follows the design of the ERJ database’s 1-5 scale segmen-

tal score: 3 American English language teachers were employed to annotate all dialogue data with

assessment criteria presented in Table 2.4.

d) TEC corpus

We constructed a new speech database named as Tohoku English conversation (TEC) corpus

for the spontaneous speech evaluation. 14 (12 males and 2 females) Tohoku University students

participated in the recording of the TEC corpus. Each student was asked to participate in two different

conversations. Each conversation is a three-minute free English conversation with every two students.

To eliminate the tension of the students during the recording process, and to better understand the



35

Table 2.4 Assessment criteria of segmental score for the dialogues in Tohoku multi-modal non-native

English dialogue (TMNED) corpus2).

1 (Very poor) Really non-native speech

2 (Poor) Some non-native speech

3 (Fair) Fair and common

4 (Good) Native-alike prounciation

5 (Excellent) Very native-alike pronunciation

dialogue, we asked participants to speak at a relatively slower pace, and in the pauses of context, try

to reserve enough time for understanding, thinking and responding. The recorded conversations cover

a variety of topics, such as food, movies or sports. We collected 195 different sentences spoken by

those 14 students in total. 3 American English native speakers who have some teaching experience

were recruited to annotate all dialogue data with 1-5 scale phonetic segmental score based on the ERJ

database assessment criteria presented in Table 2.3.

e) Movie-Dialogs corpus

Regarding the development of NMT aiming to generate sentences with errors, since most of the

components in input and output sentences are the same, we first imagine an initial NMT with the

ability to output the same sentence as the input sentence. To train such an initial NMT, the Cornell

Movie-Dialogs Corpus is selected 64), which is a large collection of English conversations extracted

from the movie scripts. The raw data in this corpus is represented in dialogue turns labeled with

movie metadata. As this initial NMT concentrates on generating identical sentences, we trimmed

the data in this dialogue corpus by removing the sentences containing low-frequency words from the

original 304713 utterances, which reproduces 201935 identical sentence pairs for the initial NMT.

f) NICT JLE corpus

The NICT Japanese Learner English (JLE) Corpus65) mainly includes the transcribed text of the

audio-recorded speech samples in an English oral proficiency interview test (Standard Speaking Test,

SST) for Japanese students. As a non-native English spoken corpus, it contains the world’s largest
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transcribed text data (no audio speech data)12. 167 files of the interview in this corpus were annotated

with grammatical error tags. The error tag set includes 47 tags of lexical and grammatical errors of

learners. In total, 8476 right-to-wrong sentence pairs were managed out for training the NMT.

g) TJTEOT corpus

In this research, for the grammatical detection in the speech-based CALL system, we developed

an oral translation corpus called Tohoku Japanese to English oral translation (TJTEOT) corpus.

For the motivation of constructing this corpus, we assume every topic in the dialog-based CALL

system to be a preset one. The learners study words, expressions and grammars from lessons as

pre-exercise, which would make it easier for learners to speak out when talking with the system.

Therefore, we call the reference correct sentence expected to be uttered by the learners “a target

sentence”. However, in a real session, as the language proficiency levels of the learners are different,

not all of the utterances from the learners match the target sentences. we regard the sentence actually

uttered by the learner as “an uttered sentence”. An uttered sentence often contains grammatical errors.

And we assume that this CALL system has the ability to recognize the speech uttered by the learners

as “a recognized sentence”, which have recognition errors in addition to the grammatical errors.

To develop the speech database for GED system’s use, we prepared grammar exercise in the form

of Japanese-to-English translation existed in the system, which has the advantage of only focusing

on the grammatical use in English study. In this task, we designed the recording part as the flexible

use of English expression to show the actual grammatical proficiency level of the learner. More or

less grammatical errors would happen in the recording part as it is difficult to translate all the target

sentences correctly.

The translation content defined for TJTEOT corpus follows the previous work39). The procedure

of recording the utterances was as follows:

1. Practice. We prepared the Japanese sentences and the corresponding target sentences. 14 target

sentences were used as a material of grammar exercise. The learners were asked to read and

practice these sentences. There was no time limitation for practice.

12 https://alaginrc.nict.go.jp/nict jle/index.html
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2. Recording. After the learners thought they were ready, the recording began. The Japanese text

was presented to them, and they were asked to speak out the English translation sentence by

sentence.

We recorded the speech data from five students in Tohoku University, including 2 males and 3

females. By counting the different sentences that occurred in the recording set, we obtained 144

different uttered sentences from the 42 original target sentences.

(6) Summary

In order to establish a dialogue-based CALL system, there would be many sub-tasks, such as

automatically recognizing the speech from the learners, evaluating the pronunciation proficiency of

each learner and giving the appropriate feedback on the grammatical errors in their speech. Behind

the above tasks, the technology in spoken language processing field is important and required.

This chapter has showed a variety of speech technology along with the previous work and recent

deep learning. It should be noted that in order to maximize the application of these technologies,

sufficient data is needed. After all, most of the approaches are data-driven. Therefore, we also

descried the databases utilized in the system, including some famous databases established in the

previous years and the corpus recorded in Tohoku University.

After reading this chapter, we believe that the audiences will have a fundamental understanding

of the entire dialogue-based CALL system. Next, the following two chapters will enter the design

and implementation of the real CALL system, as well as the experimental verification of this system.



3 . Automatic pronunciation evaluation on English speech

by Japanese learners based on acoustic models

At the first stage of building the dialogue-based CALL system, it is necessary to recognize the utter-

ances of the learners with high accuracy and evaluate the language pronunciation proficiency of the

specific speakers with appropriate methods. In this chapter, we discuss the automatic assessment of

the second language (L2) for non-native speakers.

(1) Previous metrics

a) Traditional automatic pronunciation evaluation system

The automatic proficiency assessment systems for L2 learners include a variety of tasks ranging

from restricted speech to spontaneous speech66),67),12). Figure 3.1 describes one of the conventional

proficiency evaluation systems for reading aloud and repeating tasks10). At first, the learner’s speech

is processed with feature extraction, and sent to the speech recognizer for decoding. Then, the out-

put of the recognizer, reference sentence and extracted features are calculated as several ASR-based

scores, including the rate of speech (ROS), GOP and accuracy. Finally, these scores are sent to the

regression model which produces the prediction score for the speech response. SpeechRater is a typ-

ical automatic proficiency assessment system for scoring non-native English speaker’s spontaneous

speech12), which is showed in Figure 3.2. In this scoring process, the input speech is decoded into

word sequence with the non-native acoustic model and forced-aligned to the native acoustic model for

calculating the log-likelihood and the durations of phonemes. The linear regression model is used to

predict proficiency score for the utterance of non-native speakers. The conventional systems provide

38
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Fig. 3.1 Automatic proficiency evaluation systems for reading aloud and repeating tasks. Here, the

reference sentence is required during the calculation step for ASR-based scores.
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Fig. 3.2 Schematic diagram of a standard automatic scoring system for spontaneous speech. The

input speech is decoded into word sequence with the non-native acoustic model and forced-

aligned to the native acoustic model for calculating the log-likelihood and the durations of

phonemes. The linear regression model is used to predict proficiency score.

log-likelihood scores or other ASR-based scores as machine scores in regression-based proficiency

prediction.

Log-likelihood scores are widely used for automatic pronunciation scoring as a traditional ma-

chine score35),68),14). WER could be a machine score for assessing proficiency based on its high

relevance with the function of hearing and distinguishing in the ASR system. Tao69) systematically

demonstrated that WER obtained from the ASR module in an automatic assessment system played

an important role in scoring. Moreover, the WER is the relatively straightforward manifestation and

easily obtained among the output results from the ASR system. One disadvantage of the WER is that
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it requires the prepared reference transcription of the utterance. It is not always possible to prepare

the reference sentences, especially in a dialogue-based CALL system.

b) HMM-based phone log-likelihood scores

HMM-based acoustic models, trained from the speech database of native speakers, can be used

to generate phonetic time alignments of the non-native speaker’s speech during the decoding step by

the Viterbi algorithm. For each phone segment in each sentence, the normalized log-likelihood score

l̂i35) is defined as

l̂i =
1
di

t0+di−1∑

t=t0

log p(yt|qi) (3.1)

where p(yt|qi) is the likelihood of the current observation vector yt to the i-th phone qi, di is the

phone’s duration in frames, and t0 is the staring frame index of the phone segment.

The phone-based log-likelihood score in one sentence L35) is defined as

L =
1
N

N∑

i=1

l̂i (3.2)

where the whole phone’s likelihood score is summed in the sentence over the number of phones

N to obtain the average phone-based log-likelihood score.

c) Word error rate

To evaluate the accuracy of an ASR system, the word error rate (WER) is the standard measure-

ment. Generally, we obtain the WER in the case of knowing the text spoken by the language learner

as the reference transcription. The output word sequence from the ASR system is forced to align with

the reference text. Assume we have I utterances in the database. T (ref)
i and T (asr)

i are the correspond-

ing reference sentences and recognized sentences to the i-th utterance, respectively. According to the

Levenshtein distance70), the WER is calculated as

WER = D(T(ref),T(asr)) =
∑I

i=1 dL(T (ref)
i ,T (asr)

i )
∑I

i=1 |T (ref)
i |

(3.3)

where T(ref) = (T (ref)
1 , ..., T (ref)

I ) and T(asr) = (T (asr)
1 , ..., T (asr)

I ) are the reference sentence-set and

recognized sentence-set, respectively. D(X,Y) is the WER between the sentence-sets X and Y, |T (ref)
i |
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Fig. 3.3 Overview of the proposed proficiency evaluation system. We propose the RER as a new

machine score in the regression-based prediction of proficiency, which based on the two

assumed conditions: a) high recognition accuracy from non-native ASR and b) the effective-

ness of evaluating language proficiency with WER from native ASR.

is the number of words in the i-th sentence, and dL(X,Y) is the Levenshtein distance between sen-

tences X and Y .

(2) A novel pronunciation evaluation method: RER

a) Our proposed pronunciation evaluation system

To recognize and assess the non-native speech in a dialogue-based CALL system, we propose to

utilize two acoustic models as shown in Figure 3.3: one is trained with a non-native speech database

and the other one with a native database. Here, we expect that the non-native ASR system recognizes

non-native utterances with high accuracy regardless of the speaker’s proficiency; besides, the native

ASR system should give less accurate results for utterances with low proficiency. If this is true, we

can distinguish the proficiency of the non-native speaker by comparing the two different recognition

results from non-native and native ASR systems with the input speech. Based on this idea, we propose

a new method for automatic assessment: reference-free error rate (RER).
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Table 3.1 The components calculated in WER and RER.

WER 　 RER

ASR output Acoustic model output　 Native AM output

Reference transcription Human transcription　 Non-native AM output

b) Reference-free error rate

The proposed reference-free error rate (RER) is calculated by comparing the recognized text

obtained from native ASR to that obtained from non-native ASR based on the Levenshtein distance.

If we have I utterances of a speaker, let T(non) = (T (non)
1 , ..., T (non)

I ) and T(nat) = (T (nat)
1 , ..., T (nat)

I ) be

the recognized sentences by the non-native and native ASR systems, respectively. Then the RER is

calculated as

RER = D(T(non),T(nat)). (3.4)

If the RER is high, it means that the two recognition results differ much, which happens when the

proficiency of the utterance is low.

Table 3.1 shows the components utilized in WER and RER. From this comparison, it is obvious

that the results from non-native acoustic model are regarded as “human transcription”.

(3) Experimental set-up

a) Non-native ASR system based on the ERJ database

Data preparation in the ERJ database

All the sentences in the ERJ database were divided into 8 groups (S1 to S8) and the required

amount of the recording in each group is about 120 sentences. Therefore, sentences in one group

were read by nearly 12 male speakers and 13 female speakers, respectively. Table 3.2 shows the

details of the sentence subsets in the ERJ database.

In order to build this non-native ASR system, only the ERJ database was used to train the acoustic

models in this part. At first, all the sentences in the ERJ database were selected out and analyzed by
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Table 3.2 Sentence subsets in ERJ database1). Totally contains eight groups (S1 to S8) and the

required amount of the recording in each group is about 120 sentences.

S1 S2 S3 S4 S5 S6 S7 S8

Number of sentences 120 123 122 123 124 123 123 122

Number of words 742 838 823 823 814 899 882 879

Speakers (male) 13 12 11 11 13 14 12 14

Speakers (female) 13 13 11 12 13 13 13 14

considering the frequency of phones. We used the default phonemic symbols in the CMU pronounc-

ing dictionary. After the repeated sentences were selected out from each sentence subset in ERJ

database, each of 39 phones was counted in every modified sentence subset. Then, we checked the

number of each phone in these revised sentence subsets and ensured that all the 39 phones appeared

in training, development and test sets. Finally, the sets S1, S2, S4, S5, S6, and S7 were determined

as the training set, S3 as the development set and S8 as the test set. Furthermore, regarding the WER

of every student in ERJ database, we applied leave-one-out cross-validation (8 folds) to redefine the

training set and test set for decoding based on the initial non-native ASR system. For the other two

tasks of evaluating the constrained conversation speech in TMNED corpus and the free conversa-

tion speech in TEC corpus, the non-native acoustic models were trained with the whole speech of

sentences in ERJ database.

Lexicon and language model

We modified the CMU pronouncing dictionary as the baseline pronunciation lexicon by changing

all the stressed phonemes to non-stressed phonemes. Table 3.3 shows examples of this change in

CMU pronouncing dictionary. One reason for this modification is that, in our CALL system, phone-

mic features are intended to assess non-native English speech for Japanese learners. The other reason

is that Japanese speakers’ English pronunciation is generally different from native speakers. There-

fore, if we have more data for a specific phoneme modeling, it could improve the performance of the

acoustic model.

Regarding the language models in this non-native ASR system for the proficiency assessment
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Table 3.3 Examples for changing stressed phonemes to non-stressed phonemes in CMU pronuncia-

tion dictionary.

Word Original stressed phonemes Non-stressed phonemes

English IH1 NG G L IH0 SH IH NG G L IH SH

Speech S P IY1 CH S P IY CH

Assess AH0 S EH1 S AH S EH S

of students in ERJ database, we selected all the sentences subsets of ERJ database and removed all

repeated sentences. We developed bigram and trigram language models from these 980 different

sentences. These language models are database-closed on the decision that this system is able to

figure out any sentence in ERJ database as much as possible. However, the design of this language

model is exclusive for ERJ database while leading to poor performance for the unknown text out of

this database. Therefore, in the tasks of evaluating TMNED and TEC, we established an open trigram

language model for the dialogue-based speech proficiency assessment. The open language model

was trained with the content of ERJ sentences, TIMIT sentences and a variety of American English

conversations from the United States Department of State1 and the book of Conversational American

English71). We searched the language model scale among the values between 10 and 50 with a beam

width of 13 to obtain the WER.

b) Native ASR system based on the TIMIT database

Data preparation in the TIMIT database

We converted all the transcriptions in TIMIT from phoneme level to word level, and meanwhile,

set phonemic symbols in data preparation by using the non-stressed phonemic symbols in the CMU

pronouncing dictionary. In contrast to the original separate data set as training, development and test,

all of the utterances in TIMIT were used for training acoustic models in the native ASR system.

1 https://americanenglish.state.gov
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Language model

The TIMIT based native ASR system is the English proficiency assessment component in the

CALL system. Considering the language model in this system, we decided the content including 980

sentences from ERJ and 2343 different sentences from TIMIT and established a trigram language

model for evaluating each student’s proficiency in ERJ database. The open language model in non-

native ASR system was used for evaluation on TMNED and TEC.

(4) Experiments and results

a) Non-native speech recognition within ERJ database

HMM-based monophone and triphone acoustic models were primarily trained as the basis of

DNN-based acoustic models. The details of settings in four different DNN training methods are

listed in Table 3.4. In which, NN11 stands for the NNET1 method and the other three NNs stand

for the NNET2 methods in Kaldi toolkit. Here, p-norm is the non-linearity y = ||x||p, where the

vector x represents a small group of inputs72). There is no hidden layer dimension in the p-norm

networks, instead, there are two parameters: p-norm input dimension/p-norm output dimension. The

p-norm E.L. stands for the ensemble p-norm non-linearity, where the ensemble size is 4. We regarded

NNET1 method as a trial, experiment in NNET2 methods as the main focus. Four hidden-layer neural

networks is enough in most of the databases73). MFCC feature without dimension reduction was

applied to NNET2, which was slightly different with FBANK feature in NNET174),75). As this paper

concentrates on the emphasis of acoustic models, we present all the results only by using the same

trigram language model trained from ERJ sentences.

The recognition results within ERJ database are presented in Table 3.5. Compared with the results

of traditional GMM-HMM acoustic models, DNN-based acoustic models significantly improve the

accuracy of recognition. In addition, the acoustic model with non-stressed phonemes performed better

than that with stressed phonemes, which was mentioned in Section 3.3. Six kinds of acoustic models

are used for decoding. The acoustic model with non-stressed phonemes performs better than that with

stressed phonemes. The third method with non-stressed phonemes in NNET2 series models has the
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Table 3.4 Settings in DNN training. Here, p-norm is the non-linearity y = ||x||p, where the vector x

represents a small group of inputs.

NN11 NN21 NN22 NN23

Model Type NNET1 NNET2 NNET2 NNET2

Input Feature 40FBANK 40MFCCs 40MFCCs 40MFCCs

Hidden Type sigmoid tanh p-norm p-norm E.L.

Input Nodes 440 360 360 360

Hidden Layer 4 4 4 4

Hidden Dim 1024 1024 1000/200 1000/200

Output Nodes 3168 1551 1551 1551

Table 3.5 Experimental results in the development set and test set. Six kinds of acoustic models are

used for decoding. The acoustic model with non-stressed phonemes performs better than

that with stressed phonemes.

Monophone Triphone NN11 NN21 NN22 NN23

(non-stressed)

DEV-WER[%] 7.09 7.83 2.99 4.99 3.13 2.81

TEST-WER[%] 6.90 5.11 2.05 3.42 2.31 1.97

(stressed)

DEV-WER[%] 8.39 8.77 * 5.38 3.39 2.93

TEST-WER[%] 7.59 5.34 * 3.55 2.29 2.08

lowest WER in the test set as 1.97%, which shows a proper potential to use the output recognized

sentences as reference transcriptions.

b) Conditions in automatic pronunciation assessment

The goal in this part is to develop a method to predict the English proficiency of a Japanese

native speaker’s English utterance without reference transcription. To this end, for the human scoring

on the evaluation data set, we first investigated the inter-rater agreement calculated by the Pearson
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correlation coefficient (r). In ERJ database, one of the raters scored only male students when the

other four (R1,R2,R3 and R4) scored both males and females. Therefore, we calculated the human-

human agreement among the four full scoring teachers. Figure 3.4 shows the inter-rater correlation

matrix in ERJ database. The distribution of each human-related score is displayed on the diagonal

line. The two variables (one human score with the other) scatter plots are displayed with a regression

line at the lower triangle, while the correlation coefficient with the level of significance as stars on

the upper triangle. Each level of significance is associated with a symbol: p value (0: “∗ ∗ ∗”, 0.001:

“∗∗”, 0.01: “∗”, 0.05: “.”, > 0.05: “ ”). The average correlation r among the raters is around 0.8 (N =

190). The total number of Japanese students scored by the teachers is 190 (95 males and 95 females).

Additionally, we calculated the average segmental score from all of the 5 raters as the proficiency

score for every Japanese student.

Figure 3.5 shows the histogram of proficiency scores in the ERJ database. The average value of

proficiency is 2.97, and the standard deviation is 0.55. In order to explicit the relationship between

the proficiency and WER obtained from native ASR system, we divided all speakers of ERJ database

into three classes: LOW, MID and HIGH, where the speaker having a lower score than 2.5 were

classified into LOW, those having higher score than 3.2 were HIGH, and the others were MID. The

ensemble p-norm activation function in NNET2 was only selected in DNN based acoustic model,

which has the same parameter with NN23 showed in a). Figure 3.6 shows the relationship between the

WER from our established native ASR system and proficiency score for both GMM-HMM and DNN-

HMM. These results indicate that with the proficiency score getting higher, WER of the corresponding

student becomes lower.

Next, to investigate the correlation coefficients between the proficiency score and other ASR-

based machine scores, we prepared various combinations of conditions. Table 3.6 shows the symbols

to describe the condition of machine scores. A machine score is described as a combination of the

training data, score type, and the acoustic model. For example, the log-likelihood of GMM-HMM

triphone trained from the ERJ database is denoted as “E LL TRI”. As the calculation of RER uses

acoustic models trained from both TIMIT and ERJ, in which output text from the DNN-based acoustic

model in native ASR is regarded as the reference, RER-based scores are described without the training
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Fig. 3.4 The scatter plot matrix of inter-rater correlation in ERJ database. The distribution of each

human-related score is displayed on the diagonal line. The two variables (one human score

with the other) scatter plots are displayed with a regression line at the lower triangle, while

the correlation coefficient with the level of significance as stars on the upper triangle. Each

level of significance is associated with a symbol: p value (0: “∗ ∗ ∗”, 0.001: “∗∗”, 0.01: “∗”,

0.05: “.”, > 0.05: “ ”). N = 190.

data part, such as “RER MONO” or “RER NN”.
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Table 3.6 Components of machine score combination. A machine score is described as a combina-

tion of the training data, score type, and the acoustic model.

Training Score Type Acoustic Model

TIMIT (T ) Log-likelihood (LL ) Monophone (MONO)

ERJ (E ) WER (WER ) Triphone (TRI)

RER (RER ) NNET2 (NN)

c) The relationship between the proficiency and ASR-based machine scores

Figure 3.7 shows the absolute correlation for all combination of machine scores and the profi-

ciency score. This figure is a matrix of absolute correlation coefficients, and the vertical and horizon-

tal order of scores are the same. We also show the dendrogram obtained by the hierarchical clustering

conducted based on the correlation. In this figure, white color means high absolute correlation and

black color means low correlation. From this figure, it is obvious that all scores are classified into three

groups: the first one includes WER of ERJ-based acoustic models (E WER MONO, E WER TRI,

E WER NN) and the log-likelihood of ERJ-based NN acoustic model (E LL NN). The second one

includes log-likelihood of GMM-HMM trained from both TIMIT and ERJ (T LL TRI, T LL MONO,

E LL TRI, E LL MONO). The third group includes all other scores and the proficiency score.

As presented in Figure 3.7, it is obvious that the log-likelihood scores of GMM-HMM have a

strong correlation with each other regardless of its training data. However, the log-likelihood of

DNN-HMM shows a different tendency. The log-likelihood of E LL NN and T LL NN have a very

low correlation (r = −0.041, p = n.s), which suggests that the DNN-HMM trained from different

training data captures the distribution of speech differently.

Figure 3.8 shows the absolute correlation between the proficiency score and all machine scores.

T LL NN has the highest correlation (r = 0.736, p < 0.001), and T WER NN, T WER TRI, RER TRI,

RER NN have almost the same values (0.721 to 0.726). The difference between T WER NN and

RER NN is really small, which means the reference transcriptions are nearly the same with the out-

put recognized text from the non-native ASR by using DNN-based acoustic model. Note that WER

or RER has a negative correlation to the proficiency score because low proficiency utterance leads to
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Fig. 3.7 Absolute correlation between all ASR-based machine scores and the pronunciation profi-

ciency score. white color means high absolute correlation and black color means low corre-

lation.

larger WER.

Next, we analyzed the effect of combining multiple scores. Considering the purpose that aims to

develop a method to predict a learner ’s proficiency without a reference transcription, we excluded

the WER-based scores. As a result, we used nine scores (T LL MONO, T LL TRI, T LL NN,

E LL MONO, E LL TRI, E LL NN, RER MONO, RER TRI, RER NN). Then we examined all

combination of these scores (511 combinations in total). Linear regression was used for combining

those scores. Two-fold cross-validation was used for evaluation, where the data was split into even-
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Fig. 3.8 Absolute correlation between the proficiency score and machine scores on ERJ database.

numbered and odd-numbered samples, and then the regression coefficients were calculated from one

sample set, and the correlation coefficient was calculated using the other set. Table 3.7 shows the

result. To summarize the result, we only show the result with the highest correlation when one to nine

machine scores were combined.

We conducted the test of the difference between two dependent correlations with one variable

in common76), this test was calculated based on the two-fold cross-validation basis. The summary

of this test is presented in Table 3.8. Here, we selected three machine scores for comparison. This

test shows there are significant differences among them. As shown in Figure 3.8, T LL NN has

the highest correlation as a single score. The correlation coefficient exceeds 0.8 when three scores

were combined (T LL NN, RER MONO, and RER NN). The highest correlation was obtained when

all machine scores were used, where the correlation coefficient was 0.826, p < 0.001. When we

did not use RER-based scores, the best combination was T LL MONO + T LL TRI + T LL NN +

E LL TRI, where the correlation coefficient was 0.786, p < 0.001. These results show the importance

of RER for estimating proficiency. Figure 3.9 shows a scatter plot of the proficiency score and the

prediction score when all scores are used. This result shows that the prediction score has a good
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Table 3.7 Correlation coefficients by combining multiple machine scores. This table only shows the

nine high correlation when one to nine scores were combined.

T LL E LL RER Correlation

MONO TRI NN MONO TRI NN MONO TRI NN

✓ 0.736, p < 0.001

✓ ✓ 0.778, p < 0.001

✓ ✓ ✓ 0.791, p < 0.001

✓ ✓ ✓ ✓ 0.808, p < 0.001

✓ ✓ ✓ ✓ ✓ 0.815, p < 0.001

✓ ✓ ✓ ✓ ✓ ✓ 0.819, p < 0.001

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.820, p < 0.001

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.823, p < 0.001

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.826, p < 0.001

Table 3.8 Summary of the test of the difference between two dependent correlations with

one variable in common. S1 is T LL NN, S2 is the combination of four scores

(T LL MONO, T LL TRI, T LL NN and E LL TRI) and S3 is the combination of

nine scores (T LL MONO, T LL TRI, T LL NN, E LL MONO, E LL TRI, E LL NN,

RER MONO, RER TRI and RER NN). P stands for the proficiency score. N = 190.

Scores Correlation Test for difference in two correlations

S1 r(S1-P) = 0.73 r(S1-P) vs. r(S2-P): z = −1.96, p = 0.049

S2 r(S2-P) = 0.78 r(S2-P) vs. r(S3-P): z = −2.93, p = 0.003

S3 r(S3-P) = 0.82 r(S3-P) vs. r(S1-P): z = −2.03, p = 0.042

correlation with the proficiency score. The standard error was 0.31.

d) Automatic assessment on TMNED corpus

In order to examine the effectiveness of our proposed method on real constrained dialogue task,

we conducted the experiment on the evaluation of TMNED. By using the same way in ERJ database,
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Fig. 3.9 Scatter plot of the proficiency and predicted proficiency on ERJ database. N = 190.

the average segmental score among the three human raters (H1, H2 and H3) in TMNED was calcu-

lated as proficiency score. The difference on evaluation from ERJ database is that the test unit is each

of the dialogue here, while ERJ database is each of the students. The design of the test unit is based

on the reason that TMNED is rather small in terms of only 13 students, and unlike reading tasks, the

performance of the restricted conversation speech is always deviated by the different scenes. Figure

3.10 shows the histogram of proficiency in TMNED. The average value of proficiency is 2.82, and

the standard deviation is 0.68. Table 3.9 summarize the inter-rater correlation on TMNED. The corre-

lation among the three raters is around 0.5, which means low agreement among them. Proficiency is

the average segmental score among three human raters. We also calculated other combination scores

for analysis. For example, H1H2 means the average score from human rater 1 and human rater 2, the

meaning is the same with H2H3 and H1H3. The correlation coefficients (r(H1-H2H3), r(H2-H1H3)
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Fig. 3.10 Histogram of proficiency scores in TMNED corpus. The average value of proficiency is

2.82, and the standard deviation is 0.68. N = 26.

Table 3.9 Inter-rater correlation on TMNED corpus. Proficiency is the average segmental score

among three human raters. H1H2 means the average score from human rater 1 and hu-

man rater 2. H2H3 means the average score from human rater 2 and human rater 3. H1H3

means the average score from human rater 1 and human rater 3. N = 26.

H1 H2 H3 H1H2 H2H3 H1H3

H1 * 0.50, p = 0.009 0.47, p = 0.016 0.81, p < 0.001 0.56, p = 0.003 0.87, p < 0.001

H2 0.50, p = 0.009 * 0.49, p = 0.010 0.91, p < 0.001 0.92, p < 0.001 0.58, p = 0.002

H3 0.47, p = 0.016 0.49, p = 0.010 * 0.55, p = 0.003 0.80, p < 0.001 0.84, p < 0.001

and r(H3-H1H2)) range from 0.55 to 0.58, which is higher than that of H-H. The correlation between

the two-rater average score to the individual rater score (calculated in the two-rater average score)

has no meaning. Each human rater has a high agreement with proficiency(0.78, p < 0.001; 0.87,

p < 0.001; 0.77, p < 0.001).

The speech from the student in each of the 26 dialogues was recognized by our non-native and

native ASR systems. Since each speech in TMNED is essentially produced by memory, the human
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Table 3.10 Average value of WER and RER from the ASR systems by both GMM-HMM and DNN-

HMM on TMNED.

MONO TRI NN

WER1[%](Non-native ASR) 25.03 16.18 16.72

WER2[%](Non-native ASR) 26.60 17.45 17.72

WER1[%](native ASR) 53.70 52.20 50.96

WER2[%](native ASR) 54.82 53.34 52.88

RER[%] 54.94 55.56 55.39

transcribed text would have more or less different places from the original reference text. Therefore,

we calculated WER1 based on the comparison between native ASR output and the human transcribed

reference text, and WER2 based on the comparison between native ASR output and the prompt ref-

erence text. Table 3.10 shows the average value of WER and RER from the output of these two

ASR systems. Compared with the results of WER2, there is almost 1% improvement in WER1.

Figure 3.11 shows the absolute correlation between the proficiency and ASR-based machine scores

for the evaluation on TMNED. Unlike the correlation results in ERJ database, this time the WER

and RER scores have more agreement with proficiency than log-likelihood scores. It is positive

to see that RER TRI has the highest correlation (r = 0.692, p < 0.001) among all the machine

scores. E LL NN has the highest value (r = 0.363, p = 0.067) among log-likelihood scores. Finally,

we used nine scores (T LL MONO, T LL TRI, T LL NN, E LL MONO, E LL TRI, E LL NN,

RER MONO, RER TRI, RER NN) for combination as the prediction score, excluding the WER-

based scores. Figure 3.12 shows a scatter plot of the proficiency score and the prediction score for

the evaluation on TMNED. The correlation between the prediction score and the proficiency score is

0.803, p < 0.001,N = 26. We checked the test for the difference between human-human correlation

and machine-human correlation. Three different tests are set as presented in Table 3.11. H1 is human

rater 1. H2 is human rater 12. H3 is human rater 3. H1H2 means the average score from H1 and H2.

H2H3 means the average score from H2 and H3. H1H3 means the average score from H1 and H3.

PS (predicted score) is the best machine score from the combination of nine scores (T LL MONO,
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Fig. 3.11 Absolute correlation between the proficiency score and machine scores on TMNED corpus.

Table 3.11 Test for the difference between human-human correlation vs. machine-human correlation

on TMNED corpus. H1 is human rater 1. H2 is human rater 12. H3 is human rater 3.

H1H2 means the average score from H1 and H2. H2H3 means the average score from

H2 and H3. H1H3 means the average score from H1 and H3. PS (predicted score) is

the best machine score from the combination of nine scores (T LL MONO, T LL TRI,

T LL NN, E LL MONO, E LL TRI, E LL NN, RER MONO, RER TRI and RER NN).

r(PS-H2H3) = 0.786, p < 0.001. r(PS-H1H3) = 0.798, p < 0.001. r(PS-H1H2) =

0.735, p < 0.001. N = 26.

Test for difference between r(human-human) and r(machine-human)

r(H1-H2H3) vs. r(PS-H2H3): z = −1.89, p = 0.063

r(H2-H1H3) vs. r(PS-H1H3): z = −1.85, p = 0.064

r(H3-H1H2) vs. r(PS-H1H2): z = −1.67, p = 0.094

T LL TRI, T LL NN, E LL MONO, E LL TRI, E LL NN, RER MONO, RER TRI and RER NN).

The correlation between the prediction score and average score from two raters ranges from 0.735 to

0.798, which is significantly larger than the inter-rater correlation.
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Fig. 3.12 Scatter plot of the proficiency and predicted proficiency on TMNED corpus. N = 26.

e) Automatic assessment on TEC corpus

In this section, TEC corpus was used for the spontaneous non-native English speech evaluation.

The experimental conditions and evaluation steps are kept the same as those in the previous Section

of evaluation on TMNED corpus.

The proficiency score is defined as the average segmental score among the three American English

native raters (A1, A2 and A3) in TEC corpus. The test unit is the speech from one student in each

dialogue. Figure 3.13 shows the histogram of proficiency in TEC. The average value of proficiency

is 2.84, and the standard deviation is 0.48. The inter-rater correlation on TEC is presented in Table

3.12. Proficiency is the average segmental score among three human raters. A1A2 means the average

score from human rater 1 and human rater 2. A2A3 means the average score from human rater 2 and

human rater 3. A1A3 means the average score from human rater 1 and human rater 3. The correlation
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Fig. 3.13 Histogram of proficiency scores in TEC corpus. The average value of proficiency is 2.84,

and the standard deviation is 0.48. N = 28.

Table 3.12 Inter-rater correlation on TEC corpus. Proficiency is the average segmental score among

three human raters. A1A2 means the average score from human rater 1 and human rater

2. A2A3 means the average score from human rater 2 and human rater 3. A1A3 means

the average score from human rater 1 and human rater 3. N = 28.

A1 A2 A3 A1A2 A2A3 A1A3

A1 * 0.62, p < 0.001 0.60, p < 0.001 0.90, p < 0.001 0.68, p < 0.001 0.89, p < 0.001

A2 0.62, p < 0.001 * 0.62, p < 0.001 0.90, p < 0.001 0.89, p < 0.001 0.69, p < 0.001

A3 0.60, p < 0.001 0.62, p < 0.001 * 0.68, p < 0.001 0.91, p < 0.001 0.90, p < 0.001

between every two of the three raters is around 0.6, which is a little higher than that in TMNED. The

correlation coefficients (r(A1-A2A3), r(A2-A1A3) and r(A3-A1A2)) range from 0.68 to 0.69, which

shows the same tendency in TMNED.

There is no golden standard reference sentence in TEC corpus, this time, we directly calculated the
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Table 3.13 Average value of RER from the ASR systems by both GMM-HMM and DNN-HMM on

TEC.

MONO TRI NN

RER[%] 49.01 55.92 40.24

RER score of each test unit from the outputs of non-native and native ASR systems. Table 3.13 shows

the average value of RER in TEC. Compared with the results in Table 3.10, the average value of RER

in TEC with the DNN-based acoustic model is rather lower than that in TMNED. Figure 3.14 shows

the absolute correlation between the proficiency and ASR-based machine scores for the evaluation of

TEC. RER TRI has the highest correlation (r = 0.708, p < 0.001) among all the machine scores, and

T LL NN has the highest value (r = 0.436, p = 0.020) among log-likelihood scores. Nine machine

scores (T LL MONO, T LL TRI, T LL NN, E LL MONO, E LL TRI, E LL NN, RER MONO,

RER TRI, RER NN) are combined as the predicted proficiency score. Figure 3.15 shows a scatter plot

of the proficiency score and the prediction score for the evaluation on TEC. The correlation between

the prediction score and the proficiency score is 0.799, p < 0.001,N = 28. We did the same test

for the difference between human-human correlation and machine-human correlation as Section d).

Three different tests are set as presented in Table 3.14. PS (predicted score) is the best machine score

from the combination of nine scores (T LL MONO, T LL TRI, T LL NN, E LL MONO, E LL TRI,

E LL NN, RER MONO, RER TRI and RER NN). The correlation between the prediction score and

the average score from two raters ranges from 0.756 to 0.775. Compared with the results in Table

3.11, the difference is not significant. From these results, it is indicated that the proposed RER is

useful and acceptable for automatic evaluation on the spontaneous non-native English conversation

speech.

(5) Analysis and discussion

Table 3.15 shows the comparison among different automatic pronunciation evaluation system.

Our training data include non-native speech as English read by Japanese and native American English

speech; therefore, they involve much phonemic category in both L1 and L2 speakers. We applied the
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Fig. 3.14 Absolute correlation between the proficiency score and machine scores on TEC corpus.
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Fig. 3.15 Scatter plot of the proficiency and predicted proficiency on TEC corpus. N = 28.
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Table 3.14 Test for the difference between human-human correlation vs. machine-human correlation

on TEC corpus. PS (predicted score) is the best machine score from the combination of

nine scores (T LL MONO, T LL TRI, T LL NN, E LL MONO, E LL TRI, E LL NN,

RER MONO, RER TRI and RER NN). r(PS-A2A3) = 0.768, p < 0.001. r(PS-A1A3) =

0.756, p < 0.001. r(PS-A1A2) = 0.775, p < 0.001. N = 28.

Test for difference between r(human-human) and r(machine-human)

r(A1-A2A3) vs. r(PS-A2A3): z = −0.95, p = 0.340

r(A2-A1A3) vs. r(PS-A1A3): z = −0.69, p = 0.491

r(A3-A1A2) vs. r(PS-A1A2): z = −0.98, p = 0.326

Table 3.15 Automatic pronunciation evaluation system.

Feature Reference text

GOP Native AM, Forced Alignment Likelihood YES

Native AM, Phone Recognition

[de Wet+, 2009]10) Non-native AM, Sentence Recognition WER YES

[Zechner+, 2009]12) Non-native AM, Sentence Recognition Likelihood NO

Native AM, Forced Alignment Duration

[Moustroufas+, 2007]14) Non-native AM, Sentence Recognition Likelihood NO

Native AM, Sentence Recognition

Tohoku University Non-native AM, Sentence Recognition Likelihood NO

Native AM, Sentence Recognition RER

recent state-of-the-art DNN-based training methods for the native and non-native acoustic models.

As for the test sets in this study, we prepared three different kinds of speech for evaluation: reading

aloud speech, constrained interactive dialogue speech and spontaneous English conversation speech.

The correlation results show the positive usage in the CALL system.

It is common to use both non-native and native acoustic models in an automatic assessment lan-

guage proficiency system, some related works are listed in Section 1. To obtain the RER, it costs dou-
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ble efforts to establish two ASR systems, compared with only one ASR. It also needs multi-models

to decode the speech several times in terms of the RER’s calculation. For the automatic assessment

on non-native speech without knowing reference sentences, RER shows its superiority, especially on

the experiments of TMNED and TEC, where the log-likelihood scores are rather poorly related with

proficiency scores.

(6) Summary

In this chapter, we performed an automatic pronunciation evaluation system for English utterances

from Japanese native speakers by utilizing both native and non-native acoustic models. Our system

can evaluate the utterances from Japanese learners without knowing the reference text in advance.

To this end, we proposed the RER as a new machine score for the regression-based prediction of

pronunciation proficiency. As a result, the correlation between the proposed machine score and the

human score is very strong.



4 . Language modeling in speech recognition for

grammatical error detection

To develop a speech-based CALL system for grammatical exercise, first and foremost, the speech

recognizer in the system should have the ability to recognize L2 learners’ utterance including gram-

matical errors as accurately as possible for providing effective and corrective feedback. In this chapter,

unlike the Chapter 3 only concentrating on the acoustic modeling in ASR for English pronunciation

evaluation, for the grammatical error detection (GED) task, not only the acoustic model with ex-

tremely high performance is needed, but also language modeling is very important as the language

model contains a lot of verbal information (correct or wrong grammar and expression). A good lan-

guage model helps to improve the speech recognition rate, which further makes the GED system

better.

(1) Previous method

The quality of ASR is always dependent on its two main components: acoustic models (AMs) and

language models (LMs). The AMs describe how the sounds are pronounced in a language and the

LMs cover the probabilities of words or sequences of words. Training data, as one of the important

factors, significantly impacts the performance in each of these two different models. Normally, the

training data is always obtained from the available corpus basically containing the correct contents,

which might imply that it would be awful for some specific domain recognition tasks. So far, with the

widespread application of deep learning, a large number of researches about deep neural networks

(DNN) based acoustic models have increasingly improved speech recognition rate for non-native

64
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Fig. 4.1 The process of grammatical error detection in speech recognition.

speech33),36). However, in these ordinary DNN-based systems, less attention has been paid to how to

establish language models in ASR for improving recognition of L2 speech with grammatical errors.

First, we explain the overview of language modeling of the ASR system for speech-based gram-

matical error detection.

To be able to perform the grammatical error detection for speech, it is necessary to obtain in-

formation about such grammatical errors for language modeling in ASR. Since an ordinary English

corpus does not contain many grammatical mistakes, a language model trained with such kind of cor-

pus can not model grammatical errors and assign the probabilities of these errors, yielding the failure

of speech errors recognition. Thus, previous researches concentrate on the methods for sentence gen-

eration with errors. Most of them established handcrafted grammatical error rules and implemented

these rules on the prompted right source sentences for generating new sentences with errors39),15),77).

For instance, Anzai et al.39) proposed an approach to artificially generate sentences with grammatical

errors that Japanese learners tend to make. They developed error rules according to the corpus 65) that

contains mistakes in spoken English from Japanese, and applied those errors to the correct sentences.

A problem with their method is that it is unclear whether the proposed rules are “optimum”

in some senses. Because their rules were heuristically established, the generated sentences do not

necessarily reflect the comprehensive situation of English spoken by Japanese learners.

Therefore, we examine to use the neural machine translation (NMT) to convert correct English

sentences into those with grammatical errors. The proposed 3-gram language model is trained from
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these NMT generated sentences. To this end, on developing our speech-based CALL system, we

design that Japanese Learners conduct a pre-exercise on the basic grammatical study in a specific

domain and then do a Japanese-to-English oral translation task. Since we also assume that the system

has the translated reference English correct sentences, the system can point out errors by comparing

the correct sentences and the recognition result as long as the recognition result matches what the

learner really have uttered. The process of grammatical error detection in our CALL system is showed

in Figure 4.1.

(2) Evaluation metrics on language modeling for GED

For a traditional written GED system, it is common to use the default metrics as showed in Chapter

2. However, this time, to the spoken GED in our dialogue-based CALL system, as the performance of

ASR is the precondition before the actual GED module, if the recognized output of the ASR is near

to the human transcribed text, then we can take it as the written text in the traditional GED system,

namely a full range of automated evaluation system. On the other hand, normally, it is difficult for the

system to prepare the human-annotated correct text from the English speech spoken by the learners

in advance. There is no such correct text as a standard reference text for comparison. Therefore, the

evaluation metrics in this research need to be adjusted.

Regarding our evaluation on language modeling in ASR for the spoken GED system, we con-

structed a restricted Japanese to English oral translation corpus as explained in Chapter 2. Consid-

ering the evaluation research as an initial attempt with the characteristics of the cornerstone to the

spoken GED, the TJTEOT corpus makes it suitable for the evaluation and experiment. Table 4.1

shows an example of evaluation in our system.

To evaluate the effect of the generated sentences from NMT for language modeling, here are four

modified evaluation metrics. Consider a learner utters a sentence that contains several grammatical

errors, and the CALL system points out the errors. Let Ne denote the number of actual grammatical

errors included in an uttered sentence. Then the system points out the wrong words. Let NT P and

NFP be the number of correctly detected error words and wrongly detected error words, respectively.



67

Table 4.1 An example for evaluation in our speech-based GED system.

Learner he likes speak English on * classroom

Reference he likes speaking English in the classroom

ASR output he likely speak English on the classrooms

Evaluation T N FP T P T N T P FN T N

Detection ✓ X X ✓ X ✓ ✓

1. Word error rate (WER).

WER =
S + D + I

N
(4.1)

WER shows the performance with the language model in ASR by comparing the recognized

result from ASR to the human transcription. The definition of WER has the same meaning to

that in Chapter 3 with a more intuitive statistics. In which, S is the number of substitutions,

D is the number of deletions, I is the number of insertions, N is the number of words in the

human transcription.

2. Precision (P).

P =
NT P

NT P + NFP
(4.2)

P is the proportion of actual recognized error words among all the recognized error words. It

can be used for measuring the quality of the ASR.

3. Recall (R).

R =
NT P

Ne
(4.3)

R is the proportion of actual recognized error words among all the error words in real utterance.

It can be used for measuring the coverage of the ASR.

4. F-measure.

F =
2PR

P + R
(4.4)

F-measure shows the harmonic mean of P and R.
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Table 4.2 Settings in DNN training for speech-based GED task.

NN1 NN2 NN3

Input Feature 40MFCCs 40MFCCs 40MFCCs

Hidden Type tanh p-norm p-norm E.L.

Input Nodes 360 360 360

Hidden Layer 4 4 4

Hidden Dim 1024 1000/200 1000/200

Output Nodes 1551 1551 1551

(3) Data pre-processing

Before digging into the evaluation of language modeling from the sentences generated by NMT,

a standard ASR should be first established.

ERJ database1) was used to train the acoustic models in this part. TJTEOT corpus was used

as the evaluation set. All the sentences in the ERJ database were selected out for the training set.

The utterances from TJTEOT were determined as test set. HMM-based monophone and triphone

acoustic models were primarily trained as the basis of DNN-based acoustic models. The settings

of the conventional GMM-HMM acoustic models were kept same as those in Chapter 3. Here only

selected NNET2 methods for DNN training. The details of settings in three different DNN training

are listed in Table 4.2.

By constructing the default language model, we have made a statistical analysis on the TJTEOT

corpus. Figure 4.2 shows the counted number of translated English sentences in TJTEOT corpus. In

this figure, the horizontal axis from S1 to S42 means the 42 translation units. Totally, there are 144

different sentences in the corpus.

The CMU pronouncing dictionary is modified as the baseline pronunciation lexicon by changing

all the stressed phonemes to non-stressed phonemes.

We trained a trigram language model by using all the sentences in the ERJ database and the

144 English sentences including the target correct sentences and human transcription from TJTEOT

corpus. Thus, this trigram language model is a closed gold condition language model.
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Fig. 4.2 Statistical information about counted number of translated English sentences in TJTEOT

corpus. N = 42.

The recognition results are presented in Figure 4.3. From these results, we found that the NN1

method performed well among the acoustic models. Therefore, we only choose the NN1-based acous-

tic model for the next experiments.

(4) Conditions of NMT

From the point of view of parameter learning, the problem of recurrent neural networks (RNNs) is

that there is a vanishing or exploding gradient78), which makes it difficult for RNNs to deal with long

distance dependency. Therefore, the NMT model did not perform well with the traditional RNNs.

a) LSTM & GRU

Long short-term memory (LSTM) is a special RNNs, mainly to solve the exploding and vanishing

problem in long sequence training79),80). With the help of the gate mechanism (allowing the deletion
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Fig. 4.3 The avarage value of WER with different acoustic models in TJTEOT corpus. Here, lan-

guage model is under closed condition.

and updating of explicit memory in the LSTM), that problem is controlled, allowing the model to get

far better access to the “long distance” in the sentence. Simply put, LSTM can perform better than

vanilla RNNs in longer sequences.

Gate recurrent unit (GRU)81) is one kind of RNNs. Like LSTM, it is also proposed to solve the

problem such as gradient in long-term memory and back propagation. Compared to LSTM, the use of

GRU can achieve comparable results, and it is easier to train with less parameters, which can greatly

improve training efficiency, therefore in most of time, it is more inclined to use GRU.

Figure 4.4 shows the structure of LSTM and GRU with the input and output. The LSTM has two

transfer states, a cell state ct, and a hidden state ht. The input and output structure of GRU is the

same as that of normal RNNs. There is a current input xt, and only a hidden state ht−1 passed by the

previous node. This hidden state contains information about the previous node. Combined with xt

and ht−1, the GRU gets the output yt of the current hidden node and the hidden state ht passed to the

next node.

The introduction of LSTM and GRU solves the problem of “long-distance dependency” and turns
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Fig. 4.4 The structure of LSTM and GRU with the input and output.

the main problem of NMT into a “fixed-length vector” problem: regardless of the length of the source

sentence, this neural network needs to compress it into a fixed-length vector, which brings more

complexity and uncertainty in the decoding process, especially when the source sentence is very

long.

b) Attention mechanism

The hidden state of the last neuron of the encoder RNNs is used as the initial state of the decoder

RNNs. That is to say, the last hidden state vector of the encoder needs to carry all the information

of the source sentence, which becomes the information bottleneck of the entire model. Since the

attention mechanism for NMT in 2014 was introduced82), the fixed-length vector problem has also

begun to be resolved. As Figure 4.5 shows, a content-based attention mechanism can be applied to

dynamically generate a (weighted) context vector from the source sentence. The neural network then

predicts the word based on the context vector rather than a fixed-length vector.
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Fig. 4.5 The attention mechanism in neural machine translation with encoder-decoder structure.

(5) Experiments and results

a) Generating sentences

NMT generating We generated sentences with errors based on an encoder-decoder model imple-

mented with Keras1. In this experiment, we propose sentence generation with errors based on the

recent NMT method showed in Figure 4.6. This is neural network sequence modeling with atten-

tion mechanism82) that takes a correct source sentence into a vector and generates a sentence with

grammatical errors using the decoder. As a first step for training an initial NMT to generate identical

sentences, we used 201935 identical sentence pairs to train the NMT model. Table 4.3 shows the

experimental conditions. We set the time steps with the maximum number of words in an English

sentence to 22 and the GRUs (Gated Recurrent Units) to 256 units. The number of epochs in the

1 thttps://github.com/keras-team/keras
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Table 4.3 Settings of our proposed NMT for language modeling.

RNN architecture GRUs

No. of units in hidden layer 256

Time steps of input layer 22

Optimizer Adam

Activation functions softmax

Trainable parameters 16434516

Fig. 4.6 An encoder-decoder model with attention mechanism for generation sentences with errors.

initial model is 50.

When the initial NMT model was established, it was fine-tuned to the prepared 8476 right-to-

wrong sentence pairs applied by running additional training epochs. The vocabulary size was 7746.

10 different epochs (10, 20, 30, 40, 50, 60, 70, 80, 90, 100) were set in this process for updating the

parameters of the initial NMT model, which yielded 10 new NMT models for generating sentences

with errors.

Table 4.4 shows some samples of the sentences generated from our NMT system. From the first

two rows of the table, it is obvious that the NMT models generated the sentences with article errors.

In the third row is a kind of word missing errors and in the forth is the preposition errors. Figure 4.7

presents the NMT attention alignment visualization in a heat map. In this figure, the attention weight

between the word “office” in the source and the word “a office” in the output is strong, where the
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Table 4.4 Samples of sentences generated from NMT.

Source sentence NMT-based sentence

I’m an office worker I’m a office worker

I’m an office worker I’m office worker

how much is it how much is

how much were they how much about they

· · · · · ·

Fig. 4.7 Heat map of NMT attention alignment visualization. Here, the source sentence is “I’m an

office worker” and the output sentence is “I’m a office worker”.

word “an” in the source nearly does not correlate with the target output.

Rule-based generating To develop the rule-based error generator, we aligned the right and wrong

sentence pairs in NICT-JLE corpus using the IBM Model 1 alignment52). We used word.alignment

package for R. Then we extracted 5841 kinds of error phrase pairs. The top 20 right-wrong pairs with
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the highest frequency are shown in Table 4.5. Then we randomly replaced the “right” part included

in an input sentence with the “wrong” phrase. A probability to apply any error rules in a sentence

was set to 0.9. The insertion errors and other errors were treated differently. First, we determined

whether insertion error is applied or not with a probability proportion to the frequency of the insertion

error. If an insertion error was applied, the position of insertion was determined randomly, and the

word to insert was chosen according to the relative frequency of insertion errors. If an insertion error

was not applied, other errors (substitution and deletion errors) were chosen according to the relative

frequency, and applied to the input sentence.

We obtained 420 English sentences from those 10 fine-tuned NMT models and another 420 ones

from the rule-based error generator, respectively. Table 4.6 shows some generated sentences from a

target one. We can find that most errors generated by the rules are not related to the actual errors that

appeared in the speech.

To evaluate the proposed method for language modeling in ASR, we fixed the acoustic model re-

ferred to our previous work36). This DNN-based AM was trained from ERJ corpus with the conditions

showed in Table 4.7.

b) Experimental results with different language models

For the experiment, we prepared five LMs for comparison, as shown in Table 4.8. The baseline

model was trained from the sentences in ERJ and the target sentences of TJTEOT, considering the sit-

uation where we know the sentences the learners were supposed to say. The LM rule and LM NMT

models were trained by adding the generated sentences by the rule-based error generation and the

NMT, respectively. We merged the two sets of generated sentences together to train the LM rule &

NMT model. We doubled the amount of generated sentences in LM rule and LM NMT respectively.

Thus, the number of sentences in the middle three LMs that appeared in Table 4.8 is the same. Fi-

nally, the LM gold model used the uttered sentences as a part of the training data to investigate the

performance of the closed model.

1. Language Model baseline (LM baseline). 980 ERJ (English read by Japanese) database sen-

tences + 42 target correct sentences in the translation task.
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Table 4.5 Top 20 errors in the parallel right-to-wrong sentence pairs from NICT JLE corpus. “-”

stands for no word should be there.

Ranking Correct Wrong Frequency

1 - the 620

2 - to 181

3 - a 177

4 - is 151

5 are is 98

6 - in 51

7 were are 48

8 an a 46

9 had have 46

10 movies movie 40

11 - so 33

12 - and 29

13 - I 22

14 the of 21

15 friends friend 19

16 kinds kind 18

17 students student 18

18 places place 17

19 cats cat 16

20 trains train 16

2. Rule-based Language Model (LM rule). 980 ERJ database sentences + 42 target correct sen-

tences in the translation task + 420 rule-based generated sentences.

3. NMT generated Language Model (LM NMT). 980 ERJ database sentences + 42 target correct

sentences in the translation task + 420 NMT model generated sentences.
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Table 4.6 Examples of generated sentences.

Target They visited me on Sunday.

rule-based They visited me on the Sunday.

rule-based They the visited me on Sunday.

rule-based They a visited me on Sunday.

NMT model They visited at Sunday.

NMT model They visited Sunday.

NMT model They visited me on Sunday.

Table 4.7 DNN parameters of acoustic modeling in ASR.

Input feature 40 MFCCs

Type of hidden layer hyperbolic tangent

No. of input nodes 360

No. of hidden layer 4

Hidden dimension 1024

No. of output nodes 1551

Table 4.8 The three different language models in speech recognition experiment.

Training data

LM

baseline

LM rule LM

NMT

LM rule

& NMT

LM gold

ERJ sentences ✓ ✓ ✓ ✓ ✓

Target sentences ✓ ✓ ✓ ✓ ✓

Rule sentences ✓ ✓

NMT sentences ✓ ✓

Human transcription ✓

4. Rule-based and NMT generated Language Model (LM rule & NMT). 980 ERJ database sen-

tences + 42 target correct sentences in the translation task + 420 rule-based generated sentences

+ 420 NMT model generated sentences.
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Fig. 4.8 Average speech recognition results in TJTEOT corpus by using the five different language

models.

5. NMT generated Language Model (LM NMT). 980 ERJ database sentences + 42 target cor-

rect sentences in the translation task + 144 human transcription sentences in the translation

task (correct sentences and sentences with grammatical errors transcribed from the non-native

English speech).

Figure 4.8 shows the speech recognition results by applying the five different language models.

By comparing with the result of baseline LM, the other four LMs contribute more or less recognition

accuracy in ASR. Especially in the closed-condition LM as gold LM, the value of WER decreased to

2.35%. By investigating the results of the middle three LMs, the previous rule-based LM promoted

the recognition a little and our proposed LM gave more accuracy than the previous method. By

combining the rule-based and NMT-based sentences, the combined LM even did a bit worse than the

NMT-based one, which indicated that the rule-based method produced some errors not related to the

real ones. The recognition results show that if the LM includes the real grammatical errors from the

learners, the ASR will perform better.
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Table 4.9 Evaluation results by different language modeling for grammatical error detection.

P R F

LM baseline 0.47 0.54 0.50

LM rule 0.48 0.44 0.46

LM NMT 0.54 0.52 0.53

LM rule & NMT 0.52 0.52 0.52

LM gold 0.73 0.83 0.78

(6) Analysis and discussion

Table 4.9 shows the evaluation results of precision, recall and F-measure by using different lan-

guage models in ASR. The closed-conditional gold LM is able to conduct GED task in the speech to

an acceptable degree, however, in a real CALL system, it is always not easy to obtain the human tran-

scriptions in advance. Compared with the results of baseline LM, both rule-based generated sentences

and NMT-based generated sentences have promoted the performance of detecting grammatical errors.

The value of R in rule-based language modeling is lower than that in the baseline, which proves many

not related rule-based errors reduced recognizer performance. From these results, it is indicated that

the sentences generated by NMT play a beneficial role in speech-based GED task.

(7) Summary

In this chapter, by using the five different language models, the contents containing more related

grammatical errors will help to improve the speech recognition accuracy. We introduced the process

of generation of text with grammatical errors by using neural machine translation (NMT).

Normally, the NMT only translates one sentence to one different sentence. In order to cope with

this limitation in our GED system, we set different epochs in NMT for generating more sentences.

The results show that the proposed method did work for generated related errors to lower the WER.

In the evaluation of the five language models to GED task, the generated errors by NMT are more

realistic.



5 . Conclusions

In this thesis, a new dialogue-based computer-assisted language learning (CALL) system has been

built for English language study to Japanese learners. Language proficiency evaluation is the key

component in our dialogue-based CALL system as well as the target research in this thesis. For

the language proficiency evaluation, pronunciation evaluation and grammatical error detection were

described in the first two chapters. The method and idea proposed for the former objective in the

CALL system were clarified in chapter 3. And the approaches in the other one were explained in

chapter4.

In chapter 3, regarding the aspect on phonemic-level pronunciation evaluation, traditional eval-

uation system often assume that there are reference texts prepared, which is unavailable for a free-

conversation language learning system. To this end, we proposed the RER as a new machine score

for the regression-based prediction of proficiency, based on the two assumed conditions:

1. non-native ASR has sufficiently high recognition accuracy

2. WER from native ASR is effective to evaluate language proficiency

To evaluate the correlation between the proficiency scores and the proposed RER scores, we firstly

analyzed the inter-rater correlation on ERJ database, TMNED corpus and TEC corpus. Results show

the raters have very high correlation among themselves in ERJ database (r ≈ 0.8), while not a good

correlation in TMNED (r ≈ 0.5) or TEC (r ≈ 0.6). The speech data size of TMNED or TEC is rather

smaller than that of ERJ database. Especially in TMNED corpus, the raters gave scores (three dif-

ferent kinds: speech-related, emotion-related and gesture-related) by directly watching the recording

video. Therefore, the segmental score analyzed in our work partly influenced by other aspects from

80
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the learner in the video. The results of the evaluation on ERJ database show the strong effective-

ness of RER for language proficiency assessment. RER derived from DNN-based acoustic models

already has a high correlation coefficient with the proficiency score as 0.721. On the evaluation of

TEC corpus, one RER-based machine score (RER TRI) reaches a higher correlation to proficiency

than WER-based machine scores. We conducted the linear regression prediction of proficiency with

combined machine scores. In all experiments, when all the machine scores (excluding WER-based

scores) were combined, the correlation coefficient reached to extremely high with the proficiency

score (ERJ database: r = 0.826, p < 0.001,N = 190; TMNED corpus: r = 0.803, p < 0.001,N = 26;

TEC corpus: r = 0.799, p < 0.001,N = 28) , which means this prediction method could improve

human-to-machine correlation significantly.

In chapter 4, for the grammatical error detection in our CALL system, firstly, we assumed that the

Japanese learners could conduct English grammar practice which can be regarded as a sub-module in

our system. To this end, we developed a Japanese-to-English oral translation task as the TJTEOT cor-

pus for test and evaluation. Therefore, our CALL system has the reference target English sentences

in advance, which can be compared with the utterances from the learners to detect the grammatical

errors. To recognize the grammatical errors in speech with high accuracy, we introduced the sentence

generation with errors by utilizing the state-of-the-art NMT models for language modeling. These

NMT models were developed based on the sequence-to-sequence model with the current outstanding

attention mechanism. Normally, one NMT model only translates one sentence to one different sen-

tence. In order to tackle with this limitation in our CALL system, we set different epochs in NMT

training, which updates the parameters in NMT for generating a new NMT model, yielding more

sentences with errors for language modeling. Compared with the traditional rule-based method, our

proposed method can be established more quickly without spending a lot of time modeling the error

rules. Since the NMT can make use of the context information due to its specific inner structure,

the generated sentences from NMT have more comprehensive information about grammatical errors.

According to the evaluation results, we can found that the language model trained by NMT generated

sentences contributes lower WER than the rule-based language model, which indicated that the NMT

models generated sentences with more realistic errors happened in the real non-native speech.
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In this thesis, regarding a CALL system, speech recognition and automatic pronunciation assess-

ment for L2 learners are vital tasks. The former needs L2 acoustic models and the latter needs L1

acoustic models. Hence, our proposed RER obviously bridges the gap between the two different

things. The RER demonstrated a farsighted meaning to the evaluation of spontaneous non-native

speech in the dialogue-based CALL system.

By comparing the results of different language models in the grammatical error detection task, our

proposed NMT-based method has a significant advantage over the rule-based one, yielding the more

related errors happened in the real non-native English speech. Moreover, this deep learning-based

method fills a gap in language modeling for speech-based grammatical error detection in the CALL

system.
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