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Abstract. We present a Stata package for the estimation of autoregressive dis-
tributed lag (ARDL) models in a time-series context. The ardl command can
be used to estimate an ARDL model with the optimal number of autoregressive
and distributed lags based on the Akaike or Schwarz/Bayesian information cri-
terion. The regression results can be displayed in the ARDL levels form or in
the error-correction representation of the model. The latter separates long-run
and short-run effects and is available in two different parameterizations of the
long-run (cointegrating) relationship. The popular bounds testing procedure for
the existence of a long-run levels relationship is implemented as a postestimation
feature. Comprehensive critical values and approximate p-values obtained from
response-surface regressions facilitate statistical inference.

Keywords: autoregressive distributed lag model, error-correction model, bounds
test, long-run relationship, cointegration, time-series data

1



1 Introduction
Real-world phenomena are often characterized by complex relationships. Some observed
variables might exhibit erratic behavior in the short run, but tend to co-move in a stable
and predictable way with other variables over longer time horizons. Attempting to em-
pirically uncover such long-run/equilibrium relationships is tantamount to separating
them from the overlaid short-run dynamics. This separation then allows finding evi-
dence for or against an equilibrium relationship, which is often at the heart of a research
question. It also allows to analyze the short-term fluctuations around the equilibrium,
which can be valuable in its own right, for example, when conducting forecasting exer-
cises or dynamic simulations.

When we observe the variables of interest over a sufficiently long stretch of consec-
utive time periods, multi-equation vector autoregressive (VAR) models are commonly
used to assess their dynamic relationships. When we have reasons to assume that there
is a natural ordering of the variables, such that there is no contemporaneous feedback
from a response variable to the other variables in the system, a single-equation autore-
gressive distributed lag (ARDL) model can simplify the analysis and facilitate more
efficient inference.1

ARDL models have a wide range of possible applications. They are extensively
used in studies analyzing the linkages of polution and energy consumption to economic
growth (Fatai et al., 2004; Narayan and Smyth, 2005; Wolde-Rufael, 2005, 2006; Ang,
2007; Halicioglu, 2009; Jalil and Mahmud, 2009; Ozturk, 2010; Payne, 2010; Zhang
et al., 2015; Ntanos et al., 2018; Bekun et al., 2019, and many more). Relationships
with economic growth have also been investigated for foreign direct investment and
trade (Oteng-Abayie and Frimpong, 2006; Belloumi, 2014), infrastructure (Fedderke
et al., 2006), immigration (Morley, 2006), tourism (Katircioglu, 2009; Wang, 2009; Song
et al., 2011), and stock market development (Enisan and Olufisayo, 2009).

Other examples include the nexus between wages, productivity, and unemployment
(Pesaran et al., 2001), savings and investment (Narayan, 2005), exchange rates and
trade (Bahmani-Oskooee and Brooks, 1999; De Vita and Abbott, 2004), exchange rates
and monetary policy (Frankel et al., 2004; Shambaugh, 2004; Obstfeld et al., 2005),
financial development and inequality (Ang, 2010), bank lending and property prices
(Davis and Zhu, 2011), financial reforms and credit growth (Adeleye et al., 2018), and
the interdependencies among stock price indices and commodity prices (Narayan et al.,
2004; Sari et al., 2010; Büyükşahin and Robe, 2014), as well as cryptocurrencies (Ciaian
et al., 2016, 2018), to list only a few.

The ARDL model can be conveniently reparameterized in so-called error-correction
(EC) form, which disentangles the long-run relationship from the short-run dynamics.
When the variables are nonstationary – to be precise: integrated of order 1 – the long-
run relationship embedded in an EC model corresponds to a cointegrating relationship
(Engle and Granger, 1987; Hassler and Wolters, 2006). Testing for cointegration in such
a setup therefore equals testing for the existence of a long-run relationship. However,
the latter concept retains its relevance when some or all of the variables are stationary.

Figure 1 illustrates the concept of cointegration with two simulated nonstationary

1Occasionally, the abbreviation ADL is used in the literature instead of ARDL.

2



0

20

40

60

80

100

120

0 250 500 750 1000
t

yt=0.8yt−1+0.1xt+ut, xt=xt−1+0.1+et

cointegrated processes with drift

0

20

40

60

80

100

120

0 250 500 750 1000
t

yt
lr
=0.5xt

long−run cointegrating relationship

0

20

40

60

80

yt

0 20 40 60 80
xt

Correlation=.99

−6

−4

−2

0

2

4

6

0 250 500 750 1000
t

ect=yt−0.5xt

stationary error−correction term

Figure 1: Simulated example of two cointegrated time series

time series. Despite their stochastic trending behavior, the two processes are bound
together long term by a cointegrating relationship. Whenever random shocks drive the
processes apart, the yt process reverts back towards the equilibrium, which is determined
by the long-run forcing xt process. This characterizes an error-correction mechanism.
While cointegrated time series are often strongly correlated, such high correlations can
also result spuriously by coincidentally similar time trends. In practice, data processes
are more intricate than the one depicted in this stylized example. A crucial feature
of the ARDL framework therefore is that statistical tests for a systematic long-run
relationship can accommodate complex dynamic adjustment processes.2

Pesaran and Shin (1998) and Hassler and Wolters (2006) highlight a couple of ad-
vantages of the ARDL approach over alternative strategies for cointegration analy-
sis – such as the Engle and Granger (1987) two-step procedure implemented in the
community-contributed Stata command egranger (Schaffer, 2010), or the Phillips and
Hansen (1990) fully modified ordinary least squares (FM-OLS) approach implemented
in cointreg (Wang, 2012). First of all, it can accommodate a mixture of stationary
and nonstationary variables without the need for pretesting the order of integration.
Moreover, the the short-run and long-run coefficients can be consistently estimated in
a single step, and the estimator’s asymptotic normality eases statistical inference.3

Despite these advantages, testing for the existence of a long-run (cointegrating) rela-
tionship still requires a bit more effort. The test statistic has a nonstandard distribution
which depends on various characteristics of the model and the data, including the in-
tegration order of the variables. Pesaran et al. (2001) propose a ‘bounds test’, which

2We provide a more detailed explanation of the terminology in Section 2.
3Shin et al. (2014) extend the ARDL framework by introducing nonlinearities that allow for asym-

metric long-run effects. Such a nonlinear ARDL model can be estimated in Stata using the command
nardl, implemented by M. Sunder. Here, we restrict our attention to the symmetric case.
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involves comparing the values of conventional F - and t-statistics to pairs of critical val-
ues. Outside of these bounds, the test either conclusively rejects or does not reject the
null hypothesis. Within the bounds, the test is inconclusive.

In this paper, we present the ardl Stata package for the estimation of such single-
equation ARDL and EC models. The popular bounds test is implemented as a postes-
timation feature with recently improved critical value bounds and approximate p-values
(Kripfganz and Schneider, 2020). Obtained from response-surface regressions using bil-
lions of simulated test statistics, these critical values are more precise and exhaustive
than earlier critical values tabulated by Pesaran et al. (2001) and Narayan (2005). A
key feature of the ardl command is the automatic selection of the optimal lag order
with the Akaike or Schwarz/Bayesian information criterion. With an increasing num-
ber of independent variables, the number of candidate models – which are characterized
by all possible combinations of lag orders – quickly is in the tens or even hundreds of
thousands. A computationally efficient implementation of this procedure ensures that
the optimal model is still found within seconds.

Closely related, Jordan and Philips (2018) recently introduced the dynardl Stata
command for dynamic simulations of ARDL models. With their pssbounds command,
they also provide an interface to display the original Pesaran et al. (2001) and Narayan
(2005) asymptotic and finite-sample critical values for the bounds test. As we argued
above, those critical values are now largely superseded. Moreover, their commands
do not perform an automatic lag order selection, which is a key feature of our ardl

command. Once the optimal model specification is obtained with the ardl command,
the dynardl command can still be a useful complement if a visualization of the dynamic
effects is desired.

This article is only concerned with time-series data. For the estimation of ARDL
models in a large-T panel-data context, see the community-contributed Stata commands
xtpmg (Blackburne and Frank, 2007), xtdcce2 (Ditzen, 2018, 2021), and xtivdfreg

(Kripfganz and Sarafidis, 2021). The command xtwest (Persyn and Westerlund, 2008)
enables cointegration tests based on panel-data EC models.

In Section 2, we outline the econometric background for the ARDL approach to the
analysis of long-run equilibrium relationships; and we provide detailed guidance for the
model specification and the bounds test procedure. In Sections 3 and 4, we describe the
syntax and options for the ardl Stata package. In Section 5, we illustrate the approach
by replicating the empirical example of Pesaran et al. (2001). Section 6 concludes.

2 Econometric model and methods
2.1 Spurious regressions and cointegration
Suppose we expect the existence of a relationship between a dependent variable yt and
a set of K explanatory variables xt = (x1t, x2t, . . . , xKt)

′:

yt = b0 + x′tθ + et, (1)

where b0 is the intercept of the regression line. The data are observed at consecutive time
points t = 1, 2, . . . , T . We might be tempted to estimate the coefficients θ by ordinary
least squares (OLS). However, when yt and some or all of the regressors xt exhibit a
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trending behavior over time, it is well known that this can result in spuriously large
coefficient estimates, even if there is no underlying relationship among the variables.
The coefficient estimates then merely reflect a correlation of the variables that is due
to the underlying time trends, instead of a genuine link between changes of xt and yt.
A warning sign is often a suspiciously high coefficient of determination (R2). If the
variables are simply fluctuating around a deterministic trend, then including a time
trend as an additional regressor – or, equivalently, detrending the data – could provide
a remedy:4

yt = b0 + b1t+ x′tθ + et. (2)

However, in contrast to such trend-stationary variables, we often encounter variables
which follow a so-called stochastic trend. A simple example is a random-walk process,
yt = yt−1 + εt, which has an infinite memory. Any shock to such a process results in
a permanent shift in the level of yt. In other words, the process is not mean reverting.
This is a property of the more general class of unit-root processes. To obtain a stationary
process that fluctuates around a constant mean, we need to consider the first differences,
∆yt = yt − yt−1. Such a unit-root process is said to be integrated of order 1, in
short I(1). The integration order indicates the number of times a process needs to
be differenced in order to obtain a stationary process. Accordingly, a process that
is stationary without further differencing or detrending is labeled I(0). Visualized, a
unit-root process typically appears to be locally trending. Therefore, especially when
observed for just a relatively short time span, it may be difficult to distinguish it from
a trend-stationary process.

Ignoring a deterministic time trend by estimating equation (1) can create an omitted-
variable problem. The time trend in the data-generating process (DGP) of yt becomes
part of the error term et; and its correlation with the time trend in the DGP of xt

results in biased estimates. If the trend is stochastic, this will likewise be picked up
by the error term; and it could possibly be detected by applying a unit-root test to
the regression residuals. The nonstationarity of the error term then implies that the
standard asymptotic theory is no longer applicable; and the OLS estimator will have
a nondegenerate limiting distribution. In other words, it no longer converges in prob-
ability to the true parameter vector θ but instead to a random variable. Including a
deterministic time trend – as in equation (2) – does not help in this case.

Equation 1 can still be a valid regression model if the trending behavior of yt is
actually driven by the trending behavior of xt. When yt and some or all of the variables
in xt are I(1), we say that yt and the respective regressors are cointegrated if the
corresponding coefficients in θ are nonzero. In that case, the linear combination yt−x′tθ
is stationary, and therefore the same is true for the regression errors. The OLS estimator
is super-consistent, as it converges to the true coefficient vector at a faster rate than if
the variables were stationary.

Equations (1) and (2) reflect conditional long-run equilibrium relationships – if they
exist – to which a process reverts over time. In the short run, the process might divert
from this equilibrium, but the above equations are silent about the dynamic evolution
of the process when it is off the equilibrium path. Such deviations are transitory, and

4More generally, a deterministic trend can be any linear or nonlinear function of time t.
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the elements in the DGP governing them are therefore I(0). These short-run terms
are asymptotically negligible relative to the stochastic trend of an I(1) process; their
omission does not turn the OLS estimator inconsistent. It is for this reason that an OLS
estimation of equation (1) is a valid first step in the Engle and Granger (1987) two-step
cointegration test procedure, provided that it has been ascertained with unit-root tests
that yt and xt are I(1).5

However, the neglected I(0) components in the DGP affect the finite-sample (and
possibly the asymptotic) distributions of test statistics and thus invalidate conventional
hypothesis tests and regression diagnostics. This is in addition to the spurious-regression
problem when there is no cointegration among the I(1) variables. Therefore, equations
(1) and (2) have only limited use for statistical inference on the coefficients θ.

2.2 Autoregressive distributed lag model
To circumvent the problems associated with estimating a static model, we can augment
the regression equation with lags of the dependent and independent variables. We can
even include another set of L exogenous variables zt, which may have predictive power
to explain the short-term fluctuations of yt but do not affect its equilibrium path. We
assume that all variables in zt are stationary. Augmenting the model in this way aims
at obtaining a dynamically complete model, in which the regression error term ut is free
of serial correlation:

yt = c0 + c1t+

p∑
i=1

φiyt−i +

q∑
i=0

β′ixt−i + γ′zt + ut, (3)

t = 1+p∗, . . . , T . Leaving aside the variables zt, this is a general ARDL(p,q,. . . ,q) model
with intercept c0, linear trend c1t, and lag orders p ∈ [1, p∗] and q ∈ [0, p∗].6 To ensure
that there are enough degrees of freedom available to estimate the model’s coefficients
with sufficient precision, we may need to choose the maximum admissible lag order p∗

conservatively. This is especially relevant when the number of observations in the data
set (T ) is relatively small, and/or the number of variables in xt (K) is relatively large.7

Given the initial observations y1, y2, . . . , yp∗ , and the time paths of xt and zt, equa-
tion (3) describes the dynamic evolution of yt over time, irrespective of whether an
equilibrium relationship – as postulated in equation (1) or (2) – exists. With such a
dynamic model, we no longer need to worry about potentially running a spurious re-
gression. If yt and xt are generated by independent I(1) processes, there now exist
combinations of the parameters φi and βi which still yield stationary regression errors.
For example, the model accommodates the case of all variables being independent ran-
dom walks through the set of coefficients φ1 = 1, φi = 0 for i > 1, and βi = 0 for all

5For further background reading on the discussed topics in this section, the interested reader is
referred to any textbook on time-series econometrics of their choice.

6Allowing for different lag orders among the components of xt is straightforward and can be treated
as a special case of the general model by restricting some coefficients to be zero.

7The importance of the maximum lag order p∗ is explained further below. In practice, the data
frequency often guides this choice. For instance, it is customary to allow for up to 12 lags with monthly
data and up to 4 or 8 lags with quarterly data.
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i. The intercept c0 and the linear time trend c1t may or may not be included in the
model, depending on the nature of the variables under consideration.8

We assume that sufficiently many lags have been included in the ARDL model (3)
to purge the error term from any remaining serial correlation and to ensure that the
variables xt are weakly exogenous/long-run forcing – ruling out any contemporaneous
feedback from yt to xt. If there exists a stable long-run relationship, conventional
asymptotic theory can be applied for statistical inference on any of the coefficients
(Pesaran and Shin, 1998). This highlights the importance of testing for the existence of
such a long-run relationship, which we consider in Section 2.4.

While the inclusion of further lags improves the regression fit, this comes at the cost
of a higher variance of the coefficient estimates. To balance this tradeoff, a data-driven
approach to optimal lag selection can be based on the Akaike information criterion
(AIC) or the Schwarz/Bayesian information criterion (BIC):

AIC = −2 ln(L) + 2K∗,

BIC = −2 ln(L) + ln(T ∗)K∗,

where ln(L) is the value of the log-likelihood function from the estimated regression
model, T ∗ = T − p∗ is the effective sample size, and K∗ = 2 + p+K(q + 1) + L is the
number of estimated coefficients in model (3). Higher values of ln(L) indicate a better
fit of the model. Thus, we prefer models that deliver a smaller value of the AIC or
BIC. However, adding more regressors to the model – in particular, increasing the lag
orders p or q – never worsens the fit. To resist the temptation of creating larger and
larger models, the model selection criteria contain a penalty term, which is increasing
in the number of coefficients (K∗). The BIC has a larger penalty term than the AIC
(for T ∗ ≥ 8) and therefore tends to select more parsimonious models. The optimal lag
orders are then found by estimating model (3) for all possible combinations of p and q,
and choosing the model which minimizes the AIC or BIC.

For the comparability of the model selection criteria, it is imperative that we base
all regressions on the same estimation sample. This is the reason for initially choosing
a fixed maximum lag order p∗. When both p and q are smaller than p∗, the estimation
of model (3) does not use all of the available observations. This is the price we need
to pay for consulting the model selection criteria. Once the optimal lag orders p and
q have been found, we can subsequently re-estimate the model, utilizing all available
observations by setting p∗ = max(p, q).

2.3 Error-correction representation
The coefficients in the ARDL model (3) have a less straightforward interpretation than
those in the static model. To regain a better interpretability, we can reformulate the

8In general, other deterministic model components – such as quadratic time trends or impulse
dummy variables – can be added. We abstract from them here but note that their inclusion may affect
the applicability of the critical values for the bounds test, which is presented further down in this
article.
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ARDL model in EC representation (Hassler and Wolters, 2006):9

∆yt = c0+c1t−α(yt−1−θxt−1)+

p−1∑
i=1

ψyi∆yt−i+ω
′∆xt+

q−1∑
i=1

ψ′xi∆xt−i+γ
′zt+ut. (4)

The coefficients in equation (4) can be mapped in a straightforward algebraic way to
the coefficients in equation (3):

α = 1−
p∑

i=1

φi, θ =

∑q
j=0 βj

α
,

ψyi = −
p∑

j=i+1

φj , ω = β0, ψxi = −
q∑

j=i+1

βj .

Now recall the hypothesized long-run equilibrium relationship between yt and xt

in equation (1) or (2). For the moment ignoring the intercept and linear time trend,
the deviations from this equilibrium, et−1 = yt−1 − θxt−1, can be found again in the
EC model (4). Due to the nonlinear interaction between the coefficients α and θ, we
cannot directly estimate equation (4) by OLS. However, given the mapping above, we
can recover consistent estimates of all coefficients from estimating the ARDL model (3).
Yet, a computationally more convenient approach is to instead estimate the following
model:10

∆yt = c0+c1t+πyyt−1+πxxt−1+

p−1∑
i=1

ψyi∆yt−i+ω
′∆xt+

q−1∑
i=1

ψ′xi∆xt−i+γ
′zt+ut, (5)

from which we can easily recover the so-called speed-of-adjustment coefficient α = −πy
and the long-run coefficients θ = πx/α. The corresponding standard errors can be
computed with the delta method (Pesaran and Shin, 1998). Notice that equation (5)
collapses to the well-known augmented Dickey and Fuller (1979) regression for unit-root
testing when no explanatory variables xt and zt are present (K = L = 0).

An important role is played by the speed-of-adjustment coefficient α, which is the
coefficient (with opposite sign) of the EC term et−1. It tells us how fast the process for yt
reverts back to its long-run relationship when this equilibrium is distorted. α = 1 would
imply that – in the absence of any other short-run fluctuations – any deviation from
the equilibrium is fully corrected immediately in the period after the distortion occurs.
In contrast, α = 0 would imply that the process never returns back to its equilibrium
path. Values of α between these two boundaries reflect a partial-adjustment process,
where the gap to the equilibrium is gradually closed over time.11

9By convention, the summations evaluate to zero if the upper limit is smaller than the lower limit.
10When called with the option ec1, the ardl command estimates equation (5) but reports the coef-

ficients for equation (4).
11While in the following we allow α to fall into the interval [0, 2), we do not pay particular attention

to the oscillating/overshooting case α > 1 in this paper. We also rule out explosive processes, which
result under α < 0. An estimate of α outside of the reasonable region [0, 1] should be seen as a warning
signal for potential model misspecification.
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Clearly, θ 6= 0 is not a sufficient condition for the existence of a conditional long-
run relationship between the levels of yt and xt. When α = 0, then yt is I(1) and no
such relationship exists. In the opposite scenario, when θ = 0 and α ∈ (0, 2), then
yt is (trend) stationary, irrespective of the integration order of the components in xt.
For a long-run level relationship to exist, we need both θ 6= 0 and α ∈ (0, 2). In
this case – as long as the elements of xt are not cointegrated among themselves – the
integration properties of xt determine the integration order of yt. If the variables in xt

with nonzero long-run coefficient are I(1), then yt is I(1) as well, and the conditional
long-run relationship corresponds to a cointegrating relationship.

In this context, notice that the assumption of xt being long-run forcing for yt implies
that there can exist at most one cointegrating relationship which involves yt. This
does not rule out further cointegrating relationships among the elements of xt. Thus,
without further inspection, a cointegration rank larger than 1 for the entire system
(yt,x

′
t)
′ does not necessarily imply a violation of this assumption. However, if there

is reason to suspect multiple cointegrating relationships involving yt, then a single-
equation ARDL/EC model is inappropriate.12 Instead, this would call for the estimation
of a VAR model or – analogously to the EC representation of the ARDL model – a vector
error-correction (VEC) model.13

The remaining coefficients ψyi, ω, ψxi, and γ in equation (4) capture the short-run
dynamics that are not prescribed by the equilibrium-reverting forces.14 They are not
only relevant for making dynamic forecasts, but also play a role for choosing appropriate
critical values when testing for the existence of a long-run relationship, which we explore
in Section 2.4.

A complication arises if q = 0 for some or all of the long-run forcing variables. In that
situation, πx = ω, which implies that the corresponding variance-covariance matrix of
the coefficient estimates in equation (5) is rank deficient. To avoid this complication,
the EC representation can be equivalently formulated with the levels of the long-run
forcing variables expressed in period t instead of t− 1:

∆yt = c0 + c1t− α(yt−1 − θxt) +

p−1∑
i=1

ψyi∆yt−i +

q−1∑
i=0

ψ′xi∆xt−i + γ′zt + ut, (6)

with the same parameter restrictions as defined above. Notice that ω′∆xt is replaced
by ψ′x0∆xt. The interpretation of the long-run coefficients θ does not change because
the time subscript does not matter when the process is in equilibrium. The equation to
be estimated in this case becomes

∆yt = c0 + c1t+ πyyt−1 + πxxt +

p−1∑
i=1

ψyi∆yt−i +

q−1∑
i=0

ψ′xi∆xt−i + γ′zt + ut, (7)

12As a consequence, it is not permissible to run several ARDL regressions involving the variables
(yt,x′t)

′, in which the dependent variable of one regression becomes an independent variable in other
regressions.

13See var, vec, and related Stata commands.
14Strictly speaking, the error correction governed by the coefficient α is a short-run adjustment as

well.
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where the coefficients πx are identical to the corresponding coefficients in equation (5),
despite the change in the time subscript.15

2.4 Bounds test
Even though we can consistently estimate all coefficients in the ARDL regression model
(3) – or its EC representations (4) and (6) – testing for the existence of a long-run
relationship involves a bit more effort. This is because the process for yt contains a
unit root under the null hypothesis of no long-run relationship, and therefore the test
statistics have nonstandard distributions. Moreover, we need to combine the evidence
from multiple tests because each of them only provides a partial picture. The testing
procedure has up to three steps:

1. First, we test the joint null hypothesis

H0 : (πy = 0) ∩ (πx = 0)

versus the alternative hypothesis

H1 : (πy 6= 0) ∪ (πx 6= 0).

The hypotheses are not directly formulated in terms of the long-run coefficients
θ, because they are not well defined when πy = 0. Instead, the test is formulated
as a test for valid exclusion of the level terms yt−1 and xt−1 (or xt) in equation
(5) or (7). The test statistic is a conventional F -statistic for joint validity of the
K + 1 restrictions imposed under the null hypothesis. However, the nonstandard
distribution requires the uses of different critical values, which we discuss further
below. If the null hypothesis is not rejected, we conclude that there is no statistical
evidence in favor of a long-run level relationship between yt and xt. Otherwise,
we should proceed with the following steps due to the possibility of degenerate
cases, which are not ruled out by the alternative hypothesis of this first step.

2. If the null hypothesis from step 1 is rejected, we need to rule out the special case
that yt is I(1) but not cointegrated with any variable in xt. This is done by testing

H0 : πy = 0 versus H1 : πy < 0.

The test statistic is a conventional t-statistic for the statistical insignificance of
the negative speed-of-adjustment estimate with a one-sided rejection region. As
in step 1, the distribution of the test statistic is nonstandard and the usual critical
values do not apply. If the null hypothesis is not rejected, we conclude again that
there is no statistical evidence of a long-run level relationship. Otherwise, we
proceed with step 3.

15When called with the option ec, the ardl command estimates equation (7) but reports the coef-
ficients for equation (6). As an aside, when option ec1 is specified – which normally commands time
subscripts t− 1 for the long-run forcing variables – a subscript t is used in the estimation equation for
those variables whose lag order isq = 0. The reported results are still reparameterized as in equation
(4), however, incorporating the constraint on ω.
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3. If the null hypotheses in steps 1 and 2 are both rejected, we eventually consider the
degenerate case that yt is (trend) stationary, but not part of a long-run relationship
with xt. For this purpose, we can use conventional Wald tests for the joint (or
individual) statistical insignificance of the long-run coefficients:

H0 : θ = 0 versus H1 : θ 6= 0.

We base this test on the long-run coefficients θ rather than πx because the OLS
estimator of θ has an asymptotic normal distribution (Pesaran and Shin, 1998),
irrespective of the integration orders of the variables in xt, assuming that α => 0
as indicated by the test result from step 2. Thus, the conventional critical values
can be used.

The rejection of the null hypotheses from all three steps is necessary to conclude that
there is statistical evidence in favor of a long-run relationship; that is, (α > 0)∩(θ 6= 0).
It is clear that the alternative hypothesis in step 1 does not rule out the two degenerate
cases, which are the subject of steps 2 and 3. Yet, we should still start with step 1
because it is carried out under less restrictive assumptions on the DGP than step 2.16

For the test statistics in steps 1 and 2, Pesaran et al. (2001) derive the asymptotic
distributions under two scenarios. In the first scenario, all long-run forcing variables
xt are individually I(0). In the second scenario, all of them are I(1) and not mutually
cointegrated. When the (co-)integration properties of xt are unknown, the correspond-
ing critical values form lower and upper bounds, respectively. Conclusive evidence is
possible when the value of the test statistic falls outside of these bounds. The region
for not rejecting the null hypothesis is below the lower bound (closer to zero), and the
rejection region is above the upper bound. The test is inconclusive if the test statistic
falls between the two bounds. Because the distributions have a nonstandard form, crit-
ical values have to be obtained by simulations. This is complicated by the fact that the
distributions depend on the number of variables in xt. For K ≤ 10, Pesaran et al. (2001)
tabulated near-asymptotic critical values for the F -statistic in step 1 and the t-statistic
in step 2. However, the asymptotic distributions might be poor approximations when
the sample size is relatively small.

It is important to keep in mind that the distributions and critical values are obtained
under the assumption of independent and identically normally distributed errors ut. As
mentioned earlier, a standard procedure for dealing with suspected serial correlation is
to increase the lag orders p and/or q in the ARDL model. While the p+Kq short-run
terms in the EC representation do not affect the asymptotic distributions of the test
statistics, they are relevant for the finite-sample distributions. Consequently, different
critical values are needed for each combination of T ∗, K, and p+Kq, separately for the
lower and upper bound. Instead of tabulating vast amounts of critical values, Kripfganz
and Schneider (2020) estimated response-surface regressions, which can predict critical
values for any desired sample size, number of long-run forcing variables, and lag order.
This includes asymptotic critical values. Another important advantage of this approach
is the ability to compute approximate p-values, which facilitate statistical inference.

16For technical details and a full set of assumptions, see Pesaran et al. (2001).
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As an additional dimension, the distributions of the test statistics – and consequently
the critical values – also depend on the choice of deterministic model components. In
the ARDL model (3) – and its EC representations (4) and (6) – we have allowed for an
intercept c0 and a linear time trend c1t. We can distinguish the following five cases:

1. No deterministic model components are included, c0 = c1 = 0.

2. A restricted intercept is included, c0 = αb0, but no time trend, c1 = 0.

3. An unrestricted intercept is included, c0 6= 0, but no time trend, c1 = 0.

4. An unrestricted intercept is included, c0 6= 0, and a restricted time trend, c1 = αb1.

5. Both deterministic model components are unrestricted, c0 6= 0 and c1 6= 0.

A decision about the relevant case can often be guided by a visual inspection of the
time series. Cases 1 and 2 are in line with a process yt which could reasonably be an
I(1) process without drift under the null hypothesis of no long-run level relationship.
Under the alternative hypothesis, yt would either be I(0) or cointegrated with xt. Case
1 is most appropriate if yt and xt fluctuate around a zero mean, or if any nonzero means
cancel out in the long-run level relationship; that is, b0 = 0 in equation (1). The latter
condition is hard to verify ex ante, such that case 2 is often the safer option whenever
some variables have a nonzero mean.

If yt appears to be trending, it could be an I(1) process with drift under the null
hypothesis. This calls for case 3 or 4. Under the alternative hypothesis, yt would either
be trend stationary or cointegrated with xt. Case 3 is most appropriate if the trend in yt
is entirely attributable to a trend in xt; that is, b1 = 0 in equation (2). Again, this may
be difficult to justify ex ante. Despite the fact that case 3 is most commonly applied
in the empirical practice, case 4 is generally the safer option when there is insufficient
knowledge about the source of the observed time trend.17

Especially when the sample size is relatively small, it might be difficult to distinguish
visually between a mildly drifting unit-root process under the null hypothesis and a
stationary process which is fluctuating around a constant mean under the alternative
hypothesis. This can be another relevant situation for case 3. Similarly, case 5 could
be used to statistically discriminate between a unit-root process with faster – although
hardly noticeable – than linear growth (or decline) and a trend-stationary process. For
most practical applications, this might be a rather irrelevant scenario.

Notice that the restrictions on the intercept or linear trend under cases 2 and 4
do not affect the estimation of the ARDL model because it is irrelevant whether we
treat c0 (c1) or b0 (b1) as a free parameter to be estimated. Under case 1, equation
(3) is estimated without intercept and trend. Under cases 2 and 3, an intercept is
included in the regression. Under cases 4 and 5, an intercept and linear time trend
are included. However, the restrictions are incorporated into step 1 of the bounds test.
The null hypothesis implies c0 = 0 under case 2 and c1 = 0 under case 4, which adds
an additional linear restriction to the test. Consequently, different critical values apply.

17Recall the discussion in Section 2.1 about including a linear time trend in the equilibrium relation-
ship.
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Because these additional restrictions do not alter the underlying DGP, the critical values
for the single-hypothesis test in step 2 are the same for cases 2 and 3, and similarly for
cases 4 and 5.18

The following stages characterize a stylized ARDL approach to testing for the exis-
tence of a conditional long-run level relationship:

1. Decide about the candidate variables xt that are assumed to be long-run forcing
for yt. These variables can be either I(0) or I(1). No pretesting is necessary,
unless we suspect that a variable might be I(2). Stationary variables zt that are
suspected to affect the short-run dynamics – but not the long-run equilibrium –
can be added to the ARDL model as well. If there is doubt about the stationarity
of zt, unit-root tests can be carried out.

2. Decide about the deterministic model components to be included in the model,
and whether the constant or linear trend coefficient should be restricted; that is,
choose one of the 5 cases above.

3. Choose a maximum lag order p∗, ensuring that sufficiently many degrees of free-
dom are available for the estimation of the model parameters.19 Keeping the
estimation sample fixed, use the AIC or BIC to obtain the optimal lag orders p
and q. To assert that the model is dynamically complete, a serial-correlation test
could be of assistance. If there is concern about remaining serial correlation, the
AIC might be preferred over the BIC, because it tends to select less parsimonious
models. Additional specification tests – for example, tests for heteroskedasticity
and normality of the errors – could be used to check whether the assumptions
underlying the bounds test are met.

4. If max(p, q) < p∗, re-estimate the ARDL(p, q, . . . , q) model, now using all available
observations. Use the EC representation to check the plausibility of the coefficient
estimates. For example, an implausible estimate of α, which is clearly outside of
the interval [0, 2), might give rise to concern about the correct model specification
or a potential overparameterization of the model.

5. Follow the three steps of the bound test procedure. For steps 1 and 2, do not
reject the null hypothesis if the value of the test statistic is below – that is, closer
to zero – the lower bound of the Kripfganz and Schneider (2020) critical values.
Reject the null hypothesis (and proceed with the next testing step) if the test
statistic exceeds the upper-bound critical value.

6. If there is conclusive statistical evidence in favor of a long-run relationship, con-
sider re-estimating a more parsimonious model with lag orders selected by the BIC.
If there is evidence against a long-run level relationship, consider re-estimating an

18See again Pesaran et al. (2001) for further discussion.
19The Kripfganz and Schneider (2020) critical values are only available if there are at least twice

as many observations T ∗ than coefficients K∗. For reliable inference, a much higher ratio is usually
recommended.
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ARDL model in first differences to obtain more efficient estimates:

∆yt = c0 + c1t+

p−1∑
i=1

ψyi∆yt−i +

q−1∑
i=0

ψ′xi∆xt−i + γ′zt + ut, (8)

which is a restricted version of equation (7) with πy = 0 and πx = 0. In both
cases, it might be worth removing variables which do not help to improve the
model fit. This re-estimation stage can be skipped if there is no interest in further
statistical analysis – for example, forecasting – beyond the exploration of a level
relationship.

In order to avoid pretesting problems, model simplifications – like those at stage 6 –
should be kept to a minimum before the bounds test is performed. Also note that there
is no need to separately estimate a static model in levels if the bounds test provides
evidence in favor of a long-run relationship. As discussed earlier, the respective long-run
coefficients can be inferred directly from the EC representation (4) or (6).

3 The ardl command
3.1 Syntax

ardl depvar
[
indepvars

] [
if
] [

in
] [

, lags(numlist) exog(varlist) ec ec1

noconstant trendvar
[
(varname)

]
restricted regstore(name) perfect

maxlags(numlist) aic bic maxcombs(#) matcrit(name) nofast dots

display options
]

3.2 Options
lags(numlist) specifies the number of lags for some or all regressors. The first number

specifies the lag length p for depvar (yt), which has to be larger than zero. The
following numbers specify the lag lengths q for the independent variables in the
order they appear in indepvars (xt), which can be zero or higher. Missing values are
allowed; they indicate that the respective lag order is not prespecified but instead
determined with information criteria. If numlist contains only one element, the same
lag order is applied to all variables. Otherwise, the number of elements in numlist
must equal the number of variables in depvar and indepvars.

exog(varlist) specifies additional variables (zt) to be added to regression. An automatic
lag order selection is not performed for these variables.

ec requests to display the results in error-correction form. indepvars enter the long-run
relationship with time subscript t, as in equation (6).

ec1 requests to display the results in error-correction form. indepvars enter the long-run
relationship with time subscript t− 1, as in equation (4).

noconstant supresses the constant term. Specifying this option implies that the bounds
test uses critical values for case 1.

trendvar
[
(varname)

]
specifies a linear time trend to be added to the regression. var-

name must be a variable that is collinear with timevar, the variable which is used
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with tsset to declare the data to be time-series data. Specifying trendvar is equiv-
alent to trendvar(timevar). Specifying this option implies that the bounds test
uses critical values for case 4 or 5.

restricted specifies that the constant term or the time trend, if specified, will be
restricted for the purpose of the bounds test. The restricted deterministic component
will be displayed in the long-run section of the error-correction output. Specifying
this option implies that the bounds test uses critical values for case 2 or 4.

regstore(name) requests to store the estimation results from the underlying regress

command. These are the OLS estimates of equations (5) or (7) when option ec1 or
ec0 is specified, respectively, and equation (3) otherwise.

perfect omits the collinearity check among the regressors.
maxlags(numlist) specifies the maximum lag order p∗ for the optimal lag order selection.

The first number specifies the maximum lag length for depvar (yt), which has to be
larger than zero. The following numbers specify the maximum lag lengths for the
independent variables in the order they appear in indepvars (xt), which can be zero
or higher. Missing values are allowed; they indicate that the default maximum lag
order 4 is to be used. If numlist contains only one element, the same maximum lag
order is applied to all variables. Otherwise, the number of elements in numlist must
equal the number of variables in depvar and indepvars.

aic requests the optimal lag lengths to be determined with the Akaike information
criterion.

bic, the default, requests the optimal lag lengths to be determined with the Bayesian
information criterion.

maxcombs(#) restricts the maximum number of lag permutations for the automatic lag
selection. The default is 100,000, or 500 if option nofast is specified. Higher values
are possible.20

matcrit(name) requests to save the lag permutations and the respective information
criterion in a matrix named name.

nofast uses the regress command instead of dedicated Mata code to run the auxiliary
regressions for the optimal lag order selection. This is much slower but might be
numerically more robust in rare cases.

dots displays a progress bar for the optimal lag order selection. This is useful when
there are many permutations, due to a large number of variables and high maximum
lag orders. Each dot represents a 1% progress in the evaluation of candidate models.

display options: noctable, noheader, noomitted, vsquish, nolstretch, cformat(%fmt),
pformat(%fmt), sformat(%fmt).

3.3 Saved results
ardl stores the following results in e():21

20The purpose of this option is to prevent the optimal lag order selection from taking a lot of time
without explicit user consent.

21Starred results (∗) are not always saved.
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Scalars
e(N) number of observations e(rank) rank of e(V)
e(df m) model degrees of freedom e(F) F -statistic ∗

e(df r) residual degrees of freedom e(case) case number for deterministic
e(mss) model sum of squares components ∗

e(rss) residual sum of squares e(F pss) bounds test F -statistic ∗

e(rmse) root mean square error e(t pss) bounds test t-statistic ∗

e(r2) R-squared e(numcombs) number of lag combinations ∗

e(r2 a) adjusted R-squared e(N gaps) number of gaps in sample
e(ll) log likelihood under assumption e(tmin) first time period in sample

of i.i.d. normal errors e(tmax) last time period in sample
e(ll 0) log-likelihood, constant only

Macros
e(cmd) ardl e(tmaxs) formatted maximum time
e(cmdline) command as typed e(regressors) full set of regressors
e(cmdversion) version of the ardl command e(det) deterministic components ∗

e(model) level or ec e(exogvars) exogenous variables ∗

e(title) title in estimation output e(srvars) short-run regressors ∗

e(estat cmd) ardl estat e(lrdet) long-run deterministic
e(predict) ardl p component ∗

e(tsfmt) format for the time variable e(lrxvars) long-run regressors ∗

e(tvar) time variable e(properties) b V
e(tmins) formatted minimum time e(depvar) name of dependent variable

Matrices
e(b) coefficient vector e(maxlags) maximum lag lengths
e(V) variance-covariance matrix e(lags) lag lengths in ARDL model

Functions
e(sample) marks estimation sample

4 Postestimation commands
A large number of standard postestimation commands for the regress command can be
used after the ardl command. Importantly, the results obtained with some of them can
differ depending on whether the model is specified in the ARDL level form (3) or one of
the EC forms (4) or (6). For example, the estat ovtest includes higher-order powers
of the dependent variable – which is either yt or ∆yt – as regressors in an auxiliary
regression. This complication does not apply to postestimation commands based on
residuals – such as estat bgodfrey and estat imtest – because the error term ut is
unaffected by the model’s reparameterization.

The Pesaran et al. (2001) bounds test for the existence of a long-run level relation-
ship with Kripfganz and Schneider (2020) critical values and approximate p-values –
as discussed in Section 2.4 – is implemented in the postestimation command estat

ectest. It requires the option ec or ec1 to be specified with the ardl command.

4.1 Syntax

estat ectest
[
, siglevels(numlist) asymptotic nocritval norule

nodecision
]
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4.2 Options
siglevels(numlist) requests to show critical values for all significance levels in numlist.

The default is siglevels(10 5 1). The admissible significance levels are any sub-
set of the Stata number list 0.01 0.02 0.05 0.10(0.10)0.90 1.00(0.50)98.50

99.00(0.10)99.90 99.95 99.98 99.99.
asymptotic requests that the actual sample size be ignored and asymptotic critical

values be shown instead.
nocritval suppresses display of the critical values table.
norule suppresses display of the decision rule.
nodecision suppresses display of the decision table.

5 Example
To illustrate the ardl command, we replicate the empirical analysis of Pesaran et al.
(2001). They estimate an earnings equation with macroeconomic data for the United
Kingdom. The raw data are not in Stata format but can be imported as follows:22

. infile double (ERPR UDEN GDPMS FCAS CGGS PBRENT YOG RXD GDPA CGG TYEM EENIC WFP
> YPROM YMF EMF ENMF EMPNIC NIS OCR ILOU WFEMP RPIX PYNONG TE TD) using earn2.dat
(116 observations read)

. replace ILOU = . if ILOU > 99999999
(4 real changes made, 4 to missing)

. range qtr tq(1969q1) tq(1997q4)

. format qtr %tq

. quietly compress

. tsset qtr

Time variable: qtr, 1969q1 to 1997q4
Delta: 1 quarter

The dependent variable yt is the real wage (w). The presumed long-run forcing
variables xt are the labor productivity (Prod), the unemployment rate (UR), a wedge
between the real wage from the firm’s perspective and the real wage from the union’s
perspective (Wedge), and a measure of union power (Union). We construct these main
variables from the raw data:

. generate w = ln(ERPR/PYNONG)

. generate Prod = ln((YPROM+278.29*YMF)/(EMF+ENMF))

. generate UR = ln(100*ILOU/(ILOU+WFEMP))
(4 missing values generated)

. generate Wedge = ln(1+TE) + ln(1-TD) - ln(RPIX/PYNONG)

. generate Union = ln(UDEN)

Because the data for UR are not available before 1970, the first 4 quarters in the data
set are not relevant for the subsequent analysis. The subsequent 8 quarters (1970–1971)

22The data set and a brief description of the variables can be downloaded from the Journal of
Applied Econometrics data archive: http://qed.econ.queensu.ca/jae/2001-v16.3/pesaran-shin-smith/.
There are two data files in the archive. Because the variable for the real wage in the file earn1.dat

– which contains the regression variables – does not match its definition, we reconstruct all variables
from the file earn2.dat – which contains the raw data.
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are initially set aside for the optimal lag selection. Similar to Pesaran et al. (2001,
Figures 1–3), we graph the levels of these variables in Figure 2 for a visual inspection:

. generate byte smpl = inrange(qtr, tq(1972q1), tq(1997q4))

. set scheme sj

. tsline w Prod UR if smpl, ylabel(0(0.5)4, format(%2.1f) angle(horizontal))
> tlabel(1972q1(8)1997q4, format(%tqCCYY)) xtitle("") legend(rows(1)) name(ts1)

. tsline Wedge Union if smpl, ylabel(-0.8(0.1)0, format(%2.1f) angle(horizontal))
> tlabel(1972q1(8)1997q4, format(%tqCCYY)) xtitle("") name(ts2)

. graph combine ts1 ts2, ysize(2) xsize(5)
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Figure 2: Time-series graphs for the main regression variables

At first glance, the Wedge appears to be the only variable which could possibly be
stationary over the whole sample period. For w, Prod, and UR, it is not immediately
obvious whether they are generated by unit-root or trend-stationary processes. Because
the ARDL approach can deal with both I(0) and I(1) variables, we refrain from unit-
root pretesting. Even if some of the variables are driven by a linear time trend, it is
not a priori clear whether a deterministic trend needs to be included in the regression
model. It could well be that the time trend underlying labor productivity fully explains
the time trend of real wages.

Union could be a stationary variable once it is adjusted for the level shift in the
1970s. The observed change in the union power is likely the result of specific income
policies during the periods 1974–1975 and 1975–1979. Pesaran et al. (2001) account for
them with two dummy variables:

. generate byte D7475 = inrange(qtr, tq(1974q1), tq(1975q4))

. generate byte D7579 = inrange(qtr, tq(1975q1), tq(1979q4))

For ease of exposition, we treat these dummy variables as additional short-run terms
zt. However, strictly speaking, such ‘one-off’ dummy variables are not I(0) variables.
They are deterministic model components. As pointed out by Pesaran et al. (2001), the
asymptotic theory for the bounds test is unaffected by the inclusion of such variables as
long as the fraction of time periods covered by them tends to zero as T → ∞. Finite-
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sample critical values covering this particular type of deterministic components are not
readily available. The subsequent results are therefore to be taken with a grain of salt,
although the sample size is reasonably large to feel comfortable about ignoring this
complication.

To choose an optimal lag order for the purpose of the bounds test, Pesaran et al.
(2001) initially fit models with a constant lag order p = q ∈ [1, 7] for all variables besides
Prod, for which they set q = 1 after observing that its lagged differences do not have a
statistically significant contribution. They fit each of these models separately with and
without a deterministic trend. These ARDL(p, 1, p, p, p) models can be easily estimated
with the ardl command by specifying the lag orders with the lags() option. A linear
time trend is included with the trendvar option. The AIC and BIC can be displayed
with the estat ic postestimation command. Pesaran et al. (2001) also inspect the LM
test for no serial correlation of the residuals against orders 1 and 4, which is a critical
assumption for the bounds test. It comes in handy that most standard postestimation
commands for the regress command are also available after ardl.

. forvalues p = 1 / 7 {
2. quietly ardl w Prod UR Wedge Union if smpl, exog(D7475 D7579)

> lags(`p´ 1 `p´ `p´ `p´) trendvar
3. estat ic
4. estat bgodfrey, lags(1 4)
5. quietly ardl w Prod UR Wedge Union if smpl, exog(D7475 D7579)

> lags(`p´ 1 `p´ `p´ `p´)
6. estat ic
7. estat bgodfrey, lags(1 4)
8. }
(output omitted )

The results replicate those in Pesaran et al. (2001, Table I),23 with the exception of
the very last LM test statistic against the alternative of a fourth-order serial correlation
for the model with p = 7 and no time trend. Pesaran et al. (2001) erroneously report
the p-value of 0.64 instead of the value of the test statistic, which is 2.51. Among these
models, the smallest value of the AIC is attained with p = 6, irrespective of the trend
specification. With the BIC, the preferred model has p = 1 when a trend is included,
and p = 4 otherwise. The serial correlation tests do not provide comfort for lag orders
p ≤ 4. For the bounds test, it would thus be advisable to base the lag order decision on
the AIC.

Under the null hypothesis of no long-run relationship, the level of w is not determined
by the levels of the independent variables – especially Prod, which shows a similar
trending behavior. Thus, the observed time trend of w can only be a result of a unit-
root process with positive drift (when α = 0) or a trend-stationary process (when α > 0
but θ = 0). Recalling our discussion in Section 2.4, this calls for either a model without
trend but unrestricted intercept (case 3), or a model with restricted time trend (case
4). Case 3 can be justified on the grounds that the trend of w is likely explained by the
trend of Prod when a long-run relationship among them exists. This choice is further
supported by the observation that the time trend is statistically insignificant in the

23Notice that Pesaran et al. (2001) calculate the AIC and BIC differently. Compared to Stata’s
computation, their statistics have the opposite sign and are divided by 2.
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models estimated above, with the exception of p = 1. However, the AIC still slightly
prefers the model with trend under the optimal lag order p = 6.

Avoiding a final verdict about the time trend, let us conduct the bounds test both
under case 3 and 4. We do this by re-estimating the chosen model (p = 6) in EC
representation with the ec (or ec1) option. For case 3, we do not specify a time
trend. For case 4, we specify the option restricted in addition to the time trend.
Subsequently, we obtain the bounds test results with the postestimation command estat

ectest:

. quietly ardl w Prod UR Wedge Union if smpl, exog(D7475 D7579) lags(6 1 6 6 6) ec

. estat ectest

Pesaran, Shin, and Smith (2001) bounds test

H0: no level relationship F = 5.421
Case 3 t = -3.475

Finite sample (4 variables, 104 observations, 26 short-run coefficients)

Kripfganz and Schneider (2020) critical values and approximate p-values

| 10% | 5% | 1% | p-value
| I(0) I(1) | I(0) I(1) | I(0) I(1) | I(0) I(1)

---+------------------+------------------+------------------+-----------------
F | 2.362 3.646 | 2.806 4.226 | 3.800 5.502 | 0.001 0.011
t | -2.447 -3.499 | -2.777 -3.873 | -3.421 -4.589 | 0.009 0.104

do not reject H0 if
either F or t are closer to zero than critical values for I(0) variables
(if either p-value > desired level for I(0) variables)

reject H0 if
both F and t are more extreme than critical values for I(1) variables
(if both p-values < desired level for I(1) variables)

decision: no rejection (.a), inconclusive (.), or rejection (.r) at levels:

| 10% 5% 1%
-------------+---------------------------------

decision | . . .

. quietly ardl w Prod UR Wedge Union if smpl, exog(D7475 D7579) lags(6 1 6 6 6)
> trendvar restricted ec

. estat ectest, norule

Pesaran, Shin, and Smith (2001) bounds test

H0: no level relationship F = 4.780
Case 4 t = -2.437

Finite sample (4 variables, 104 observations, 26 short-run coefficients)

Kripfganz and Schneider (2020) critical values and approximate p-values

| 10% | 5% | 1% | p-value
| I(0) I(1) | I(0) I(1) | I(0) I(1) | I(0) I(1)

---+------------------+------------------+------------------+-----------------
F | 2.576 3.693 | 2.988 4.219 | 3.906 5.374 | 0.002 0.023
t | -2.954 -3.837 | -3.281 -4.210 | -3.922 -4.926 | 0.247 0.532

decision: no rejection (.a), inconclusive (.), or rejection (.r) at levels:

| 10% 5% 1%
-------------+---------------------------------

decision | .a .a .a

At this stage, we are not yet interested in an interpretation of the coefficient esti-
mates. In the top-right corner, the bounds test output displays the test statistics for
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the first two testing steps, as outlined in Section 2.4. Their values equal those reported
by Pesaran et al. (2001, Table II).24 While we are using the Kripfganz and Schneider
(2020) critical values for finite samples instead of asymptotic critical values, the qualita-
tive conclusions remain the same as in the original study. In the first step, we consider
the F -statistic for the joint null hypothesis α = 0 and

∑p
i=0 βi = 0. The test statistic

is larger than the upper-bound critical values – which would be the exact critical val-
ues if all long-run forcing variables were I(1) – for the 10% and 5% significance levels,
both under case 3 and 4. If we take a more cautious stand with the 1% significance
level, the result is inconclusive because the F -statistic falls within the two bounds. The
easiest way to see this is by comparing the p-values in the final columns to the desired
significance level.

Given that the evidence so far tends towards a rejection of the null hypothesis, we
should consider the individual null hypothesis α = 0 in the second step. Here, we notice
substantial differences between the two cases. While the value of the t-statistic falls
within the bounds for all three significance levels when we do not include a deterministic
trend, we clearly cannot reject the null hypothesis when a trend is included. Overall, the
statistical evidence is mixed. Given that the time trend itself is statistically insignificant,
we could decide to go with the results for case 3. If we are lenient with the inconclusive
result from the second step, we may conclude that there is mild support for the existence
of a long-run level relationship.

As a third step, we should check the statistical significance of the long-run coefficients
θ. Instead of looking at the coefficient estimates from the above ARDL(6, 1, 6, 6, 6)
model, Pesaran et al. (2001) aim for a more parsimonious specification with potentially
different lag orders for each variable, using a maximum lag order p∗ = 6 and the AIC as
the model selection criterion. While the optimization over all 14,406 lag combinations
finishes in virtually no time using our fast Mata algorithm, we illustrate how to display
a progress bar with the option dots, which might be useful for larger models:

. ardl w Prod UR Wedge Union if smpl, exog(D7475 D7579) maxlag(6) aic ec1 dots

Optimal lag selection, % complete:
----+---20%---+---40%---+---60%---+---80%---+-100%
..................................................
AIC optimized over 14406 lag combinations

ARDL(6,0,5,4,5) regression

Sample: 1972q1 thru 1997q4 Number of obs = 104
R-squared = 0.6726
Adj R-squared = 0.5620

Log likelihood = 367.25283 Root MSE = 0.0082

------------------------------------------------------------------------------
D.w | Coefficient Std. err. t P>|t| [95% conf. interval]

-------------+----------------------------------------------------------------
ADJ |

w |
L1. | -.2471572 .0521006 -4.74 0.000 -.3509028 -.1434115

-------------+----------------------------------------------------------------
LR |

24Pesaran et al. (2001) additionally report the bounds test results for case 5 with an unrestricted
trend, and for lag orders p ∈ {4, 5}. The respective test statistics can be replicated as well by adjusting
the ardl command line accordingly.
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Prod |
L1. | 1.069227 .0451471 23.68 0.000 .9793278 1.159126

|
UR |
L1. | -.1010547 .0303894 -3.33 0.001 -.1615678 -.0405415

|
Wedge |
L1. | -.9322035 .2432158 -3.83 0.000 -1.416508 -.4478991

|
Union |
L1. | 1.459416 .2847577 5.13 0.000 .8923912 2.026441

-------------+----------------------------------------------------------------
SR |

w |
LD. | -.418152 .0970869 -4.31 0.000 -.6114767 -.2248273
L2D. | -.3371241 .1076479 -3.13 0.002 -.5514784 -.1227698
L3D. | -.5355013 .1024435 -5.23 0.000 -.7394924 -.3315102
L4D. | -.1324765 .088904 -1.49 0.140 -.309507 .044554
L5D. | -.2017854 .0800474 -2.52 0.014 -.3611801 -.0423906

|
Prod |
D1. | .2642672 .0587165 4.50 0.000 .1473477 .3811866

|
UR |
D1. | .0038741 .008252 0.47 0.640 -.0125576 .0203059
LD. | .0180803 .0112588 1.61 0.112 -.0043388 .0404995
L2D. | .0064258 .0106366 0.60 0.548 -.0147544 .027606
L3D. | .0276765 .01116 2.48 0.015 .005454 .0498989
L4D. | .0304992 .0109952 2.77 0.007 .0086049 .0523935

|
Wedge |
D1. | -.3059897 .0515941 -5.93 0.000 -.4087266 -.2032527
LD. | -.0428407 .0584203 -0.73 0.466 -.1591703 .073489
L2D. | -.0922406 .0566866 -1.63 0.108 -.2051181 .0206369
L3D. | -.1886045 .0558292 -3.38 0.001 -.2997747 -.0774344

|
Union |
D1. | -.9557296 .8138693 -1.17 0.244 -2.57635 .6648913
LD. | -2.783417 .8141054 -3.42 0.001 -4.404508 -1.162326
L2D. | -.2560327 .8307343 -0.31 0.759 -1.910236 1.398171
L3D. | .0553435 .7432099 0.07 0.941 -1.424577 1.535264
L4D. | -2.185803 .6535687 -3.34 0.001 -3.487225 -.8843817

|
D7475 | .0301089 .006154 4.89 0.000 .0178547 .042363
D7579 | .0169542 .0062481 2.71 0.008 .0045127 .0293958
_cons | .6604218 .1425601 4.63 0.000 .3765484 .9442952

------------------------------------------------------------------------------

The model with the smallest AIC value is an ARDL(6, 0, 5, 4, 5) model. The results
are displayed in the EC representation (4). The first coefficient in the ADJ section is
the negative speed-of-adjustment coefficient (−α). The coefficients in the LR section are
the long-run coefficients θ, and those in the SR section are the short-run coefficients ω,
ψxi, and γ, together with the unrestricted intercept c0.

The long-run coefficients are all highly statistically significant – our final check for
the existence of a level relationship. For a detailed interpretation of the results, we refer
the reader to Pesaran et al. (2001). We just note that it is not surprising that the long-
run level effect of Prod on w is statistically not significantly different from unity. This is
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in line both with economic theory and the observed co-movement of the respective time
series in Figure 2. The estimate of the speed-of-adjustment coefficient indicates that a
disturbance to the long-run equilibrium is corrected by 25% within one quarter, which
corresponds to a half life of about 2.4 quarters. Importantly, the reported p-value and
confidence interval for the speed-of-adjustment coefficient should not be taken at face
value. The t-statistic for this coefficient does not have a standard distribution under the
null hypothesis that it equals zero. In fact, this is the test statistic which we considered
under the second step of the bounds step. To obtain appropriate critical values and p-
values (under a one-sided alternative hypothesis), we can simply call the estat ectest

postestimation command again:

. estat ectest, norule

Pesaran, Shin, and Smith (2001) bounds test

H0: no level relationship F = 7.367
Case 3 t = -4.744

Finite sample (4 variables, 104 observations, 21 short-run coefficients)

Kripfganz and Schneider (2020) critical values and approximate p-values

| 10% | 5% | 1% | p-value
| I(0) I(1) | I(0) I(1) | I(0) I(1) | I(0) I(1)

---+------------------+------------------+------------------+-----------------
F | 2.392 3.638 | 2.838 4.212 | 3.835 5.469 | 0.000 0.001
t | -2.470 -3.532 | -2.796 -3.901 | -3.434 -4.605 | 0.000 0.007

decision: no rejection (.a), inconclusive (.), or rejection (.r) at levels:

| 10% 5% 1%
-------------+---------------------------------

decision | .r .r .r

Since the p-value for the t-statistic is smaller than the conventional significance
levels, the speed-of-adjustment estimate can be regarded as statistically significant. In
contrast to the earlier ARDL(6, 1, 6, 6, 6) model, the bounds test from this ARDL(6,
0, 5, 4, 5) specification now provides unambiguous evidence in favor of a long-run level
relationship.

The short-run coefficients reveal a picture of complicated dynamics. Evidently, a
temporary change in most of the explanatory variables is not fully absorbed at once.
A more detailed interpretation of individual coefficients does not seem very fruitful
here. Instead, a forecasting exercise with the forecast command suite or a dynamic
simulation of the effects with the community-contributed dynardl command (Jordan
and Philips, 2018) could provide useful insights. We provide a brief forecasting example
at the end of this section. At this point, a technical comment is in order. As mentioned
in Section 2.3, the lag order q = 0 for Prod introduced a perfect relationship among the
effects in the latest regression output. Observe that the only short-run coefficient of Prod
equals the product of its long-run coefficient with the speed-of-adjustment coefficient:

. nlcom -_b[ADJ:L.w] * _b[LR:L.Prod]

_nl_1: -_b[ADJ:L.w] * _b[LR:L.Prod]

------------------------------------------------------------------------------
D.w | Coefficient Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
_nl_1 | .2642672 .0587165 4.50 0.000 .149185 .3793493

------------------------------------------------------------------------------
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This perfect link among the coefficients implies that there is no independent short-
run response to a change in Prod after accounting for the equilibrium adjustment. The
additional short-run coefficient is merely a consequence of formulating the long-run
relationship in terms of the lagged regressors xt−1 – equation (4) – when there is no
lag of Prod in the underlying ARDL model (3). To avoid this complication, we can
re-parameterize the EC model as in equation (6). The long-run coefficients remain
unchanged but the superfluous short-run effect disappears:

. ardl w Prod UR Wedge Union if smpl, exog(D7475 D7579) maxlag(6) aic ec

ARDL(6,0,5,4,5) regression

Sample: 1972q1 thru 1997q4 Number of obs = 104
R-squared = 0.6726
Adj R-squared = 0.5620

Log likelihood = 367.25283 Root MSE = 0.0082

------------------------------------------------------------------------------
D.w | Coefficient Std. err. t P>|t| [95% conf. interval]

-------------+----------------------------------------------------------------
ADJ |

w |
L1. | -.2471572 .0521006 -4.74 0.000 -.3509028 -.1434115

-------------+----------------------------------------------------------------
LR |

Prod | 1.069227 .0451471 23.68 0.000 .9793278 1.159126
UR | -.1010547 .0303894 -3.33 0.001 -.1615678 -.0405415

Wedge | -.9322035 .2432158 -3.83 0.000 -1.416508 -.4478991
Union | 1.459416 .2847577 5.13 0.000 .8923912 2.026441

-------------+----------------------------------------------------------------
SR |

w |
LD. | -.418152 .0970869 -4.31 0.000 -.6114767 -.2248273
L2D. | -.3371241 .1076479 -3.13 0.002 -.5514784 -.1227698
L3D. | -.5355013 .1024435 -5.23 0.000 -.7394924 -.3315102
L4D. | -.1324765 .088904 -1.49 0.140 -.309507 .044554
L5D. | -.2017854 .0800474 -2.52 0.014 -.3611801 -.0423906

|
UR |
D1. | .0288505 .009703 2.97 0.004 .0095294 .0481716
LD. | .0180803 .0112588 1.61 0.112 -.0043388 .0404995
L2D. | .0064258 .0106366 0.60 0.548 -.0147544 .027606
L3D. | .0276765 .01116 2.48 0.015 .005454 .0498989
L4D. | .0304992 .0109952 2.77 0.007 .0086049 .0523935

|
Wedge |
D1. | -.0755889 .057272 -1.32 0.191 -.189632 .0384543
LD. | -.0428407 .0584203 -0.73 0.466 -.1591703 .073489
L2D. | -.0922406 .0566866 -1.63 0.108 -.2051181 .0206369
L3D. | -.1886045 .0558292 -3.38 0.001 -.2997747 -.0774344

|
Union |
D1. | -1.316435 .7848436 -1.68 0.098 -2.879258 .2463886
LD. | -2.783417 .8141054 -3.42 0.001 -4.404508 -1.162326
L2D. | -.2560327 .8307343 -0.31 0.759 -1.910236 1.398171
L3D. | .0553435 .7432099 0.07 0.941 -1.424577 1.535264
L4D. | -2.185803 .6535687 -3.34 0.001 -3.487225 -.8843817

|
D7475 | .0301089 .006154 4.89 0.000 .0178547 .042363
D7579 | .0169542 .0062481 2.71 0.008 .0045127 .0293958
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_cons | .6604218 .1425601 4.63 0.000 .3765484 .9442952
------------------------------------------------------------------------------

Pesaran et al. (2001) initially constrained the lag orders to be identical in order
to limit pretesting problems. The actual implications of the different lag selection
approaches are unclear. As long as there is no irrefutable evidence of residual serial
correlation, one may as well skip the testing based on equal lag orders. In our case, the
serial-correlation test appears acceptable (although not too comfortably):

. estat bgodfrey, lags(1 4)

Breusch-Godfrey LM test for autocorrelation
---------------------------------------------------------------------------

lags(p) | chi2 df Prob > chi2
-------------+-------------------------------------------------------------

1 | 2.463 1 0.1166
4 | 7.518 4 0.1109

---------------------------------------------------------------------------
H0: no serial correlation

A closer look at the coefficient estimates from the ARDL(6, 0, 5, 4, 5) model reveals
that they are very similar but not identical to those reported by Pesaran et al. (2001,
Equation (31) and Table III). The reason for the discrepancy is that Pesaran et al.
(2001) fixed the lag order for Prod at q = 1, and therefore estimated an ARDL(6, 1, 5,
4, 5) model, despite claiming otherwise. This can be easily verified by replicating their
estimates with the following code:

. ardl w Prod UR Wedge Union if smpl, exog(D7475 D7579) maxlag(6) lags(. 1 . . .)
> aic ec1

(output omitted )

This completes the narrow replication of the Pesaran et al. (2001) empirial applica-
tion. A few critical remarks shall be added. It is not always transparent why the authors
used their researcher degrees of freedom in the way they have done. They reserved 8
initial observations for the lag selection, but then initially set the maximum lag order
only to p∗ = 7. The model with p = 8 lags – identical for all variables besides Prod –
actually attains an even lower AIC, with or without linear time trend. Qualitatively, the
conclusions are largely unaffected. With p = 8, the bounds test is even more supportive
of a long-run level relationship than the one based on a fixed lag order of p = 6:

. ardl w Prod UR Wedge Union if smpl, exog(D7475 D7579) lags(8 1 8 8 8) ec
(output omitted )

. estat ectest, norule

Pesaran, Shin, and Smith (2001) bounds test

H0: no level relationship F = 7.991
Case 3 t = -3.853

Finite sample (4 variables, 104 observations, 34 short-run coefficients)

Kripfganz and Schneider (2020) critical values and approximate p-values

| 10% | 5% | 1% | p-value
| I(0) I(1) | I(0) I(1) | I(0) I(1) | I(0) I(1)

---+------------------+------------------+------------------+-----------------
F | 2.315 3.659 | 2.755 4.249 | 3.744 5.556 | 0.000 0.000
t | -2.410 -3.447 | -2.746 -3.830 | -3.402 -4.564 | 0.003 0.048

decision: no rejection (.a), inconclusive (.), or rejection (.r) at levels:
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| 10% 5% 1%
-------------+---------------------------------

decision | .r .r .

The decision for a lower lag order might still be justified on the grounds of conserving
model degrees of freedom, but then one could reduce the number of initial observations
put aside. The choice of the maximum lag order is an important initial step, which
should not be undervalued. For instance, without the requirement of equal lag orders,
setting p∗ = 7 or p∗ = 8 yields an ARDL(4, 7, 5, 4, 5) or ARDL(7, 2, 5, 4, 8) model,
respectively. The optimal lag orders for UR and Wedge are quite robust, while there is
considerable variation for the remaining variables, which is a consequence of their very
high persistence. This also indicates that restricting the lag order for Prod from the
outset may not be justified.

After establishing the evidence in favor of a long-run level relationship, we may want
to estimate a more parsimonious model by re-optimizing the lag order with the BIC:25

. ardl w Prod UR Wedge Union, exog(D7475 D7579) maxlag(8) bic ec
(output omitted )

. estat bgodfrey, lags(1 4)

Breusch{Godfrey LM test for autocorrelation
---------------------------------------------------------------------------

lags(p) | chi2 df Prob > chi2
-------------+-------------------------------------------------------------

1 | 0.664 1 0.4151
4 | 1.717 4 0.7877

---------------------------------------------------------------------------
H0: no serial correlation

Even allowing for a maximum lag order of p∗ = 8, the BIC selects an ARDL(4, 0, 0,
4, 2) model with a considerably smaller number of parameters than the model chosen by
the AIC. Potential worries about serial error correlation due to omitted dynamics appear
unfounded. The long-run coefficient of Prod remains statistically indistinguishable from
unity. The other three long-run coefficients become smaller and they partially lose their
statistical significance, although the quite wide confidence intervals for the long-run
effects of Wedge and Union still cover a range of relevant effect sizes.

Further specification checks can be carried out using standard postestimation com-
mands. For instance, it is common practice to check for coefficient stability with a
cumulative sum (CUSUM) test:

. estat sbcusum, ylabel(, angle(horizontal))
> tlabel(1972q1(8)1997q4, format(%tqCCYY)) xtitle("") name(sb1)

Cumulative sum test for parameter stability

Sample: 1972q1 thru 1997q4 Number of obs = 104
H0: No structural break

Test -------- Critical value ---------
Type statistic 1% 5% 10%

--------------------------------------------------------------
Recursive 0.8823 1.1430 0.9479 0.8499
--------------------------------------------------------------

25In the interest of conserving space, we do not show further regression output. Our example can be
easily reconstructed with the publicly available data set.
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. estat sbcusum, ols ylabel(, angle(horizontal))
> tlabel(1972q1(8)1997q4, format(%tqCCYY)) xtitle("") name(sb2)

Cumulative sum test for parameter stability

Sample: 1972q1 thru 1997q4 Number of obs = 104
H0: No structural break

Test -------- Critical value ---------
Type statistic 1% 5% 10%

--------------------------------------------------------------
OLS 0.4331 1.6276 1.3581 1.2238
--------------------------------------------------------------

. graph combine sb1 sb2, ysize(2) xsize(5)
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Figure 3: CUSUM plots

Neither the CUSUM test based on recursive residuals nor the one based on OLS
residuals triggers a warning flag. If we had found evidence of a structural break, this
would have cast doubt on the earlier bounds test results. If a specific break date can
be identified, a remedy might be to restrict the attention to a subsample before or after
the break, or to split the sample and carry out the test separately for both subsamples.

Other relevant tests could include checks for homoskedasticity and normality of
the errors. While violations of these two conditions do not turn the OLS estimator
inconsistent, they could invalidate the results from the bounds test. To keep it simple,
we just look at the Cameron-Trivedi decomposition of the information matrix test:

. estat imtest

Cameron & Trivedi´s decomposition of IM-test

--------------------------------------------------
Source | chi2 df p

---------------------+----------------------------
Heteroskedasticity | 104.00 103 0.4539

Skewness | 29.46 16 0.0210
Kurtosis | 0.00 1 0.9527

---------------------+----------------------------
Total | 133.46 120 0.1892

--------------------------------------------------

Concerns about heteroskedasticity seem unfounded. However, there is evidence of
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skewness, which indicates that the latest specification would not be appropriate for the
bounds test. While Pesaran et al. (2001) have not done checks for normality, it turns
out that choosing higher lag orders – as selected by the AIC – can alleviate this problem
for our example. The bounds test results reported earlier thus remain reliable.

Finally, we conclude our example with an illustration of a forecasting exercise. A
parsimonious model specification – as selected by the BIC – is appropriate for this task,
because it tends to have better predictive performance in small samples. Let us say we
are interested in the out-of-sample forecast of w for the next 8 quarters, holding fixed
all exogenous variables at their last in-sample values. After appending the data set
accordingly, we use the official forecast command suite to achieve this task:

. set obs `= _N + 8´
Number of observations (_N) was 116, now 124.

. replace qtr = qtr[_n-1] + 1 if qtr > tq(1997q4)
(8 real changes made)

. tsset qtr

Time variable: qtr, 1969q1 to 1998q4
Delta: 1 quarter

. foreach var of varlist Prod UR Wedge Union D7475 D7579 {
2. replace `var´ = L.`var´ if qtr > tq(1997q4)
3. }
(output omitted )

. quietly ardl w Prod UR Wedge Union, exog(D7475 D7579) maxlag(8) bic

. estimates store ardl

. forecast create ardl
Forecast model ardl started.

. forecast estimates ardl, predict(xb)
Added estimation results from ardl.
Forecast model ardl now contains 1 endogenous variable.

. forecast exogenous Prod UR Wedge Union D7475 D7579
Forecast model ardl now contains 6 declared exogenous variables.

. forecast solve, begin(tq(1998q1))

Computing dynamic forecasts for model ardl.
-------------------------------------------
Starting period: 1998q1
Ending period: 1999q4
Forecast prefix: f_

1998q1: ...........
1998q2: ...........
1998q3: ........
1998q4: ...........
1999q1: ...........
1999q2: ...........
1999q3: ..........
1999q4: ...........

Forecast 1 variable spanning 8 periods.
---------------------------------------

In the following, we want to compare this baseline forecast with two alternative
scenarios. In the first scenario, a positive shock of magnitude 0.01 hits w in the first
out-of-sample quarter. In the second scenario, we consider a negative shock of the same
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magnitude.26 Eventually, we plot the three forecasts in Figure 4:

. forecast adjust w = w + 0.01 if qtr == tq(1998q1)
Endogenous variable w now has 1 adjustment.

. forecast solve, begin(tq(1998q1)) prefix(fp_)
(output omitted )

. forecast adjust w = w - 0.02 if qtr == tq(1998q1)
Endogenous variable w now has 2 adjustments.

. forecast solve, begin(tq(1998q1)) prefix(fn_)
(output omitted )

. tsline w f_w fp_w fn_w if qtr >= tq(1997q1), ylabel(, angle(horizontal))
> tlabel(1997q1(2)1999q4) xtitle("")

3.53

3.54

3.55

3.56

3.57

1997q1 1997q3 1998q1 1998q3 1999q1 1999q3

w w (ardl f_)

w (ardl fp_) w (ardl fn_)

Figure 4: Time-series graph for w with different forecast scenarios

The example can be easily adjusted to accommodate other scenarios, which might
involve alternative time paths for the exogenous variables. We leave such exercises to
the interested reader.

6 Conclusion
In this article, we have described the ardl Stata command for the estimation of autore-
gressive distributed lag models with time-series data. The lag orders can be prespecified
or chosen optimally with the Akaike or Schwarz/Bayesian information criterion. For this
purpose, the command is able to estimate tens of thousands of candidate models in vir-
tually no time. Two useful reparameterizations of the model in error-correction form
allow for an interpretation of the coefficients as short-run and long-run effects. The
command further enables testing for the existence of a long-run level relationship using

26Because the adjustment are made consecutively within the same forecast model, the second adjust-
ment needs to be -0.02. Otherwise, we would only revert back to the baseline scenario.
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the popular bounds test, which is implemented as a postestimation feature. In the case
of nonstationary variables, this amounts to cointegration testing. Yet, the ARDL ap-
proach is flexible to allow for both stationary and nonstationary variables. The package
provides the recently improved Kripfganz and Schneider (2020) critical values for the
bounds test, which allow accurate inference for almost all practically relevant combina-
tions of sample size, number of long-run forcing variables, lag orders, and deterministic
model components.

7 Acknowledgement
At the time of publication, this manuscript was under review by the Stata Journal.
We thank Michael Binder for his support and guidance during early stages of this
project. Moreover, we are grateful for numerous comments and suggestions from the
Stata community which helped to improve our ardl package. This includes countless
e-mail communications, discussions on the Statalist forum, and exchanges of ideas at
the 2016 Stata Conference in Chicago, the 2017 and 2018 German Stata user group
meetings in Berlin and Konstanz, respectively, and the 2018 UK Stata Conference in
London.

8 References
Adeleye, N., E. Osabuohien, E. Bowale, O. Matthew, and E. Oduntan. 2018. Finan-

cial reforms and credit growth in Nigeria: Empirical insights from ARDL and ECM
techniques. International Review of Applied Economics 32(6): 807–820.

Ang, J. B. 2007. CO2 emissions, energy consumption, and output in France. Energy
Policy 35(10): 4772–4778.

. 2010. Finance and inequality: The case of India. Southern Economic Journal
76(3): 738–761.

Bahmani-Oskooee, M., and T. J. Brooks. 1999. Bilateral J-curve between U.S. and her
trading partners. Weltwirtschaftliches Archiv 135(1): 156–165.

Bekun, F. V., F. Emir, and S. A. Sarkodie. 2019. Another look at the relationship be-
tween energy consumption, carbon dioxide emissions, and economic growth in South
Africa. Science of the Total Environment 655: 759–765.

Belloumi, M. 2014. The relationship between trade, FDI and economic growth in
Tunisia: An application of the autoregressive distributed lag model. Economic Sys-
tems 38(2): 269–287.

Blackburne, E. F., and M. W. Frank. 2007. Estimation of nonstationary heterogeneous
panels. Stata Journal 7(2): 197–208.
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