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1. Introduction 1 

1.1 Water reuse and associated microbial risk 2 

For millennia, access to sufficient and safe water resources plays a central role in the 3 

prosperity and development of human civilization as freshwater is essential to not just the basic 4 

functions of the human body, but also agricultural and industrial production. As the world 5 

population and economy continually grow, so does the freshwater demand. It was estimated that 6 

the global water demand will increase by nearly one-third by 2050 1. But because the total available 7 

freshwater resource and nature’s capability of regenerating it are limited, the conflict between 8 

demand and supply is more intense than ever. Keeping up with the rapidly growing demand cost-9 

effectively and sustainably is considered one of the biggest challenges faced by water authorities 10 

around the globe. Converting wastewater into water that can be reused for certain purposes, often 11 

referred to as water reclamation and reuse, is a well-established approach that mitigates the tension 12 

between limited resources and ever-growing demand while also providing a stable water supply 13 

under unfavorable weather conditions 2–4. The act of sewage treatment and reuse can be traced 14 

back to the very early stages of human history due to its environmental and ecological significance, 15 

an early practice of prehistoric civilizations is directly applying untreated domestic wastewater to 16 

irrigation 5,6. Since then, the development of related technologies and the establishment of 17 

regulations have continued unabated. As new advancements in the treatment process and materials 18 

emerge, the cost efficiency, treatment capability, and effluent quality of modern wastewater 19 

treatment plants (WWTPs) have all been steadily increasing in recent decades. Diemer (2007) 20 

estimated that the usage of recycled wastewater in the U.S. will grow by 15% per year in terms of 21 

volume 7. 22 

One solution to addressing the freshwater shortage is water reclamation, which can be 23 

defined as the process of converting wastewater into water that can be reused. As society 24 
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gradually heads toward urbanization, centralized wastewater collection and treatment systems 1 

have become increasingly accessible globally. However, despite the long history of water 2 

reclamation, only with the rapid development of modern science in recent centuries, particularly 3 

in epidemiology and microbiology, have the latent health risks and the importance of proper 4 

sanitation strategy in this practice been discussed and investigated 6,8, leading to the increasing 5 

concern from the public and authorities 9,10. As a result, beginning in the mid-nineteenth century, 6 

the construction of modern sewage systems aimed at the effective separation and proper 7 

treatment of wastewater to protect the public from being infected by waterborne pathogens and 8 

provide efficient waste disposal 11. Owing to the influence of human activity, both municipal 9 

and industrial wastewater may contain a variety of pathogenic microbes and other substances, 10 

including metals, pharmaceuticals, and personal care products, that could directly harm human 11 

health or lead to acute and chronic illness if not reduced to safe levels via treatment and 12 

distribution processes 12–17. 13 

Waterborne enteric viruses in reclaimed wastewater with fecal-oral transmission route are 14 

considered a primary health concern globally since they can cause several acute illnesses, such as 15 

gastroenteritis and hepatitis 18,19. In municipal wastewater, the primary origin of enteric viruses is 16 

the shedding from infected individuals. The shedding rate of norovirus particles has been 17 

demonstrated to reach up to 1010 per gram of feces 20. Also, compared to other pathogens such as 18 

protozoa and bacteria, waterborne enteric viruses are more resistant to environmental factors and 19 

treatment processes due to their unique physical and biological characteristics despite being not 20 

able to reproduce in the environment without a host 21–23. In an investigation of virus removal of 21 

three conventional activated sludge process wastewater treatment plants (WWTPs), the recorded 22 

log reduction value (LRV) ranged from 0.37 to 2.36 without tertiary treatment methods, leading to 23 

a high occurrence of human enteric viruses in receiving water 24. Furthermore, the low infectious 24 
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dose of enteric viruses means that only a small amount of intake can lead to infection 25,26. Several 1 

potential human exposure pathways have been proposed: consumption of shellfish grown in the 2 

contaminated aquatic environment and food crops irrigated by wastewater or fertilized by sludge, 3 

the ingestion of contaminated drinking water and recreational water, and farmworker exposure, 4 

including aerosol inhalation and direct intake of reclaimed irrigation water 27,28. 5 

A dilemma is therefore faced by the stakeholders, including academicians, municipal 6 

authorities, and environmental agencies: there is an urgent need to utilize and manage water 7 

resources more efficiently and sustainably via water reclamation, yet the progress has been 8 

hindered by various factors, including the inefficient virus removal of conventional WWTPs, the 9 

inability to effectively control the treatment and distribution process, the lack of understanding of 10 

the underlying health risks, and the rising concerns about public health 18,29. 11 

Historically, the safety of reclaimed water had been managed by setting restrictions on its 12 

use based on the intensity of human exposure to certain activities and the quality levels of treated 13 

wastewater. Commonly monitored parameters include biological oxygen demand (BOD), total 14 

suspended solids (TSS), and bacterial indicators 30,31. However, in terms of the virological quality, 15 

these conventionally monitored chemical and bacterial parameters fail as reliable indicators 32–35. 16 

Thus, direct virus detection is the preferred solution. Molecular techniques, notably quantitative 17 

polymerase chain reaction (qPCR), are gaining popularity in recent years largely due to not only 18 

the high sensitivity, specificity, and shortened detection time (typically within hours) compared to 19 

the culture-based methods, but also the capability of detecting viruses that are currently non-20 

culturable in vitro 22,26,36–38. However, the requirements for laboratory apparatus and trained 21 

personnel make a routinely performed detection infeasible for many WWTPs 39, especially those 22 

in less developed regions.  23 

The uncertainty surrounding the virological quality of reclaimed water has resulted in 24 



4 

 

considerable hindrance to certain wastewater reuse practices. One of the most strictly regulated 1 

use is food crop irrigation. In the U.S., regulations regarding the use of reclaimed water on food 2 

crops vary among different states. Some states prohibit this act indiscriminately whereas others 3 

allow reclaimed water to be used only if some requirements are met. For instance, the states of 4 

Florida, Nevada, and Virginia require that the reclaimed water must not directly contact the edible 5 

parts of the crop unless the crop will be peeled or thermally processed before being consumed 30. 6 

In California, although the practice of spraying reclaimed water onto edible parts of salad crops 7 

and strawberries has been successfully performed for over 40 years with no reports of human 8 

illness as a result 40, the Title 22 regulations specify that the highest quality standards apply to the 9 

reclaimed water that would contact the edible parts of the crop 41. 10 

Introducing advanced treatment methods to further reduce the pathogen content in effluent 11 

is an indispensable step in promoting the use of reclaimed water. Historically, due to the inefficient 12 

virus removal of conventional WWTPs, tertiary treatments have commonly been employed for 13 

disinfection, usually in the form of the addition of chemical disinfectants such as chlorine and 14 

ozone or the use of UV 42. Although these methods are capable of effectively bringing down 15 

pathogen concentration in the effluent and preventing the transmission of waterborne diseases, 16 

they are subject to certain derivative issues, e.g., the generation of disinfection by-products (DBPs) 17 

that possess genotoxicity and carcinogenicity 43,44, high operating costs 45, and the concern over 18 

the potential increase in antibiotic resistance 46,47. 19 

In the last fifty years, powered by the rapid development of materials science and 20 

engineering, the use of membrane in the realm of water treatment has become increasingly popular 21 

with one successful example being the membrane bioreactor (MBR) which comes in two forms: 22 

aerobic membrane bioreactor (AeMBR) and anaerobic membrane bioreactor (AnMBR) 48. Firstly 23 

commercialized in the early 1970s, the application of MBR technology in municipal and industrial 24 
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wastewater treatment has rapidly expanded with an average global market growth of over 10% 1 

since the turn of Millennium 49, as the result of more stringent environmental regulations as well 2 

as the various advantages MBR provides compared to conventional treatment processes, including 3 

high effluent quality, reduced environmental footprint, and nutrient recovery in the case of AnMBR. 4 

Readers interested in more information on the MBR technology are referred to the extensive 5 

reviews previously published 50–55. 6 

The core feature of MBR is the utilization of a membrane that enables highly efficient 7 

sludge separation which, in the perspective of water safety, can also serve as a barrier against 8 

waterborne pathogens 56,57. In addition to size exclusion which effectively rejects pathogens larger 9 

than the membrane pore size, notably pathogenic bacteria and protozoa, and aggregated virus 10 

particles 52,58–60, the presence of biosolids also enables effective virus removal. 11 

From the standpoint of water resource management, the high effluent quality and pathogen 12 

removal capability of MBR systems can open new possibilities by expanding the scale of existing 13 

reclaimed wastewater use 61. Better pathogen removal efficiency means the disinfectant dose 14 

required to meet the microbiological quality standard can be reduced, leading to lower health and 15 

ecosystem concerns resulted from disinfection by-products 58,62,63. Together with the advantage of 16 

stable operation 54,56, once the MBR systems are proven to be capable of continuously delivering 17 

decent virus removal performance, the effluent can be used for purposes currently restricted for 18 

reclaimed water 64. The usability would surpass that of most current wastewater reclamation 19 

systems while being economically viable, significantly relieving the stress on the natural 20 

freshwater supply 12,65. 21 

1.2 Wastewater-based epidemiology 22 

Although the hazardous materials in wastewater pose a threat to the public health, they 23 

also bring opportunities. The concept of wastewater-based epidemiology (WBE) centers around 24 
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a simple principle: certain chemical or biological agents (also referred to as ‘biomarkers’) 1 

excreted by human bodies can be collected by the sewage network and end up entering the 2 

wastewater, making it a rich source of these substances. Via physicochemical methods, 3 

biomarkers can be recovered from wastewater and the measured concentration can then be used 4 

to infer the size of the shedding population and provide community-level health information 66. 5 

Following its successful early applications of tracking illicit drug usage and lifestyle factors, 6 

WBE is gradually gaining popularity among researchers in the water-related field. Blessed with 7 

its community-wide coverage, ability to “see” the underreported and asymptomatic patients, and 8 

low-cost nature, WBE has been proposed to be a promising tool in infectious diseases 9 

surveillance, and unsurprisingly, high hopes are placed for its capability of helping combat the 10 

recent COVID-19 pandemic as well 67–69. 11 

Since the beginning of the pandemic, multiple research teams have detected SARS-CoV-12 

2 RNA in sewage networks around the globe and many COVID-19 wastewater surveillance 13 

projects ranging from institution- to nation-wide have been initiated 70–76. To date, more than 100 14 

dashboards either dedicated to or containing COVID-19 wastewater surveillance results have 15 

been set up, according to data aggregation site “COVIDPoops19” 16 

(https://www.covid19wbec.org/covidpoops19). These dashboards cover a great variety of scale 17 

and data disclosure strategies (quantification results only, quantification results and trend, variant 18 

detection results, or with other epidemic metrics such as reported cases and testing rate). To date, 19 

most dashboards are from high-income countries. For example, U.S. is in the absolute lead with 20 

more than 50 dashboards established. It is worth noting that some countries and regions have 21 

established COVID-19 wastewater surveillance sites, even networks, yet the results are only for 22 

academic uses and not publicly accessible. In addition to the experimental data, the site 23 

https://www.covid19wbec.org/covidpoops19
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“COVIDPoops19” also acts as a platform on which researchers can share the latest scientific 1 

advancements as well as relevant resources such as data visualization tools. 2 

While the technical challenges associated with this concept are gradually being solved, one 3 

key question remains unanswered: how to communicate the result efficiently and unambiguously 4 

with the public and authority so that it serves the COVID-19 response in the coming new era? 5 

After the proof-of-concept phase, the focus of research is now gradually shifting onto the next: 6 

interpretation and utilization of the results. Wastewater surveillance had expanded to multiple 7 

application scenarios including vaccination efficacy evaluation and variants of concern (VOC) 8 

tracking 77, it also served as a virus indicator for identifying asymptomatic infections and guiding 9 

clinical screening 78,79. One simulation study stated that clinical screening enhanced by wastewater 10 

surveillance can reduce infections by 95% 80. However, as these attempts are still at an early stage, 11 

they tend to be highly site-specific and discrete on time scale. As a result, the perception of the 12 

benefits offered by wastewater surveillance, particularly as a routine yet forward-looking tool, 13 

remains relatively restricted. 14 

With the advancement of wastewater surveillance comes a solid need to reconsider its 15 

position in COVID-19 and future epidemic response. In addition to retrospective analysis, it is 16 

also important to realize the potential of wastewater surveillance as a forward-looking tool that 17 

supports public health practices. Information disclosure strategy may maximize its social 18 

benefits, yet related efforts are still largely inadequate. Result interpretation, data integration, and 19 

public/authority awareness are identified as the key issues to be addressed. More recognition of 20 

the potential and significance of wastewater pathogen surveillance, but this will require a 21 

concerted effort of all three sides — researchers, the public, and the authority. 22 

1.3 Goal of this study 23 

Seeing the research gap and the merits of data-driven modeling, the main objective of 24 
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this dissertation is to verify the feasibility of data-driven modeling techniques in addressing 1 

some of the emerging virus-related issues faced by the water sector that is now focusing on 2 

extracting the residual value in wastewater in various forms. The main reason of choosing this 3 

direction, as stated earlier, is a lack of tested and proven workflow and available models in this 4 

field. Specifically, from a forward-looking perspective, real-time monitoring of the microbial 5 

risk of novel water reuse solutions and data interpretation of wastewater pathogen surveillance 6 

are two topics that worth additional research interests for the social value they provide. 7 

Chapter 3 discusses the development and verification of a soft sensor for real-time virus 8 

removal monitoring. Consistent with modern process control theories and sanitation guidelines, 9 

the microbial safety of the water reuse process is better put under constant monitoring. However, 10 

online virus quantification poses a huge challenge because conventional experimental methods 11 

need at least several hours to conduct, not to mention the staff and equipment requirements. 12 

Considering it is the removal performance rather than absolute virus concentration in the 13 

effluent that is in the interest of plant operators, this may be achieved by establishing a soft 14 

sensor to predict the virus removal performance, as opposed to using a hardware sensor. Soft 15 

sensor is a general term for models that take secondary variables, typically easier to measure, to 16 

predict the desired variable that due to some reasons, is difficult to be monitored in real-time. 17 

Conventionally, wastewater treatment engineers prefer mechanistic models as they provide a 18 

physical understanding of the system. However, virus removal involves processes running on 19 

different principles and is hence difficult to be integrated into one consistent and comprehensive 20 

model. By using data-driven modeling techniques, the connection between the secondary 21 

variables and desired output can be directly established without an understanding of the 22 

underlying mechanisms. 23 

Chapter 4 focuses on designing and verifying a model that uses wastewater SARS-CoV-24 
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2 surveillance data for public health information support. Since the reports of SARS-CoV-2’s 1 

presence in municipal wastewater, many entities have built their own wastewater SARS-CoV-2 2 

projects on various scales. There are also plans to expand to other pathogens and biomarkers 3 

found in wastewater, but they will be affected by how much value the SARS-CoV-2 surveillance 4 

projects can provide. One primary bottleneck is data interpretation and utilization, for which a 5 

consensus has yet to be reached. Particularly, rather than simply reporting the presence and 6 

concentration of viruses in the wastewater, a quantitative perspective of what the result indicates 7 

and how should the public health policy react to it is much-needed. Therefore, in this chapter, 8 

the detection result is further analyzed to explore the possibilities of data-driven model 9 

application. 10 

In addition to the two main research topics, in Chapter 2, literature review was conducted 11 

for each topic to provide a knowledge base as well as to identify the research needs. Finally, in 12 

Chapter 5, a summary is made to discuss the lessons learned from the studies, the limitations 13 

and challenges lying ahead, and the perspective of where this research field should go in the 14 

future. 15 
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Fig. 1 Schematic of this dissertation. 2 
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2. Literature review 1 

2.1 Virus removal in membrane bioreactors 2 

2.1.1 Introduction 3 

This section of the literature review focuses on the virus removal process in MBR systems 4 

as well as the related modeling efforts. Firstly, studies on MBR virus removal performance and the 5 

involved mechanisms are discussed to get a grasp on the microbiological safety factor of MBR 6 

technology, as well as to provide information on which factors contribute more significantly and 7 

thus should be paid more attention during model development. Secondly, historical and recent 8 

attempts to develop a model that connects other variables with virus removal efficiency via either 9 

conventional process-driven approach based on the physicochemical and biological relationship 10 

and equations, or novel data-driven modeling techniques are collected and reviewed. 11 

 12 

Fig. 2.1 The graphical abstract of literature review Section 2.1. 13 

2.1.2 Mechanisms involved in MBR virus removal 14 

In recent years, some studies have focused on the overall performance and contributing 15 

factors of the virus removal in MBR systems. Table 2.1 lists some recent studies that have covered 16 

a wide range of reactor scales, configurations, and model viruses. The mechanisms proposed based 17 

on experimental results, whether in AeMBR or AnMBR systems, can be classified into three major 18 

categories: the rejection and adsorption effect of the backwashed membrane, the adsorption of 19 
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virus particles to biomass, and the decay and inactivation occurred in the mixed liquor phase. 1 

Three mechanisms are directly related to virus reduction by the membrane alone: size 2 

exclusion, adsorption, and electrostatic repulsion 60,81. The principle behind size exclusion is rather 3 

intuitive: particles larger than the membrane pores get either rejected by the membrane or stuck in 4 

the pore channel; the larger the pores are, the easier the virus particles can pass through the 5 

membrane. The removal efficiency can, therefore, be significantly enhanced by choosing the 6 

membrane with a pore size close or smaller to the size of target virus. Lv et al. (2006) reported that 7 

under the same operating condition using T4 phage (average size 107.9 ± 12.9 nm) as the model 8 

virus, a 0.22 μm membrane provided only 1.7 log removal whereas a 0.1 μm membrane reached a 9 

much higher removal of 5.8 logs . When the diameter of the pathogen particles is at the same level 10 

as the nominal membrane pore size or less, other mechanisms such as mechanical sieving and the 11 

aggregation of virus particles start to take effect and facilitate this process. As reported by Da Silva 12 

et al. (2011) and Samandoulgou et al. (2015) 82,83, the aggregation of norovirus GI and GII particles 13 

is affected by pH and ionic strength, and the size of aggregates may greatly exceed the membrane 14 

pore size under certain circumstances. Chaudhry et al. (2015) reported a high removal rate by 15 

backwashed membrane with a 0.04 μm nominal pore size Chaudhry et al. (2015b), which is in line 16 

with the diameter of many enteric viruses. However, it is worth mentioning that AnMBR plants 17 

tend to use membranes with a pore size ranging from 0.1 to 0.4 μm to increase the flux and reduce 18 

the operation cost brought by membrane fouling 85, and under this circumstance, the membrane 19 

itself may only provide limited removal capability when dealing with viruses small in size. 20 

  21 
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Table 2.1 AeMBR and AnMBR virus removal studies in recent years (2009-2022) 1 

Reactor Type Nominal Membrane Pore Size HRT Virus LRV Reference 

Bench-scale AnMBR 0.4 μm 12 h MS-2 Phage 1.75 to 5.5 86 

Bench-scale AnMBR 0.4 μm  12 h T4 Phage 5 to >7 86 

Bench-scale AnMBR 0.2 μm 8 h MS-2 Phage 0.2 to 3.6 87 

Bench-scale AnMBR 0.1 μm 8 h Norovirus GI 4.64 88 

Bench-scale AnMBR 0.1 μm 8 h Norovirus GII 5.00 88 

Bench-scale AnMBR 0.1 μm 8 h Rotavirus 2.31 88 

Pilot-scale AnMBR 0.03 μm 9 d Somatic coliphage 3.7 89 

Bench-scale AeMBR 0.04 μm 10 h MS-2 Phage  1.7 90 

Bench-scale AeMBR 0.04 μm 10 h phiX174 Phage 2.3 90 

Bench-scale AeMBR 0.04 um 10 h Fr Phage 4.2 90 

Bench-scale AeMBR 0.45 μm 100 day Adenovirus 0.2 to 6.3 91 

Pilot-scale AeMBR 0.4 μm 35 h Norovirus GI 1.82 92 

Pilot-scale AeMBR 0.4 μm 35 h Norovirus GII 3.02 92 

Pilot-scale AeMBR 0.4 μm 35 h Adenovirus 1.94 92 

Pilot-scale AeMBR 0.4 μm 7.2 h Enteroviruse 0.3 to 3.2 37 

Pilot-scale AeMBR 0.4 μm 7.2 h Norovirus GII 0.2 to 3.4 37 

Pilot-scale AeMBR 0.4 μm 7.2 h Sapovirus 1.3 to 4.1 37 

Full-scale AeMBR 0.4 μm 36 h Rotavirus >2.0 93 

Full-scale AeMBR 0.4 μm 36 h Sapovirus >3.0 93 

Full-scale AeMBR 0.4 μm N/A F-specific coliphage 5.13 94 

Full-scale AeMBR 0.4 μm N/A Somatic coliphage 3.24 94 

Full-scale AeMBR 0.4 μm N/A Enterovirus 3.40 94 
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Table 2.1 (continued) 1 

Reactor Type Nominal Membrane Pore Size HRT Virus LRV Reference 

Full-scale AeMBR 0.4 μm N/A Adenovirus 3.67 94 

Full-scale AeMBR 0.4 μm N/A Norovirus GI 3.02 94 

Full-scale AeMBR 0.04 μm 0.18 h Norovirus GI/GII 2.3 63 

Full-scale AeMBR 0.04 μm 0.18 h Adenovirus 4.4 63 

Full-scale AeMBR 0.04 μm 11 to 12 h Enterovirus 3.5 to 4.8 95 

Full-scale AeMBR 0.04 μm 11 to 12 h Norovirus GII 4.1 to 6.8 95 

Full-scale AeMBR 0.04 μm 11 to 12 h Adenovirus 4.1 to 6.3 95 

2 



15 

 

The adsorption of virus particles onto the membrane surface is mainly governed by 1 

hydrophobic and electrostatic effects while non-specific interactions are of secondary importance 2 

37,60,96,97. Madaeni (1997) studied the removal of poliovirus by a 0.2 μm MF membrane and 3 

concluded that the physicochemical characteristics of the virus particle and membrane material, 4 

and the ratio of the pore diameter to virus particle diameter are the important influencing factors 5 

in the adsorption of viruses into the membrane 98. The preferable condition for adsorption is when 6 

the two components have opposite charges or only a small amount of charges, and generally low 7 

pH level can facilitate this process 99–101.  8 

Electrostatic repulsion works differently. When the membrane material and virus particles 9 

share the same type of charge, electrostatic repulsion would push the virus particles away from the 10 

membrane surface, contributing to virus retention 60,81. Also, in contrast to membrane adsorption, 11 

the effect of electrostatic repulsion is more pronounced under increased pH level 102,103. The other 12 

vital contributing factor, hydrophobic effect, works by minimizing the area of contact between 13 

water molecules and virus particles, and between water and membrane surface, thus increasing the 14 

potential of viruses to adsorb onto the membrane 104. The magnitude of this effect leans on a variety 15 

of factors including ionic strength, virus surface characteristics, and membrane material 85,97,103,105. 16 

It is also worth pointing out that the size of pores on the membrane is not consistent. 17 

During the production process, there might be abnormal pores on the membrane and these pores 18 

may lead to unexpected virus passage or decreased filtration performance, thus the membrane pore 19 

distribution is also a factor to be considered in membrane size exclusion 106,107. The log-normal 20 

distribution is widely applied to describe the membrane pore distribution 108,109. Based on that, 21 

Duek et al. (2012) investigated the actual pore size distribution on several UF membranes and 22 

reported that it does have a significant effect on the virus rejection property 110. In the study, virus 23 

retention is more accurately predicted by the absolute pore size 𝑑100  than by 𝑑50  and 𝑑90 , 24 
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indicating that abnormally large pores contribute more to virus passage through UF membrane. A 1 

similar result was reported by Kosiol et al. (2017) 111, who found that 𝑑99 values of a number of 2 

membranes showed a correlation with LRVs of bacteriophage. 3 

As the biomass in the reactor grows, both the suspended solids and the gel/cake layer 4 

attached to the membrane surface develop. It has been well-acknowledged that the adsorption of 5 

virus particles to the biomass is a critical contributor to the virus removal in a number of ways 6 

86,90,112–117. 7 

Firstly, the adsorption of phage or enteric virus particles to the mixed liquor suspended 8 

solids (MLSS), which consist of such as bacteria and organic compounds that are larger than the 9 

membrane pores, makes their passage harder. For instance, Shang et al. (2005) reported a 0.8 log 10 

MS-2 phage removal by adsorption to the suspended biomass alone in a bench-scale AeMBR118 , 11 

and in the study by Miura et al. (2018) 93, 1.5 log removal of norovirus GI was achieved after 60 12 

min of mixing with the MLSS. In a similar manner, Hirani et al. (2010) recorded a higher removal 13 

rate of indigenous MS-2 coliphage compared to seeded MS-2 coliphage in several AeMBR 14 

systems and attributed it to the higher degree of particle association of indigenous coliphage 106. 15 

MLSS concentration and virus characteristics have been reported to be influencing factors, Wu et 16 

al. 2010 found that the fraction of adsorbed somatic coliphage went up from 65% to 92% as MLSS 17 

concentration increased from 1.6 g/L to 9.6 g/L in their AeMBR 113. In the study of Chaudhry et 18 

al. (2015), three bacteriophages, MS-2, phiX174, and fr, were fed into a bench-scale AeMBR, and 19 

a significant difference in their attachment to the mixed liquor biomass was observed 84. While 20 

only 0.2 log10 removal can be attributed to suspended biomass attachment for MS-2, phiX174 and 21 

fr showed much higher removal (1.2 and 3.0 log10). Since the three bacteriophages have similar 22 

zeta potentials, the difference in surface composition of the phages was assumed to be the cause. 23 

Secondly, the biofilm attached to the membrane surface also plays a pivotal role in the 24 
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removal process by adsorbing onto the inside of membrane pores or block the pores. The decreased 1 

effective pore size and the reduced number of available pores raise the membrane resistance, 2 

thereby making the passage of virus particles more difficult 119. In addition, the accumulation of 3 

gel and cake layers on the membrane surface provides extra adsorption spots, as these layers are 4 

made up of soluble microbial products and extracellular polymeric substances that can potentially 5 

adsorb and trap virus particles 120. Also, the presence of proteins in the mixed liquor inhibits the 6 

adsorption of the viruses on the membrane due to the competition between proteins and virus 7 

particles for adsorption sites 98. In MBR systems where proteins make up a significant proportion 8 

of the extracellular polymeric substances (EPSs) and soluble microbial products (SMPs) 121, the 9 

inhibition caused by proteins can be a crucial factor. Furthermore, the high concentration of 10 

suspended biomass may lead to a high excretion rate of EPSs and SMPs. However, the interaction 11 

between them and viruses has not been explained clearly yet 37. Ueda and Horan (2000) 12 

investigated the effect of biofilm growth on virus removal performance 122, and they found that the 13 

removal efficiency improved notably as the biofilm attached to the membrane surface grew and 14 

increased the filtration resistance; a 2.1 log removal was achieved by 21-day-biofilm whereas 9-15 

hr-biofilm achieved only a 0.3 log removal. 16 

It is worth mentioning that membrane fouling, despite the contribution to virus rejection, 17 

is considered detrimental with respect to the reactor operators because it leads to a decline in 18 

permeate flux and alteration of the reactor hydrological characteristics 123,124, eventually resulting 19 

in decreased handling capacity and higher operating costs 54. Commonly employed fouling control 20 

strategies include membrane backwash, gas sparging, and chemical cleaning 125,126. Also, in recent 21 

years, the addition of activated carbon in the reactor has received a considerable amount of 22 

attention for being both effective and financially economical 127. Fox et al. 2015 investigated the 23 

effect of gas sparging rate on phage removal in AnMBR and found that MS-2 rejection increased 24 
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with the elevated sparging intensity after a 10-day operation at a low sparging rate 86. Since high 1 

gas scouring relieves fouling, the result seems rather counterintuitive. The authors suggested that 2 

it can be attributed to the reduced concentration polarization at the membrane surface resulted from 3 

intense gas sparging. Similar findings have been reported by Cui et al. (2003) and Madaeni et al. 4 

(1995) who concluded that increasing stirring and gas sparging can have a negative impact on the 5 

membrane permeability for particles like protein and virus 128,129. Simply put, if the virus particles 6 

are seen as a solute, a layer of high concentration will gradually build up in the vicinity of the 7 

surface of membrane during the filtration process, resulting in an increased concentration of virus 8 

particles in the effluent. When the gas sparging or stirring rate is increased, this layer can get 9 

disrupted, leading to a lower concentration of virus particles in the effluent. This, too, suggests that 10 

the virus removal process is highly complicated with multiple mechanisms working 11 

simultaneously, but nevertheless, the role of biofilm has been well-established 90,91,130. Finding a 12 

delicate balance between virus particle rejection performance and membrane permeability will be 13 

a vital task for reactor operators and requires a more comprehensive interpretation of the dynamics 14 

in the reactor 114. 15 

The major mechanisms responsible for the effect of mixed liquor on virus decay and 16 

inactivation are likely to be the predation by other microorganisms and enzymatic breakdown 90,131. 17 

For MBR, Wu et al. 2010 found that the somatic coliphage decay was significantly accelerated in 18 

the presence of activated sludge compared to the spontaneous decay in the influent wastewater, 19 

which took about 10 days to achieve 0.72 log10 removal 113. Likewise, Fox and Stuckey (2015) 20 

reported that phage concentration in the AnMBR mixed liquor phase decreased by about 2 log10 21 

over the experiment period of two weeks, which is faster than the expected washout rate under the 22 

same hydraulic condition, suggesting that the anaerobic condition inside the reactor may facilitate 23 

the process of virus inactivation Fox and Stuckey (2015). Although conceptually, all virus particles 24 
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rejected by membrane and attached biofilm are subject to biodegradation, considering the 1 

dominating contribution of membrane/biofilm rejection and typical hydraulic retention time (HRT) 2 

of several hours to days in MBR systems, the effect of biodegradation on effluent virus 3 

concentration may not be so pronounced. 4 

Compared to the number of studies dedicated to AeMBR virus removal performance, in 5 

the case of AnMBR, as a relatively new but thriving technology, only a few reports are currently 6 

available, covering only a limited range of configurations and operating conditions. Nevertheless, 7 

the existing studies have revealed that AnMBR and AeMBR have many things in common when 8 

it comes to virus removal, including the overall efficiency and the responsible mechanisms, 9 

although some differences are likely to exist due to their respective kinetics. The good thing is, as 10 

the potential of AnMBR being further recognized, more AnMBR plants are being built or planned 11 

in various configurations for research and development needs, and we can expect more studies on 12 

the topic of virus removal capability to be conducted in the near future because the safety aspects 13 

associated with this technology need to be thoroughly discussed and will play a central role in 14 

ameliorating public perception in the future. 15 

Still, some vital information can be extracted from these past studies. The reported virus 16 

removal efficiencies are highly system-dependent and it makes parallel comparison very difficult, 17 

if not impossible at all. This is resulted from the diversity in reactor configurations (e.g., plant 18 

scale, membrane material and pore size, hydraulic and solids retention time), and in the sources 19 

and characteristics of the wastewater being treated 22,85. Sometimes, conclusions from different 20 

studies may even conflict. For instance, Chaudhry et al. (2015) reported that a 3.1 log10 reduction 21 

of norovirus GII was achieved solely by the backwashed membrane 84, making it the greatest 22 

contributor in the total removal, whereas Fox and Stuckey (2015) and Ueda and Horan (2000) both 23 

pointed out that the membrane provided only relatively poor phage rejection in their studies Fox 24 
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and Stuckey (2015) and Ueda and Horan (2000), although the discrepancy likely comes from the 1 

different pore sizes used (0.04 μm vs 0.4 μm) since the relative size of particles compared to 2 

membrane pore size matters greatly in size exclusion. Another example is the study conducted by 3 

Farahbakhsh and Smith (2004) 132, in which the adsorption onto the membrane surface or in 4 

membrane pores governed the coliphage removal when the membrane was pristine, but as the 5 

membrane gradually got fouled, the governing factor shifted to the interception by the cake layer. 6 

This discrepancy can also be observed when the relative contribution of each mechanism is 7 

calculated and sorted, but the order varies between studies 117,118. All these indicate that the current 8 

understanding of the intricate process is still far from sufficient, and further research will need to 9 

view from a wider angle as multiple highly coupled components are involved with a wide selection 10 

of influencing factors 54,93,133, especially during the development of biofilm. 11 

From previous studies, we conclude that the primary contribution comes from the 12 

adsorption to suspended biomass, and membrane retention, either by the membrane itself or the 13 

biofilm attached. Since the physical properties of membrane stay stable while the biomass growth 14 

is a highly active process, we speculate that to be more suited for the task, the model should keep 15 

a close eye on the biological kinetics and how it proceeds to impact the physical processes. 16 

2.1.3 Efforts on modeling virus removal in MBR 17 

Driven by the need to design, operate, and optimize WWTPs systematically and 18 

scientifically, the modeling of biological water treatment processes has long been of great interest 19 

to researchers 134,135. The majority of the proposed models are mechanistic models expressed by 20 

numerical and analytical equations to provide information about the composition and structure of 21 

the system, the dynamics of each component, and the interactions connecting the components 136. 22 

An early dynamic model considered only two state variables, degradation of the substrate and first-23 

order biomass formation 137, but thanks to the growing understanding of the complicated process, 24 
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an increased number of state variables began to appear in later models, including the now widely 1 

applied ASM model family, which has been under continuous development since the 1980s 138–141. 2 

Although ASM models were originally designed for activated sludge process, they have been 3 

applied to the MBR systems in recent years to describe the biomass kinetics with some adjustments 4 

made to accommodate the unique configuration of MBR 138,142,143, such as the addition of the fate 5 

of soluble microbial products (SMP) that play a critical role in membrane fouling, the high mixed 6 

liquor concentration and solids retention time, and gas sparging for membrane pressure relaxation. 7 

Since in AnMBR the biological processes occur under the fundamentally different 8 

anaerobic condition, the models simulating them would have to be based on the kinetics of the 9 

anaerobic digestion process. The modeling of anaerobic process is considered a mature and well-10 

established field after years of research, one widely accepted and discussed model is the IWA 11 

ADM1 developed by Batstone et al. (2002) 135,145. 12 

Briefly, the models mentioned above share the same basic structure: the mass balance 13 

equations of components included in the system, either the influent composition or biomass in the 14 

reactor. The mass balance equations describe the inflow, outflow, reaction, and accumulation 15 

dynamics of substances in the reactor; biomass kinetics define the substrate transformation 16 

process; and physicochemical components construct the overall environment, including the 17 

interaction between different phases and ionic behavior. In practice, simplification is an inevitable 18 

step in modeling 146. For example, 10 assumptions were made in ASM1 by the task group, mainly 19 

about environmental conditions and related coefficients that are fixed during the stable operation 20 

period 141. Proper simplification could reduce the complexity of the modeling task and make the 21 

model more tractable 147, yet the assumptions are subject to system errors and failures and may 22 

lead to uncertainty 148. The decision of what simplification should be made depends on the trade-23 

off of accuracy and simplicity, and the focus of the model. 24 
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As membrane plays a central part in MBR systems, the physical process of membrane 1 

filtration should also be featured in a model dedicated to MBR systems 138. In their extensive 2 

review of AnMBR modeling, Robles et al. (2019) introduced several candidate models, including 3 

pore blocking law models, resistance-in-series models, and critical-flux models 135. Among these 4 

mechanistic models, resistance-in-series models developed on Darcy’s law of filtration take into 5 

account the simultaneous and combined effects of multiple fouling mechanisms and thereby better 6 

mimic the reality than single fouling factor. In MBR systems, the filtration dynamics is under the 7 

influence of a variety of elements: the buildup of the cake layer, particle size distribution and 8 

hydrodynamics in the tank, and the operational factors including the aeration intensity and 9 

crossflow velocity. 10 

For virus removal modeling, neither of the two models can be individually applied because 11 

biological and physicochemical factors are jointly involved. An integrated model that connects the 12 

two fields would be needed. Although both the biomass kinetic models and membrane filtration 13 

models are well-established in their own right, they are fundamentally different in terms of basic 14 

principles, which adds considerable difficulty to integrating the two components into a unified 15 

mathematical model. Some attempts have been reported in recent years, such as the AeMBR model 16 

developed by Mannina et al. (2011) 149, and the AnMBR model developed by 150, both models have 17 

fixed issues left by previous studies and lead to impressive TMP prediction performance (R2 ≈ 0.9 18 

in the AnMBR model and ≈ 0.99 in the AeMBR model). Nevertheless, the complexity of the 19 

integrated models raises new concerns about the applicability due to the time and computational 20 

power required for fine-tuning and validation 151. For the AeMBR model, 45 parameters and 9 21 

state variables were used to carry out the model calibration, and similarly, a total of 53 parameters 22 

and variables are featured in the AnMBR model. 23 

For the better interpretation and more accurate prediction of the virus removal performance 24 
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during wastewater treatment, researchers have long been interested in establishing models based 1 

on the understanding of the underlying mechanisms and kinetics. Here, we define a model as 2 

“process-driven” if it is constructed upon the understanding of the physicochemical and biological 3 

processes involved.  4 

Kim et al. (1995) developed a simplified model based on amount balance equations to 5 

describe the virus transferring dynamics in the activated sludge basin 152. The core equation is 6 

𝑉 ∙ 𝑋0 = 𝑉 ∙ 𝑋𝐿 + 𝑉 ∙ 𝑋𝐸 + 𝑉 ∙ 𝑋𝐼 (2.1) 

where 𝑉 is the volume of the basin, 𝑋0 is the initial virus concentration in the basin, and 7 

the mixed liquor in the activated sludge basin is divided into three parts; the liquid phase, the 8 

peripheral, and the inner region of the sludge flocs. 𝑋𝐿, 𝑋𝐸, and 𝑋𝐼 in equation 2.1 stand for the 9 

virus concentration in these three parts, respectively. Virus particles in the liquid phase are assumed 10 

to have a reversible adsorption balance with the floc peripheral region. The floc inner region then 11 

encompasses the adsorbed virus particles into the inner part of the flocs. Also, the impact of 12 

predation is taken into consideration because the floc inner region is assumed to contain the 13 

protozoa and metazoan that uptake the viruses that are either dispersed in the liquid phase or 14 

adsorbed on the floc. Each virus transfer mechanism has an independent rate constant K, the values 15 

of K are assumed to be proportional to MLSS concentration and the amount balance is built upon 16 

the first-order equations describing the inflow and outflow of the compartments. Despite having 17 

established a dynamic balance of the virus behaviors in the mixed liquor, as the effect of 18 

environmental factors and the virus transfer mechanisms are overly simplified, this model still 19 

lacks some crucial features, including being able to respond to constantly changing reactor status 20 

and influent characteristics, and. 21 

Regarding the kinetics of adsorption of virus particles adsorption onto suspended solids, 22 

Xing et al. (2019) used kaolinite and fiberglass as examples of colloidal particles present in the 23 
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aquatic environment and evaluated the adsorption property of MS-2 phage 153. The adsorption 1 

kinetics can be described well by the Lagergren pseudo first-order model: 2 

𝑑𝑞

𝑑𝑡
= 𝑘(𝑞𝑒 − 𝑞)  (2.2) 

𝑑𝐶

𝑑𝑡
= 𝑘′(𝐶 − 𝐶𝑒)  (2.3) 

In the equation, C is the concentration of unbound MS-2 phage in the bulk liquid phase at 3 

time t, and 𝐶𝑒 is the equilibrium concentration. Similarly, 𝑞 is the concentration of bound MS-2 4 

phage at time t with  𝑞𝑒 being the equilibrium concentration; 𝑘 and 𝑘′ are the observed pseudo 5 

first-order rate constants in the solid and liquid phases, respectively. 6 

Despite having stated that the rate constants increased with increased kaolinite 7 

concentration, the authors did not integrate this relationship into the final model since a clear 8 

correlation between the two parameters was not found. Similarly, in another virus adsorption 9 

kinetic analysis conducted by Grant et al. (1993) 154, the reversible adsorption behavior of virus 10 

particles onto the solid surface was also described by the pseudo first-order model using the 11 

following equation: 12 

1

𝑉

𝑑𝜀

𝑑𝑡
= 𝑘𝑓𝑄𝑊𝑛𝑓 − 𝑘𝑏𝑊𝑛𝑠 (2.4) 

where 𝑛𝑓 and 𝑛𝑠 indicate the number of virus particles in fluid and surface, respectively, 13 

and 14 

𝑘𝑓 and 𝑘𝑏 are pseudo first-order rate constants for virus adsorption and desorption. 𝜀 is 15 

the number of virus particles transferred from the liquid phase to the solids surface, 𝑄 represents 16 

the maximum adsorption capability per unit weight of the solid material, and 𝑊 is the mass of 17 

suspended solids in the system. 18 

Considering the adsorption media employed in these studies were stable solid materials, 19 

the use of fixed rate constants, despite not being ideal, makes perfect sense. However, in a real-20 
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world context, the biomass in reactor is a highly dynamic complex that is sensitive to the 1 

fluctuation of operational status and influent characteristics 134,135. Its composition and bioactivity 2 

actively vary over time, altering the adsorption behavior and kinetic parameters. Using fixed 3 

constants may not capture these dynamics and may eventually lead to insensitivity to the 4 

environmental changes. 5 

Likewise, the first-order kinetic model was also applied to the virus inactivation process 6 

under various conditions with the following equations 90,113,155: 7 

𝑑𝐶

𝑑𝑡
= −𝐾𝑑𝐶 (2.5) 

𝐶 = 𝐶0exp⁡(−𝐾𝑑𝑡) (2.6) 

where 𝐾𝑑 , 𝐶0 , and 𝐶  stand for the inactivation rate coefficients (h-1), the initial 8 

concentration of somatic coliphage in influent wastewater, and the somatic coliphage 9 

concentration at time t (PFU ml-1), respectively. In the aquatic environment, the virus inactivation 10 

rate is closely related to temperature since the log10 inactivation rate has been found to hold a linear 11 

relationship with temperature 156, but it was not included in this model. 12 

Regarding the effect of membrane filtration on virus removal performance, 81) Elhadidy et 13 

al., (2013 introduced a model for UF membrane bacteriophage rejection based on a protein 14 

rejection model developed by Elhadidy et al., (2013. In the following equations, log removal is 15 

calculated from equation 2.7 by 𝑆0, the sieving coefficient. 𝑆0 is expressed as the ratio of the virus 16 

concentration in filtrate to that in the feed water. As expressed in equation 2.8, 𝑆0 is related to 17 

𝑆𝑎(𝑟), the convective transport coefficient of spherical solutes; r, the membrane pore radius; and 18 

𝑓(𝑟), a log normal probability distribution that describes the membrane pore size distribution as 19 

in equation 2.9 157. 𝑆𝑎(𝑟) is derived using equation 2.10, where 𝜆 = 𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒/𝑑𝑝𝑜𝑟𝑒, 𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 20 

and 𝑑𝑝𝑜𝑟𝑒  stand for the diameters of the particle and the pore, respectively. The calculation 21 
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method of hydrodynamic coefficients 𝐾𝑠 and  𝐾𝑡 in equation 2.10 was described in Bungay and 1 

Brenner (1973): 2 

Log removal = −𝑙𝑜𝑔10(𝑆0) (2.7) 

𝑆0 =
𝐶𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑒

𝐶𝑓𝑒𝑒𝑑
=
∫ 𝑆𝑎(𝑟) × 𝑓(𝑟) × 𝑟4d𝑟
∞

0

∫ 𝑓(𝑟) × 𝑟4d𝑟
∞

0

 (2.8) 

𝑓𝑟(𝑟; 𝜇, 𝜎) =
1

𝑟 × 𝜎 × √2𝜋
𝑒
−
(ln𝑟−𝜇)2

2𝜎2  (2.9) 

𝑆𝑎(𝑟) = {

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 < 𝑟 ≤ 𝑎

(1 − 𝜆)2 × [2 − (1 − 𝜆)2] ×
𝐾𝑠

2 × 𝐾𝑡
⁡⁡⁡⁡𝑎 < 𝑟 < ∞

1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑟 = ∞

 
(2.10) 

The assumptions made for the model include the absence of concentration polarization and 3 

the effects of short-range intermolecular forces, uniform virus concentration inside the pore and in 4 

the permeate, and due to the properties of UF membrane, the exclusion of virus transport routes 5 

other than convective transport. On one hand, this study made a valuable point in establishing a 6 

baseline prediction model for membrane virus removal, but on the other hand, the authors also 7 

mentioned that under different pH settings, the removal of MS-2 coliphage observed in experiment 8 

contradicted the model prediction, indicating that electrostatic repulsion, despite not being 9 

included in the model, has an important role in membrane rejection of MS-2 coliphage. 10 

Another simple virus filtration model developed by Rathore et al. (2014) assumes virus 11 

particles are colloidal particles without any specific interaction, Darcy’s law is used to calculate 12 

membrane flux and the concentration of virus particles in the permeate is given by the equation: 13 

𝐶𝑝 = 𝐾𝑖𝐶𝑚𝑝 (2.11) 

𝐾𝑖 = −6.83 + 19.384𝜆 − 12.518𝜆2 (2.12) 

where 𝐶𝑝 is the permeate virus concentration, 𝐾𝑖 is a coefficient related to the hindrance 14 

of pore walls given by equation 2.12 using 𝜆, and 𝐶𝑚𝑝 is the virus concentration inside the pore 15 
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mouth, which can be calculated by the equations below: 1 

𝐶𝑚𝑝 = 𝛷𝐶𝑠 (2.13) 

𝛷 = (1 − 𝜆)2 (2.14) 

𝐶𝑠 = 𝐶𝑏exp⁡(
𝐽𝑣
𝐷
𝛿) (2.15) 

 2 

where 𝛷 is the ratio of virus concentration inside the pores to the virus concentration at 3 

the pore mouth, and the value is determined by the value of 𝜆 via equation 2.14. 𝐶𝑠 is the virus 4 

concentration at the surface of the membrane, which can be calculated by equation 2.15, where 𝐶𝑏 5 

is the bulk virus concentration, 𝐽𝑣 is the permeate flux, 𝐷 is a coefficient for apparent diffusion 6 

of virus particles, and 𝛿 is the thickness of the concentration polarization (CP) layer formed by 7 

the rejected virus particles on the membrane surface, which can be given by the equation below: 8 

𝛿 = 𝑎𝑡𝑏 (2.16) 

where 𝑎 and 𝑏 are both constants, and 𝑡 is the time of filtration. This equation indicates 9 

that as the filtration proceeds, the CP layer would grow thicker. 10 

Wu et al. (2010) took a deep look into the removal process of somatic coliphages in a 11 

bench-scale MBR system and analyzed the contribution of each major mechanism. Both physical 12 

and biological processes were considered and fitted with mathematical models, although it is worth 13 

pointing out that this model is only partially process-driven because some relationships and 14 

coefficients are obtained via regression methods. The model starts with the mechanical sieving by 15 

the pristine membrane, a linear relationship between the log removal and 𝜆  was reported. 16 

Equation 2.17 shows the equation: 17 

Log removal = 5.06 ∙
𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑑𝑝𝑜𝑟𝑒
+ 0.03 (2.17) 

The decay and inactivation, either spontaneous or enhanced by activated sludge of somatic 18 
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coliphage, fitted well with the first-order kinetic model of equation 2.5 and 2.6. As for the 1 

coefficient 𝐾𝑑, the authors found the observed 𝐾𝑑 value of sewage was higher than that of natural 2 

water and attributed it to the increased number of bacteria in sewage. However, the impact of water 3 

type was not packed into the model, because how environmental factors quantitatively affect the 4 

decay rate coefficient remains unclear. The adsorption of coliphage particles by activated sludge 5 

was fitted by the Freundlich isotherm equation shown in equation 2.18: 6 

𝑙𝑜𝑔10𝑄 = 𝑙𝑜𝑔10𝐾𝑎 +
1

𝑛
𝑙𝑜𝑔10𝐶𝑒 

(2.18) 

In this equation, 𝐶𝑒 and 𝑄 are the adsorption equilibrium somatic coliphage concentration 7 

and the adsorptive capacity at certain 𝐶𝑒, respectively, and 𝑛 and 𝐾𝑎 are constants. The authors 8 

also mentioned that the removal contributed by the fouled membrane is positively correlated with 9 

fouling degree, yet a mathematical model was not proposed. 10 

Whereas the process-driven models provide great reference value in many ways, their 11 

applicability to real MBR systems still needs further validation before they can be useful in 12 

practical applications. The major obstacle is the model complexity when facing a process as 13 

complex as the virus removal in MBR systems. If all the contributing factors in both the biological 14 

and physical processes are integrated into an exhaustive and generalized mechanistic model, not 15 

only the number of active variables may outreach the scope of practical experiments design and 16 

routine monitoring 160,161, but the coordination and balance of components involved in the complex 17 

system would also significantly increase the amount of work and computational power needed. 18 

Moreover, the current understanding of the process is still far from adequate, the effect of some 19 

parameters on certain processes, such as membrane fouling, has yet not been clarified, and some 20 

processes may not even be able to be described by a mathematical model 138,143,151,162. Bagheri et 21 

al. (2019) listed 28 parameters as important factors associated with membrane fouling, but they 22 
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also stated that available information is not enough to infer the relative importance of those 1 

parameters. Similarly, the membrane fouling model developed by Li and Wang (2006) takes into 2 

account the uneven distribution of aeration turbulence and the different rates of cake layer 3 

accumulation that follows. The final model consists of a large number of equations with 49 4 

functioning parameters and coefficients, and even that, several assumptions, such as the absence 5 

of biomass properties variability and the effect of floc size on membrane fouling, are still made 6 

for simplicity. The simulation result shows that although the prediction of the general trend can be 7 

obtained, the fitness between the simulated result and experimental data was not satisfactory, 8 

further demonstrating the degree of complexity and nonlinearity of the membrane fouling process. 9 

The operating condition is generally set to be stable, which not only has limited tolarence for 10 

fluctuation, but also attenuates the potential effect of environmental factors that could alter the 11 

biomass behavior and the membrane physicochemical properties such as pH, conductivity, and 12 

chemical composition, making the model insensitive to the dynamic operating condition. 13 

Since the virus removal process has not yet been clearly described by mathematical 14 

formulas due to its complexity 151,163,164, a chance for data-driven modeling approach may exist. 15 

Generally, a model can be classified as “data-driven” if the link between input and output variables 16 

is established via statistical methods using existing dataset, circumventing the need for studying 17 

the actual mechanisms. Due to this feature, some data-driven models are referred to as “black-box 18 

model” because the inner structure can be too obscure for further interpretation. Fig. 2.2 shows the 19 

typical workflow of designing and operating a data-driven soft-sensor model. 20 

Considering the critical role of membrane filtration in the virus removal process, the 21 

efficiency of virus removal may be inferred from certain process indicators reflecting the 22 

membrane permeability, which can easily be put under real-time monitoring. Existing studies have 23 

supported such an idea, Shang et al. (2005) and Wu et al. (2010) both stated that when other 24 
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operational conditions remain unchanged, transmembrane pressure (TMP), a common measure of 1 

membrane fouling degree, could be used as an indicator for virus rejection, and the latter study 2 

reported a significant positive correlation (R = 0.693, p = 0.006) between the somatic coliphage 3 

rejection and TMP. A similar correlation between TMP and virus removal (R2 ranges from 0.63 to 4 

0.94) was also highlighted in the study of Yin et al. (2016) where human adenovirus was used as 5 

the model virus, but the authors pointed out that the quantitative relationship may be system-6 

dependent and is hence challenging to establish. However, as pointed out by Fox and Stuckey 7 

(2015), it is also indispensable to find a way to incorporate other factors as well since the virus 8 

removal is not entirely dependent on TMP. 9 

 10 

Fig. 2.2 The workflow of data-driven soft-sensor approach, from model design to application, 11 

adapted from Haimi et al. (2013). 12 

Led by the increasing demand for online process monitoring and the inherent inadequacies 13 

of mechanistic models, the approach of data-driven modeling is gaining interest among researchers 14 

in various fields, and researchers working on water-related topics are no exception 165–167. The 15 

main appealing aspect of data-driven models is that the connection between input and output 16 

variables is derived from available dataset by designated algorithms without the need for an 17 

understanding of underlying mechanisms, which could be either beyond current knowledge base 18 

or mathematically unsolvable 162,168. In addition, data-driven models allow better handling of the 19 
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uncertainty and nonlinearity by comparison 169, this is especially intriguing when modeling a 1 

sophisticated process such as membrane fouling, which is closely related to the virus removal 2 

performance during the filtration process. 3 

The data-driven modeling approach has seen a handful of successful applications regarding 4 

MBR systems with a special interest in automation and membrane-fouling control 124,169. In the 5 

review paper by Naessens et al. (2012), several data-driven modeling methods already applied to 6 

MBR systems for different purposes are introduced. Generally, two types of methods can be 7 

considered data-driven: machine learning methods, and multivariate statistics. Machine learning 8 

techniques covered here include artificial neural network (ANN) and adaptive neuro-fuzzy 9 

inference system (ANFIS) while principal component analysis (PCA) and partial least squares 10 

(PLS) are discussed under the category of multivariate statistics. In essence, machine learning 11 

methods stand out in establishing nonlinear input-output relationships without prior knowledge, 12 

while the power of multivariate statistics lies in capturing the hidden relationship between inputs 13 

and output and finding the variables mostly correlated with the desired output. The two types of 14 

methods are often used together to offer better performance, for instance, the structure of ANN 15 

and ANFIS can be optimized by using PCA to reduce the dimensionality of data 124,166,167,170. The 16 

power of these methods has been demonstrated in many cases, one example is the study conducted 17 

by Liu and Kim (2008), in which a comparison between ANN model and single blocking laws in 18 

TMP prediction was performed. While the ANN model took only three variables as input, its 19 

accuracy surpassed the single blocking law over the complete experimental period.  20 

With all the progress having been made, though, applications related to MBR virus removal 21 

remain scarce in literature and the potential of such techniques is yet to be fully acknowledged. 22 

The closest example is the study by Madaeni and Kurdian (2011), in which virus removal by 23 

microfiltration membrane was predicted by a fuzzy inference system. Notwithstanding a decent 24 
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agreement was reached among the predicted and experimental data (RMSE = 15.81), the highly 1 

simplified filtration module design means there is still a long way to go before such a method could 2 

be employed for practical use. 3 

Despite the competitive performance, data-driven models still suffer from some limitations. 4 

First, by nature, they need large training dataset to tune the internal parameters 172, which means 5 

when the availability of experimental data is less than ideal, the model may not perform as 6 

expected 161. Secondly, since the understanding of the underlying process mechanisms is bypassed 7 

and the models are dedicated to existing data, the opaqueness of black-box models make them less 8 

easy to interpret when the interaction between process variables needs to be analyzed 167,173. These 9 

drawbacks have raised the discussion among researchers about the potential of hybrid methods. 10 

Essentially, the objective is the convergence of mechanistic understanding of the process being 11 

modeled and the overwhelming superiority of data-driven models in learning from data and 12 

handling nonlinearity and uncertainty. Conceptually, in a properly built hybrid model, the 13 

mechanistic part and statistical part should complement each other, which means the resultant 14 

model can diminish the demand for training data and offer better extrapolation potential. Despite 15 

there has not been a study on applying hybrid model to virus removal in MBR systems, some 16 

efforts have been made for related topics such as membrane permeability prediction. Hwang et al. 17 

(2009) developed a hybrid model for membrane filtration performance forecasting, the model 18 

consists of a filtration model and an ANN model, two variables obtained from the physical model 19 

are fed into the ANN model as input variables, while the output is TMP predicted by 6 inputs in 20 

total. Another example of hybrid TMP prediction model can be found in the study of Chew et al. 21 

(2017), but in this model, the order is reversed. The ANN model was used to predict the specific 22 

cake resistance, α, a coefficient that both fluctuates with the characteristics of feed water and 23 

requires extensive works to determine via experimental method. The predicted value of α is then 24 
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used in a first principal model which gives TMP as output. By replacing the actual experiment with 1 

ANN model prediction, the model enabled rapid estimation and provided good agreement between 2 

experimental and predicted results. 3 

2.1.4 Preferred features of future model and conclusions 4 

From the viewpoint of maximizing the model capability and robustness, several merits 5 

would be of particular interest when conceiving and designing a pioneering model. Firstly, the 6 

model should be equipped with the ability to accurately grasp and approximate the intricate 7 

interactions between a large set of input and output parameters while being tolerant to data noise 8 

and fluctuation. In addition, it should have the capability to learn from available data and go 9 

beyond the scope of the current understanding of the virus removal process. Thirdly, as suggested 10 

by the HACCP concept, if possible, the model should take only easy-to-measure parameters or 11 

online sensor signals as inputs for real-time prediction. Finally, the model should have some 12 

flexibility to allow extrapolation to the conditions the reactor may encounter. Due to the wide range 13 

of reactor configurations and wastewater characteristics, the coefficients obtained from one reactor 14 

and one set of operational conditions might result in significant deviation when applied to others, 15 

so the ability to adapt to new configurations and operating conditions would be critical.  16 

In conclusion, to ensure the safe use of the reclaimed water from MBR systems, an 17 

important task is to analyze and control the microbial risk, particularly the viral infection and 18 

disease risks. In addition to virus removal experiments as end-product inspection, prediction 19 

models based on the concept of soft-sensor needs to be developed for advanced risk management 20 

schemes. However, the high degree of complexity, nonlinearity, and uncertainty of the MBR-based 21 

wastewater treatment process makes establishing such a model an arduous task. There is no virus 22 

removal performance prediction model currently in existence that can fulfill all the requirements. 23 

Future studies on the understanding and integration of physical and biological virus removal 24 
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mechanisms and their joint impact on the final performance would be of great importance. Also, 1 

as the burgeoning data-driven and hybrid modeling approaches have shown their potential in this 2 

field, further research on this direction is needed. 3 

2.2 Potential and challenges of COVID-19 wastewater surveillance 4 

2.2.1 Introduction 5 

COVID-19 is an infectious respiratory disease caused by SARS-CoV-2 infection. Due 6 

to its highly contagious nature, following the initial cases reported in Wuhan, China at the end 7 

of 2019, COVID-19 has swept the world. The World Health Organization (WHO) officially 8 

declared a global pandemic of COVID-19 on 11th March 2020, but it had spread to more than 9 

200 countries and regions with a whopping worldwide case count of more than 500 million as 10 

of June 2022 despite all the measures taken to control its transmission 175. 11 

 12 

Fig. 2.3 A graphical abstract of literature review Section 2.2. 13 

Among the efforts to contain the COVID-19 pandemic and mitigate its adverse impact 14 
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on society in the absence of an effective vaccine, the ponderance of a reliable and timely 1 

epidemic surveillance system has been stressed. Conventionally, the epidemic surveillance 2 

relies heavily on clinical testing either conducted by existing healthcare facilities or temporarily 3 

established testing sites, and for COVID-19, using reverse transcription quantitative polymerase 4 

chain reaction (RT-qPCR) on nasopharyngeal swabs to detect RNA signal has been accepted as 5 

the standard testing procedure 74. However, the high contagiousness and the presence of 6 

asymptomatic virus carriers have made the clinical testing capacity largely lag behind the 7 

demand, raising the concern about the grievous outcomes of underreporting, which has been 8 

suggested by both statistical analysis and seroprevalence surveys 176,177. Acknowledging the 9 

importance of filling the gap and lifting the pressure on testing facilities, recent studies have 10 

underlined the potential of wastewater-based epidemiology (WBE) as a solution complementary 11 

to clinical testing 68,69,178,179. Following its successful early applications of tracking illicit drug 12 

usage and lifestyle factors, WBE is gradually gaining popularity among researchers in the water-13 

related field. Blessed with its community-wide coverage, ability to “see” the underreported and 14 

asymptomatic patients, and low-cost nature, WBE has been proposed to be a promising tool in 15 

infectious diseases surveillance, and unsurprisingly, high hopes are placed for its capability of 16 

helping combat COVID-19 as well 67–69. 17 

The basic concept of WBE centers around this principle: certain chemical or biological 18 

agents (also referred to as ‘biomarkers’) excreted by human bodies can be collected by the 19 

sewage network and end up entering the wastewater, making it a rich source of these substances. 20 

Via physicochemical methods, biomarkers can be recovered from wastewater and the measured 21 

concentration can then be used to infer the size of the shedding population and provide 22 

community-level health information 66. For SARS-CoV-2, although antigen testing is also 23 

emerging 68, the viral genome has been widely accepted as the biomarker. To date, a handful of 24 
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studies have reported the detection of the SARS-CoV-2 viral genome in sewage networks 70–1 

74,76,180,181. 2 

However, some believe that the true standout of WBE is the early warning capability. 3 

The term “early warning” can be interpreted in two ways in the context of COVID-19 4 

surveillance: (1) signaling an early stage of an outbreak. Presymptomatic/asymptomatic 5 

transmission of COVID-19 is considered a key factor behind its rapid spread 182. Arons et al. 6 

(2020) recovered viable virus from 71% (17 in 24) of presymptomatic individuals 1 to 6 days 7 

prior to the symptom onset 183, and He et al. (2020) estimated that 44% (95% CI 25-69%) of 8 

secondary cases were infected when the index cases were in their presymptomatic stage 184. 9 

While asymptomatic and presymptomatic virus carriers can easily hide in the population due to 10 

the absence of appreciable symptoms such as fever and dry cough, by nature, WBE can 11 

indiscriminately detect their presence as long as they develop viral RNA shedding 185. Therefore, 12 

if a positive wastewater viral load is spotted in a region previously experiencing no or a low 13 

prevalence, it may indicate an unnoticed initial circulation of the virus in the community. This 14 

information can be made use by the local authority, who can take intervention by issuing 15 

warnings or administrative orders accordingly to inform the public of the potential threat and 16 

reduce the chance of invisible transmission. Also, as many countries and regions suffer from 17 

limited resources needed for a large-scale clinical testing program which greatly helps monitor 18 

the epidemic development and control the spread, getting a rough location of an initial 19 

circulation can help ease the burden and make the testing more efficient by guiding the valuable 20 

testing capacity to where it is most urgently needed; (2) foreshadowing an impending increase 21 

in infected individuals. The basic assumption behind this is: since infectiousness predates 22 

symptom onset, so can the viral shedding. Thus, if proper sampling tactics and quantification 23 

methods are adopted, an increased wastewater viral load may be observed and reported before 24 
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the newly infected individuals develop symptoms and seek medical attention. Since there may 1 

be a correlation between wastewater viral load and the number of infected individuals, in 2 

addition to supporting the administrative and resource deployment measures previously 3 

described, from the perspective of disease treatment, the quantitative information also allows 4 

the healthcare facilities to take measures aimed at improving preparedness and coping with the 5 

anticipated new patients beforehand so that the facilities are less likely to be overwhelmed. 6 

Both interpretations of early warning have been backed up by recent studies and events. 7 

Table 2.2 lists some selected recent wastewater surveillance studies that highlight the potential 8 

of WBE early warning of COVID-19. In terms of practical application, the University of 9 

Arizona made headlines in August 2020 when researchers there detected SARS-CoV-2 viral 10 

genome in the wastewater from a student dormitory, the university quickly took action and tested 11 

all 311 residents living and working in the said building and found two asymptomatic carriers 12 

among them, likely having prevented a potential outbreak and making it the first true application 13 

of WBE in COVID-19 early warning 186. 14 

  15 
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Table 2.2 Recent wastewater surveillance studies that indicate the potential of COVID-19 early warning via WBE 1 

Region Sample type 

Primary 

concentration 

method 

Sampling 

period 

Population size 

in the WWTP 

catchment area 

Major findings related to early warning potential Reference 

Murcia, 

Spain 

Grab raw 

sewage 

Al(OH)3 

adsorption-

precipitation 

2020/03/12-

2020/04/14 

Multiple, from 

~ 28,000 to ~ 

530,000 

Wastewater samples from three WWTPs were 

tested positive 12-16 days before COVID-19 cases 

were reported in the respective catchment regions 

71 

Amersfoort, 

The 

Netherlands 

Composite 

raw sewage 
Ultrafiltration 

2020/02/05-

2020/03/25 
~ 234,000 

Sewage signaled virus circulation 6 days before the 

first cases were reported 
72 

Milan, Italy 
Composite 

raw sewage 

PEG/dextran 

precipitation 

2020/02/03-

2020/04/02 
~ 1,050,000 

Samples were tested positive when the COVID-19 

infections were very limited (29 in a larger area) 
70 

Ishikawa, 

Japan 

Grab raw 

sewage 

PEG 

precipitation 

2020/03/05-

2020/04/21 

Multiple, from 

~ 31,000 to ~ 

233,000 

Samples were tested positive when the prevalence 

was lower than one confirmed case per 100,000 

people 

75 

Bozeman, 

MT, USA 

Composite 

raw sewage 
Ultrafiltration 

2020/03/30-

2020/06/12 
~ 50,000 

SARS-CoV-2 RNA levels in wastewater precede 

clinical PCR test results by 2–4 days 
187 

New Haven, 

CT, USA 

Primary 

sewage 

sludge 

N/A 
2020/03/19-

2020/06/01 
~ 200,000 

SARS-CoV-2 RNA concentrations in sludge 

predate hospital admissions by 1-4 days 
188 

2 
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2.2.2 Limiting factors, current knowledge, and research needs 1 

When used for detecting newly introduced virus carriers and initial virus circulation in 2 

a low-prevalence community, the viability of WBE and the confidence it offers largely lean on 3 

the lowest possible prevalence level that enables viral RNA detection. This threshold is governed 4 

by many factors including the sewage network layout and capacity, shedding profile of infected 5 

individuals, sewage characteristics, sampling strategy, the recovery efficiency of the 6 

concentration and quantification methods, and the detection limit of the instrument. A relatively 7 

reliable estimate requires the latest knowledge about the pathology of COVID-19, verified 8 

experimental method, as well as support from the local water agency. Some estimates have been 9 

given by previous studies, Hart and Halden (2020) performed a computational analysis with the 10 

City of Tempe, Arizona, USA being the studied region and estimated that a sensitivity of 1 in 11 

144 to 2 million individuals can be achieved, depending on the assumptions used 189. Similarly, 12 

Ahmed et al. (2020a) reported an estimated prevalence level of 0.028% (95% CI 0.019–0.039%, 13 

1 in 3571 individuals) based on viral RNA detection 73. However, these estimations may be too 14 

optimistic as some factors that can significantly affect the detection sensitivity are missing while 15 

others face significant uncertainty. For instance, neither of the two studies counted the recovery 16 

efficiency of the experimental method, the latter study also did not consider the natural 17 

degradation of the viral RNA. As for the example of the University of Arizona, despite a 18 

detection sensitivity of 0.64% (2 in 311) on paper, as further details (e.g., sampling strategy) 19 

remain undisclosed, it is unclear whether the same level of sensitivity can be expected under 20 

other conditions. Besides, in a quantitative sense, as an extension of calculating the lowest 21 

prevalence level that enables successful detection, a back-calculation model that projects the 22 

obtained wastewater viral load to the active shedding population is of foremost importance 66, 23 

yet so far, very few studies have challenged this issue. 24 
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Another measure of the viability of WBE in COVID-19 early warning is how responsive 1 

it can be. Even if the detection sensitivity is adequate for low prevalence detection, the value of 2 

detection can be seriously undermined, even nullified, if the result cannot reach the correct hands 3 

in time. Also, in regions where prevalence level is high enough to enable consistent viral RNA 4 

detection, WBE can still shine from its quantitative side; if the wastewater viral load is closely 5 

monitored and there is a surge in infections, as fecal shedding may predate symptom onset, an 6 

increase in viral load may appear before the newly infected individuals develop symptoms, seek 7 

medical attention, and be admitted to healthcare facilities after diagnosis, and the number of 8 

them may be inferred from the viral load. Different from the low prevalence detection which 9 

only gives a qualitative result, the quantitative outcome gives local healthcare facilities and their 10 

supervising agencies a response window period and an anticipated capacity demand. Just as in 11 

the case of testing capacity, in a time when many regions are having logistic difficulty handling 12 

the rapid increase in infections with limited resources, being able to forecast the demand may 13 

help get an upper hand and improve the preparedness as local healthcare facilities can make use 14 

of this time to (1) prepare necessary medical supplies and equipment including beds, ventilators, 15 

protective clothing, and masks; (2) arrange human resources to make sure there would be 16 

adequate health workers for the increased workload. In addition, from a higher angle, this 17 

community demand forecast may enable regional reallocation of available resources which can 18 

come in handy if there is an overall shortage. 19 

However, both measures of the feasibility of WBE early warning face considerable 20 

uncertainty. In the previously mentioned studies regarding the lead of viral RNA in primary 21 

sewage sludge compared to local admissions, the analysis was performed in a retrospective way: 22 

the accumulated longitudinal SARS-CoV-2 quantification data were compared with the clinical 23 

reports during the same period. For WBE to be an active early warning tool, though, it needs to 24 
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be performed in a timelier manner. One important index in the timeline of COVID-19 infection 1 

is the incubation period, which is the time gap between virus exposure to symptom onset. Some 2 

studies have reported very similar median or mean values of approximately 5 days 190–192. After 3 

the symptom onset, there typically will be another period until the testing result comes out or 4 

the patient gets admitted to a hospital, Lauer et al. (2020) reported a mean value of 1.2 days 190, 5 

but it may vary greatly depending on the testing policy and the capacity of the hospital in 6 

question. Adding the two intervals up sets a reference for WBE; whether the workflow can be 7 

streamlined to beat this time largely affects its viability, although to what extent the outcome is 8 

useful also depends on how long is the response window period left behind. 9 

In the following sections, factors that may become bottlenecks, their significance, what 10 

previous and recent studies have revealed, and what awaits to be addressed and clarified by 11 

further studies are summarized and discussed to provide readers with a brief roadmap towards 12 

the final application of WBE as a part of the COVID-19 early warning system. 13 

2.2.3 Shedding profile of infected individuals 14 

The shedding profile of infected individuals directly determines the wastewater viral load 15 

and is hence regarded as one of the most critical factors in WBE. The shedding profile consists of 16 

three parts: the shedding rate, the beginning of shedding, and the shedding duration. When the 17 

shedding profile is relatively predictable and stable while showing finite between-person variation, 18 

it will greatly simplify the modeling process, but on the other hand, if the shedding profile bears 19 

significant stochastic fluctuations and between-person discrepancy, substantial extra efforts would 20 

be needed to handle the data noise and uncertainty. 21 

So far, reports regarding shedding rate have mainly focused on hospitalized symptomatic 22 

patients due to the availability. Walsh et al. (2020) summarized in their review that while some 23 

studies reported little to no difference in the viral loads of symptomatic and asymptomatic patients, 24 
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there are also studies that found the severity of symptoms can affect viral load, indicating 1 

substantial heterogeneity. Generally speaking, fecal viral shedding shows significant uncertainty, 2 

and the overall pattern is more erratic than respiratory shedding. One of the earliest assessments 3 

of the rate and duration of fecal shedding was conducted by Wölfel et al. (2020), while the highest 4 

recorded viral load among 9 hospitalized patients reached 107 copies/gram of stool sample, the 5 

results also show significant variation between cases; the viral load of one patient had always 6 

stayed below 104 copies per gram of feces. In a review by Parasa et al. (2020), the recorded viral 7 

load in stool samples also ranges from 550 to 1.21 × 105 copies per mL of feces. The viral shedding 8 

in the gastrointestinal tract seems more erratic than that in the respiratory tract 193. In addition to 9 

the variation in shedding rate, it has also been stated that not all infected individuals will develop 10 

fecal shedding. In the aforementioned study by Wölfel et al. (2020), the stool specimen of one 11 

patient was negative during the entire testing course. A meta-analysis by van Doorn et al. (2020) 12 

reported that 51.8% (95% CI 43.8-59.7%) of patients have their stool specimens tested positive 13 

while another systematic review by Gupta et al. (2020) reported a similar percentage (53.9%), but 14 

very limited information is available about the shedding ratio among asymptomatic virus carriers. 15 

Not only is this uncertain fecal shedding a hindrance to the estimation of achievable detection 16 

sensitivity, it also means that when the number of infected individuals is low, statistically, there is 17 

a chance that none of them sheds viral RNA into wastewater, making their presence undetectable 18 

by WBE no matter how sensitive the assays are. 19 

Also, the timing of fecal shedding has a decisive role in determining how “early” the 20 

shedding can be detected. As the routine testing of fecal shedding typically only focuses on 21 

symptomatic patients after their hospitalization, solid evidence remains scarce as to the actual 22 

starting point of fecal shedding, especially among asymptomatic virus carriers. Alternatively, the 23 

timing of infectiousness development (respiratory shedding) may be used as a proxy. He et al. 24 
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(2020) estimated that the infectious period begins at 2.3 days prior to symptom onset and peaks at 1 

0.7 days before it. Nevertheless, it is important to keep in mind that respiratory shedding does not 2 

perfectly represent fecal shedding and may not exactly parallel it, related information hence must 3 

be interpreted and used prudently until more medical evidence becomes available. 4 

As another critical aspect of the shedding profile, the persistency of shedding should also be 5 

given some consideration. It has been revealed that the shedding of SARS-CoV-2 in fecal 6 

specimens can outlast that in respiratory specimens 185,197–200. The long-tailed fecal shedding may 7 

cause a masking effect on newly infected individuals, making their presence indistinguishable 8 

from the patients in their post-infection phase, especially when an infection peak has recently 9 

ended and the shedding population remains large. Although according to previous medical reports, 10 

the intensity of shedding steadily declines during the infection course, further clinical evidence is 11 

still needed to confirm whether the long-tailed shedding will become a concern for WBE 12 

application. 13 

Because the shedding rate and duration determined from clinical case reports may be 14 

subjected to stochastic error and person-to-person variation, if possible, packing available data and 15 

biological explanation into a mathematical model for better generalization and easier extrapolation 16 

of the shedding dynamics is preferable. Currently, available information about this approach is 17 

very limited and further study is needed. Recently, Miura et al. (2020) fitted a shedding dynamics 18 

model originally developed by Teunis et al. (2015) for norovirus fecal shedding. 19 

𝐶(𝑡|𝛼, 𝛽) = 𝐶0𝑒
−𝛼𝑡(1 − 𝑒−(𝛽−𝑎)𝑡)⁡(𝛽 − 𝛼) (2.19) 

This model assumes that virus particles first accumulate at an infection site and are then 20 

released from the intestinal tract into the environment. 𝐶(𝑡|𝛼, 𝛽) is the virus concentration in 21 

feces at time⁡𝑡, 𝛼 and 𝛽 are constants that are defined by the transport rate and effective volumes 22 

of the compartments within the intestinal tract, and 𝐶0 is a constant controlling the height of peak 23 
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virus concentration. The shedding curve features a rapid increase in the initial stage of infection, 1 

followed by a downward slide until the virus concentration falls below the detection limit. Other 2 

mathematical models have also been developed for virus shedding into saliva and blood based on 3 

the understanding of the infection process 202,203. However, although these previous models have 4 

provided some insights, as mentioned above, the fecal shedding of SARS-CoV-2 may have its own 5 

distinct characteristics and follow a different biological mechanism, it is unclear whether the same 6 

pathologic assumptions and consequently these mathematical models can be applied to SARS-7 

CoV-2. 8 

In conclusion, though much information has been made available, the current knowledge is 9 

still far from enough to support successful WBE application in absolute calculations. A heavy 10 

workload still lies ahead until the uncertainty in the fecal viral shedding can be properly addressed. 11 

However, it should be clearly stated that there is no guarantee that such a goal will finally be 12 

achieved therefore the worst scenario also needs to be considered: if the shedding profile is 13 

eventually found to be too erratic and unpredictable, as some existing literature suggests, to be 14 

clearly described and properly modeled, the prospect of WBE will be critically impaired as it lacks 15 

the ability to be a tool for absolute quantitative analysis. But to proceed from where we are now, a 16 

more comprehensive and holistic image of the shedding profile, including the rate, starting time, 17 

and duration is needed, which will benefit from further clinical evidence. 18 

2.2.4 Recovery efficiency and instrument detection limit 19 

Stable and efficient recovery and detection of the viral RNA is a decisive factor in wastewater 20 

surveillance. The recovery efficiency and instrument detection limit provide a critical reference 21 

when estimating the threshold prevalence level and back-calculating the shedding population from 22 

the viral load. For primary concentration and RNA extraction, several research articles and reviews 23 

have looked into this technical issue, focusing on either surrogates or other coronavirus strains 204–24 
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207. Ahmed et al. (2020d) recently compared the recovery efficiency of some commonly used 1 

methods for wastewater virus concentration using murine hepatitis virus (MHV) as the surrogate 2 

for human coronavirus, the average recoveries varied from 26.7 to 65.7%, with the method having 3 

the highest recovery efficiency being an adsorption-extraction method supplemented with MgCl2. 4 

Torii et al. (2020) conducted a similar study, in which Pseudomonas phage φ6 was used as the 5 

surrogate, and a method combining polyethylene glycol (PEG) precipitation and acid guanidinium 6 

thiocyanate-phenol-chloroform extraction achieved a mean recovery efficiency of 29.8 to 49.8%. 7 

From the standpoint of quantitative analysis, this means if the recovery efficiency is not considered, 8 

in other words assuming a 100% recovery, the estimated detection limit would be lower than the 9 

actual value, which may lead to a falsely high sense of security. However, even though both MHV 10 

and φ6 are enveloped viruses and may better resemble the behavior of SARS-CoV-2 than 11 

nonenveloped surrogates, discrepancy may still exist and the measured recovery efficiency should 12 

be used discreetly and only as a reference. 13 

It is also worth mentioning that many established primary concentration methods were 14 

originally developed and validated for nonenveloped waterborne gastrointestinal viruses. Due to 15 

the distinct structure and surface property of enveloped viruses such as SARS-CoV-2, their 16 

behavior in the wastewater matrix may also be different, including the partitioning 208. This has 17 

been reflected by recent reports of the detection of SARS-CoV-2 in sewage sludge 74,188,209. 18 

However, it is important to point out that due to the sedimentation process, the viral load in primary 19 

sludge may be the result of an accumulation over several days and does not reflect the real-time 20 

change in the wastewater matrix. As for the wastewater solids, Kitamura et al. (2021) and Westhaus 21 

et al. (2021) recovered SARS-CoV-2 RNA from both the solid and liquid fractions of wastewater 22 

and the results suggest that wastewater solids may support more sensitive SARS-CoV-2 detection. 23 

Therefore, an extra step that helps release viral RNA from the solids (e.g., heat treatment and 24 
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adsorption-elution) may improve recovery efficiency 212,213, but additional research needs to be 1 

conducted to verify the efficacy for SARS-CoV-2. 2 

The last barrier of the quantification assay is the detection and quantification limit. For RT-3 

qPCR, a standard curve is necessary for converting the cycle threshold (Ct) value into virus titers, 4 

but if the signal intensity is below a certain Ct value, it would be indistinguishable from the 5 

potential noise. In practice, this Ct value limit is usually translated to gene copies per unit volume 6 

by referring to the standard curve. However, if the dilution series is not well configured, there 7 

could be a difference between the limit of detection (LoD) and the limit of quantification (LoQ). 8 

Attention should be paid to reduce or eliminate the gap between LoD and LoQ. PCR reaction 9 

inhibition is also a concern in wastewater surveillance, the introduction of process control, whether 10 

applied to the whole process, before RNA extraction and/or before RT-qPCR, has been proposed 11 

to help evaluate the extent of inhibition 214. In addition, the design of RT-qPCR assay 73,180,210,215 12 

and nucleic acid extraction kit 216 can also affect the detection sensitivity. As in the case of the 13 

primary concentration method, at the current stage, a consensus of optimal recovery-detection 14 

assay has not been reached, researchers may need to conduct their experiments to determine the 15 

assay suitable for the lab condition and wastewater characteristics. 16 

Some recent studies have employed droplet digital PCR (ddPCR) for the detection of SARS-17 

CoV-2 RNA in clinical samples 217–220 and suggested that ddPCR is a superior choice for clinical 18 

diagnosis for its higher sensitivity and other benefits such as not needing a standard curve for 19 

quantification. However, D’Aoust et al. (2021) compared RT-ddPCR and RT-qPCR using 20 

wastewater sludge samples and the results did not support the statement that RT-ddPCR performs 21 

better than RT-qPCR. It is possible that the low detection limit offered by ddPCR can enhance the 22 

performance of the WBE approach, but related research needs to be further extended to investigate 23 

the effect of factors such as inhibition and optimize the assay. 24 
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2.2.5 Dilution factor and sampling strategy 1 

Once the viral RNA is released from shedding individuals, it will enter the sewage network 2 

and get mixed with the rest of the wastewater. In its simplest form, the dilution factor can be 3 

determined by assuming a complete and homogeneous blend of the viral RNA shed by all shedding 4 

individuals in one day and the daily wastewater flowrate which is usually obtainable from the 5 

sewage network operator. But in practice, the mixing and dilution process is significantly 6 

influenced by the uneven diurnal wastewater flowrate and the timing of toilet flushing. There are 7 

two options of sampling: composite sample and grab sample. Composite samples are favored in 8 

recent detection reports and are generally considered more suitable for the task as multiple 9 

wastewater samples over a period of time are collected, this increases the success rate of detection 10 

given the high uncertainty of shedding, especially when the sampling period is set to 24 h and a 11 

flow-proportional sampler is used 69,176,221. However, considering the biological rhythm and living 12 

habits of human beings, the variance may, in turn, be beneficial and the grab sample may offer a 13 

higher chance of detection if the sampling time is optimized to capture the peak hours of the toilet 14 

flushing. In the aforementioned study of Hata et al. (2020) in which a positive signal was detected 15 

when the catchment area had a low prevalence level (less than one confirmed case per 100,000 16 

people), grab samples were used. However, due to the unevenly distributed in-sewer travel time in 17 

a large sewage network, this specific method may be more applicable to confined environments 18 

(e.g., dormitories and nursing homes). An early study on defecation concluded that defecations are 19 

more likely to occur in the early morning 222, and Campisano and Modica (2015) reported that 20 

there are three toilet flushing peaks during a day, although it is necessary to point out that the result 21 

is merely based on a case study of a household and whether it also applies to a larger community 22 

needs further verification. 23 

Previous studies have employed different sampling frequencies, from taking samples on 24 
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discrete dates 70,224, to routine sampling with a relatively stable interval 71,74,180 and daily sampling 1 

188. For retrospective analysis, frequent sampling over a long period (e.g., several months) may 2 

unnecessarily increase the total workload required for sample processing, therefore lower 3 

frequency is acceptable and more realistic. But under the premise of using the measured viral load 4 

for early warning, especially considering the rapid progression of the COVID-19 epidemic and the 5 

potential social significance of the measures to be taken, daily or similarly frequent sampling is 6 

highly recommended as long as the laboratory capacity allows. 7 

Apart from direct measuring, human fecal indicators may also help normalize the flowrate 8 

as well as help identify the peak flushing hours in a day if there are any. Some previous studies 9 

have opted for the usage of pepper mild mottle virus (PMMoV) as an internal control because of 10 

its universal and stable presence in the wastewater matrix 225,226, but more options including 11 

crAssphage, HAdV, JCPyV, human microbiome-specific HF183 Bacteroides 16S ribosomal rRNA, 12 

and eukaryotic 18S rRNA may also be used 74,176,227,228, although it is worth mentioning that 13 

because their nature may be very distinct from that of the target biomarkers, these internal control 14 

targets cannot be used for signal normalization. 15 

2.2.6 In-sewer travel time and degradation 16 

Once the viral RNA is released from infected individuals and enters the wastewater, it will 17 

spend some time traveling in the sewer pipes until it reaches the designated sampling site. The in-18 

sewer travel time is a function of many characteristics of the sewage system in question, such as 19 

the spatial configuration of the sewer network and wastewater flow rate in a given time, hence its 20 

value may vary greatly among sewage networks and is highly recommended to be determined for 21 

each WBE project individually if needed. Although its importance in WBE has been underlined 22 

229, the in-sewer travel time for a given sewage network has rarely been reported, presumably due 23 

to the difficulty of performing an experiment or establishing a hydrological model. But according 24 
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to limited existing estimates made for multiple purposes including WBE application, the mean 1 

value of in-sewer travel time, or wastewater residence time, typically falls within several hours. 2 

For instance, it has been estimated that the national median in-sewer travel time for the U.S. is 3.3 3 

h 230, and the approximate sewer transit times of the UK and Rome have also been estimated to be 4 

~2 h and 3-5 h, respectively 231,232. Also, in the case of grab sampling, the mean or median value 5 

does not consider the population heterogeneity, the wastewater produced by those living close to 6 

the sampling site will have significantly shorter in-sewer travel time compared to that from people 7 

living in the upstream area. To offset the potential impact, the demographic and geographic 8 

distributions of the population may also be considered a factor. 9 

Wastewater is a complex matrix with a high concentration of microorganisms and substances 10 

that are either organic and inorganic, all of which may contribute to the natural degradation of viral 11 

RNA. Previous studies have investigated and reviewed the degradation of human coronaviruses 12 

including SARS-CoV and SARS-CoV-2 and their surrogates such as murine hepatitis virus (MHV) 13 

in the wastewater matrix 233–235, as the results suggest, the viral RNA of SARS-CoV-2 is more 14 

persistent than viable virus particles and can stay in wastewater for a relatively long period, and 15 

the decay rate increases as the wastewater temperature goes up. Bivins et al. (2020) recorded a 16 

26.2 days T90 value in untreated wastewater at 20 °C, which is comparable to the study by Ahmed 17 

et al. (2020) in which the T90 values in untreated wastewater at 15 and 25 °C were 20.4 and 12.6 18 

days, respectively 235,236. Because the typical residence time of wastewater is several hours, the 19 

effect of degradation may not be as pronounced as other factors, but it is still recommended to take 20 

the degradation kinetics into consideration for better accuracy. For instance, in a long-term 21 

monitoring project, the seasonal change in wastewater temperature may bring change to the 22 

prevalence estimation as the degradation during summer would be more significant and may 23 

reduce the measured viral load 189. 24 
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Although the majority of existing studies took samples from wastewater treatment plants 1 

(WWTPs) for better coverage and convenience, they are not the only option. If a better spatial 2 

resolution or a shorter response time is required, the strategy of ‘upstream sampling’ can also be 3 

employed, which means samples are taken from locations closer to the origins, such as sewer 4 

pumping stations and maintenance holes, to narrow down the coverage and shorten the in-sewer 5 

travel time 69,176. 6 

2.2.7 Turnaround time for sample treatment and quantification 7 

The turnaround time for sample treatment consists of sample transportation, virus 8 

concentration, quantification, and data analysis and organizing. Primary concentration methods 9 

can take anywhere from about an hour (ultrafiltration, electronegative membrane vortex) to 10 

overnight (PEG precipitation) 205,206, the time required for subsequent steps varies depending on 11 

the reagent kits and instruments used but is also typically in the range of several hours if all steps 12 

are done consecutively. The time needed for sample transportation and data analysis depends 13 

heavily on real-life factors including the transportation method, the distance between sampling site 14 

and laboratory, and the way of data processing, so far, very limited information about these two 15 

steps is available from existing literature. Due to the varied conditions, although it is possible for 16 

the WBE approach to predate symptom onset and hospital admission, the entire workflow is 17 

subject to significant uncertainty and different settings hence an estimated time cannot be given. 18 

We encourage future studies to include the information of the time required for each step to give a 19 

better image of the total turnaround time. 20 

Worrying that the standard off-site RT-qPCR method may not fulfill the demand for rapid 21 

detection, recent studies have discussed alternative methods. Mao et al. (2020) and Bhalla et al. 22 

(2020) discussed the potential of paper-based analytical devices, which are easy-to-carry tools that 23 

can be deployed for rapid on-site nucleic acid testing. Yang et al. (2017) reported a paper-based 24 
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“sample-to-answer” platform for the detection of human genomic DNA in untreated wastewater 1 

based on the loop-mediated isothermal amplification (LAMP), through which the result can be 2 

yielded within 45 min. Nguyen et al. (2020) shared similar optimism about LAMP, specifically 3 

stating that LAMP can be a potential candidate for COVID-19 early detection. While alluring on 4 

paper, compared to the conventional laboratory apparatus, the reliability of new methods and 5 

devices remains unverified, and very limited information is available regarding the practical 6 

application despite the strong interest. Although the development of novel devices and methods 7 

that can enable rapid and reliable detection of SARS-CoV-2 genome RNA is highly encouraged, 8 

considering that the derived information will be used to help make crucial decisions, the 9 

application must be proceeded with caution. 10 

2.2.8 Data analysis 11 

After obtaining the quantification result, the final step is data analysis. If the SARS-CoV-2 12 

signal in a low prevalence region is positive for the first time, it indicates a high possibility that 13 

the predetermined threshold prevalence level has been exceeded, but for better dependability, 14 

especially considering the information will be used to support critical decisions that may leave a 15 

permanent impact on the society, an additional validation step may be employed at the cost of 16 

longer response time. As for long-term monitoring in a middle-to-high prevalence region where 17 

the viral load is consistently higher than LoQ, the concentration of viral RNA, or the active 18 

shedding population if a back-calculation model can be successfully established and validated, 19 

should be combined with previous results to assemble a longitudinal pattern. 20 

Although in theory qualitative and semi-quantitative analysis can be performed without a 21 

back-calculation model that connects the viral load to the active shedding population 68, the lack 22 

of quantitative projection would certainly impair the usefulness of the result. Although lagged 23 

correlation has been found in wastewater viral load and reported patient number 187,188, there is no 24 
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model currently in existence that can infer the size total infected or shedding population, which 1 

could be much larger than reported cases due to undertesting and asymptomatic virus carriers. 2 

Previous WBE projects have used excretion-dilution-recovery mass balance models for the back-3 

calculation of chemical biomarkers 241–243, but in the case of COVID-19 surveillance, the same 4 

model may suffer greatly from the limited understanding and the variance of some parameters 5 

(mainly the shedding profile and dilution factor) as well as the potential data noise. One reason is 6 

that due to the persistent fecal shedding, the wastewater viral load is likely to be contributed by 7 

patients in different infection stages, this population may even include those who have the virus 8 

cleared in the respiratory tract. Thereby, not only modeling tools that help reduce the uncertainty 9 

(e.g., Bayesian inference and maximum likelihood estimation) are highly recommended, other 10 

mathematical models featuring different structures are also worth looking into as long as they offer 11 

a decent capability of capturing the correlation between viral load in wastewater and the 12 

shedding/infected population and dealing with the noisy data. Here, we not only encourage 13 

researchers who are already working on COVID-19 wastewater surveillance to reach out and look 14 

for potentially suitable modeling techniques but also call on experts from other disciplines, such 15 

as epidemiology and statistics, to join in and tackle the challenge together. 16 

Knowing the de facto population size in the catchment area also helps reduce the uncertainty 17 

when doing quantitative analysis 68,176,244,245. Census data or estimation based on facility capacity 18 

can be used as an approximation, but they may deviate from reality. Another option is to use certain 19 

population biomarkers including exogenous markers such as nicotine and caffeine, and 20 

endogenous markers 5- hydroxyindoleacetic acid (5-HIAA) and ammonia 244, but it should be kept 21 

in mind that significance discrepancy may exist between regions and countries due to various 22 

lifestyles. Apart from the de facto population, in regions with high mobility (e.g., tourist attractions 23 

and transportation hubs), the frequent movements of people not only increase the risk of virus 24 
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introduction but also introduce a new source of uncertainty for quantitative analysis 243. Further 1 

studies will need to employ appropriate methods to estimate and validate the population covered 2 

by the studied sewage network and consider how to incorporate the dynamics of the population 3 

into the result interpretation process. 4 

As mentioned previously, WBE should not be considered as a standalone solution, but rather 5 

as a complementary data source in public health management 69,74,246. Therefore, the result 6 

obtained from WBE should be viewed and assessed along with other supporting materials such as 7 

clinical reporting and estimation made with epidemic models before reaching any final decision. 8 

2.2.9 Conclusion 9 

While certainly holding potential, the prospect of using wastewater-based epidemiology as 10 

an early warning system for COVID-19 surveillance still has many hurdles to overcome. As a 11 

result, we encourage experts from different disciplines to work together and share knowledge for 12 

the further refinement and validation of this novel approach as humanity continues to battle the 13 

ongoing COVID-19 pandemic. 14 
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3. Microbial safety evaluation and modeling of anaerobic membrane 1 

bioreactor (AnMBR) 2 

3.1 Introduction 3 

In this project, the aim is to testify the applicability of soft-sensor approach in the real-time 4 

monitoring of virus removal performance in AnMBR. We employed a pilot-scale AnMBR treating 5 

municipal wastewater as the testing platform, the concentration of two indigenous viruses was 6 

quantified using RT-qPCR. Then, operational variables acquired from reactor operators were 7 

analyzed for their potential connection with the virus reduction performance. Finally, data-driven 8 

modeling methods were tested to verify whether virus reduction can be predicted from the 9 

operational conditions of AnMBR. 10 

3.2 Materials and methods 11 

3.2.1 AnMBR overview 12 

In this study, a pilot-scale submerged AnMBR plant located in Sendai, Japan was employed. The 13 

reactor has a total volume of 5,000 L, featuring a hollow fiber PVDF membrane with a pore size 14 

of 0.4 μm and a total area of 72 m2. The influent is pre-screened municipal wastewater from a 15 

local sewage treatment center that serves a population of about 150,000. Before sampling, this 16 

pilot-scale plant had been operated for about 500 days and had entered a stable stage. More 17 

information about the configuration and operation of this AnMBR plant can be found in previous 18 

studies 247,248. 19 

3.2.2 Sample collection strategy 20 

Influent and effluent samples were collected from the AnMBR plant from September 06, 2020 21 

to February 01, 2021 (duration: 149 days). The sampling frequency was once a week with 22 

exceptions due to holidays and reactor maintenance. Considering the potential difference in virus 23 

concentration, the volumes collected for influent and effluent are 40 mL and 1 L, respectively. 24 

Upon collection, samples were kept in ice and transported to the laboratory and were 25 

concentrated on the day of collection. 26 
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3.2.3 Sample concentration 1 

Influent and effluent samples were concentrated using two methods due to different 2 

collected volumes. Influent samples were concentrated by a previously described polyethylene 3 

glycol (PEG) precipitation method. Briefly, a 40 mL of influent sample was added with 3.2 g 4 

PEG 6000, 0.92 g NaCl, and 100 μL of pre-prepared murine norovirus (MNV) strain S7-PP3 5 

stock suspension for recovery calculation. The mixture was stirred overnight at 4 °C using a 6 

magnetic stirrer. Subsequently, the mixture was centrifuged at 8,000 × g for 30 min at 4 °C. The 7 

supernatant was then removed, and the pellet was resuspended with 1 mL of MilliQ water. The 8 

resuspension was further centrifuged at 9,000 × g for 10 min at 4 °C. The supernatant, with its 9 

volume measured, was used for following RNA extraction and RT-qPCR. 10 

Effluent samples were concentrated by a double membrane filtration assay 249. Briefly, 11 

one liter of effluent was added with 10 mL of 2.5 M MgCl2 and 1 mL of MNV stock suspension. 12 

The sample was then concentrated by suction filtration using a 0.45 μm membrane (HAWP-090-13 

00, Millipore). Following the filtration, the membrane was washed by 200 mL of 0.5 mM H2SO4. 14 

Finally, 10 mL of 1 M NaOH was added to elute the absorbed virus into 10 mL TE buffer with 15 

100 mM H2SO4, the final volume is about 20 mL. Then, the filtrate underwent a secondary 16 

filtration using CentriPrep YM-50 at 2,500 rpm for 10 min. Note that due to a shortage of 17 

CentriPrep, two effluent samples (collected on) were concentrated by Amicon Ultra-15, MWCO 18 

30 kDa for 15 min at 2,500 × g. The volume of the final filtrate was recorded for recovery 19 

calculation. 20 

3.2.4 RNA extraction, cDNA synthesis, and RT-qPCR 21 

PMMoV and norovirus GII were chosen to be targets because they are: (1) indigenous in 22 

the wastewater matrix and (2) representative of the fecal content (PMMoV) and waterborne 23 

human virus (norovirus GII) 226,250. The RNA extraction and cDNA synthesis were conducted 24 
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using QIAamp Viral RNA Mini Kit (Qiagen) and iScript™ cDNA Synthesis Kit (Bio-rad), 1 

respectively. RT-qPCR was performed on a CFX Connect system (Bio-rad) using the 2 

SsoAdvanced Universal Probes Supermix (Bio-rad). The details of RT-qPCR, including the 3 

sequences of the primer/probe set for each target virus, formula of the mix, and thermal cycling 4 

conditions can be found in Appendix Table S2. All RT-qPCR reactions were performed in 5 

triplicate and the mean Ct value was used for subsequent calculations. 6 

3.2.5 Virus removal performance and modeling 7 

The virus concentrations measured in RT-qPCR were first converted back to the 8 

concentrations in samples using the following equation: 9 

𝐶 = 1000 ×
𝑉

𝑉𝑤
×
𝑉𝑓,𝑒𝑥

𝑉𝑠,𝑒𝑥
×
𝑉𝑓,𝑠𝑦𝑛

𝑉𝑠,𝑠𝑦𝑛
× 𝐶𝑞𝑃𝐶𝑅 (3.1) 

where V is the volume of sample after concentration, CqPCR is the concentration of cDNA applied 10 

to qPCR [copies/µL],⁡𝑉𝑤 is for the original sample volume [mL]. 𝑉𝑓,𝑒𝑥, 𝑉𝑠,𝑒𝑥, 𝑉𝑓,𝑠𝑦𝑛, and 𝑉𝑠,𝑠𝑦𝑛 11 

are all the volume of samples in the intermediate steps [µL]. Subscripts f and s stand for final and 12 

starting volume, while subscripts ex and syn stand for RNA extraction and cDNA synthesis, 13 

respectively. Then the virus removal performance was defined by the log reduction value (LRV) 14 

calculated using the following equation: 15 

𝐿𝑅𝑉 = 𝑙𝑜𝑔𝐶𝑖𝑛𝑓 − 𝑙𝑜𝑔𝐶𝑒𝑓𝑓 (3.2) 

where 𝐶𝑖𝑛𝑓  and 𝐶𝑒𝑓𝑓  are the virus concentration in the influent and effluent samples, 16 

respectively. 17 

The record of operational variables of the AnMBR plant during the study period was 18 

acquired from reactor operators. The record includes a total of 36 variables (Appendix Table S1), 19 

ranging from reactor conditions like the pH of influent to operating strategy such as HRT. The 20 

devices and experiments performed to obtain these variables had been described in previous 21 

studies 247,248. 22 
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A variable screening and selection step was first conducted by calculating its Spearman's 1 

rank correlation coefficient with LRV. The modeling was performed in three ways: 1) only 2 

variables found to be strongly correlated with LRV were used as the inputs while LRV was the 3 

output; 2) 50% of all variables, selected by their absolute correlation coefficients, were used as 4 

inputs; 3) all variables were used as inputs. The goal was to see whether using more variables in 5 

the prediction model offers better prediction. Two data-driven regression models (artificial 6 

neural network (ANN) and random forest (RF) were tested for comparison. Briefly, ANN 7 

features a network structure and three layers: input layer, output layer, and one or more hidden 8 

layers. Each layer has a certain number of nodes and the input and output layers are connected 9 

via the hidden layer. By tuning the weights between the nodes, the output can be indirectly 10 

connected to the input layer. This gives ANN the ability to establish complex and potentially 11 

nonlinear relationship between the input and output. On the other hand, random forest is based 12 

on a large number of decision trees. Using bootstrap aggregating, the final outcome from random 13 

forest is the collective decision of all individual decision trees. To ensure the randomness in 14 

model training and reduce overfitting, repeated random sub-sampling cross validation method 15 

was used. In each iteration of model training, only a part of the dataset (80%) was randomly 16 

selected to train the model, the model was then used to perform prediction on the inputs of 17 

remaining 20% dataset. The training process used 500 iterations. The prediction performance 18 

was evaluated by the root-mean-square error (RMSE) between the predicted and actual LRV, a 19 

grid search step was used to find the optimal model configuration under each setting. 20 

3.3 Results and discussion 21 

A brief overview of some key AnMBR performance indicators and the virus 22 

quantification results can be found in Fig. 3.1. The reactor had been in stable operation during 23 

the study period with only minor adjustments of the operating strategy. Specifically, as the air 24 
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temperature decreased during the winter, the MLSS temperature was also turned down to save 1 

the electricity consumed by reactor heating and test whether the reactor performance is still 2 

stable under a lower temperature. On the first sampling day (September 09, 2020), the recorded 3 

air temperature was 31.0 °C, representing a typical summertime working condition in the local 4 

environment. After that, air temperature continued to decrease until reaching a low point at 5 

2.0 °C on December 13, 2020. The low temperature condition (≤ 6.5 °C) lasted to the end of 6 

study period. In response to this, the reactor heating setting was changed from 25 °C to 20 °C. 7 

A common index used for AnMBR performance evaluation, COD removal efficiency, retained 8 

at a high level (~90%) during the majority of study period with only one exception when a low 9 

MLSS concentration was recorded. But overall, there was no significant variation in reactor 10 

operation status, providing a stable platform for virus removal test. Regarding virus recovery 11 

efficiency, after adjusting for the volume change in the quantification steps, the MNV recovery 12 

efficiency was relatively stable, ranging from 18.37% to 47.96% in influent samples. However, 13 

in effluent samples, the range is 0.14% to 4.39%, lower not only than that of influent samples, 14 

but also reported in previous literature for other viruses 249. 15 
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 1 

Fig. 3.1 The summary of the reactor operation conditions and virus quantification results. 2 
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Regarding virus quantification results, during the study period, PMMoV had a consistent 1 

and significant presence (> 5 log copies/mL) in influent samples. In effluent samples, the 2 

concentration of PMMoV dropped to 1.32 to 3.13 log copies/mL. After counting in the volume 3 

conversion involved in the concentration-quantification process, the LRV ranges from 2.25 to 4 

4.61. On the other hand, the presence of norovirus GII in influent samples showed an upward 5 

trend during the study period, from the negatives recorded in September 2020 to around 4 log 6 

copies/mL during the wintertime. Despite the presence in influent samples, all effluent samples 7 

were negative for norovirus GII, suggesting a complete reduction by AnMBR. Because a correct 8 

LRV could not be calculated for norovirus GII, the following LRV model was established upon 9 

PMMoV removal. 10 

In the correlation analysis (Fig. 3.2), out of all operational variables, only two (MLSS pH 11 

and influent pH) showed strong and significant correlation with PMMoV LRV (Spearman's rank 12 

correlation coefficient ρ > 0.7 and p-value ≤ 0.05). Although some other variables also showed 13 

some degrees of correlation with LRV, as nine operational variables had Spearman's rank 14 

correlation coefficient ρ > 0.3, their correlations were not significant. The grid search result 15 

indicates that ANN model performs better with only two inputs while RF model performs better 16 

using 9 inputs and is insensitive to the number of trees used. 17 
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 1 

Fig. 3.2 Correlation analysis results. The two operational variables (influent pH and MLSS pH) 2 

that have strong and significant correlation with PMMoV LRV (Spearman's rank correlation 3 

coefficient ρ > 0.7 and p-value ≤ 0.05) are marked by red color. 4 

 5 
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 1 

Fig. 3.3 The grid search result for model configuration optimization. A-C: RMSE values from 2 

different hidden layer settings. The X-axis (Var1) stands for the number of neurons in the first 3 

hidden layer while the Y-axis (Var2) represents the number of neurons in the second hidden layer. 4 

A value of zero in the Y-axis means only one hidden layer is used in the model. D: RMSE values 5 

from random forest models with different numbers of decision trees. 6 

 7 
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   1 

Fig. 3.4 The performance of PMMoV LRV prediction by different data-driven models. The point 2 

and error bar stand for the median and 95% confident interval (CI), respectively. A: only two 3 

operational variables with strong correlation with LRV (influent pH and MLSS pH) were used 4 

as inputs; B: nine variables with Spearman's rank correlation coefficient ρ > 0.3 were used as 5 

inputs; C: all operational variables were used as inputs. 6 

 7 

The prediction performance of the two data-driven regression models tested in this study 8 

is shown in Fig 3.4. For ANN, as more variables are used as inputs, the prediction performance 9 
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decreases. When only two variables were used as inputs, ANN had the lowest average RMSE = 1 

0.367. When the number of inputs increased to 9 and 36, the average RMSE also increased to 2 

0.506 and 0.617, respectively. In comparison, under every input setting, RF offered better 3 

prediction performance. However, for RF, the RMSE value did not increase as the number of 4 

inputs increased like ANN. When two inputs were used, RF offered an average RMSE of 0.348, 5 

lower than ANN under the same condition (0.367), but when more inputs were used, the average 6 

RMSE first decreased to 0.273 then increased again to 0.394. Overall, the best prediction 7 

performance was offered by RF using nine operational variables with an average absolute error 8 

of 0.303 LRV and a mean absolute percentage error of 10.7%. 9 

In the present study, we investigated the virus removal performance of a pilot-scale 10 

AnMBR. Furthermore, to test the feasibility of putting it under real-time monitoring, which is 11 

advocated in modern sanitation frameworks, we established a prediction modeling framework 12 

that connects the LRVs with the monitored operational variables. Overall, the pilot-scale 13 

AnMBR had a stable virus removal efficiency. We found that the virus removal efficiency is 14 

strongly correlated with the pH values of both MLSS and influent. The modeling result  showed 15 

that it is feasible to circumvent the mechanistic understanding of virus removal process and 16 

predict LRV given the operational conditions, validating the soft-sensor approach. 17 

AnMBR has already passed the proof-of-concept phase and is currently being verified 18 

under real-world conditions in terms of reactor configuration and influent characteristics. Many 19 

technical challenges, such as start-up optimization, fouling control, and operating strategy, are 20 

being tackled by a growing number of scholars from all over the world. However, for this 21 

technology to make its way into real-world implementation, there are other practical factors that 22 

need to be taken into consideration with one being the microbial safety evaluation. As mentioned 23 

earlier, considering that past studies have proposed using AnMBR effluent for agricultural 24 
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irrigation 251,252, the performance and consistency of virus removal in AnMBR is pivotal in 1 

deciding whether tertiary treatment is needed, and if so, to what extent. However, there is a 2 

significant lack of academic considerations, both in terms of the number of studies and the 3 

conditions (reactor configuration, virus type, operational condition, etc.) covered. We intended 4 

to contribute to addressing this issue by conducting virus removal experiment in a pilot-scale 5 

AnMBR and introducing a modeling framework that can be adopted by future studies. As far as 6 

we know, this is the first study that investigated the virus removal performance in a pilot -scale 7 

AnMBR and connected the performance with operational variables. 8 

The occurrence of norovirus showed a wintertime seasonality in influent samples, which 9 

is consistent with past literature on both norovirus wastewater monitoring and clinical testing 10 

253–256. However, no effluent sample was tested positive for norovirus GII, showing that AnMBR 11 

is capable of effectively and reliably removing viruses from municipal wastewater to a low level. 12 

This is also consistent with a recent virus removal study featuring a bench-scale AnMBR 88. 13 

Conceptually, the reactor can be further optimized to yield higher virus reduction rate (e.g., using 14 

membrane that has a smaller pore size or maintaining a thicker biofilm), but the improved virus 15 

removal performance may come at the cost of other aspects (higher membrane purchase and 16 

maintenance cost, higher electricity consumption due to increased TMP, etc.). Therefore, a 17 

balance needs to be found in operation. Also worth mentioning is that introducing bacteriophages 18 

for fouling control and reactor performance enhancement was discussed in recent studies 252,257. 19 

If this approach comes to fruition, the reactor will need to remove not only indigenous viruses 20 

but also added bacteriophages, demanding an even higher and more reliable virus removal 21 

capability. 22 

As for the modeling, although several studies have attempted to model virus removal 23 

performance in membrane systems via either mechanistic, statistical, or data-driven modeling 24 
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113,159,162, limited progress has been made regarding the real-time monitoring aspect. The 1 

complexity of the system, especially when it features biomass, has greatly hindered the 2 

development of mechanistic models. Therefore, the data-driven modeling approach was chosen 3 

in this study because it circumvents the need for understanding the underlying mechanisms and 4 

learns directly from the data. 5 

Due to the relatively stable operation at the AnMBR plant employed in this study, the 6 

sampling interval in this study was chosen to be one week to cover the potential long-term 7 

operation variability. Indeed, from September 2020 to February 2021, the recorded air 8 

temperature ranged from around 2.0 °C to 31.0 °C, which resulted in a series of minor 9 

performance changes, most noticeably in the operating temperature. Although the operating 10 

temperature was closely associated with the overall performance of AnMBR 248, in terms of virus 11 

removal, no strong correlation was found between it and LRV, indicating that the microbial safety 12 

of AnMBR is consistent throughout the operating temperature range. 13 

The experimental results have several implications. Firstly, the fact that the virus removal 14 

performance was strongly correlated with the pH of influent and MLSS indicates that 15 

electrostatic interactions play an indispensable role in the virus removal process, which was also 16 

identified in our review article and other previous studies 63,93,97,104. Since TMP largely indicates 17 

the permeability of the membrane module, it was originally expected to be a crucial factor 18 

because membrane rejection was recognized as a main virus removal mechanism, but a poor 19 

correlation between TMP and LRV was found in this study. Considering the pH values of both 20 

influent and MLSS were found to be strongly correlated with PMMoV LRV and the reactor was 21 

in stable operation at the time of sampling, a plausible explanation is that the electrostatic 22 

interaction-driven virus absorption onto either the suspended or attached biomass was the 23 

dominating virus removal mechanism in AnMBR. This also explains the moderate correlation 24 
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between MLSS concentration and LRV, albeit not significant. In addition, from the perspective 1 

of AnMBR operating strategy, this means a temporary drop in TMP, which can be a result of 2 

membrane cleaning or sludge discharge, may not greatly affect the overall virus removal 3 

performance. But on the other hand, this may rise the necessity of pH adjustment for virus 4 

removal purpose. In this study, a positive correlation was found between LRV and 5 

influent/MLSS pH, meaning increasing the pH will likely result in better virus removal efficiency. 6 

However, whether this will affect the activity of the microorganisms in the reactor remains 7 

unclear. Further studies are needed to investigate whether there is a tradeoff between virus 8 

removal efficiency and wastewater treatment performance for operation optimization. 9 

Two limitations of this study should be mentioned. Firstly, since norovirus GII was 10 

reduced below the detection limit in all effluent samples, making the virus removal data left -11 

censored, the modeling was performed with PMMoV as the target instead due to its consistent 12 

presence. However, the removal of PMMoV may not well represent the removal of human 13 

pathogens due to different physicochemical characteristics, especially the affinity for MLSS. 14 

Nevertheless, we should point out the absence of norovirus GII in all effluent samples suggests 15 

this pilot-scale AnMBR achieved high removal of norovirus GII throughout the entire study 16 

period, adding credibility to the claim about its microbial safety. In this case, PMMoV removal 17 

may serve as a conservative indicator. Secondly, the measured virus concentration, and by 18 

extension LRV, can be greatly influenced by the virus recovery efficiency. Although we 19 

employed previously reported virus concentration methods, some extent of variation in recovery 20 

efficiency still exists, which may affect the robustness and reliability of the subsequent modeling. 21 

3.4 Conclusion 22 

As the interest in AnMBR technology continues to grow, follow-up research needs to 23 

catch up and that rightly includes its microbial safety assessment and verification. We hope the 24 
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findings made in the current study will expand the understanding of the role AnMBR can play 1 

in the grand scheme of wastewater reclamation and reuse. 2 
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4. Wastewater virus surveillance: from proof-of-concept to application 1 

4.1 Introduction 2 

Being one of the greatest global health crises in the 21st century so far, the raging pandemic 3 

of COVID-19 has left a mark on virtually everyone’s life in 2020 and its profound impact will 4 

likely extend to at least the next few years. Following the initial reports from Wuhan, China, 5 

COVID-19 has promptly spread to other countries and regions. Japan, being a close neighbor of 6 

China, is one of the first countries to be affected. The first COVID-19 cases in Japan were reported 7 

at the end of January 2020, most of them had travel history to Wuhan. In the following days, as 8 

the highly contagious disease found its way to proliferation in a country famous for the highly 9 

urbanized and concentrated population, domestic cases started to surge. Despite various efforts to 10 

slow down the transmission, including stringent border control, the declaration of a nation-level 11 

state of emergency, and the promotion of a contact tracing smartphone application, as the later 12 

waves continue to hit and a vaccine had yet to reach the general public, the national cumulative 13 

cases have surpassed 9 million as of June 2022 175. 14 

To intervene with the spread, proactive measures such as travel restriction, stay-at-home 15 

order, and mask mandate have been adopted and imposed by authorities at different levels. But as 16 

effective as these measures can be, the concern and growing evidence about their far-reaching 17 

impact on the economy, people’s livelihoods, and their mental health mean the authorities need to 18 

find a delicate balance between epidemic containment and the social order. To achieve that, 19 

knowing the optimal timing to impose those measures is essential. Timely intervention would 20 

effectively flatten the epidemic curve while minimizing unwanted social disruption. 21 

One important data source for planning containment measures is how the epidemic has 22 

progressed over time. This relies heavily on dependable epidemic surveillance. However, due to 23 

the turnaround time needed for sample collection, transportation, analysis, and data organizing, 24 



70 

 

adding to the fact that some infected individuals may not receive a test, the current reporting of 1 

clinically diagnosed patients may significantly lag behind the true progression of the epidemic. 2 

When the sheer number or the trend of reported cases triggers an alarm, the circulation of the 3 

disease may have already passed a critical threshold. Beyond that, interventions may only receive 4 

limited efficacy as the base number of infected individuals is already too large. Recent studies 5 

endorse wastewater-based epidemiology (WBE) as a complementary monitoring method. Studies 6 

have found that infected individuals, regardless of their symptoms, can persistently shed viral RNA 7 

into the environment from the early stage of the infection via defecation. Once the feces enter the 8 

sewage network, it gets mixed with the wastewater from other people in the same catchment area. 9 

This means, conceptually, the wastewater provides a probe of the infection condition of the 10 

community. 11 

Timely information disclosure and update has been an indispensable part in COVID-19 12 

response. Thanks to advanced data collection and visualization tools, a plenty of COVID-19 13 

dashboard pages have been established to inform the public of both epidemic progression (e.g., 14 

daily confirmed cases and hospitalizations) and measures being taken to control it (e.g., clinical 15 

testing and vaccination rate). In addition, researchers and corporations are also reporting relevant 16 

data (e.g., mobility reports issued by Google (https://www.google.com/covid19/mobility/) and 17 

Apple (https://covid19.apple.com/mobility/), even model-based COVID-19 forecasts (Google 18 

U.S. and Japan COVID-19 Public Forecasts (https://g.co/covidforecast) to help society acquire 19 

knowledge about different dimensions of the pandemic. As wastewater surveillance is showing 20 

its potential as a complementary data source, a similar data sharing strategy may raise the public 21 

interest in this approach and promote the further development and deployment of it. 22 

https://www.google.com/covid19/mobility/
https://covid19.apple.com/mobility
https://g.co/covidforecast
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To date, more than 100 dashboards either dedicated to or containing COVID-19 1 

wastewater surveillance results have been set up, according to data aggregation site 2 

“COVIDPoops19” (https://www.covid19wbec.org/covidpoops19). These dashboards cover a 3 

great variety of scale (national, state-wide, city-wide, or institutional) and data disclosure 4 

strategies (quantification results only, quantification results and trend, variant detection results, 5 

or with other epidemic metrics such as reported cases and testing rate). To date, most dashboards 6 

are operated by high-income countries. For example, U.S. is in the absolute lead with more than 7 

50 dashboards established at different levels. It is worth noting that some countries and regions 8 

have established COVID-19 wastewater surveillance sites, even networks, yet the results are 9 

currently only for academic uses and not publicly accessible. In addition to the experimental 10 

data, the site “COVIDPoops19” also acts as a platform on which researchers can share the latest 11 

scientific advancements as well as relevant resources such as data visualization tools. 12 

As stated, wastewater surveillance results are mainly communicated in the raw form 13 

(positive/negative or viral titers in sewage sample) so far as data sharing primarily occurs among 14 

researchers. However, when adopted as a public information source, some extent of quantitative 15 

interpretation or expert knowledge-based annotation may be needed to provide a context for the 16 

results. 17 

One major challenge faced by researchers in this field is the difficulty in quantitative data 18 

processing and interpretation. Conceptually, the wastewater viral load would be proportional to 19 

the size of the shedding population. Although this was the basis of back-calculation model in 20 

many chemical-based wastewater surveillance projects, it has been repeatedly mentioned that 21 

under the influence of many pathological, physical, and environmental factors in the complex 22 

wastewater matrix, measurements are far from consistent 258. For instance, only about half of 23 

https://www.covid19wbec.org/covidpoops19
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infected individuals would develop fecal shedding and the shedding rate shows significant intra-1 

host variability 185,259. Also, as an enveloped virus, SARS-CoV-2 particles have a greater 2 

tendency to partition to wastewater solids compared to non-enveloped viruses 204,208. The result is 3 

significant inter-day fluctuations 260. As far as we know, no back-calculation model has yet to be 4 

verified for COVID-19 wastewater surveillance. 5 

It should be noted that even in the absence of back-calculation model, qualitative or semi-6 

quantitative results can still add new dimensions to the epidemic progression and potentially 7 

guide epidemic response. An increase in detection frequency in a low-prevalence level may 8 

suggest the circulation of virus in the catchment area, and for quantifiable viral load, an upward 9 

or downward trend may reflect the change in the shedding population base, and by extension, the 10 

prevalence level 261, although the threshold can only be empirically decided at present. The Ohio 11 

Department of Health (ODH) issues a notification when a tenfold increase in wastewater SARS-12 

CoV-2 load is observed, a similar approach is taken in Utah where wastewater SARS-CoV-2 13 

RNA level is used to direct clinical testing 262. It was also proposed that detecting the occurrence 14 

of SARS-CoV-2 RNA in the aircraft wastewater may enhance the screening of inbound 15 

passengers, preventing the importation of new COVID-19 cases 263. Also, from the perspective 16 

of variant tracking, the occurrence or increasing ratio of a variant among others may also serve 17 

as a warning to the healthcare sector of a phase transition or potential outbreak 264. One project 18 

based in Berlin, Germany reports the change in the detection frequency of VOC over time 265. 19 

Another challenge is that most findings regarding the connection between wastewater 20 

surveillance results and the epidemic status were made through retrospective analyses, therefore, 21 

when wastewater surveillance is applied to guide future public health practices, such as issuing 22 

projections of prevalence level or the possibility of an outbreak, additional uncertainty may 23 
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apply. Also, there are caveats and inherent limitations of wastewater surveillance that an average 1 

person may not know about. For instance, one may posit that a positive signal means the 2 

presence of contagious individuals in the community, while the shedder(s) may have left the 3 

catchment area by the time of information disclosure, especially when the catchment area covers 4 

sites with heavy traffics such as tourist attractions or transportation hubs. Considering the points 5 

mentioned above, when communicating the results, expert knowledge-based data annotation may 6 

help avoid unnecessary confusion and panic. Many dashboards have a Q&A section or provide 7 

an information sheet to help audience understand the benefits and limitations, as well as the 8 

methodology used in the project. 9 

The disclosure strategy should also be decided in accordance with the grand scheme of 10 

COVID-19 response. As stated above, preferably, wastewater surveillance should complement 11 

other surveillance routes rather than being as an isolated information source. Thereby, the results 12 

should be presented and interpreted along with other epidemiological metrics. This can be 13 

achieved with multidisciplinary dashboards that integrate the data from multiple sources. 14 

Another factor worth considering is the spatial heterogeneity of data. While the lateral 15 

comparison of wastewater surveillance data may lead to further understanding of the epidemic, 16 

like the spatial heterogeneity, laboratories are often differently equipped, making using a unified 17 

experimental method challenging. The result is that data from different wastewater surveillance 18 

projects are often not comparable, adding difficulty to the spatial integrating of data. While using 19 

verified and standardized methodology is strongly encouraged, if this is not feasible, city- or 20 

institution-wide data integration may be the viable option to provide a relatively consistent 21 

context. On this matter, one recent study proposed a normalization method for data comparison 22 

across sampling sites, but further research is needed to validate its applicability 266. 23 
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The recognition and support from the public and authority should be highlighted as the 1 

former is the beneficiary and the latter often operates the information disclosure platforms and 2 

the sewage system, as well as provides logistic support for wastewater surveillance. Open and 3 

effective communication about the benefits offered by wastewater surveillance in the forms like 4 

media coverage and public seminar is needed to educate and persuade both parties that 5 

wastewater surveillance can greatly contribute to COVID-19 response. Notably, emphasizing the 6 

cost-effectiveness and wide coverage of wastewater surveillance in low- and middle-income 7 

countries may add to its appeal and improve acceptance in local communities, although the 8 

applicability of wastewater surveillance may be limited by the coverage of sewage system. In the 9 

previously mentioned cases where wastewater surveillance is used to issue notification or direct 10 

medical resources, introducing these practical applications is also in favor of gaining support. 11 

Also, as a tool with a direct impact on the society it serves, wastewater surveillance may also 12 

raise ethical concerns, thereby early engagement of social scientists and public health experts is 13 

critical 267. 14 

At different stages of an epidemic, wastewater surveillance may serve different purposes. 15 

In pre-peak period, the priority should be identifying the potential starting point of local 16 

circulation by monitoring the entry of infected individuals into the catchment area. Amid the 17 

outbreak event, the focus may shift onto the estimation and prediction of the epidemic trend.  18 

Since the two research fields have distinct purposes, methodologies, even limitations, the 19 

significance of interdisciplinary collaboration for further data interpretation should be 20 

highlighted. Particularly, since wastewater surveillance has wide coverage and is immune to the 21 

change in testing policy, it may serve as an extra input to improve existing epidemic models. 22 

Conversely, information obtained from the healthcare sector can also empower wastewater 23 
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surveillance. For instance, the time lags in the infection-shedding-onset course obtained from 1 

medical reports may be used to calibrate the lead time offered by wastewater surveillance 268. To 2 

achieve all these, however, novel models need to be developed. 3 

With the rapid development in computational power and modeling tools, data-driven 4 

methods have been actively employed in Berlin, Germany. Amid the COVID-19 pandemic, 5 

various modeling techniques, notably compartmental model and network model were employed 6 

for various tasks including simulating epidemic progression, studying the transmission dynamics, 7 

and evaluating the efficacy of restrictive measures 269,270. On the other hand, researchers in water 8 

field have long been using data-driven models for forecasting and decision-making purposes 271. 9 

Regarding the high uncertainty of wastewater surveillance results, data-driven methods such as 10 

fuzzy logic and Bayesian inference may also be incorporated for anomaly identification 272. 11 

Several studies on the topic of using data-driven modeling to facilitate wastewater surveillance 12 

have been reported. The potential of augmented wastewater surveillance was demonstrated in 13 

one study in which the detection results and external variables were fed into multiple data-driven 14 

models for prevalence prediction 273, yet the authors also noted that wastewater surveillance 15 

result alone is likely inadequate to generate reliable result. Another recent study proposed a 16 

model that helps identify vulnerable communities where wastewater surveillance may yield 17 

maximum benefit 274. The capability of data-driven modeling tools to address uncertainty and 18 

bypass the causality of input–output pairs may greatly enhance the research at the intersection of 19 

two fields. But in general, studies aimed at this research gap are still rare and more efforts are 20 

needed to further explore the connection between the two disciplines and the form of data 21 

integration. 22 

The aim of this project is to assess the applicability of WBE in the early warning and 23 

containment of COVID-19. Particularly, it comprises two steps: the first step is a theoretical 24 
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calculation that uses available information about the transmission pattern and pathology of 1 

COVID-19 to perform a preliminary feasibility assessment; the second step is to establish a short-2 

term COVID-19 prediction model using actual SARS-CoV-2 wastewater surveillance data to test 3 

the real-world applicability of data-driven modeling. 4 

4.2 Theoretical calculation of feasibility 5 

4.2.1 Methodology 6 

This calculation focuses on the city of Tokyo, where the first COVID-19 cases were 7 

reported in late January 2020 following the initial outbreak in China. The infected individuals 8 

reported in this period were mostly tourists who came or had returned from Wuhan, and 9 

subsequently, local cases began to appear and rise in the middle of February 2020. 10 

The dataset of daily reported cases was acquired from the COVID-19 information website 11 

maintained by the Tokyo metropolitan government (https://stopcovid19.metro.tokyo.lg.jp/). It 12 

includes information on the report date, whether the individual dwells in the Tokyo metropolitan 13 

region, age group, sex, and whether the individual has already been discharged from 14 

quarantine/healthcare facilities. Apart from three travelers from China reported in late January 15 

2020, the dataset contains a total of 101,417 cases. The report date ranges from February 13, 2020 16 

to February 3, 2021. 17 

To date, Tokyo has experienced three waves of outbreak. The first one struck between late 18 

March and late May 2020 and as the situation quickly escalated, a state of emergency was declared 19 

in seven prefectures including Tokyo on April 7, 2020. The state of emergency was subsequently 20 

expanded to nation-level on April 16, 2020 before it was elevated in Tokyo on May 25, 2020. 21 

During that time, the weekly new cases in Tokyo dropped to ~50, which is substantially lower 22 

compared to the peak week of April 6-12, 2020 when the total new cases exceeded 1,000. However, 23 

in June 2020, the epidemic made a comeback as daily new cases started to rise again. On July 9, 24 

https://stopcovid19.metro.tokyo.lg.jp/
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2020, 224 new cases were reported, surpassing the previous daily new case record of 206 during 1 

the first wave. Subsequently, a temporal peak of 472 daily new confirmed cases was recorded on 2 

August 1, 2020. The second wave lasted until October 2020 when the daily new cases plateaued 3 

at ~200. Unfortunately, at the end of 2020, the third and by far the most serious wave hit Tokyo 4 

once again. On January 7, 2021, 2,447 new cases were confirmed, marking an all-time high since 5 

the beginning of the epidemic. In response to this surge, the state of emergency was declared again, 6 

and it is expected not to be elevated until March 2021. 7 

To provide an additional index that helps illustrate the efficacy of intervention measures, 8 

the openly accessible mobility dataset provided by Apple (https://covid19.apple.com/mobility) was 9 

used. The dataset contains the numbers of daily navigation route requests (driving, transit, and 10 

walking) in major cities and regions including Tokyo received by Apple since January 13, 2020. 11 

Many recent studies assumed that all shedders have the same shedding rate, and the inter-12 

individual variation can be modeled by uniform and log-uniform distributions. However, it is 13 

unclear whether the actual shedding follows the same distribution. It has been revealed that the 14 

viral shedding in stool specimens can outlast the shedding from the respiratory tract, and clinical 15 

reports suggest the shedding dynamics is erratic and varies greatly among individuals 193, making 16 

modeling it a tough task. In this study, a mathematical model (equation 4.1) reported by Miura et 17 

al. (2020) was used. The model was originally developed by Teunis et al. (2015) for the fecal 18 

shedding of norovirus. 19 

𝐶(𝑛|𝛼, 𝛽) = 𝐶0𝑒
−𝛼𝑛(1 − 𝑒−(𝛽−𝑎)𝑛)(𝛽 − 𝛼) (4.1) 

𝐶(𝑛|𝛼, 𝛽): concentration of viral RNA in the fecal specimens (copies/g) 20 

   n: the nth day into the fecal shedding course 21 

   𝐶0, 𝛼, 𝛽: curve shape coefficients 22 

The coefficients were estimated by fitting the model to the existing SARS-CoV-2 fecal 23 

https://covid19.apple.com/mobility
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shedding reports. For more detail of the calculation process and the biological explanation, refer 1 

to Miura et al. (2020) 275. 2 

As the fecal shedding of SARS-CoV-2 RNA is persistent, the wastewater viral load on a 3 

given day is contributed by patients in various infection stages who should be viewed as 4 

individuals with different shedding rates rather than a group of homogeneous shedders. Therefore, 5 

in this study, the viral load is considered the sum of fecal shedding from all active shedders. 6 

Patients on their day n of the infection will be assigned a shedding rate Cn calculated using equation 7 

4.1, the viral load and the number of active shedders can be expressed by the following equation 8 

4.2 and 4.3: 9 

𝐿𝑡 = ∑𝑁𝑛,𝑡

26

𝑛=1

𝑀𝑅𝐶0𝑒
−𝛼𝑛(1 − 𝑒−(𝛽−𝑎)𝑛)(𝛽 − 𝛼) 

(4.2) 

𝑁𝑠,𝑡 = ∑𝑁𝑛,𝑡𝑅

26

𝑛=1

 

(4.3) 

𝐿𝑡:  the total viral load on day t (copies) 10 

  𝑁𝑛,𝑡: the number of infected individuals in the day n of the fecal shedding course on day 11 

t 12 

  𝑀: the average weight of feces produced by one individual per day (g) 13 

  𝑅: the ratio of infected individuals who develop fecal shedding 14 

We assumed that the shedding lasts for 26 days 275, and 𝑁𝑛,𝑡 can be obtained from Rem, the 15 

7-day moving average of new cases on another day m via a matrix-based infection status model 16 

(Fig. 4.1a). To convert fecal shedding rate into wastewater virus concentration, an average daily 17 

feces production of 2.11 log10 gram per person 276 and a daily wastewater flow of 4,378,893 m3 are 18 

used (Bureau of Sewerage, Tokyo Metropolitan Government). Briefly, because the status of 19 

infected individuals changes every day and all of them would be or would have been the reported 20 
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cases on a certain day, the number of them on a given day can be converted to Re on another day. 1 

The conversion is controlled by the expected shedding course. The active shedders 𝑁𝑠,𝑡 is defined 2 

as all individuals that contribute to the total viral load on a given day t, calculated from multiplying 3 

the sum 𝑁𝑛,𝑡 on all day n (1 to 26) by the shedding ratio 𝑅, for which 50% was used in this study 4 

based on previous reports 185,199,277–279. 5 

 6 

Fig. 4.1 a) an illustration of the matrix-based infection status model used to convert the individuals 7 

in different shedding statuses on the same day to Re, the number of reported cases, on several 8 

consecutive days. b) the three shedding settings used in this study, based on the shedding model 9 

developed by Miura et al. (2020). The starting points of fecal shedding were set to be 1): 2 days 10 

before being reported 2): the same day of reporting, and 3): 2 days after being reported, to reflect 11 

different shedding scenarios. c) the estimated daily viral load from one shedder throughout the 12 

course of fecal shedding. As a result of the high initial shedding rate, most of the fecal shedding 13 

occurs within the first 10 days. 14 

It had been reported that the infectiousness likely develops and even peaks in the early 15 
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stage of the infection 184,280. Thus, a setting under which fecal shedding starts 2 days before the 1 

individual is clinically confirmed was used. The shedding curve was horizontally moved by 2 days 2 

to reflect the change of the starting point of fecal shedding. In the meantime, as clinical evidence 3 

does not give a conclusive starting time of fecal shedding 185,193,281–283, two additional settings were 4 

tested. One follows the original shedding model and places the start of fecal shedding on the report 5 

date while the other assumes the shedding occurs 2 days after being reported, considering that the 6 

possibility that the fecal shedding starts relatively late cannot be ruled out completely. The 7 

shedding curves under all three settings are shown in Fig. 4.1b. 8 

The efficacy of administrative orders varies greatly depending on the specific regulations 9 

and how strictly are they enforced. In this study, the time-dependent reproduction number (Rt) was 10 

chosen as the index. Rt was estimated using the R package “R0”, the serial interval was assumed 11 

to follow a lognormal distribution with the mean and standard deviation (SD) of 4.7 and 2.9 days, 12 

respectively 284. The average Rt value between the two courses of the state of emergency (the first 13 

one started on April 7, 2020, and ended on May 25, 2020, the second one was announced on 14 

January 7, 2021, and was expected to end on February 7, 2021) was calculated as the baseline level 15 

of intervention. The average Rt during each of the two periods of state of emergency were also 16 

calculated to show the impact of intervention measures on the transmission pattern of COVID-19. 17 

4.2.2 Results 18 

This study aims to evaluate whether WBE is a feasible tool for COVID-19 early warning. 19 

To do that, we developed a dynamic wastewater viral load model and tested it on Tokyo’s epidemic 20 

dataset. The total viral load (pre-report shedding setting) and the size of the active shedding 21 

population are shown in Fig. 4.2. The correlation between the total wastewater viral load and the 22 

number of the 7-day moving average of reported patients (Spearman's ρ: 0.9879) is stronger than 23 

that with the number of daily reported patients (Spearman's ρ: 0.9343) and the number of active 24 
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shedders (Spearman's ρ: 0.9591). This indicates that individuals in their early infection course 1 

contribute more to the viral load. 2 

 3 

Fig. 4.2 The 7-day moving average (MA7) of reported cases, the total wastewater viral load 4 

calculated from the dynamic shedding model under the pre-report shedding setting, and the total 5 

number of active shedders considering the duration of fecal shedding. 6 

The 7-day moving average of the confirmed cases and Rt are shown in Fig. 4.3. At the 7 

beginning of the epidemic, Rt is highly uncertain and fluctuates drastically, this likely results from 8 

the limited confirmed cases, disordered testing, and rapidly changing policies. As time went by, 9 

estimated Rt became stable, allowing for critical information about the transmission to be inferred. 10 

During the two rounds of the state of emergency, the average Rt is well under the threshold value 11 

of 1.0 (0.816 for the first and 0.963 for the second), indicating the epidemic will eventually die out 12 

if the situation stays that way. Compared to the average Rt in between (1.104), it suggests that the 13 

measures taken during the state of emergency effectively hampered the progression of the COVID-14 

19 epidemic. The efficacy likely comes from a lower contact rate because of reduced overall 15 
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mobility. The mobility index in Tokyo is significantly lower during both rounds of the state of 1 

emergency (Fig. 4.4), meaning that fewer people were going out, whether by transit, driving, or 2 

walking during that time. 3 

 4 

Fig. 4.3 The 7-day moving average of daily reported cases and the time-dependent reproduction 5 

number Rt from March 1, 2020 to February 3, 2021 (data source: Tokyo metropolitan government). 6 

The red line indicates the threshold value Rt = 1, the two periods of the state of emergency (April 7 

7, 2020-May 25, 2020, and January 7, 2021~) are also marked out. The gray area near the Rt line 8 

is the 95% confidence interval. 9 

The total viral load only represents the amount of viral RNA in the entirety of daily 10 

wastewater flow, for WBE application, a more important aspect is whether the concentration of 11 

viral RNA is higher than the detection limit of the quantification method. In this study, the 12 

wastewater viral load is simply calculated by dividing the total viral load by the total volume of 13 

wastewater from all residents in the Tokyo metropolitan region. To date, the lowest detection limit 14 

is 1.9 copies/100 mL sewage sample reported by Ahmed et al. (2020) 73. If this detection limit and 15 

the pre-report shedding model (i.e., highest sensitivity and earliest fecal shedding) are adopted, the 16 
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concentration of viral RNA of SARS-CoV-2 in Tokyo wastewater would surpass the detection limit 1 

on April 5, 2020, when Tokyo had just entered the first wave of COVID-19 outbreak and the daily 2 

reported cases had reached 141. Under the other two shedding settings, there would be a slight 3 

delay as the same surpassing would occur on April 7, 2020 and April 9, 2020, respectively. It is 4 

worth mentioning that the simulated detection dates coincide with the first state of emergency, 5 

which was not put into effect until April 7, 2020. This means that under the best scenario, the 6 

current detection method can theoretically provide an epidemic warning as early as other clinical 7 

and societal indices do. Realistically speaking, however, wastewater surveillance project may not 8 

be put into effect in time due to various reasons (e.g., lack of essential resources or reliable testing 9 

protocol). But even if the first wave is missed, as the wastewater virus concentration surges again 10 

when the second wave hits, the wastewater viral load would nevertheless surpass the detection 11 

limit on July 4, 2020, prior to the peak of the second wave. Besides, between the second and the 12 

third waves, a plateau of wastewater virus concentration would form, during which time the 13 

wastewater viral load would stay above the detection limit. The potential detection opportunities 14 

may signify the underlying danger, indicating the threat has not gone away and the next outbreak 15 

could be around the corner. The decision-making process to devise and implement preventive 16 

measures may be reinforced, especially if other potential information sources are jointly used. 17 
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 1 
Fig. 4.4 The mobility indices (driving, transit, and walking) represent the number of navigation 2 

route requests received each day by Apple. The values are standardized with the data on January 3 

13, 2020 being used as the baseline and set to 100. The smoothed lines are drawn with the 4 

“geom_smooth” function included in R package “ggplot2”. During the first state of emergency, all 5 

types of transportation underwent a significant drop, but as it ended in late May, the indices 6 

resurged, although walking, which may cover a large portion of non-essential short trips, did not 7 

recover as much as driving and transit. It should be noted that the data are potentially biased and 8 

may not accurately represent the mobility of all Tokyo residents (e.g., users of other devices and 9 

navigation applications, and people who do not need navigation). 10 

However, taking 1.9 copies/100 mL as the standard detection limit for WBE may be risky, 11 

considering that only one reference has reported such a low value so far. The detection limit of our 12 

recent in-house quantification experiment is estimated to be about 8,000 (~103.9) copies/100mL, 13 

and other studies have reported their respective detection limits from 101 to 104 copies/100 mL 14 

sewage sample 75,181,187,210,285–287. Therefore, a more moderate detection limit (~102.5 copies/100 15 

mL) was also evaluated. Under this new premise, the wastewater viral load would not be higher 16 
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than the detection limit during the entire studied period (Fig. 4.5), meaning that WBE may not be 1 

a feasible approach for early detection and warning. However, we had recorded a positive signal 2 

in our routine monitoring program in Sendai, Japan (data not shown) when the reported cases-3 

based prevalence level would only give a wastewater viral load of 6.7 copies/100mL wastewater, 4 

which means that the observed wastewater viral load is about 1,200 times higher than the 5 

estimation. This highlights the importance of recalibration of some critical factors for the further 6 

refinement of the model. We have previously listed and discussed some bottlenecks halting the 7 

application of WBE in COVID-19 early warning in a preliminary review article 288. In the 8 

following paragraphs, we would like to provide a brief insight into some of the factors that may 9 

contribute to this disparity. 10 

 11 

Fig. 4.5 The wastewater virus concentration under the three different shedding settings. The 12 

modest detection limit is assumed to receive a 10- or 100-fold improvement (102.5 to 101.5 and 13 

100.5 copies/100 mL). With the 100-fold improvement, the viral RNA would be detected from 14 

wastewater as early as on April 11, 2020 for the first wave, and on July 11, 2020 for the second, 15 

the plateau of wastewater virus concentration between the second and third waves would also be 16 

noticed as it would still stay above the new detection limit from late August and early November 17 

2020. But if the detection method would only receive a 10-fold improvement, the successful 18 

detection would not occur until Jan 8, 2021. 19 
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First, admittedly, the assumption of homogeneous mixing of viral RNA and wastewater 1 

may not match the reality. This has been supported by the previous detection of SARS-CoV-2 RNA 2 

in low prevalence regions. For instance, Hate et al. (2020) 75 detected the presence of SARS-CoV-3 

2 RNA in the wastewater of Ishikawa prefecture, Japan when the prevalence level was lower than 4 

1.0 reported cases per 100,000 people. By the same standard, the detection in Tokyo would have 5 

occurred before the daily reported cases surpass 140, which happened on April 5, 2020. The uneven 6 

mixing of wastewater underlines the importance of introducing detection methods and strategies 7 

that can improve the sensitivity and reliability of wastewater surveillance, especially when used as 8 

an early warning tool. The use of auto-samplers that collect 24-h composite samples has been 9 

favored by recent studies as they can maximize the opportunity of capturing viral RNA 289, but it 10 

also means that viral RNA may be highly diluted. On the contrary, in the studies of Hata et al. 11 

(2020) 75, Ahmed et al. (2020) 73, and Torii et al. (2021) 206, grab samples were used. Although 12 

using grab samples is at the risk of giving false-negative results, it may provide better sensitivity 13 

under certain circumstances. The reason being that viral load is not uniformly distributed 14 

throughout a day as a result of people’s biological rhythms and modern lifestyles. It had been 15 

reported that toilet flushing has two peaks in a day, one in the morning and the other at night 290. 16 

If the sampling strategy is optimized to match the hours with high toilet flushing rates with the 17 

consideration of in-sewer traveling time, the chance of successful detection may increase as the 18 

fecal content would be more concentrated. However, it is unclear how effective this strategy is and 19 

further research and validation are needed. Also, statistically speaking, when the wastewater viral 20 

load is close to the detection limit, left censoring and data noise may affect the result. There could 21 

be temporal fluctuation in the wastewater viral loading which may result in false-negative. In such 22 

cases, statistical methods that help handle this issue, such as Bayesian inference, are worth looking 23 

into 291. 24 
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 1 

So far, most studies have employed ‘downstream’ sampling, meaning the samples were 2 

taken at locations where wastewater originated from different regions or sources merges (e.g., 3 

WWTPs). This provides better coverage at the cost of less targeted monitoring 69. Our model 4 

simulation suggests that under downstream sampling, the viral RNA concentration may not be 5 

high enough to enable successful detection. Upstream sampling, which refers to taking wastewater 6 

samples at locations closer to the end-users (e.g., sewer pumping stations and maintenance holes), 7 

is therefore proposed as an alternative approach 176. Rather than providing coverage for an entire 8 

city or a relatively large catchment area, upstream sampling offers better flexibility and resolution 9 

by focusing on a smaller population or area, sometimes a single facility, although the workload 10 

would be higher. Upstream sampling may be better suited for certain confined environments such 11 

as prisons and student dormitories where the presence of unidentified infected individuals may 12 

cause a serious outbreak. This strategy had a successful implementation in August 2020 when 13 

researchers at the University of Arizona found a wastewater sample from a student dormitory was 14 

tested positive for SARS-CoV-2 RNA. Actions were quickly taken to test all the residents dwelling 15 

in that dormitory and two asymptomatic virus carriers were later identified 186. This likely 16 

prevented an outbreak in the campus before it happens. Considering all the uncertainties 17 

surrounding the detection sensitivity of WBE at this point, redirecting the focus of wastewater 18 

surveillance to certain critical points such as transportation hubs or major business districts rather 19 

than an entire city or a similarly large region, may make more sense from an efficiency perspective. 20 

In this study, the calculation of viral load is solely based on reported cases. However, 21 

underreporting should not be overlooked as the real number of infections may be significantly 22 

larger 292–294. Underreporting can be attributed to various factors such as the limited testing 23 

capacity (especially in the early stage) and the presence of asymptomatic individuals. Counting in 24 
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its impact may give a higher wastewater viral load and potentially, an earlier detection. The 1 

problem is, given the limited available information, it is very difficult to estimate an accurate ratio 2 

between actual and reported cases. Lau et al. (2020) 295 did an estimation for several countries and 3 

reported that in Japan, the actual number of cases is 12 times larger than reported as of March 17th, 4 

2020. This means the unreported shedders have an effect similar to a 10-fold improvement of the 5 

detection limit. Additional investigation, such as seroprevalence study, is critical for giving a 6 

clearer image of the extent of underreporting. For instance, a seroprevalence study conducted in 7 

India found a case-to-report ratio of 26-32, and the value was even higher (82-130) at the early 8 

stage when testing was less available 296. This, in turn, emphasizes the potential benefit of WBE 9 

as a community-covering monitoring tool because conventional clinical methods are often both 10 

time and resource-consuming for identifying and tracking unidentified cases. An accurate 11 

estimation of case number will help us finetune the viral load model, and the calibrated model may 12 

be used to perform back-calculation of actual cases based on wastewater viral load. However, this 13 

is another huge challenge in the application of WBE and is currently subject to significant 14 

uncertainties 258, more thorough studies are needed to take the model to the next stage. 15 

Improving the assay sensitivity has also been proposed as a solution. A pre-amplification 16 

step that precedes qPCR was previously used to enhance the detection of SARS-CoV in clinical 17 

samples 297.  The results showed a 100-fold improvement in detection sensitivity can be achieved. 18 

Besides, it has been suggested that droplet digital PCR (ddPCR) can provide a 10 times higher 19 

sensitivity than conventional qPCR for SARS-CoV-2 RNA detection 74,220. If these approaches can 20 

be implemented, the successful detection may occur earlier. 21 

Assuming addressing the aforementioned issues can have a combined effect equivalent to 22 

a 10 or 100-fold improvement to the modest estimation of the detection limit (102.5 to 101.5 and 23 

100.5 copies/100 mL), we performed another simulation based on the same shedding settings (Fig. 24 
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4.5). With the 10-fold improvement, the concentration of viral RNA in the wastewater would 1 

indeed exceed the detection limit, but it would not happen until January 8, 2021. By that time, 2 

Tokyo had already been hit by the third wave of COVID-19 outbreak. Daily confirmed cases 3 

reached an all-time high of 2,447 and the second state of emergency had just been declared one 4 

day before on January 7, 2021. Therefore, the possible detection would not quite qualify as “early” 5 

and may not have much significance. With the 100-fold improvement, though, the detection limit 6 

would be surpassed as early as April 11, 2020 under the pre-report shedding setting while the other 7 

two would result in a 2-day and 4-day delay, respectively. In a retrospective view, this potential 8 

detection, albeit much earlier, may also only have a limited effect on the epidemic trajectory as the 9 

state of emergency had already come into effect. However, after the first wave, the wastewater 10 

virus concentration would drop and stay below the detection limit until July 11, 2020. On that day, 11 

the confirmed cases reached 206, which is also the peak number during the first wave lasting from 12 

March to May 2020. Meanwhile, a plateau can be observed between late August and early 13 

November 2020 when the virus concentration is consistently higher than the detection limit. While 14 

no large-scale special action was taken during that time, which explains the resurgence of mobility 15 

indices in these months (Fig. 4.4), if the warning signal provided by WBE is taken seriously by 16 

the authority, the second and third waves might have been effectively suppressed, even avoided. 17 

The impact that COVID-19 has had and will have on Japan’s society is profound. Recent 18 

studies have investigated and discussed it from various angles including the change in mobility 19 

298,299, the stigma associated with not obeying the social pressure of not going out 300, the mental 20 

wellbeing of the general public and workforce 301,302, and the adoption of personal hygiene 21 

practices 303. Moreover, it has been documented that even though population-based interventions 22 

including lockdown and mask-wearing order can be taken, they are far from a panacea as the 23 

household transmission is hardly affected 280. From a realistic standpoint, policies around COVID-24 
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19 containment would go far beyond merely a medical concern due to the sheer scale of the 1 

epidemic. Containment measures that aim at lowering the contact rate and transmission risk can 2 

slow down the economy and social activities, even putting them to a halt, which may lead to serious 3 

consequences such as financial and mental burden. As society will likely have to keep functioning 4 

under the impact of COVID-19 in the foreseeable future, harsh constraints such as total lockdown, 5 

albeit effective, cannot fulfill the long-term needs. Acknowledging this, the way public health 6 

management is handled in this new era will be fundamentally different than what we had seen in 7 

the past year. Authorities may need to lean more on self-discipline and mild population-level 8 

constraints while strict measures will only be taken when an outbreak is likely to occur if no action 9 

will be taken. Choosing the appropriate timing, no matter through which method, can efficiently 10 

lower the basic reproduction number and flatten the epidemic curve without sacrificing the vigor 11 

of the economy too much. 12 

4.3 Data-driven wastewater surveillance-based COVID-19 prediction 13 

4.3.1 Materials and method 14 

A total of 51 influent wastewater samples were collected from a municipal wastewater 15 

plant (WWTP) in Sendai, Miyagi, Japan that receives approximately 69 percent of wastewater 16 

generated in the city. Samples were taken twice a week, at 10 a.m., on Tuesday and Thursday 17 

from August 2020 to February 2021, from an influent line that serves the major urban area and 18 

about 360,000 people. All samples were grab samples (250 mL). Samples were immediately 19 

transported to the laboratory after collection and stored at -80°C until analysis. 20 

SARS-CoV-2 RNA was recovered from 40 mL influent wastewater sample. Suspended 21 

solid was concentrated by centrifugation at 5,000 g for 10 minutes at 4°C. After the supernatant 22 

was removed, 1 mL of TRIzol reagent (Thermo Fisher Scientific, MA, USA) was added to the 23 

concentrated suspended solid, then the suspension was homogenized using a vortex mixer. The 24 
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total volume of the suspension was less than 3.5 mL. A 140 µL aliquot of the concentrate was 1 

processed for viral RNA extraction using the QIAamp Viral RNA Mini Kit (QIAGEN, Hilden, 2 

Germany) following the manufacture’s instructions, and the viral RNA was eluted in 60 µL of 3 

elution buffer provided in the kit. The whole process recovery of the SARS-CoV-2 RNA was 4 

verified based on the concentration of Pepper Mild Mottle Virus (PMMoV) in wastewater 5 

samples, 140 uL aliquot was extracted from samples both before and after concentration. A 10 6 

µL of extracted RNA was used to obtain 20 µL of cDNA with the High-Capacity cDNA RT Kit 7 

(Thermo Fisher Scientific). To synthesize cDNA for the SARS-CoV-2, the random primer 8 

included in the kit was substituted to CDC nCOV_N1-R Primer (CN 10006831, Integrated DNA 9 

Technologies, Inc., Iowa, USA) (10 µM) 304. 10 

PCR-based preamplification method was applied to cDNA prior to the qPCR assay. The 11 

preamplification was performed with TaKaRa Ex Taq® Hot Start Version (Takara Bio, Kusatsu, 12 

Japan) and the CDC nCOV_N1 Primers (CN10006830 and CN10006831, Integrated DNA 13 

Technologies, Inc.) 304. Each 50 µL reaction contained 20 µL of cDNA, 0.25 µL of TaKaRa Ex 14 

Taq HS (5 U/µL) (Takara Bio), 5 µL of 10 × Ex Taq Buffer (Mg2＋ plus) (20 mM) (Takara Bio), 15 

4 µL of dNTP Mixture (Takara Bio), 400 nM of forward and reverse primers. The PCR cycling 16 

condition was 2 minutes at 94°C, followed by 10 cycles of 30 seconds at 94°C, 30 seconds at 17 

55°C, and 1 minute at 72°C. The preamplification step was simultaneously applied to 18 µL or 18 

20 µL of standard DNA (2.0 to 2.0 × 104 copies/µL) created via 10-fold dilution series of 2019-19 

nCoV_N_PositiveControl (CN10006625, Integrated DNA Technologies, Inc.). The pre-20 

amplification step also was applied to 20 µL of TE buffer as the negative control for the pre-21 

amplification and qPCR. 22 

The concentrations of SARS-CoV-2 and PMMoV viral RNA were determined by real-23 

time qPCR on a CFX96 Real-Time PCR detection system (Bio-Rad, Hercules, CA, USA). The 24 
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amplification reaction was performed with SsoAdvanced Probes Supermix (Bio-Rad). For 1 

SARS-CoV-2 viral RNA, we used the same forward/reverse primers from the previous 2 

preamplification step with nCOV_N1 Probe Aliquot (CN10006832, Integrated DNA 3 

Technologies, Inc.) 304, RT-qPCR was performed only on pre-amplified samples. Each 20 µL 4 

reaction contained 5 µL of pre-amplified cDNA, 10 µL of SsoFast Probes Supermix (Bio-Rad), 5 

500 nM of forward and reverse primers, and 200 nM of fluorogenic probe. The PCR cycling 6 

condition was 30 seconds at 95oC, followed by 40 cycles of 10 seconds at 95°C and 30 seconds 7 

at 60°C. The number of SARS-CoV-2 genome copies was determined by a standard curve 8 

generated with the pre-amped standard samples (1.0 × 101 to 1.0 × 105 copies/reaction). Each 9 

sample was quantified in triplicate. The amplification efficiency in the real-time PCR was at 10 

least 80%. 11 

The concentration of SARS-CoV-2 viral RNA in influent wastewater sample, 𝐶𝑣,𝑤 12 

(copies/mL), was determined by the following equation: 13 

𝐶𝑣,𝑤 = 1000 ×
𝑉

𝑉𝑤
×
𝑉𝑓,𝑒𝑥

𝑉𝑠,𝑒𝑥
×
𝑉𝑓,𝑠𝑦𝑛

𝑉𝑠,𝑠𝑦𝑛
×
𝑉𝑓,𝑝𝑟𝑒

𝑉𝑠,𝑝𝑟𝑒
× 𝐶𝑞𝑃𝐶𝑅 (4.4) 

where V is the volume of concentrated wastewater suspended with TRIzol regent [mL] 14 

(1.1-3.5 mL), CqPCR is the concentration of cDNA applied to qPCR [copies/µL],⁡𝑉𝑤 is the 15 

volume of raw wastewater [mL]. 𝑉𝑓,𝑒𝑥, 𝑉𝑠,𝑒𝑥, 𝑉𝑓,𝑠𝑦𝑛, 𝑉𝑠,𝑠𝑦𝑛, 𝑉𝑓,𝑝𝑟𝑒, and 𝑉𝑠,𝑝𝑟𝑒 are all the 16 

volume of samples in the intermediate steps [µL]. Subscripts f and s stand for final and starting 17 

volume, while subscripts ex, syn, and pre stand for RNA extraction, cDNA synthesis, and pre-18 

amplification, respectively. The limit of quantification (LoQ) was 118-375 copies/mL based on 19 

the quantification limit in a qPCR assay (2 copies/µL of pre-amped standard samples) and 20 

equation (1). 21 
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For the quantification of PMMoV viral RNA, the cDNA was applied to real-time qPCR 1 

without preamplification. The amplification reaction was performed with SsoFast Probes 2 

Supermix (Bio-Rad), the reverse and forward primers, and probe. Each 20 µL reaction contained 3 

5 µL of cDNA, 10 µL of SsoFast Probes Supermix (Bio-Rad), 500 nM of forward and reverse 4 

primers, and 200 nM of fluorogenic probe. The PCR cycling condition used for detection of 5 

CDC N1 was also used for PMMoV. The number of PMMoV genome copies of one reaction 6 

was determined by a standard curve generated with the standard samples (1.0 × 102 to 1.0 × 106 7 

copies/reaction). Each sample was quantified in triplicate. 8 

The concentration of PMMoV viral RNA in influent wastewater samples was determined 9 

by the following equation.  10 

PMMoV, copies/mL= 1000 ×
𝑉𝑓,𝑒𝑥

𝑉𝑠,𝑒𝑥
×

𝑉𝑓,𝑠𝑦𝑛

𝑉𝑠,𝑠𝑦𝑛
× 𝐶𝑞𝑃𝐶𝑅 (4.5) 

where CqPCR is the concentration of cDNA applied to qPCR [copies/µL].  11 

For datapoints with quantified SARS-CoV-2 RNA concentration, the patient viral load 12 

calculation method mentioned in Section 4.2.1 (equation 4.1-4.3) was used. 13 

To test whether wastewater surveillance can provide information about how the epidemic 14 

may unfold, for data points with positive yet unquantifiable result, a prediction model framework 15 

was established (Fig. 4.6). First, the correlation between the reported cases and positive rate was 16 

assessed by Spearman's rank-order correlation and generalized linear model (GLM). Rolling two- 17 

and four-week were used to ensure enough data points in a calculation window. The positive rate 18 

was calculated as the number of positive signals divided by the total sample number in the given 19 

calculation window (rolling two- or four-week). Then, the positive rates from consecutive 20 

calculation windows were used as inputs to predict the reported cases in the last calculation 21 

window. Both the positive rate and reported cases were assigned to the last week of the calculation 22 
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window. 1 

 2 

Fig. 4.6 A brief illustration of the model framework. The positive rate and cumulative cases in a 3 

rolling week are calculated from a calculation window of two or four weeks, the values are 4 

assigned to the last week included in the calculation window. For example, when using rolling 5 

two-week, the positive rate during calendar weeks 1 and 2 is denoted as p (rolling week #1). In the 6 

prediction models, the model inputs are the positive rates in consecutive calculation windows (in 7 

chronological order) while the output is the cumulative cases of the following calculation window. 8 

Three models, GLM, artificial neural network (ANN), and random forest (RF) were 9 

employed to perform the prediction tasks for their ability to solve nonlinear regression problems 10 

and learning from available data. For each model, a pre-determined portion of the dataset (80%) 11 

was randomly selected for model training; the trained models were then used to perform prediction 12 

on the remaining part of the dataset (testing data). This random sampling-training-prediction 13 

process was repeated 5,000 times. The mean squared error (MSE) of actual value versus predicted 14 
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value was calculated each time for performance evaluation. The optimal number of inputs was 1 

determined through a performance analysis (Appendix Table S3). The data pre-treatment, model 2 

configuration, prediction, and statistical analysis were all performed using the R programming 3 

language, related code is also provided in the Appendix. 4 

4.3.2 Results and discussion 5 

 6 

Fig. 4.7 The time series of the SARS-CoV-2 RNA occurrence in wastewater influent and daily 7 

reported cases (red line and points). Positives are shown as blue circles while negatives are grey. 8 

The upper and lower red horizontal lines represent the LoQ (median) and qualitative sensitivity, 9 

respectively. 10 

As a low prevalence region, Sendai was not severely hit by COVID-19 during the study 11 

period. A total of 2,142 cases were reported in Sendai city from August 3, 2020, to February 28, 12 

2021 and can be approximately assigned into two outbreak events (Fig. 4.7). The first one lasted 13 

between late October and late November 2021. The peak appeared on October 27, 2020, when 38 14 

patients were reported. The second outbreak event that struck between mid-December and late 15 

January was more critical with a higher daily case count. There were eight days when the daily 16 
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reported cases exceeded the peak in the first outbreak, and 63 cases were reported on January 14, 1 

2021, marking an all-time high. It is worth mentioning that although the daily reported patient 2 

number had a temporal dip during the New Year holiday, it was more likely due to the reduced 3 

testing capacity and delayed reporting rather than actual ease of epidemic. Following the second 4 

outbreak event, the daily reported cases dropped to a low level and remained that way until the 5 

end of the study period. 6 

The concentration of PMMoV RNA in wastewater influent ranged from 5.2 log10 to 5.8 7 

log10 genome copies/mL, while in concentrated influent samples ranged from 5.4 log10 to 6.4 8 

log10 genome copies/mL. As the occurrence of PMMoV RNA in concentrated wastewater 9 

samples was stable, this may suggest there was no significant loss of SARS-CoV-2 RNA in the 10 

whole quantification process. 11 

In total, 51 samples were examined throughout the surveillance period, and 33 of them 12 

were negative. The genome concentration corresponding to the highest Ct value in our assay 13 

(referred to as qualitative sensitivity hereafter) was estimated to be 0.025 copies/mL by 14 

extrapolating the standard curve. Seventeen samples recorded Ct values greater than this, but still 15 

lower than the limit of quantification (LoQ), ranging from 1.18 × 102 to 3.75 × 102 copies/mL with 16 

a median of 1.61 × 102 copies/mL. The amplification efficiency in real-time PCR was from 80% 17 

to 120% which was the acceptable range according to the MIQE guidelines 305. The coefficient of 18 

determination of the standard curves was greater than 0.99 in each assay. No PCR products were 19 

detected in negative controls. We considered samples that were tested positive in at least one well 20 

in triplicate analysis as positive. 21 

During the study period, the measured viral RNA concentration exceeded the LoQ only 22 

once on January 05, 2021 (Fig. 4.7). With a concentration of 2.67 × 102 copies/mL, the daily 23 

wastewater viral load calculated from equation 4.4 would be 6.74 × 1013 copies. However, the viral 24 
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load contributed by reported patients on that day, calculated using equation 4.3, would be 3.40 × 1 

109 copies with 203 cumulative cases in the 26-day patient viral load calculation window, meaning 2 

a 𝐿𝑤/𝐿𝑝 value of 1.98 × 104. Also, this quantifiable signal occurred prior to the peak of reported 3 

cases which came nine days later, on January 14, 2021. The wastewater virus concentration did 4 

not exceed the LoQ again despite a higher daily case count reported in the following days. 5 

On the other hand, due to the lack of quantifiable data points, non-quantitative detection 6 

gave us a more consistent dataset to work on. The first positive signal occurred on August 07, 2020, 7 

with just 21 cumulative cases in the patient viral load calculation window and an estimated patient 8 

viral load of 3.42 × 108 copies, which translates into a theoretical wastewater virus concentration 9 

of only 2.70 × 10-3 copies/mL, far below the qualitative sensitivity. However, assuming the 10 

concentration sits somewhere between the qualitative sensitivity and LoQ, the wastewater viral 11 

load would have a range of 6.32 × 109 to 4.06 × 1013, thus a 𝐿𝑤/𝐿𝑝 range of 1.85 × 101 to 1.19 × 12 

105, covering the 𝐿𝑤/𝐿𝑝 value estimated from the quantifiable detection on January 05, 2021. 13 

Over the study period, a total of 18 (35.29%) samples were tested positive. Although a positive 14 

signal does not directly translate into wastewater viral concentration, consecutive positives may 15 

indicate a high viral load with higher confidence. In that sense, two consecutive positives appeared 16 

four times and all of which occurred during the two outbreak events. 17 

A stronger correlation was found between the four-week positive rate and cumulative 18 

cases than that between two-week positive rate and cumulative cases (Fig. 4.8). Therefore, the 19 

prediction models were used to predict the cumulative cases using four-week positive rate. By 20 

testing different amounts of input numbers, we found the optimal value was two. Among the three 21 

models, ANN offered the best overall performance (median MSE: 7520.22) followed by the other 22 

two (median MSE: 9038.60 for GLM and 12021.26 for RF, Fig. 4.9). For about half of the 23 

datapoints (45.83%, 11 in 24), the actual four-week cumulative cases were within the 95% CI 24 
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range of the prediction. For the remaining data points, the average error was 17.51%. 1 

 2 

Fig. 4.8 The time series of positive rate and cumulative cases. a: the calculation window is rolling 3 

two-week. b: the calculation window is rolling four-week. Spearman's rank-order correlation 4 

coefficients: 0.4996 (two-week, p < 0.05) and 0.7598 (four-week, p < 0.05). 5 

By employing a highly sensitive detection method, we monitored the time series of 6 

SARS-CoV-2 RNA occurrence in wastewater influent from an urban community with a 7 

population of 360,000. Eighteen out of the 51 influent samples yielded positive signals, and 8 
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seventeen samples had SARS-CoV-2 RNA concentrations lower than the LoQ. By examining 1 

the reported cases, we found the positive rate of detection has a strong correlation (four-week 2 

rolling window, ρ = 0.7598, p < 0.05) with the cumulative cases in the same time frame and 3 

established prediction models, hoping to extend the knowledge on WBE implementation 4 

strategies. 5 

 6 

Fig. 4.9 The cumulative cases predicted by the three models. The inputs were the positive rates 7 

in two consecutive rolling four-weeks while the output was the within the latter. Normalization 8 

was applied to inputs and output before model training and all data were denormalized back to 9 
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the original scale once the prediction was conducted. The three rows of figures are the time series 1 

of actual versus predicted (median and 95% CI) four-week cumulative cases for each model, the 2 

scatter plot of 1,000 randomly selected pairs of actual and predicted values, and the boxplot of 3 

MSE distribution from the 5,000 predictions for each model, respectively. 4 

In this study, the LoQ was around 1.61 × 102 copies/mL, about 1 log above the data 5 

reported in the previous studies 73,306. This is due to the decreased volume of a sample considered 6 

throughout the analysis in this study. Specifically, the volume of a sample input was 7 

approximately 1/10, 1/6, and 1/10 of the total volume of a suspension obtained in a previous 8 

step, in RNA extraction, cDNA synthesis, and qPCR, respectively. The LoQ may improve by 9 

using other different extraction kits that use a larger volume of sample for extraction. 10 

Nevertheless, the method we employed is a feasible option because the data is obtained within 1 11 

day, and our analysis has not been restricted by the stock shortages of manufactures. 12 

We used PMMoV as an internal process control for SARS-CoV-2 detection from 13 

suspended solids. PMMoV are detected throughout a year and abundant in wastewater (106- 1010 14 

copies/L) 225,226,307, which may allow for using it as an internal control of RT-qPCR for a 15 

wastewater sample 308. A previous study reported that the recovered load of PMMoV correlated 16 

with that of murine hepatitis virus, suggesting that PMMoV is the potential indicator of the 17 

efficiency of SARS-CoV-2 309. We concluded that there was no significant loss throughout the 18 

analysis because the PMMoV concentration was consistent in both influent and concentrated 19 

samples. Future studies should decide the best whole process control for extraction from 20 

suspended solids. The better options are human coronaviruses 229E and HKU1 although the 21 

longitudinal concentration has not reported 310,311. 22 

The pre-amplification employed in this study increases the number of amplicons in the 23 

downstream qPCR. The theoretical qualitative sensitivity should have the same Ct value as that 24 
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obtained from one copy per reaction, which in this study is 32.9. However, this value was 1 

surpassed by multiple samples whose Ct values reached up to 40.0. A possible explanation for 2 

the results was that organic compounds in the influent samples inhibited the amplification 3 

efficiency in PCR. We evaluated the effect of inhibitors using a commercially available RNA 4 

positive control following a previous study but did not observe lowered efficiency in pre-5 

amplification and qPCR of the positive control RNA, indicating that other reasons were 6 

responsible for the greater-than-expected Ct values 312. It may be explained by the different 7 

affinity efficiency of primers and polymerase to the target amplicons between the cDNA derived 8 

from viral RNA and plasmid DNA used as the positive control. 9 

From the perspective of early warning, getting a positive signal from wastewater can be 10 

a solid proof that the virus has started circulating in the community 71,261. So far, different studies 11 

have reported varied sensitivity. Hong et al. (2021) 313 reported that a positive signal in hospital 12 

wastewater requires 253-409 positive cases out of 10,000 individuals while Hata et al. (2021) 180 13 

detected the presence of SARS-CoV-2 RNA in municipal wastewater when the number of cases 14 

was <1.0 per 100,000 people, and Betancourt et al. (2021) 78 reported a positive detection when 15 

there were only one symptomatic and two asymptomatic individuals among a total of 311 residents 16 

in a student dormitory. In practice, the varied detection sensitivity can be mainly attributed to the 17 

different experimental methods used as well as the characteristics of the sewage system in which 18 

samples are collected. A standardized method may contribute to the comparison and integration of 19 

studies 314. In this study, when the first positive signal was recorded, the number of active shedders 20 

estimated from the clinical reports was only 21 in the catchment area with about 360,000 people. 21 

Nevertheless, a bigger active shedder base does not guarantee a positive signal in subsequent 22 

detections. Even during the summit of the second outbreak event which enabled the only signal 23 

above LoQ, negatives were still recorded. Such inconsistent detection had also been reported in 24 
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other studies 261,313, adding another layer of complexity. 1 

Despite the strong interest in quantitative wastewater surveillance, a streamlined solution 2 

has yet to be formed. Especially, although the experimental side has received substantial attention 3 

which led to more sensitive and reliable detection, the analytical side still lacks adequate 4 

investigation and verification. There is a noteworthy knowledge gap in how to associate the 5 

measured wastewater virus concentration with the epidemic size in the catchment area. So far, 6 

most studies had tried directly correlating the abundance of viral RNA with reported cases. 7 

However, the following findings in our study: (1) a positive signal occurred when the speculated 8 

active shedder group was supposedly far from large enough to enable a successful detection, (2) 9 

higher reported cases did not translate to high wastewater virus concentration, and (3) there is a 10 

significant yet uncertain gap between the observed wastewater viral load and the viral load 11 

contributed by the supposed active shedder base, presented as 𝐿𝑤/𝐿𝑝 in this study, all point to a 12 

conclusion that at the current stage, the uncertainty associated with the wastewater viral load is 13 

still a great hindrance to reliable back-calculation. 14 

The dimensionless metric 𝐿𝑤/𝐿𝑝 largely determines the robustness of back-calculation. 15 

Although a stable 𝐿𝑤/𝐿𝑝 is ideal for back-calculation and was therefore assumed in some recent 16 

studies, its value seems to be both time- and location-specific due to various factors. For instance, 17 

in Sendai, August and September are the rainy season, because the major urban area is served by 18 

a combined sewer, this likely aggravated the dilution of viral RNA and led to a lower 𝐿𝑤/𝐿𝑝. This 19 

is supported by the lower bound of 𝐿𝑤/𝐿𝑝 estimated for August 07, 2020 when the first positive 20 

signal appeared. The way patient viral load 𝐿𝑝 was calculated also implies it can be impacted by 21 

societal factors. For instance, a high level of underreporting may occur under limited testing 22 

capacity, leading to a smaller speculated active shedder base, thus a smaller 𝐿𝑝  and a larger 23 

𝐿𝑤/𝐿𝑝 . Similarly, if the asymptomatic infection ratio increase, a larger 𝐿𝑤/𝐿𝑝  can also be 24 
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expected. Knowing this, some critical epidemic-related information may be drawn by keeping a 1 

close eye on 𝐿𝑤/𝐿𝑝. Nevertheless, it should be pointed out that our calculations of 𝐿𝑤 and 𝐿𝑝 2 

were based on a set of assumptions including the shedding profile, which may be further refined 3 

once more medical evidence becomes available. 4 

As shown in this study, in wastewater surveillance projects, researchers may obtain 5 

positive yet unquantifiable signals, especially in low-prevalence period/region. As far as we know, 6 

no wastewater surveillance study has utilized binominal data other than as occurrence indicator 7 

yet. But, the detection frequency, or positive rate, might serve as a suitable indicator of the virus 8 

occurrence upon which further analysis can be performed. This indicates that binominal result may 9 

also be utilized to help with epidemic surveillance while establishing a precise connection between 10 

wastewater viral load and prevalence level remains challenging and entails further research. 11 

Rolling four-weeks were used as the calculation window in this study, but it may be shortened by 12 

increasing the sampling frequency or the number of samples collected each time, albeit more time 13 

and resource consuming. It should be noted, though, that using positive rate as an indicator may 14 

only be feasible in a low prevalence region or at the early stage of an outbreak event. There exists 15 

an upper bound of epidemic size beyond which its linear correlation with positive rate becomes 16 

invalid, which may explain why the epidemic peaks were not successfully modeled in this study. 17 

On the other hand, a higher prevalence level means a higher chance of getting quantifiable signals 18 

and back-calculation models should take over once developed. 19 

When a causal relationship between input and output is difficult to establish, data-driven 20 

methods like those used in this study may be employed. However, being data-driven also means 21 

training data need to be accumulated to finetune the model, and prediction does not always match 22 

the reality. With all the uncertainties, it should be reiterated that wastewater surveillance ought not 23 

to be a stand-alone tool and its outcome should be interpreted along with other information sources 24 
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before reaching any conclusion. For instance, in the early stage of an epidemic when clinical 1 

testing capacity is often compromised, wastewater detection may be put into action quicker and 2 

cover a larger area. Nevertheless, our study shows that positive rate may be an important indicator, 3 

as also recognized by a recent study 261. Also, in terms of prediction accuracy, as stated above, 4 

environmental and societal factors may affect the detection result, thus adding explanatory 5 

variables into the model may improve the model performance. 6 

Several limitations of this study should be noted. First, the lag between symptom onset and 7 

reporting was not included in modeling. Counting in the delay in case reporting may explain the 8 

9-day delay between the quantified virus concentration and the case peak, it may also improve the 9 

correlation between positive rate and cumulative cases, as cases would be assigned to an earlier 10 

date. However, existing studies about the delay between symptom onset and hospitalization had 11 

varied estimations ranging from 7 days 315 to a much shorter 1.2 days 190. Therefore, without 12 

enough information about the local testing and reporting practice, integrating this factor into the 13 

model may introduce further error. Second, grab samples are prone to short-term heterogeneity of 14 

viral RNA abundance, which may affect the representativeness of samples. But while composite 15 

samples collected by an autosampler may improve the consistency of detection, the viral RNA may 16 

also get highly diluted as toilet flushing mainly occurs during certain times, resulting in false 17 

negatives. Designing a sampling strategy that captures the toilet flushing peak, therefore, may be 18 

a viable solution as suggested by recent studies 78. 19 

As the world is still under the shadow of COVID-19, on top of timely medical and societal 20 

intervention, each and every tool that helps monitor the situation and alerts the society is worth 21 

looking into. In this study, using a highly sensitive assay, we (1) monitored the occurrence of 22 

SARS-CoV-2 viral RNA in the wastewater of an urban area in Japan for over seven months and 23 

(2) established a model framework to help extend the existing knowledge base about analyzing 24 
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and interpreting the surveillance results. Particularly, we found that although quantitative epidemic 1 

size estimation based on measured virus concentration is still challenging, the positive rate of 2 

wastewater virus detection is strongly correlated with reported cases and can be used for its 3 

prediction, which may guide towards novel wastewater surveillance strategies. Our findings may 4 

not only strengthen the application of wastewater surveillance in the current COVID-19 pandemic 5 

but also help the scientific community prepare for other public health challenges. 6 

4.4 Weekly COVID-19 case prediction in Sendai, Japan 7 

4.4.1 Method 8 

Building upon this detection frequency-based modeling framework, a program aimed at providing 9 

short-term COVID-19 prediction was initiated. The data collected in the one-year period from 10 

August 2020 to July 2021 for model improvement internal verification and the output was changed 11 

to weekly new cases. For this new task, while the same overall modeling approach was inherited 12 

from Section 4.3, a few key modifications were introduced: 1) one additional sampling point 13 

(pipeline) in the wastewater treatment plant, which receives wastewater from a resident/industrial 14 

area, was included (named line 2 hereafter, the original sampling point is referred to as line 1). 15 

This means a larger portion of the population is under wastewater surveillance; 2) instead of using 16 

two calculation windows as mentioned in Section 4.3, three consecutive calculation windows 17 

(rolling four-week) were used as inputs; 3) because the goal is to verify the feasibility of short-18 

term prediction, multiple models of different assumptions and structures were used in parallel for 19 

performance comparison. For example, compared to the last study period, quantifiable detection 20 

results appeared more frequently. To preserve this extra information without changing the 21 

fundamental data processing structure, in one assumption, a simple algorithm was introduced to 22 

divide the data into one of the four categories: negative, positive, low concentration, and high 23 

concentration, rather than the original setting where only two options are available 24 
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(negative/positive). Therefore, the detection information now has three variables (positive rate RP, 1 

RL, and RH); 4) because the time span greatly exceeds the previous trial study, explanatory variables 2 

(vaccination rate and the case count from the previous week) were introduced to see whether they 3 

help bring down the uncertainty, and; 5) in addition to the ANN model that showed the best overall 4 

performance in the previous trial study, long short-term memory (LSTM) and recurrent neural 5 

network (RNN) were also introduced later because they can maintain an internal memory which 6 

may help with time series forecasting. To reduce overfitting, all ANN models featured repeated 7 

random subsampling with 5,000 iterations while LSTM and RNN models used forward chaining 8 

and 100 iterations. The details of the models, including the assumptions made in ANN and the 9 

model configurations, are shown in Fig. 4.10 and Table 4.1. 10 

 11 

Fig. 4.10 The flow chart of detection result processing and the model structure. 12 

  13 
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Table 4.1 The configuration and assumption in each model. 1 

2 

Model Input number Hidden layer Platform Library Cross validation 
Assumption & 

explanatory variable 
Iteration 

ANN #1 20 [30,10,25] R neuralnet 
Repeated random 

subsampling 
N/A 5,000 

ANN #2 20 [30,10,25] R neuralnet 
Repeated random 

subsampling 
Vaccination 5,000 

ANN #3 20 [30,10,25] R neuralnet 
Repeated random 

subsampling 

Vaccination 

expiration 
5,000 

ANN #4 20 [30,10,25] R neuralnet 
Repeated random 

subsampling 

Secondary 

categorization 
5,000 

RNN 25 [40] Python TensorFlow Forward chaining 
Secondary 

categorization 
100 

LSTM 25 [50] Python TensorFlow Forward chaining 
Secondary 

categorization 
100 
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4.4.2 Data overview 1 

A total of 326 wastewater samples were collected and analyzed during the study period. 2 

Among them, 161 samples were tested positive (49.4%), and 28 samples had quantified 3 

concentration (8.6%). This low occurrence level was expected to some extent due to the relatively 4 

low prevalence level in Sendai and Japan. As for new COVID-19 cases, several outbreak events 5 

occurred during the study period. The most serious one started in the beginning of 2022 despite 6 

about 80% of the residents had received at least two shots of mRNA vaccine, primarily because 7 

the more contagious Omicron variant made its way into Japan around this time.8 

 9 

Fig. 4.11 The wastewater SARS-CoV-2 detection results during the study period. Positive 10 

detections are shown in red while negative detections are shown in green. The two sewage 11 

pipelines are marked by different point shapes. Triangle points represent line 1 while round points 12 

stand for line 2. Small red points close to the X-axis represent detections that are positive yet below 13 

LoQ. 14 

 15 
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4.4.3 Weekly COVID-19 case prediction 1 

Starting from September 2021, weekly new case prediction is issued on every Monday 2 

and shared online on a designated website as well as news outlets, although for stability and 3 

consistency reasons, only the predictions generated by model #4 were shared with the public 4 

while the other predictions were only used for internal evaluation and comparison. As of June 5 

27, 2022, a total of 43 predictions have been issued by ANN models and 27 have been issued 6 

by RNN and LSTM (Fig. 4.12). Among, model #4 provided the best overall fitting with RMSE 7 

= 294.4 and low residual autocorrelation (Fig. 4.13 and 4.14), although other ANN models also 8 

came close (RMSE = 310.6, 321.9, and 310.7, respectively). In comparison, RNN and LSTM 9 

have higher RMSE quite different from the ANN family. 10 

 11 
Fig. 4.12 The predictions generated by all models. The thick gray line represents the actual new 12 

case count while lines with color are predictions by different models. Note that ANN model 13 

prediction started from September 2021 while RNN and LSTM were later added to the modeling 14 

study and the predictions started from the end of 2021. 15 

 16 
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 1 
Fig. 4.13 The predictions generated by ANN model #4. The points and error bars represent the 2 

median values and standard deviations calculated from the 5,000 iterations. 3 

 4 

Also, the models demonstrated some forward-looking capability. During the week 5 

December 27, 2021 to January 02, 2022, all but one models predicted that the weekly case count 6 

would be zero and two new cases were reported in that week. However, based on wastewater 7 

surveillance result alone, all models increased their predictions for the next week (January 03 to 8 

09, 2022). The predictions ranged from 9 (model #1) to 87 (RNN). As it turned out, 38 new cases 9 

were reported in that week, which marked the beginning of a major outbreak event caused by the 10 

highly contagious Omicron variant. 11 

However, a closer look into the results reveals something worrisome. Although in general 12 

a good match between prediction and actual case count was achieved and there were times when 13 

the models gave warning signals before the outbreak events began, how accurate the models can 14 

predict the way epidemic unfolds remains an open question. When there is a drastic change in new 15 
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cases, no matter upward or downward, all models showed some difficulty catching up, reflected 1 

by some extent of delay following those turning points. It typically takes two to three weeks for 2 

the model to keep up with the new epidemic progression trend and for a short-term epidemic 3 

prediction project, such delay is certainly unwanted and may mitigate its feasibility as a public 4 

health warning system. There are two possible reasons for this delay. One of them is overfitting, 5 

which refers to the situation where the model fits too closely to the training data. Despite the 6 

implementation of cross validation methods, the nature of neural network models determines that 7 

the large number of neurons inside also demand a huge dataset to be properly tuned. Although 8 

wastewater surveillance had been performed for nearly two years, the obtained data may still be 9 

inadequate. The second plausible explanation is that because the models were trained by past data, 10 

when the inputs are out-of-range, the model may lose context and cannot extrapolate well. This 11 

can be partially reflected by the fact that although the initial new case surge in January 2022 was 12 

not well captured by the models, in later months the delay became more and more insignificant. 13 

  14 
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 1 

 2 

Fig. 4.14 The residuals of the model prediction and its autocorrelation. 3 

 4 

One potential way to mitigate the delay factor is to further introduce explanatory variables 5 
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that help reveal the epidemic progression. For instance, many recent studies have discussed the 1 

role population mobility plays in the transmission pattern of COVID-19 316,317. In short, population 2 

mobility reflects the degree of social contact and consequently, the infection probability. This is in 3 

line with what we observed in Fig. 4.4, although the connection between the two factors may vary 4 

over time. Due to the incubation period and delay in clinical testing/reporting, the population 5 

mobility level at a given point may have an impact on the new cases in near future. However, 6 

adding mobility data to the formula will take considerable efforts as many key questions remain 7 

unanswered including which index is the most appropriate proxy for population mobility and how 8 

to incorporate mobility data into the current wastewater surveillance-based modeling framework. 9 

4.5 Conclusion 10 

In this chapter, by conducting a step-by-step research project from literature review to real-world 11 

application, we explored the feasibility of wastewater surveillance, enhanced by data-driven 12 

modeling, in epidemic support. The results show that with proper experiment design, data 13 

processing, and modeling technique, wastewater surveillance can indeed complement other 14 

epidemic countermeasures in the forms of issuing warning signals and enhance preparedness. 15 

However, while the possibility is clearly shown, considering the public service nature it carries, 16 

there is still a long way to go for this relatively new approach to gain acceptance among researchers, 17 

authority, and public. 18 
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5. Discussion and conclusion 

5.1 Lessons learned from applying data-driven modeling to wastewater pathogen issues 

From the projects featured in this dissertation, it is clear that data-driven modeling holds 

huge potential when it comes to performing regression and prediction tasks that cannot be 

addressed by mechanistic models yet. 

One thing we learned from literature review and conducting the research in this 

dissertation is how little attention data-driven modeling receives. Traditionally, in both water 

and epidemiology sectors, mechanistic models are preferred due to a taste for a solid 

understanding of the underlying processes. However, establishing one may be hindered by the 

complexity that researchers often encounter in these two fields. With the ever-evolving 

computational power from personal computers and better software support, individuals can now 

easily process the data and apply data-driven models. Therefore, data-driven models really 

should come out of research labs and enter real-world application, but the acceptance will not 

be easy to gain until they can truly prove themselves. 

5.2 Challenges, opportunities, and future works 

There are some common bottlenecks faced by researchers applying data-driven 

modeling to practical problems. The first one is data availability. As the name suggests, data-

driven models require an adequately large training set to be properly tuned. However, data 

availability is not always guaranteed, particularly in two scenarios: 1) the data itself is hard to 

get hands on. This is also a problem we occurred in this dissertation (Section 3) where the model 

development and verification rely on influent/effluent virus concentrations yet molecular virus 

quantification is both costly and time-consuming, making accumulating a large dataset 

challenging. Also, when the reactor reaches stable operation, there is very little variation in the 

operational condition, making the data collection process even harder; 2) an urgent project does 

not have enough time for building up a large dataset. Take epidemic prediction for example, in 
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our study the data collected for over one year was used for testing model structures and 

verification, yet when faced with new viruses or diseases, researchers may not have this luxury 

as the public health hangs in the balance. Therefore, models like that may be more suitable for 

not-so-urgent programs such as the long-term monitoring and prediction of common diseases. 

The second issue is the long-term feasibility. Whether it is an epidemic prediction model or a 

soft sensor for virus removal monitoring, routine maintenance and recalibration are needed to 

work properly over time. For instance, front-line operators at wastewater treatment plants may 

not all have the required knowledge to maintain an update the soft sensor, which in the long run 

may even lead to compromised microbial safety. 

On the topic of wastewater pathogen surveillance, as a relatively new research field, 

much is needed to continue unleashing its full potential. Firstly, more statistical tools need to be 

adopted and applied to the analysis and interpretation. Most SARS-CoV-2 wastewater 

surveillance projects report the raw quantification results without further polishing, which may 

make it hard for the authority and public to obtain epidemic-related information. Second, as the 

quantification results are still subject to strong variation and fluctuation, how to handle the noise 

in data will have a huge impact on model robustness. Some approaches such as using wastewater 

flow rate and human fecal indicator to normalize the virus detection signal have been tested and 

implemented, although to what extent is it useful is still under debate 318,319. Introducing 

statistical methods is another option to iron out some uncertainty, but information about this 

remains rare. 

While there is still huge room for the improvement of prediction accuracy and timeliness, 

the possibilities opened by data-driven modeling are hard to ignore. Because the mechanistic 

understanding of processes is not emphasized as such, combining knowledge and data from 

different fields also becomes easier. Therefore, from an interdisciplinary perspective, water 
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researchers should work closely with other stakeholders, such as doctors, epidemiologists, and 

political decision makers, to find out how can this approach be improved with extra data and 

bring out maximum benefit to the society. We should have some relief, though, knowing a very 

powerful tool is at our hands when facing future public health challenges. It is worth mentioning 

that although the models used in this dissertation are all black-box models, there is an increasing 

interest in extracting information from the established models themselves, also referred to as 

explainable machine learning. Applying explainable machine learning may help expand the 

knowledge about the systems to be modelled and contribute to future research design. 

Finally, it should be mentioned that this study focused on the applications in centralized 

wastewater collection and treatment systems. While the accessibility of such systems has greatly 

improved over the years with the rapid global urbanization, many rural regions, especially in 

developing countries where microbial safety assessment on water reclamation and affordable 

epidemic monitoring methods are needed the most, still only have limited access to large-scale 

infrastructures. Although wastewater surveillance on smaller scales (e.g., campus and building) 

has been proven feasible, whether the efficacy and cost efficiency will meet the demand of rural 

areas remains to be seen.  
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Appendix 

Table S1 The operational variables of the AnMBR. 

Variable name Unit Abbreviation in the text 

Air temperature °C Temperature 

HRT h HRT 

TMP kPa TMP 

Gas cleaning frequency Hz GasClean_freq 

Gas cleaning flux m3/min GasClean_flux 

MLSS temperature °C MLSS_temp 

Influent pH / Inf_ph 

MLSS pH / MLSS_ph 

Biogas production rate L/day Gas_prod 

CH4 ratio in biogas % CH4 

N2 ratio in biogas % N2 

CO2 ratio in biogas % CO2 

H2S ratio in biogas % H2S 

MLSS concentration mg/L MLSS 

MLVSS concentration mg/L MLVSS 

Influent total COD mg/L Inf_TCOD 

Influent soluble COD mg/L Inf_SCOD 

MLSS total COD mg/L MLSS_TCOD 

MLSS soluble COD mg/L MLSS_SCOD 

Effluent COD mg/L Eff_COD 
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Table S1 (continued) 1 

Variable name Unit Abbreviation in the text 

Influent total protein mg/L Inf_TPROT 

Influent soluble protein mg/L Inf_SPROT 

MLSS total protein mg/L MLSS_TPROT 

Effluent protein mg/L Eff_PROT 

EPS1 protein mg/L EPS1_PROT 

EPS2 protein mg/L EPS2_PROT 

SMP1 protein mg/L SMP1_PROT 

SMP2 protein mg/L SMP2_PROT 

Influent total polysaccharide mg/L Inf_TPS 

Influent soluble polysaccharide mg/L Inf_SPS 

MLSS total polysaccharide mg/L MLSS_TPS 

Effluent polysaccharide mg/L Eff_PS 

EPS1 polysaccharide mg/L EPS1_PS 

EPS2 polysaccharide mg/L EPS2_ PS 

SMP1 polysaccharide mg/L SMP1_ PS 

SMP2 polysaccharide mg/L SMP2_ PS 

 2 
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Table S2 Sequences of primers and probe sets, PCR mix formula, and RT-qPCR conditions in 1 

experiments mentioned in Section 3 and 4. 2 

Sequences 3 

PMMoV Sequence (from 5’ to 3’) 

Forward primer GAG TGG TTT GAC CTT AAC GTT TGA 

Reverse primer TTG TCG GTT GCA ATG CAA GT 

Probe [FAM] CCT ACC GAA GCA AAT G [MGBEQ] 

PCR condition 4 

NoV GII Temperature Time 

Hot start 95 ℃ 30 sec 

Denaturing 95 ℃ 30 sec 

Annealing 53 ℃ 60 sec 

Extension 72℃ 60 sec 

PCR mix formula 5 

Reagent Volume 

Forward primer 0.8 μL 

Reverse primer 0.8 μL 

Probe 0.25 μL 

PCR water 3.15 μL 

Sample 5 μL 

SsoAdvanced Universal Probes Supermix 10 μL 

 6 

Sequences 7 

NoV GII Sequence (from 5’ to 3’) 

Forward primer CAR GAR BCN ATG TTY AGR TGG ATG AG 

Reverse primer TCG ACG CCA TCT TCA TTC ACA 

Probe [FAM] TGG GAG GGS GAT CGC RAT CT [TAMRA] 

PCR condition 8 

NoV GII Temperature Time 

Hot start 95 ℃ 30 sec 

Denaturing 95 ℃ 15 sec 

Annealing 56 ℃ 60 sec 

Extension 72℃ 30 sec 

 9 

 10 
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Table S1 (continued) 1 

PCR mix formula 2 

Reagent Volume 

Forward primer 0.8 μL 

Reverse primer 0.8 μL 

Probe 0.2 μL 

PCR water 3.2 μL 

Sample 5 μL 

SsoAdvanced Universal Probes Supermix 10 μL 

 3 

Sequences 4 

MNV Sequence (from 5’ to 3’) 

Forward primer CGG TGA AGT GCT TCT GAG GTT 

Reverse primer GCA GCG TCA GTG CTG TCA A 

Probe [FAM] CGA ACC TAC ATG CGT CAG [TAMRA] 

PCR condition 5 

NoV GII Temperature Time 

Hot start 95 ℃ 30 sec 

Denaturing 95 ℃ 5 sec 

Annealing 56 ℃ 20 sec 

Extension 72℃ 30 sec 

PCR mix formula 6 

Reagent Volume 

Forward primer 0.8 μL 

Reverse primer 0.8 μL 

Probe 0.6 μL 

PCR water 2.8 μL 

Sample 5 μL 

SsoAdvanced Universal Probes Supermix 10 μL 

 7 

  8 
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Table S3 Prediction performance evaluated by median MSR with different number of inputs and 1 

different models. 2 

Four-week cumulative cases, GLM 

 Number of inputs 

  2 3 4 5 

Q
u

an
tile 

0% 587.47  80.16  423.23  710.50  

25% 6088.65  6193.52  7405.19  9349.07  

50% 9038.60  10374.27  12033.00  15036.48  

75% 14437.37  15715.59  16849.10  20298.70  

100% 41871.27  41552.90  47591.32  53204.23  

 3 

 4 

Four-week cumulative cases, ANN 

 Number of inputs 

  2 3 4 5 

Q
u
an

tile 

0% 406.91 492.49 468.77 237.73 

25% 4768.64 4999.76 5650.15 5472.55 

50% 7520.22 8557.63 9000.55 9085.33 

75% 14043.80 13395.98 12812.55 13274.65 

100% 126209.56 109870.22 107596.08 108124.93 

 5 

Four-week cumulative cases, RF 

 Number of inputs 

  2 3 4 5 

Q
u

an
tile 

0% 380.10 996.05 159.88 144.04 

25% 7121.26 9568.18 10705.46 12470.59 

50% 12021.26 14334.22 15800.09 17389.67 

75% 16344.77 21266.71 23260.93 24967.54 

100% 49902.10 59457.74 70565.83 85994.01 

 6 

  7 
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R code for configuring the GLM, ANN, and RF models in Section 4.3 1 

 2 

library(neuralnet) # For ANN 3 

library(randomForest) # For RF 4 

library(MLmetrics) # For MSE calculation 5 

 6 

# GLM 7 

# Set the size of training set 8 

samp_size <- floor(0.8*nrow(data)) # 80% data used for model training 9 

# Create a dataframe to store 5,000 predictions 10 

glm.loop <- as.data.frame(matrix(NA, ncol = 5001, nrow = nrow(data))) 11 

# Actual value of output was introduced 12 

colnames(glm.loop)[1] <- 'Actual' 13 

glm.loop$Actual <- data$output 14 

# Run the simulation 15 

for (i in 1:5000){ 16 

  set.seed(i) 17 

  train.ind <- sample(seq_len(nrow(data)), size = samp_size) 18 

# Separate the training data and test data 19 

  train.data <- data[train.ind, ] 20 

  test.data <- data[-train.ind, ] 21 

  glm.model <- glm(output~input1+input2+input3, data= train.data, family="gaussian") 22 

# Prediction is made using only the inputs of test data 23 

  glm.predict <- predict.glm(glm.model, newdata = test.data[,-4) 24 

  glm.loop[-train.ind,i+1] <- glm.predict$fit 25 

} 26 

 27 

 28 

# ANN 29 

samp_size <- floor(0.8*nrow(data)) 30 

ann.loop <- as.data.frame(matrix(NA, ncol = 5001, nrow = nrow(data))) 31 

colnames(ann.loop)[1] <- 'Actual' 32 

ann.loop $Actual <- data$output 33 

for (i in 1:5000){ 34 

  set.seed(i) 35 

  train.ind <- sample(seq_len(nrow(data)), size = samp_size) 36 
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  train.data <- data[train.ind, ] 1 

  test.data <- data[-train.ind, ] 2 

  ann.model <- neuralnet(output~input1+input2+input3, data = train.data, hidden=c(5,5,5), 3 

linear.output=T) 4 

  ann.predict <- compute(ann.model, test.data[,-4]) 5 

  ann.loop[-train.ind,i+1] <- ann.predict$net.result 6 

} 7 

 8 

 9 

# RF 10 

samp_size <- floor(0.8*nrow(data)) 11 

rf.loop <- as.data.frame(matrix(NA, ncol = 5001, nrow = nrow(data))) 12 

colnames(rf.loop)[1] <- 'Actual' 13 

rf.loop$Actual <- data$output 14 

for (i in 1:5000){ 15 

  set.seed(i) 16 

  train.ind <- sample(seq_len(nrow(data)), size = samp_size) 17 

  train.data <- data[train.ind, ] 18 

  test.data <- data[-train.ind, ] 19 

  rf.model <- randomForest(output~input1+input2+input3, data=train.data, ntree = 500) 20 

  rf.loop[-train.ind,i+1] <- predict(rf.model, newdata = test.data[,-4]) 21 

} 22 

 23 

 24 

# MSE calculation 25 

# Insert a new row into the loop to store MSE value 26 

glm/ann/rf.loop[(nrow(data)+1),] <- 0 27 

for (i in 1:5000){ 28 

# Keep the actual output value and the predicted value from one step 29 

  temp <- glm/ann/rf.loop[which(is.na(glm/ann/rf.loop[,i+1]) == FALSE) ,c(1,i+1)] 30 

  temp <- temp [-nrow(temp),] 31 

# Calculate MSE 32 

  glm/ann/rf.loop[(nrow(data)+1),i+1] <- MSE(glm/ann/rf.loop[,1], glm/ann/rf.loop[,2]) 33 

} 34 

 35 




