A general SER formula for an OFDM system with MDPSK in frequency domain over Rayleigh fading channels

Zhong Kun, Tjhung Tjeng Thiang, Adachi Fumiyuki

IEEE Transactions on Communications
volume 52
number 4
page range 584-594
year 2004-04
URL http://hdl.handle.net/10097/34806
Abstract—A closed-form formula for symbol-error rate (SER) of an orthogonal frequency-division multiplexing (OFDM) system with M-ary differential phase-shift keying (MDPSK) in frequency domain over Rayleigh fading channels is obtained. It is found that, by MDPSK in frequency domain, identical SERs can be achieved on all subcarriers. However, both time and frequency dispersion in the channel will introduce error floors. A comparison between OFDM-MDPSK in frequency domain and that in time domain reveals that the former system offers superior SER performance in a fast fading environment, while the latter performs better if the channel is mainly frequency selective. Moreover, the former system has lower implementation complexity.

Index Terms—Guard interval, M-ary differential phase-shift keying (MDPSK), orthogonal frequency-division multiplexing (OFDM), Rayleigh fading, symbol-error rate (SER).

I. INTRODUCTION

The popularity of orthogonal frequency-division multiplexing (OFDM) systems is rising due to its ability to support high-data-rate transmission over time-variant multipath fading channels. OFDM transmission techniques have found applications in the two digital terrestrial broadcasting services—digital audio broadcasting (DAB) and digital terrestrial video broadcasting (DTVB) [1], [2]. OFDM is used in the standards for wireless 5-GHz local area networks (IEEE 802.11a in US and HIPERLAN in Europe) [3], [4]. Asymmetric digital subscriber lines (ADSL) based on OFDM technology are used to deliver high-rate digital data over existing plain old telephone lines (pots) [5]. OFDM can also serve as an alternative transmission method to digital European cordless telephone (DECT)-like digital cordless systems [6].

In OFDM, we simultaneously transmit a block of data symbols on a group of subcarriers with frequency-division multiplexing. Within one OFDM symbol duration, each subcarrier is modulated with a data symbol using any conventional method, such as quadrature amplitude modulation (QAM), M-ary phase-shift keying (MPSK), M-ary differential phase-shift keying (MDPSK), as in a single-carrier system. The spacing between adjacent subcarriers is carefully selected so that each subcarrier is located on all the others’ spectral nulls, and all the subcarriers are also packed as closely as possible. Because of this spectral orthogonality, the modulation symbols on all the subcarriers can be ideally recovered by sampling the received baseband signal at a rate which is the reciprocal of the intercarrier spacing followed by a fast Fourier transform (FFT).

In this paper, we consider the case that, during the transmission of one block of data, the modulation symbols on all the subcarriers are formed by sequentially MDPSK-modulating the data symbols from the current block; this is called OFDM with differential encoding in frequency domain. Instead, we can also MDPSK-modulate the same subcarrier with symbols from contiguous data blocks. However, this latter MDPSK subcarrier modulation technique is called OFDM with differential encoding in time domain.

In the next section, the system model for the OFDM-MDPSK in frequency domain is described and compared with that for the OFDM-MDPSK in time domain. This is followed by a specification of the Rayleigh fading channel models used in this paper. Then Adachi and Tjhung’s formula [7] is re-examined, where we explicitly show the relationship between the normalized correlation coefficient and the functional behavior of the cumulative distribution function (cdf) of the differential phase angle between two Rayleigh vectors perturbed by Gaussian noise. Next, this cdf is used to evaluate symbol-error rate (SER) performance of the OFDM system over Rayleigh fading channels with various delay and Doppler shift characteristics. A comparison on error performance is also done between OFDM-MDPSK in frequency domain and that in time domain.

II. SYSTEM MODEL

The baseband system model for OFDM-MDPSK in frequency domain is shown in Fig. 1(a). The input to the system (at point q in the figure) are bits with a bit rate of R_b. The symbol generator takes $\log_2 M$ consecutive bits at a time and generates one data symbol $\theta_{j,k}$, according to Gray code mapping; N consecutive data symbols form one data block. The indexes j and k are, respectively, the time index (jth data block) and the frequency index (kth subcarrier). The data symbol $\theta_{j,k}$ is allowed any one of the values of $2\pi m/M$ ($m = 0, 1, \ldots, M - 1$). At the beginning of the jth data block, the MDPSK modulator sets
\[C_{j-1} = 1. \] At the output of the modulator, the \(j \)th modulation symbol in the \(j \)th data block can be expressed as
\[C_{j,k} = C_{j,k-1} \cdot \exp(i \theta_{j,k})(k = 0, 1, \ldots, N - 1; i = \sqrt{-1}) \] (1)

After the serial-to-parallel (S/P) conversion, the \(N \) modulation symbols in one data block are in parallel at the input of the \(N \)-point inverse fast Fourier transform (IFFT) processor. The \(N \) post-IFFT samples of this data block, again in parallel, can be written as
\[c_{j,k'} = C_{j,k} \cdot \exp(2\pi jk'/N)(k' = 0, 1, \ldots, N - 1), \]
where the indexes \(j \) and \(k \) have the same connotations as mentioned before, and the index \(k' \) indicates the position of the complex-valued sample \(c_{j,k'} \) in the \(j \)th post-IFFT block. To reduce the effect of intersymbol interference (ISI) due to channel multipath, a cyclic prefix of \(N_g \) samples is inserted before the \(N \) post-IFFT samples, such that \(c_{j,k'+N} = c_{j,k'+N} \) (\(k' = -N_g, \ldots, -1 \)) and
\[c_{j,k'} = C_{j,k} \] (\(k' = 0, \ldots, N - 1 \)). Now every post-IFFT block contains \(N + N_g \) samples. The addition of the cyclic prefix is followed by a parallel-to-serial (P/S) conversion, and the output is a discrete-time sequence. Suppose every post-IFFT block has a duration of \(T \), the sampling period \(T_s \) (i.e., the spacing between adjacent samples in the discrete-time sequence) is equal to \(T/(N + N_g) \). The useful period in one block has a duration of \(T_u = NT_s = NT/(N + N_g) \) and the guard interval \(T_g = N_gT_s = N_gT/(N + N_g) \). After digital-to-analog (D/A) conversion, windowing operation, and amplification, the baseband transmitted OFDM signal waveform at the output of the lowpass filter can be represented in a complex form as
\[s(t) = \sum_{j=-\infty}^{+\infty} p(t - jT) \sqrt{P_0} \sum_{k=0}^{N-1} C_{j,k} \cdot \exp[i \omega_0 k(t - jT)] \] (2)
where \(P_0 = E_0 / NT_s \) (\(E_0 \) is the energy of any one of the
complex-valued exponential signals in (2) over one useful peri-

doid), and \(\omega_0 = 2\pi / NT_s \). The windowing function \(p(t) \) is as-
tumed to be a unit rectangular pulse defined on the time interval
\((-N_gT_s, NT_s)\). In this paper, we assume that \(N \) is sufficiently
large and the bandwidth of the OFDM signal is approximately
\(1/T_s \). The lowpass filter is assumed to have an ideal bandwidth
of \(1/T_s \) to match that of the OFDM signal.

The channel is modeled as a wide-sense stationary un-
correlated scattering (WSSUS) Rayleigh fading channel. At
the receiver, we assume ideal down-conversion and lowpass
filtering, as well as perfect OFDM symbol synchronization.
The analog-to-digital (A/D) converter samples the baseband
received waveform \(u(t) \) at a sampling rate of \(f_s = 1/T_s \).
The Remove Guard and S/P unit takes a block of \(N + N_g \)
consecutive samples, removing the leading \(N_g \) samples, and
parallels the remaining \(N \) samples. The \(N \) post-FFT symbols
[denoted as \(Y_{j,k} (k = 0, 1, \ldots, N - 1) \)] form one data block.
After the P/S conversion, each pair of adjacent symbols in the
j-th block are compared at the MDPSK demodulator to make the
estimation of \(\theta_{j,k} \), which is

\[
\hat{\theta}_{j,k} = \text{the data symbol associated with}
decision region where \arg(Y^*_{j,k-1} \cdot Y_{j,k}) (k = 0, 1, \ldots, N - 1) \text{ falls} \tag{3}
\]

where \(Y_{j,-1} = \sqrt{T_0} \) by default.

In contrast, for OFDM system with MDPSK in the time
domain, the devices enclosed in the two dashed boxes in
Fig. 1(a) have a different sequence of arrangement, as illus-
trated in Fig. 1(b). As evident from Fig. 1(b), OFDM-MDPSK
in frequency domain has a much lower system complexity
than its time-domain counterpart, as the latter requires one
modulator-demodulator pair for each subcarrier.

III. CHANNEL MODEL

The channels considered in this paper are WSSUS Rayleigh
fading channels with distinct multipath delays. Let us express
the received baseband waveform as

\[
u(t) = \sum_{l} h_l(t) s(t - \tau_l) \tag{4} \]

where \(h_l(t) \) is the channel impulse response of the \(l \)-th multipath,
\(\tau_l \) the associated delay, and \(s(t) \) the transmitted baseband wave-
form as defined in (2). Each \(h_l(t) \) is modeled as a zero-mean
complex-valued Gaussian process with mean power \(\sigma^2_{hl} \) with
\(\sigma_{hl}^2 + \sigma_{h2}^2 + \ldots = 1 \). Since the channel is assumed to be
WSSUS, we have

\[
E[p^*_{m}(t_1) \cdot h_n(t_2)] = E[p^*_{m}(t_1)] \cdot E[h_n(t_2)]
= 0 \quad (m \neq n), \tag{5}
\]

If we follow Clarke’s model [8], [9], the self-correlation on the
l-th multipath is given by

\[
R_{h_l}(t_1, t_2) = \frac{1}{2} E[h_l(t_1) \cdot h_l(t_2)]
= \sigma^2_{hl} J_0[2\pi f_D(t_2 - t_1)] \tag{6}
\]

where \(J_0(\cdot) \) is the zeroth-order Bessel function of the first kind
and \(f_D \) is the maximum Doppler shift.

Only one-sided exponential power delay profile will be con-
sidered in this paper, since it is a generalization of the uniform
profile and double-spike profile, both of which are also analyzed
in [10]. The exponential profile is given by

\[
\sigma^2_{hl} = \exp(-\alpha \tau_l) \sum_{l=0}^{L-1} \exp(-\alpha \tau_l) \quad (l = 0, 1, \ldots, L - 1) \tag{7}
\]

where \(\alpha \) is a positive attenuation factor, and \(L \) the total number
of distinct delays.

IV. DISTRIBUTION OF PHASE ANGLE BETWEEN TWO RAYLEIGH
VECTORS PERTURBED BY GAUSSIAN NOISE

Consider the geometry as illustrated in Fig. 2, which reflects
a Rayleigh fading communications scenario. Here the two trans-
mitted signal vectors, \(C_1 \) and \(C_2 \), are of equal amplitude in the
complex plane. They are perturbed, first by two multiplicative
fading terms, \(H_1 \) and \(H_2 \), both of which are complex-valued
zero-mean Gaussian random variables. The resultant vectors
(complex numbers) are \(H_1 \times C_1 \) and \(H_2 \times C_2 \), and they are fur-
ther disturbed by additive complex-valued zero-mean Gaussian
noise, \(Z_1 \) and \(Z_2 \), respectively. As indicated in the figure, the in-phase
and quadrature components of \(Z_1 \) and \(Z_2 \) are \(Z_{1I} \) and
\(Z_{2I} \), \(Z_{1Q} \) and \(Z_{2Q} \), respectively. The received vectors are de-
noted as \(Y_1 \) and \(Y_2(Y_{1,2} = H_{1,2} \times C_{1,2} + Z_{1,2}) \), and the angle
between them \(\psi = \angle Y_2 - \angle Y_1 \). The phase angle between the
two transmitted signal vectors, \(C_1 \) and \(C_2 \), is represented by
\(\theta = \angle C_2 - \angle C_1 \). Let \(\Delta \eta = \theta - \psi \), then the cdf of the differen-

![Fig. 2. Geometry for angle between Rayleigh-faded signal vectors perturbed by Gaussian noise.](image-url)
The conditional phase $\Delta \eta$ conditioned on the two transmitted signal vectors C_1 and C_2 is given by [7]
\[
G(\Delta \eta | C_1, C_2) = \frac{1}{2} \left\{ 1 + \frac{\Delta \eta}{\pi} - \frac{1}{\pi} \right\}
\times \frac{\sqrt{r^2 + \lambda^2 \sin(-\Delta \eta - \beta)}}{\sqrt{1 - (r^2 + \lambda^2) \cos^2(-\Delta \eta - \beta)}}
\times \left[\frac{\pi}{2} + k_1 \right] + \frac{1}{\pi} \cdot \frac{\sqrt{r^2 + \lambda^2 \sin \beta}}{\sqrt{1 - (r^2 + \lambda^2) \cos^2 \beta}}
\times \left[\frac{\pi}{2} - k_2 \right] \quad (-\pi \leq \Delta \eta < \pi) \quad (8)
\]

where $k_1 = \sin^{-1}(\sqrt{r^2 + \lambda^2 \cos(\Delta \eta - \beta)})$ and $k_2 = \sin^{-1}(\sqrt{r^2 + \lambda^2 \cos \beta})$. In (8), $\sqrt{r^2 + \lambda^2}$ and $(\beta + \theta)$ are, respectively, the amplitude and phase of the complex-valued normalized correlation coefficient $r + i\lambda = \sqrt{r^2 + \lambda^2} \cdot \exp[\imath(\beta + \theta)]$
\[
= \frac{E(Y_1^* Y_2)}{\sqrt{E(|Y_1|^2)E(|Y_2|^2)}} \quad (-\pi \leq \beta < \pi). \quad (9)
\]

Or, explicitly, r and λ can be computed as follows:
\[
\frac{r}{\sqrt{1/2E(|Y_1|^2)E(|Y_2|^2)}} = \frac{E[R(Y_1) \cdot R(Y_2)]}{E[|Y_1|^2]E[|Y_2|^2]} \quad (10)
\]
\[
\frac{\lambda}{\sqrt{1/2E(|Y_1|^2)E(|Y_2|^2)}} = \frac{E[R(Y_1) \cdot \imath R(Y_2)]}{E[|Y_1|^2]E[|Y_2|^2]} \quad (11)
\]

Note that the expectation operations in (9)–(11) are also conditioned on the two transmitted signal vectors C_1 and C_2.

Adachi and Tjhung [7] considered the case in which the Rayleigh-faded signal vector $H \times C$ is uncorrelated with the additive Gaussian noise vector Z. However, (9) is a more general definition for the normalized correlation coefficient, $r + i\lambda$, as it includes the case where the Rayleigh-faded signal vector and Gaussian noise vector are correlated. From (8), we can see that $(r + i\lambda)$ uniquely determines the conditional cdf. In Fig. 3, we illustrate how the shape of the curve of the conditional cdf depends on the two parameters $\sqrt{r^2 + \lambda^2}$ and β. The following two important observations can be made from Fig. 3.

A) The steepness of the curve of $G(\Delta \eta | C_1, C_2)$ is determined by the amplitude of the normalized correlation coefficient, $\sqrt{r^2 + \lambda^2}$. The closer to unity $\sqrt{r^2 + \lambda^2}$ is, the steeper the curve. That is to say, the probability density function of $\Delta \eta$ approaches an ideal impulse as $\sqrt{r^2 + \lambda^2}$ gets arbitrarily close to one.

B) At values of $\sqrt{r^2 + \lambda^2}$ that are close enough to unity, the curve of $G(\Delta \eta | C_1, C_2)$ approximates a staircase function and the sharp jump occurs at $\Delta \eta = -\beta$.

V. SER PERFORMANCE OVER RAYLEIGH FADING CHANNELS

A. The Received OFDM Signal

From (2) and (4), the baseband received signal $u(t)$ at the output of the lowpass filter [point b in Fig. 1(a)], with additive Gaussian thermal noise taken into account, can be expressed as
\[
u(t) = \sum_{\ell} h_{\ell}(t) s(t - \tau_{\ell}) + z_I(t) + iz_Q(t) \quad (12)
\]
where $z_f(t)$ and $z_Q(t)$ are zero-mean, bandlimited white Gaussian noise processes that are statistically independent of each other. The mean powers of $z_f(t)$ and $z_Q(t)$ are $\sigma^2_{z_f} = \sigma^2_{z_Q} = N_0/T_s$ [11].

Since perfect symbol synchronization is assumed, we can take $\tau_0 = 0$ in (12) and presume that the received waveform is sampled at time instants $\{nT_s\}$. Without loss of generality, the sample block $\{u(nT_s)\} u = -N_g, \ldots, N - 1$ corresponding to $j = 0$, as illustrated in Fig. 4, is investigated. We also assume that the largest delay $\tau_{L-1} < T$ so that each sample in this block can be written as

$$u(nT_s) = \sum_{\ell \in R_2(n)} h_\ell(nT_s) \sqrt{P_0} \sum_{k=0}^{N-1} C_{0,k} \exp[\i\omega_0 k(nT_s - \tau)]$$

$$+ \sum_{\ell \in R_1(n)} h_\ell(nT_s) \sqrt{P_0} \sum_{k=0}^{N-1} C_{-1,k} \exp[\i\omega_0 k(nT_s + T - \tau)]$$

$$+ z_f(nT_s) + iz_Q(nT_s) \ n \in \{-N_g, \ldots, N - 1\}$$

(13)

where the two summation regions are defined as $R_2(n) = \{\ell : 0 \leq \tau < T_g + nT_s\}$ and $R_1(n) = \{\ell : \tau \geq T_g + nT_s\}$; the two regions are obtained by solving the inequality $N_g T_s \leq nT_s - jT \leq NT_s$ for a given $n \in \{0, 1, \ldots, N - 1\}$ and a given $j \in \{-1, 0\}$. The derivation of (13) can be easily traced from Fig. 4.

The first N_g samples in this block are discarded, and the remaining N samples undergo the FFT process. The N post-FFT symbols can be written as

$$Y(m) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} u(nT_s) \cdot \exp(-\i\omega_0 mnT_s)$$

$$= H(m) \times C_{0,m} + \text{ISI}(m) + \text{ICI}(m) + N(m) \quad (m = 0, 1, \ldots, N - 1)$$

(14)

where $H(m)$ represents the multiplicative fading effect

$$H(m) = \sqrt{\frac{P_0}{N}} \sum_{n=0}^{N-1} \sum_{\ell \in R_2(n)} h_\ell(nT_s) \cdot \exp(-\i\omega_0 mnT_s).$$

(15)

The ISI (m) contains symbols from previous block

$$\text{ISI}(m) = \sqrt{\frac{P_0}{N}} \sum_{n=0}^{N-1} \sum_{\ell \in R_2(n)} h_\ell(nT_s)$$

$$\times \sum_{k=0}^{N-1} C_{-1,k} \exp[\i\omega_0 (k - m)nT_s]$$

$$\times \exp[\i\omega_0 k(T - \tau)].$$

(16)

Notice that if all the multipath delays are smaller than the duration of the guard interval, the ISI will vanish. The intercarrier interference (ICI) (m) contributed by the other undesirable modulation symbols within the same block can be written as

$$\text{ICI}(m) = \sqrt{\frac{P_0}{N}} \sum_{n=0}^{N-1} \sum_{\ell \in R_2(n)} h_\ell(nT_s) \sum_{k \neq m}^{N-1} C_{0,k}$$

$$\exp[\i\omega_0 (k - m)nT_s] \exp(-\i\omega_0 k\tau).$$

(17)

Finally, $N(m)$, due only to the Gaussian thermal noise, can be written as

$$N(m) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} [z_f(n) + iz_Q(n)] \exp(-\i\omega_0 mnT_s).$$

(18)

Note that the sequence $N(m)$ in (18) is statistically equivalent to the complex Gaussian noise $z_f(t) + iz_Q(t)$ of (12).

B. Statistical Properties of the Fading, Interferences, and Noise

Since both the ISI (m) and the ICI (m) can be modeled as Gaussian noises due to the central limit theorem, it is easy to see that any adjacent FFT output symbols $Y(m - 1)$ and $Y(m)$
in one block and the corresponding modulation symbols $C_{k,m-1}$ and $C_{k,m}$ can be represented by the phasor geometry in Fig. 2. Thus, the cdf of the differential phase angle in (8) can be used to obtain the SER formula. However, the normalized correlation coefficient, as defined in (9), has to be evaluated first.

In this paper, the data symbols $\{\theta_{jk}\}$ are assumed to be equally probable. To evaluate the normalized correlation coefficient given in (9), we begin with the variance of $Y(m)$ given in (14). Let $F(m) = H(m) \times C_{0,m}$. It is easy to verify that $F(m)$, ISI(m), ICI(m), and $N(m)$ are pairwise uncorrelated for any given m. Therefore, the variance of $Y(m)$ is the summation of the variances of $F(m)$, ISI(m), ICI(m), and $N(m)$. From (15)–(18), we can evaluate these variances to be in the following forms:

$$\sigma_F^2 = \frac{1}{2}E\{F^*(m) \cdot F(m)|C_{0,m}\}$$

$$= \frac{P_0}{N} \sum_{n=0}^{N-1} \sum_{k \in B_1(n)} \sigma_{h_k}^2 + \frac{2P_0}{N}$$

$$\times \sum_{n=1}^{N-1} \sum_{n'=0}^{n-1} \sum_{k \in B_1(n')} \sigma_{h_k}^2 \cdot J_0(n-n')$$

$$\sigma_{ISI}^2 = \frac{1}{2}E\{ISI^*(m) \cdot ISI(m)\}$$

$$= \frac{P_0}{N} \sum_{n=0}^{N-1} \sum_{k \in B_2(n)} \sigma_{h_k}^2$$

$$\sigma_{ICI}^2 = \frac{1}{2}E\{ICI^*(m) \cdot ICI(m)\}$$

$$= \frac{P_0(N-1)}{N} \sum_{n=0}^{N-1} \sum_{k \in B_1(n)} \sigma_{h_k}^2$$

$$- \frac{2P_0}{N} \sum_{n=1}^{N-1} \sum_{n'=0}^{n-1} \sum_{k \in B_1(n')} \sigma_{h_k}^2 \cdot J_0(n-n')$$

$$\sigma_N^2 = \frac{1}{2}E\{N^*(m)N(m)\} = \frac{N_0}{T_S}$$

where $J_0(n-n') = J_0[2\pi f DT_s(n-n')]$. It is interesting to note from the above expressions that all the variances are independent of the frequency index m. Thus, $E\{|Y(m)|^2\} = E\{|Y(m-1)|^2\} = \sigma_F^2 + \sigma_{ISI}^2 + \sigma_{ICI}^2 + \sigma_N^2$. Now let us derive an expression for the correlation $E\{Y^*(m-1)Y(m)\}$.

Denoting $I(m) = F(m) + ICI(m)$, we can easily prove that $\{I(m)\}, \{ISI(m)\}$, and $\{N(m)\}$, each as random vectors of size N, are uncorrelated with each other. Thus

$$\frac{1}{2}E\{Y^*(m-1) \cdot Y(m)\}$$

$$= \frac{1}{2}E\{I^*(m-1)I(m)\}$$

$$+ \frac{1}{2}E\{ISI^*(m-1)ISI(m)\}$$

$$+ \frac{1}{2}E\{N^*(m-1)N(m)\}. \quad (23)$$

We now evaluate the correlations on the right-hand side of (23) as follows:

$$\frac{1}{2}E\{N^*(m-1) \cdot N(m)\} = 0 \quad (24)$$

$$\frac{1}{2}E\{ISI^*(m-1) \cdot ISI(m)\}$$

$$= P_0 \sum_{n=0}^{N-1} \sum_{k \in B_2(n)} \sigma_{h_k}^2 \exp(-i\omega_0 n T_s). \quad (25)$$

For the evaluation of the correlation between adjacent $I(m)$’s we need to condition on the two modulation symbols $C_{0,m-1}$ and $C_{0,m}$; therefore

$$\frac{1}{2}E\{I^*(m-1) \cdot I(m)|C_{0,m-1}, C_{0,m}\}$$

$$= \exp(i\theta_m) \frac{1}{2}E\{I^*(m-1) \cdot H(m)\}$$

$$+ \frac{1}{2}E\{ICI^*(m-1) \cdot ICI(m)\} \quad (26)$$

where

$$\frac{1}{2}E\{I^*(m-1) \cdot H(m)\}$$

$$= \frac{P_0}{N} \sum_{n=0}^{N-1} \sum_{k \in B_1(n)} \sigma_{h_k}^2 \exp(-i\omega_0 n T_s)$$

$$+ \frac{2P_0}{N} \sum_{n=1}^{N-1} \sum_{n'=0}^{n-1} \sum_{k \in B_1(n')} \sigma_{h_k}^2 \cdot J_0(n-n') \cdot \exp(-i\omega_0 n T_s) \cdot \exp(-i\omega_0 n' T_s) \quad (27)$$

$$\frac{1}{2}E\{ICI^*(m-1) \cdot ICI(m)\}$$

$$= \frac{(N-2)P_0}{N} \sum_{n=0}^{N-1} \sum_{k \in B_2(n)} \sigma_{h_k}^2 \exp(-i\omega_0 n T_s)$$

$$- \frac{2P_0}{N} \sum_{n=1}^{N-1} \sum_{n'=0}^{n-1} \sum_{k \in B_2(n')} \sigma_{h_k}^2 \cdot J_0(n-n')$$

$$\times \left[\exp(-i\omega_0 n T_s) + \exp(-i\omega_0 n' T_s)\right]. \quad (28)$$

Again, all the correlations are independent of m; therefore, for all the subcarriers, the normalized correlation coefficients are identical, and so are the cdfs of the differential angles. In the following, the SER performance of the OFDM system with MDPSK in frequency domain over Rayleigh fading channels with various delay and Doppler shift characteristics will be evaluated.

C. SER Performance Over Rayleigh Fading Channels

The decision regions for the MDPSK demodulation are $\{-\pi/M \leq \Delta \eta \leq \pi/M\}$. Since the data symbols $\{\theta_m\}$ are assumed to be equally probable, the SER is given by

$$P_s(\varepsilon) = P_s(\varepsilon | \theta_m)$$

$$= 1 - P \left(-\frac{\pi}{M} \leq \Delta \eta \leq \frac{\pi}{M}\right)$$

$$= 1 - G\left(\frac{\pi}{M}\right) + G\left(-\frac{\pi}{M}\right) \quad (29)$$

where $G(\cdot)$ is the conditional cdf defined in (8). From (29) and the fact that the function $G(\cdot)$ is independent of m, we can see that the SERs on all subcarriers are identical for a given MDPSK.
scheme. Since the cdf \(G(\cdot) \) is uniquely determined by the normalized correlation coefficient \(r + i\lambda \), we shall derive in this subsection the expressions for \(r + i\lambda \) that can be used to evaluate (8), and subsequently (29), for various types of Rayleigh fading channels.

1) Channels With \(\tau_{L-1} < T_g, f_DT_s = 0 \), and \(\tau_{L-1} \ll NT_s \): Such channels are considered as frequency nonselective and slow fading (flat-flat fading) for our OFDM system, because, in this case, \(Y(m) \) is given by

\[
Y(m) = F(m) + N(m) = H(m) \times C_{\alpha,m} + N(m) \tag{30}
\]

in which there is no ISI or ICI. From (19), (22)-(24), (26), and (27), we can show that for such channels

\[
r + i\lambda = \frac{e^{i\theta_m}E[H^*(m-1)H(m)] + E[N^*(m-1)N(m)]}{E[F^*(m)F(m)] + E[N^*(m)N(m)]} \approx \frac{E_0}{E_0 + N_0} \exp(i\theta_m), \tag{31}
\]

In deriving the above expression, we have made the approximation that

\[
\exp(-i\omega T) \approx 1, \quad \text{for all } \tau_1. \tag{32}
\]

This approximation is justified because \(\tau_{L-1} \ll NT_s \) for such channels. If we define the energy per bit per subcarrier over one useful period as \(\Gamma_b = E_0 / \log_2 M \), and the bit energy to noise power density ratio as \(\Gamma_b = (E_0 / N_0) \times (N + N_g) / N \), taking into consideration the energy loss due to the insertion of a guard interval, then (31) can be rewritten as

\[
r + i\lambda = \frac{1}{1 + 1/(\Gamma_b \times \log_2 M)} \exp(i\theta_m). \tag{33}
\]

Comparing (33) with (9), we have \(\sqrt{r^2 + \lambda^2} = 1/(1 + 1/[\Gamma_b \times N/(N + N_g) \times \log_2 M]) \) and \(\beta = 0 \). From (33), we can see, in the flat-flat fading case, that both the amplitude and the phase \(\beta \) in the normalized correlation coefficient are independent of the particular power delay profile and the transmitted data symbols \(\{\theta_m\} \). If the correlation between adjacent \(Y(m) \)'s is relatively high (say, \(\sqrt{r^2 + \lambda^2} \approx 0.9 \)), the curve of the cdf will have a sharp jump around \(\Delta\eta \), which means a symbol error is most likely to occur in the adjacent decision regions of the correct one.

Since Gray mapping is used for the OFDM system, the bit-error rate (BER) can be approximated as \(P_b(e) \approx P_s(e) / \log_2 M \). In Fig. 5, assuming \(N/(N + N_g) = 85.80\% \), we plot BERs versus \(\Gamma_b \) for \(M = 2, 4, \) and \(8 \) over flat-flat fading channels, together with the simulation result corresponding to OFDM-binary differential phase-shift keying (BDPSK) in frequency domain that is taken from [12, Fig. 6.16]. In the same figure, we also include three BER curves for OFDM-MDPSK (\(M = 2, 4, \) and \(8 \)) in time domain; among them, the one corresponding to BDPSK is taken from [13, Fig. 4], and the other two from [14, Fig. 4] with a slight modification to include a power penalty of \(N/(N + N_g) = 85.80\% \). It can be seen from Fig. 5 that OFDM-MDPSK in frequency domain and its time domain counterpart have identical error-rate performance over flat-flat Rayleigh fading channels. In addition, the BER curve in Fig. 5 for OFDM-BDPSK in frequency domain agrees well with that for single-carrier BDPSK plotted in [11, Fig. 14-3-1] except for the power penalty. Theoretically speaking, for channels with \(f_DT_s = 0 \), i.e., time-nonselective channels, we can make them frequency nonselective to an OFDM system by selecting a sufficiently large guard interval that is greater than the largest multipath delay, and a very large value for \(N \) so that \(\tau_{L-1} \ll NT_s \), and consequently, the transmission efficiency \(T_u/T \) is high. The condition \(\tau_{L-1} \ll NT_s \) implies that the channel coherence bandwidth is much larger than the bandwidth of each subchannel. Thus, a channel appearing frequency selective to a single-carrier system can be frequency nonselective to each individual OFDM subchannel (assuming both single-carrier and multicarrier systems support the same high data rate). Therefore, two adjacent OFDM subchannels will experience highly correlated fading, which makes the differential decoding and detection in the frequency domain desirable.

2) Channels With \(\tau_{L-1} < T_g, f_DT_s = 0 \), and \(\tau_{L-1} \) a Significant Percentage of \(NT_s \): The sampling period \(T_s \) is usually very small, as an OFDM system is designed for high data-rate transmission. Moreover, the total number of subcarriers \(N \) cannot be too large in practice, due to frequency offset and envelope variation problems [13]. Therefore, we may encounter cases where the maximum excess delay \(\tau_{L-1} \) is a significant percentage of the useful period \(T_u \). Such channels can be considered time dispersive, i.e., they appear frequency selective to each subcarrier. In this case, \(Y(m) \) is still given by (30), but
the approximation in (32) is no longer valid. The normalized correlation coefficient now takes the following form:

\[r + i\lambda = \frac{\exp(i\theta_m)}{1 + 1/(\Gamma_b \cdot \frac{N}{N+N_g} \cdot \log_2 M)} \cdot \sum_{\forall l} \sigma_{bl}^2 \cdot \exp(-i\omega_0 t_l). \]

\(\square \)

Notice from the above expression that, in the case of time-dispersive fading, both \(\sqrt{r^2 + \lambda^2} \) and \(\beta \) are still independent of the data symbols \(\{\theta_m\} \), but they are now related to the normalized power delay profile and \(\omega_0 = 2\pi/N\tau_x \).

In Fig. 6, we compare the theoretical BER computed using (8) and (29) with the simulation result of [12, Fig. 6.16] for OFDM-BDPSK in frequency domain. In plotting the theoretical BER curve of Fig. 6, we assume the same values for the system parameters as in [12], i.e., \(N = 64, \tau_0 = 6, T_x = 12.5\% \), \(N/(N+N_g) = 86.5\% \), \(\alpha = 0 \), and \(L = 2 \) (the last two parameters define a double spike profile with equal power). We can see that the theoretical and simulation results coincide. In Fig. 6, we also illustrate the effects of varying \(\alpha \) and \(L \) on the BER for OFDM-BDPSK in the frequency domain. Here we assume that the delays are uniformly spaced between \(\tau_0 \) and \(\tau_{L-1} \), \(N = 256, T_x = 1 \mu s \), and power penalty \(N/(N+N_g) = 86.5\% \). However, we have adjusted the attenuation factor \(\alpha \) from \(10^6 \) at \(\tau_{L-1}/N\tau_s = 1 \% \) to \(10^7 \) at \(\tau_{L-1}/N\tau_s = 10 \% \) for comparison purposes. This is to preserve the shapes (the relative strengths of the impulses) of power delay profiles having the same value of \(L \) when \(\tau_{L-1} \) is varied. In comparing Fig. 6 with Fig. 5, we can immediately see that there are error floors in the case of time-dispersive fading. This can be explained as follows. In flat-flat fading, \(\sqrt{r^2 + \lambda^2} \rightarrow 1 \) as \(\Gamma_b \rightarrow \infty \) [see (33)], which means, in the limiting case, the cdf of the differential phase, \(G(\Delta \eta_0) \), will approach an ideal unit step function centered at the origin and there will be no detection error. In contrast, for time-dispersive fading, \(\sqrt{r^2 + \lambda^2} \rightarrow | \sum_{\forall l} \sigma_{bl}^2 \exp(-2\pi\eta/NT_s) | \) as \(\Gamma_b \rightarrow \infty \) [see (34)], which is less than unity. Therefore, there will be a residual detection error. In Fig. 6, we can also observe that, if the shape of a delay profile is fixed, the larger \(\tau_{L-1} \) is, or if we fix \(\tau_{L-1} \) and \(L \), the smaller the attenuation factor \(\alpha \) is (\(\alpha = 0 \)) as compared with \(\alpha = 10^6 \) \(\% \), the larger the BER will be at a specific \(\Gamma_b \). This is so because under both conditions, the channel root mean square (rms) delay spread increases, which implies the channel coherence bandwidth decreases, and therefore, the correlation between adjacent subcarriers becomes smaller.

3) Channels With \(\tau_{L-1} < T_x, f_D T_x \neq 0, \) and \(\tau_{L-1} \ll N/T_x \): To ease the analysis without losing fundamental insight into the subject, we focus on the BDPSK scheme from this point onwards. In this part, the frequency-dispersive channel will be considered. The FFT output symbol \(Y(m) \) is now given by

\[Y(m) = H(m) \times C_{\theta_m} + I_C(m) + N(m). \]

\(\square \)

Then, based on (19), (21)–(24), and (26)–(28), the normalized correlation coefficient is found to have the following form:

\[r + i\lambda = \frac{\Lambda}{1 + 1/(\Gamma_b \cdot \frac{N}{N+N_g})} \exp(i\theta_m) \]

where

\[\Lambda = \frac{N}{1 + \frac{2}{N^2} \sum_{n=1}^{N-1} \sum_{n'=0}^{N-1} J_0(n-n') \cdot [\exp(-i\omega_0 t_n) + \exp(-i\omega_0 t_{n'})],} \]

In the above expressions, \(N \) is assumed to be an even integer. Comparing (36) with (9), we have \(\sqrt{r^2 + \lambda^2} = \frac{\Lambda}{1 \pm 1/\Gamma_b N/(N+N_g)} \) and \(\beta = \arg(\Lambda) \). Neither \(\sqrt{r^2 + \lambda^2} \) nor \(\beta \) depends on channel power-delay profiles. However, both of them are functions of the total number of subcarriers \(N \), the normalized maximum Doppler shift \(f_D T_x \), and the data symbols \(\{\theta_m\} \). The same comments can be made about the BER.

In Fig. 7, we compare our theoretical BERs with the simulation results of [12, Fig. 6.17] for OFDM-BDPSK in the frequency domain over frequency-dispersive channels, assuming \(N = 64, T_x = 1 \mu s \), double-spike profile with equal power, \(f_D T_x = 2.7 \times 10^{-4} \) (fast fading) or \(1.35 \times 10^{-5} \) (slow fading), \(\{\theta_m\} = \{0, \pi\} \), and \(N/(N+N_g) = 86.5\% \). The comparison shows that our theoretical BER curves agree quite well with the simulation results. As can be seen in the above figure, similar to the time-dispersive fading case, frequency-dispersive channels introduce error floors. The reason is the same as discussed in the previous part, i.e., \(\sqrt{r^2 + \lambda^2} \rightarrow |\Lambda| \), which is less than unity as
The value of the error floor is a function of N, $f_D T_s$, [37] and ω_0.

Abhishek [12, Fig 6.17] also compares the BER performance of both time- and frequency-domain OFDM-BDPSK systems over frequency-dispersive channels. It is revealed in [12] that both systems can achieve similar BER performance if the channel is slow fading, but OFDM-BDPSK in the frequency domain offers superior performance at large Γ_b (say, ≥ 10 dB) in a fast-fading environment. This is due to the reason that a rapid time variation of the channel has more destructive effect on the correlation of symbols on the same subcarrier in adjacent data blocks than on the correlation of symbols on adjacent subcarriers in the same data block.

4) Channels With $\tau_L \leq T_p$, $f_D T_s \neq 0$, and $\tau_L \leq 1$ a Significant Percentage of $N T_s^N$. Such channels are considered doubly dispersive. For this type of channel, the FFT output symbol $Y(n)$ is still given by (35), but the normalized correlation coefficient takes the following form:

$$r + i \lambda = \frac{\Lambda}{1 + 1/\left(\Gamma_b \cdot \frac{N}{N+N_0}\right)} \exp(i \theta_m)$$

where

$$\Lambda = \frac{N}{N} + \sum_{n=1}^{N-1} \sum_{n'=0}^{N-1} \lambda_0(n-n') [\exp(-i \omega_0 n T_s - i \theta_m) - \exp(-i \omega_0 n' T_s - i \theta_m)]$$

$$\nabla = \sum_{\Omega} \sigma_{\Omega} \exp(-i \theta_\Omega), \quad (39)$$

Unlike in the case of frequency-dispersive fading, now both $\sqrt{\alpha^2 + \beta^2}$ and β, and therefore, the BER, explicitly depend on the channel power-delay profile and T_s, which is reflected by the parameter ∇ in (40).

5) Effect of Channel Characteristics on the Choice of T_s and N: As we have seen in parts C.2 and C.3 above, to minimize the time-dispersion effect of a channel with a given $\tau_L \leq 1$, the useful period T_u should be much longer than $\tau_L \leq 1$; whereas, to minimize the frequency-dispersion effect of a channel with a given f_D, the sampling period should be very small, such that $f_D T_s \ll 1$. However, these two requirements are often in conflict. To satisfy the delay requirement, either N or T_s or both should be large, but large N or T_s or both is undesirable for reducing the effect of ICI. Nevertheless, the conflict may not occur, at least in theory.

It can be concluded from the last two parts that, to achieve BER performance comparable to that achieved in the flat-flat fading case, the value of $|\Lambda|$ [see (37) and (39)] should be made as close to unity as possible. It can be graphically shown that, for a given nonzero $f_D T_s$, there exists a maximum value for N, exceeding which, the value of $|\Lambda|$ will fall below a certain threshold value (say, $1 - 10^{-4}$), and consequently, the error floor will be raised above a certain level. Denote this maximum value as N_{max}. In Fig. 8, we plot N_{max} versus $2\pi f_D$, assuming $T_s = 1 \mu s$ and the channel is frequency dispersive only. The threshold value for $|\Lambda|$ is set at $1 - 10^{-5}$, which corresponds to a bit-error floor of about 5×10^{-6}. The most important observation we can make from the figure is that N_{max} is exponentially increasing as $f_D T_s$ decreases linearly. With this observation in mind, we can say that, theoretically, if there is no channel bandwidth constraint, then given arbitrary values of f_D and error floor, we can always find a small enough value for T_s such that $f_D T_s \ll 1$, but $N_{\text{max}} T_s$ is so large as to make the
Rayleigh fading channel appear frequency nonselective to each subchannel.

6) Channels With $\tau_{L-1} > T_g$: In practice, the multipath spread may not be a priori known or it may change with time, so it is possible for the multipath spread to exceed the boundary of the guard interval. Therefore, it is of interest to envisage the SER/BER performance of the OFDM system over Rayleigh fading channels with $\tau_{L-1} > T_g$. In this part, we only consider the double-spike profile with equal power, in which $\tau_0 = 0$ and $\tau_1 = T_g + (n_1-1)T_s + \Delta_t (1 \leq n_1 \leq N, 0 < \Delta t < T_s)$. Now, the FFT output symbol $Y(m)$ is given by the most general expression in (14). After some tedious algebra, the normalized correlation coefficient in this case is evaluated to be

$$r + i\lambda = \left[\frac{|A|}{1 + 1/[NT_b/(N+N_g)]} \exp[i(\theta_m + \beta)] \right]$$

where

$$|A| \cdot \exp(\theta_m + \beta)$$

$$= \frac{1}{N} \left[\frac{\eta}{1 + \eta} \sum_{n=1}^{N-1} \sum_{n' = 0}^{1} J_0(n-n') \right] + \frac{2\eta}{N(1+\eta)} \sum_{n=1}^{N-1} \sum_{n' = 0}^{1} J_0(n-n')$$

$$+ \frac{2}{N^2} \left[\sum_{n=1}^{N-1} \sum_{n' = 0}^{1} \exp(-i\omega nT_s) \right]$$

$$+ \frac{1}{1+\eta} \sum_{n=1}^{N-1} \sum_{n' = 0}^{1} J_0(n-n') \cdot \Psi$$

$$\Psi = \exp(-i\omega nT_s) + \exp(-i\omega nT_s).$$

As can be seen from the above two equations, both $\sqrt{r^2 + \lambda^2}$ and β, and therefore the SERs/BERS depend on N, f_DT_s and $\{\theta_m\}$ for channels with $\tau_{L-1} > T_g$. In Fig. 9, we show the plots of BERs versus the rms delay spread at several values of Γ_b (power penalty: 0.67 dB) for OFDM-BDPSK in frequency domain over channels with double-spike profile of equal power. In the same figure, three BER curves corresponding to OFDM-BDPSK in time domain taken from [13, Fig. 6] are also included for comparison purposes. The same system parameter values as in [13] are used here, i.e., $T_d = 5.7168 \mu s$, $T_g = 952.4$ ns, $N = 8$, and $f_D = 0$. As can be seen from Fig. 9, for both time- and frequency-domain OFDM-BDPSK systems, there are sharp drops in BER when the second delay just exceeds the boundary of the guard interval. Furthermore, once the second delay exceeds the boundary of the guard interval, the BER curves at different Γ_b for either of the systems tend to merge, i.e., the ISI dominates error performance. Therefore, it is crucial to design a guard interval longer than all the multipath delays to avoid severe degradation of error-rate performance for both time- and frequency-domain OFDM-DBPSK systems.

However, comparing the error-rate curves for OFDM-BDPSK in frequency domain and their time-domain counterparts in Fig. 9, we find that when the second delay is very small, the BERs achieved at $\Gamma_b = 20$ and 30 dB for both OFDM-BDPSK systems are nearly identical. As the second delay (therefore, the rms delay spread) increases, the BER for OFDM-BDPSK in frequency domain increases exponentially; while the BER for OFDM-BDPSK in time domain is relatively constant as long as the second delay does not exceed the length of the guard interval. That is to say, OFDM-MDPSK in frequency domain is less resilient to time-dispersion effects than its time-domain counterpart. The reason is that the correlation between adjacent subcarriers in one data block is smaller than that between symbols on one subcarrier in adjacent data blocks under pure time-dispersive channel conditions.

In Fig. 10, we show the plots of BERs versus normalized second delay (i.e., τ_1/T) at two values of $f_D T_s$ (power penalty: 0.63 dB) for both time- and frequency-domain OFDM-BDPSK systems over channels with double-spike profile of equal power. The two curves for the time-domain system are taken from the simulation results of [12, Fig. 6.15]. In plotting this figure, we assume that $T_g/T = 13.5\%$, $N = 64$, and $\Gamma_b = 40$ dB. Again, we see that the time dispersion of channels has more destructive effect on frequency-domain OFDM-BDPSK systems than on its time-domain counterpart.

VI. CONCLUSION

We have applied Adachi and Tjhung’s distribution function to obtain a closed-form formula for evaluating SER of the OFDM system with MDPSK in frequency domain over Rayleigh fading channels. We have found that identical SERs can be achieved on all the subcarriers for the system. However, both time and frequency dispersion of the channel will introduce error floors.
We have also compared the error-rate performance and system model of OFDM-MDPSK in frequency domain and that in time domain. We have found that both systems give similar error-rate performance over flat-flat fading channels, but the former system offers superior performance over fast-fading channels, and the latter performs better in time-dispersive channels. Nevertheless, the error-rate performance of both systems will degrade significantly once the maximum multipath delay of the channel exceeds the boundary of guard interval. In addition, the former system is simpler to implement.

REFERENCES

Kun Zhong was born in Chengdu, Sichuan, China, in December, 1976. He received the B.Eng. and M.Eng. degrees in electrical engineering from National University of Singapore, Singapore, in 2000 and 2001, respectively. He is currently a Member of Technical Staff in the Centre for Communications Systems, DSO National Laboratories, Singapore, working in the area of design, analysis, and implementation of digital waveforms.

Tjeng Thiang Tjhung (SM’84) received the B.Eng. and M.Eng. degrees in electrical engineering from Carleton University, Ottawa, ON, Canada, in 1963 and 1965, respectively, and the Ph.D. degree from Queen’s University, Kingston, ON, Canada in 1969. From 1963 to 1968, he worked for Acres-Inter-Tel Ltd., Ottawa, ON, Canada, as a Consultant involved with the design of FSK systems for secure radio communication. In 1969, he joined the Department of Electrical Engineering, National University of Singapore, where he was appointed a Professor in 1985. He retired from the University in March 2001, and joined the Institute for Infocomm Research, Singapore, in April 2001 as a Principal Scientist. His present research interests are in, among others, multicarrier and code-division multiple-access (CDMA) techniques, and multiple-input multiple-output (MIMO) cum orthogonal frequency-division multiplexing (OFDM) communication systems.

Dr. Tjhung is a Member of the IEICE Japan and a Fellow of IES Singapore. He is also a Member of the Association of Professional Engineers of Singapore.

Fumiyuki Adachi (M’79–SM’90–F’00) received the B.S. and Dr. Eng. degrees in electrical engineering from Tohoku University, Sendai, Japan, in 1973 and 1984, respectively. In 1973, he joined the Electrical Communications Laboratories of Nippon Telegraph & Telephone Corporation (now NTT) and conducted various types of research related to digital cellular mobile communications. From 1992 to 1999, he was with NTT Mobile Communications Network, Inc. (now NTT DoCoMo, Inc.), where he led a research group on wideband/broadband CDMA wireless access for IMT-2000 and beyond. From October 1984 to September 1985, he was a United Kingdom SERC Visiting Research Fellow in the Department of Electrical Engineering and Electronics at Liverpool University. From April 1997 to March 2000, he was a visiting Professor at Nara Institute of Science and Technology, Japan. Since January 2000, he has been with Tohoku University, Sendai, Japan, where he is a Professor of Electrical and Communication Engineering at the Graduate School of Engineering. His research interests are in CDMA and TDMA wireless access technologies, CDMA spreading code design, rake receiver, transmit/receive antenna diversity, adaptive antenna array, bandwidth-efficient digital modulation, and channel coding, with particular application to broadband wireless communication systems. Dr. Adachi served as a Guest Editor of IEEE JOURNAL OF SELECTED AREAS IN COMMUNICATIONS for a special issue on Broadband Wireless Techniques, October 1999, and for a special issue on Wideband CDMA I, August 2000, and Wideband CDMA II, January 2001. He was a corecipient of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY Best Paper of the Year Award in 1980 and again in 1990, and also a recipient of the Avant Garde award in 2000. He is a member of the Institute of Electronics, Information and Communication Engineers of Japan (IEICE) and was a recipient of the IEICE Achievement Award in 2002, and a corecipient of the IEICE Transactions Best Paper of the Year Award in 1996 and again in 1998.