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Abstract—This letter proposes an adaptive filtering with
averaging-based algorithm for active noise control (ANC) systems.
This algorithm uses a similar structure as that of the FxLMS-based
ANC system. The proposed algorithm, called Filtered-x Adaptive
Filtering with Averaging (FxAFA) algorithm, uses averages of
both data and correction terms to find the updated values of the
tap weights of the ANC controller. The computer simulations
are conducted for single-channel feedforward ANC systems. It is
shown that the proposed algorithm gives fast convergence as com-
pared with the FxLMS algorithm and achieves better performance
in the presence of the measurement noise. The comparison with
the FxRLS algorithm shows that the proposed FxAFA algorithm
is a better choice for low computational complexity and stable
performance.

Index Terms—Active noise control, adaptive filters, averaging,
FxLMS algorithm.

I. INTRODUCTION

ACTIVE NOISE CONTROL (ANC) [1] is based on the
simple principle of destructive interference of propagating

acoustic waves. The most popular adaptation algorithm used for
ANC applications is the FxLMS algorithm which is a modified
version of the LMS algorithm [2]. The schematic diagram for a
single-channel feedforward ANC system using the FxLMS al-
gorithm is shown in Fig. 1(a). Here, is primary acoustic
path between the reference noise source and the error micro-
phone. The reference noise signal is filtered through and
appears as a primary noise signal at the error microphone. The
objective of the adaptive filter is to generate an appro-
priate antinoise signal propagated by the secondary loud-
speaker. This antinoise signal combines with the primary noise
signal to create a zone of silence in the vicinity of the error
microphone. The error microphone measures the residual noise

, which is used by for its adaptation to minimize the
sound pressure at error microphone. Here accounts for the
model of the secondary path between the output of
the controller and the output of the error microphone. The
filtering of the reference signal through is demanded
by the fact that the output of the adaptive filter is filtered
through [2].

The FxLMS algorithm is computationally simple, but its
convergence speed is slow. Different ANC algorithms, with
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Fig. 1. FxLMS algorithm based single-channel feedforward ANC system.
(a) Schematic and (b) block diagram.

improved convergence properties, have been proposed, viz.,
1) lattice-ANC systems [3]; 2) IIR-filter-based LMS algorithms
called Filtered-u Recursive LMS (FuRLMS) [4], and filtered-v
algorithms [5]; 3) RLS-based algorithms called Filtered-x RLS
(FxRLS) [1] and Filtered-x Fast-Transversal-Filter (FxFTF)
[6]; and 4) frequency-domain-ANC systems (see [7] and ref-
erences there in). There are the following problems with these
approaches. 1) IIR-based structures have inherent stability
problems; 2) other approaches mentioned above increase the
computational burden substantially; and 3) RLS-based ANC
systems have numerical instability problems. These reasons
make FxLMS still a good choice for ANC applications.

Another important issue that often arises in the ANC systems
is measurement noise in the reference signal (and error signal as
well) present due, for example, to airflow over the microphone
in the duct. It can be shown [1] that due to the measurement
noise in the reference signal, the controller does not converge
to the optimal solution. Further more, due to the measurement
noise in the error signal, the overall convergence speed is de-
graded. Therefore, it is necessary to find an efficient method to
improve the performance of the ANC systems in the presence
of the measurement noise.

The main idea in this letter is to accelerate the convergence
speed of the FxLMS algorithm, and to improve the performance
in the presence of the measurement noise. The method, we use
for improving the performance, is averaging. The idea of using
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averaging to accelerate the convergence of the stochastic gra-
dient algorithms was originally proposed in the stochastic and
optimization literature [8], [9]. Later, this idea was extended to
adaptive filters [10], [11]. Recently, averaging-based adaptive
algorithms have been proposed for blind multiuser detections
in Direct Sequence/Code division multiple access (DS/CDMA)
systems [12], [13].

In this letter, we explore the realization of an ANC algorithm
based on adaptive filtering with averaging (AFA). The proposed
algorithm is called filtered- AFA, FxAFA, algorithm. The
FxAFA algorithm has slightly increased computational com-
plexity as compared with the FxLMS algorithm. The computer
simulations are conducted for single-channel feedforward
ANC systems. The simulation results show that the proposed
FxAFA algorithm provides better performance than the FxLMS
algorithm.

The organization of this letter is as follows. In Section II, the
proposed FxAFA algorithm is explained in connection with the
FxLMS algorithm and some properties of the proposed algo-
rithm are discussed. In Sections III details of the computer ex-
periments are given, and in Section IV concluding remarks are
presented.

II. AVERAGING BASED FILTERED- ALGORITHM

A. Algorithm Development

Fig. 1(b) shows the block diagram of the feedforward ANC
system of Fig. 1(a). Here, and are measurement
noise signals associated with the reference and error micro-
phones, respectively. We make the following assumptions for

and . A.1) They are uncorrelated with each other
and with the reference and error signals as well. A.2) They are
zero mean white Gaussian noise signals with variances and

.
Here, A.1) is evident from the nature of the system [Fig. 1(a)]

and A.2) comes from the fact that and are produced
by the turbulent air flow (random in nature) over the micro-
phones [14].

In Fig. 1, is obtained offline and kept fixed during the
online operation of ANC. Assuming that is a FIR filter of
tap-weight length , the secondary signal is expressed as

(1)

where is the tap-weight
vector and is an

sample reference signal vector. The residual error signal
is given as

(2)

where is the primary disturbance signal,
is the reference noise signal, is the

secondary canceling signal , denotes linear convolution,
and and are impulse responses of the primary path

and secondary path , respectively. The FxLMS update
equation for the coefficients of is given as

(3)

where is the step size parameter
, is the reference signal filtered

through the modeling filter , and is
the reference signal picked by reference microphone. Equation
(3) shows that the adaptation process is perturbed by an un-
desired term . Assuming that is represented
by a FIR filter of tap-weight length , the filtered reference
signal is obtained as

(4)

where is the impulse response of the
modeling filter and

is an —sample reference signal vector. Taking the
-transform of (2), we get

(5)

When the adaptive filter converges, the residual error is (ide-
ally) zero, i.e., , which requires to realize the
optimal transfer function

(6)

This equation shows that the optimal solution is in-
dependent of the measurement noise associated with the
error microphone. However the optimal solution for ideal case
( for ) is distorted by the refer-
ence input measurement noise, .

Since we have assumed that the both and are
white Gaussian noise signals, we can use averaging to remove
their effects. In [11] two averaging-based adaptive filtering
algorithms are proposed. The first algorithm uses averaging
in iterates only and in the second algorithm averaging is
incorporated with both iterates and observations. Motivated by
the second approach, we incorporate averaging with both the
iterates, , and the correction term (the observation vector),

, of the FxLMS algorithm and propose
the following algorithm:

(7)

where

(8)

(9)

Here, computing the running average of the data does not put
so much computational burden since averages can be calculated
recursively. For example, (8) can be recursively computed as

(10)

Similarly, the averaged gradient vector (9) can be com-
puted as

(11)

Equations (1), (4), (7), (10), and (11) are combined to give
the proposed FxAFA algorithm. We see that the introduction of



AKHTAR et al.: ADAPTIVE FILTERING WITH AVERAGING-BASED ALGORITHM 559

averaging in the FxLMS update equation results in a multistep
algorithm (proposed FxAFA algorithm). Hence, an increased
computational burden is expected as discussed later in this
section.

B. Choice of the Parameter

Here, we present some comments on the choice of the param-
eter in the proposed algorithm. For convenience, we rewrite
the proposed algorithm in a compact form

(12)

where is a slowly varying gain parameter. In
adaptive algorithms, it is desirable to have a large step gain at
the startup for fast convergence. As the time increases, the gain
is desirable to slowly decrease so that misadjustment is small.
The time varying gain indeed exhibits these properties and

. It is seen that will rapidly decrease
the gain parameter, and hence adaptation process may be very
slow. Therefore, one may wish to choose [11]. On con-
trary if close to zero is selected then is very slowly de-
creasing. This is also not desirable for large mismatch. Hence

is the recommended range for the values of .

C. Comparison of Computational Complexity

In Table I, the computational complexity analysis, on the
basis of computations required for completion of operations
per iteration, is presented. It is seen that the computational
burden of the proposed FxAFA algorithm (
multiplications/iteration) is greater than that of the FxLMS
algorithm ( multiplications/iteration), but it is far
less than that of the FxRLS algorithm (
multiplications/iteration [6]).

D. Comments on Convergence Behavior

1) Ideal Condition : We know that the
method of steepest descent computes a tap-weight vector that
moves down the ensemble-average error-performance surface
along a deterministic trajectory that terminates on the Wiener
solution (it takes infinite number of iterations, , to do so). The
LMS algorithm, on the other hand behaves differently because
of the presence of the gradient noise: Rather than terminating
on the Wiener solution, the tap-weight vector computed by the
LMS algorithm executes a random motion around the minimum
point of the error performance surface [15, p. 234]. Furthermore,
by assigning a small value to the step size parameter, the adap-
tation is made to progress slowly, and the effects of the gradient
noise on the tap weights are largely filtered out [15, p. 235].

In the proposed algorithm, the aim is to have the iterations
move to the Wiener Solution reasonably fast. With the averaging
approach of (9), with the estimates from (12) are allowed
to approach the vicinity of the true value faster. At the same
time, averaging removes the random fluctuations in the gradient
vector and ensures that the iterations move toward the optimal
(Wiener) solution (refer to simulation case study Case 1).

2) Measurement Noise Condition : In
the presence of the measurement noise signals, and ,
the first round of averaging is expected to remove the effect of

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN FxLMS

AND FxAFA ALGORITHMS

from the gradient vector. The second round of the aver-
aging attempts to remove the effect of from . From
(6), it is clear that the is affecting the optimal solution in a
nonlinear fashion, and averaging cannot eliminate it. Neverthe-
less we can expect better results as compared with the standard
FxLMS algorithm (see the simulation results presented in Case
2).

III. COMPUTER SIMULATIONS

In this section, the performance of the proposed FxAFA
algorithm is demonstrated using computer simulation. Two
parameters are used for performance evaluations. They are
1) the noise reduction, , achieved at the error microphone,
which is defined as ; and
2) the estimation error of , which is defined as

,
where is the optimal value of the tap weight vector ob-
tained under ideal conditions when there is no measurement
noise, and is the order of the control filter .

The data for acoustical paths is adopted from [1] where both
the primary acoustical path and the secondary path
are modeled by IIR filters of order 25 (the data is provided on
a disk included with [1]). Since industrial noise often has sig-
nificant power in the frequency range between 50–250 Hz [16],
simulations are carried with signals having frequency falling in
this range. The sampling frequency of 2 kHz is used. The sec-
ondary-path model is an FIR filter of order 128, and
is identified offline. The ANC controller is also an FIR
filter of length 128.

A. Case 1

It has been shown in [6] and [17] that FxRLS algorithm
becomes numerically unstable toward the higher number of
iterations; hence, it is not included in the simulations presented
here. The reference noise is a broadband signal and is a
sinusoid containing five harmonics (of equal power) with
the fundamental frequency of 50Hz. First we consider the
ideal case when there is no measurement noise present in the
system, i.e., . The parameters for the FxLMS
algorithm and the FxAFA algorithm are adjusted for fast and
stable convergence and (by trial-and-error) are found to be

and . The
noise reduction curves for the two algorithms are shown in
Fig. 2(a). We see that the proposed FxAFA algorithm achieves
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Fig. 2. Performance comparison between FxAFA and FxLMS algorithms.
(a) Noise reduction < versus iteration time n in Case 1. (b) Noise reduction <
versus iteration time n in Case 2.

Fig. 3. Performance comparison between FxAFA and FxLMS algorithms.
(a) Estimation error�w(n) versus iteration time n in Case 2. (b) Residual error
signal e(n) in Case 2.

faster convergence and higher noise reduction than the FxLMS
algorithm. This performance difference is in agrement with
the comments presented earlier.

B. Case 2

In the next experiment, we consider the situation when both
the reference microphone and the error microphone introduce
measurement noise signals and , respectively, with
the variances . In order to have a fair com-
parison, the parameters for the two algorithms are kept same as
before. The noise reduction, , curves are shown in Fig. 2(b).
We see that the performance of the two algorithms is degraded as
compared with that shown in Fig. 2(a). The curves for ,
the estimation error of , are shown in Fig. 3(a). We see
that for the same step size

the for the FxLMS algorithm decreases ini-
tially very fast, but later it starts increasing and then settles at a
value higher than that of the FxAFA algorithm.

As discussed earlier in Section II, due to measurement-noise
signals, the performance of the two algorithms is degraded. Nev-
ertheless the FxAFA algorithm, due to averaging process, gives
better performance than the FxLMS algorithm. Since, in both
algorithms, the estimation error, , is still negative, hence
the overall performance of the ANC system is stable, even at

.
One way to solve this divergence problem is to use small step

size so that adaptation takes place slowly. The step size of the
two algorithms is reduced on trial-and-error basis. The resulting
curves for estimation error are shown in Fig. 3(a). The corre-
sponding curves for residual error signal, , are shown in
Fig. 3(b). We see that to make FxLMS algorithm converge all
the time, a very small step size is needed and hence convergence
speed is very slow. In case of FxAFA algorithm, on the other

hand, a large step size can be selected and hence fast conver-
gence can be realized.

IV. CONCLUDING REMARKS

This letter proposes a new ANC algorithm based on adaptive
filtering with averaging. The main limitation of the proposed
algorithm is its poor tracking properties, which is due to
the running-length averaging process. This problem can be
overcome, for example, by using weighted averaging with
exponential forgetting factor [12], or by re-initializing the
averaging process at regular intervals. It would be interesting
to do theoretical analysis of the proposed algorithm on the
similar lines as done for the FxLMS algorithm in [18]. The
development of an ANC system with online secondary-path
modeling, incorporating adaptive filtering with averaging is a
task for future work.
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