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Decision Feedback Differential Phase 
Detection of Wary  DPSK Signals 

Fumiyuki Adachi, Senior Member, IEEE, and Mamoru Sawahashi, Member, IEEE 

Abstrucf- Multiple-symbol differential phase detection (DF- 
DPD) based on decision feedback of past detected symbols is 
presented for M-ary DPSK modulation. Adopting a Gauss- 
ian phase noise assumption, we obtain the u posteriori joint 
probability density function (pdf) of the outputs of L DPD 
detectors of orders of 1 to L symbols and derive a DF-DPD 
algorithm which is based on feeding back the L-1 past detected 
symbols and m i n i i g  the sum of phase errors of L DPD 
detectors. A practical implementation of the DF-DPD receiver 
is presented that uses a single conventional (one-symbol) DPD 
detector. The bit error rate (BER) performance in an additive 
white Gaussian noise (AWGN) channel is analyzed taking into 
account decision error propagation. Performance improvements 
are evaluated by computer simulations in AWGN and Rayleigh 
fading channels. 

I. INTRODUCTION 
-ARY differential phase shift keying (DPSK) is a M bandwidth efficient digital modulation technique, and 

recently has attracted increased attention in mobile radio where 
the available radio bandwidth is limited. Coherent detection 
offers good bit error rate (BER) performance in additive 
white Gaussian noise (AWGN) channels. However, it requires 
long acquisition times and, in fading environments, exhibits 
poor BER performance due to fast variations in the received 
signal phase; thus, differential detection is preferred. In AWGN 
channels, however, the BER performance of differentially 
detected M-ary DPSK is inferior to that of coherent detection. 
This is because a delayed version of the received noisy signal 
is used as the phase reference. To narrow the performance gap 
between differential and coherent detection, several multiple- 
symbol differential detection schemes have been proposed: 
maximum likelihood differential detection (ML-DD) [ 13, ML- 
DD using Viterbi algorithm (Viterbi-DD) [2]-[4], and decision 
feedback differential detection (DF-DD) [ 5 ] ,  [6]. ML-DD 
makes a decision about a block of L consecutive symbols from 
L + 1 received signal samples, based on maximum likelihood 
sequence estimation. Viterbi-DD is a simplification of the 
original ML-DD and uses L differential detectors of orders 
of 1 to L symbols. DF-DD is a symbol-by-symbol detection 
scheme based on feeding back the L- 1 past detected symbols. 
The larger the value of L, the better the BER performance. 
At the limit of L + 00, its performance approaches that of 
coherent detection with differential decoding (in this paper, 
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referred to as CD) to resolve phase ambiguity. When L = 
1, all ML-, Viterbi-, and DF-DD schemes reduce to con- 
ventional (one-symbol) DD. However, the above mentioned 
schemes need to preserve the amplitude variation of the 
AWGN-perturbed received signal; thus limiter amplifiers, in 
the practical receivers placed between IF bandpass filtering 
and differential detection, cannot be applied. Furthermore, a 
number of two-dimensional (complex-valued) multiply-and- 
add operations is necessary. Therefore, implementation of 
these multiple-symbol DD schemes is not simple. 

It is well known that the differential detector can also 
be implemented using a phase detector. The phase of the 
received signal plus noise is detected and the phase differ- 
ence is used for decision. This is called differential phase 
detection (DPD). Conventional DPD uses the phase difference 
over one symbol duration. We note [7] that although DF- 
DD is much simpler than ML- and Viterbi-DD, its BER 
performance is close to that of ML-DD using the same L. 
Because of the rather encouraging performance of DF-DD, 
we apply the idea of decision feedback to the DPD scheme. 
This scheme is called DF-DPD in this paper. This paper is 
organized as follows. In Section 11, we adopt a Gaussian phase 
noise assumption, and derive a DF-DPD algorithm which is 
based on feeding back the L - 1 past detected symbols and 
minimizing the sum of phase errors of L DPD detectors. Also 
shown is a practical implementation of the algorithm that 
uses conventional DPD detector output only. Section I11 gives 
an approximate analysis of its BER performance in AWGN 
channels taking into account the decision error propagation 
effect. Performance improvements are evaluated by computer 
simulations for 2DPSK and 4DPSK transmission in AWGN 
and Rayleigh fading channels and the results are presented in 
Section IV. 

11. DF-DPD ALGORITHM 

A. Received Signal and Conventional DPD 

sented in the complex form as 
The M-ary DPSK signal to be transmitted can be repre- 

where & = {2m7r/M; m = 0, l , . . . , M  - 1) is the 
modulation phase, E, is the signal energy per symbol, T 
is the symbol duration, and p ( t )  is the lowpass equivalent 
impulse response of the transmit filter (we assume a square 
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Fig. 1. Conventional DPD receiver. 

root Nyquist filter). The phase difference A& = & 
&-l represents the transmitted log,M-bit symbol. The M- 
ary DPSK signal is assumed to be transmitted and received 
over an AWGN channel. The receiver structure employing 
conventional DPD is shown in Fig. 1. We assume, as in [5], 
perfect automatic frequency control (AFC) such that there 
is no frequency offset between the transmitter and receiver 
and perfect sampling timing. The received signal is perturbed 
by the AWGN with single-sided power spectrum density NO 
and is bandlimited by the receive matched filter with lowpass 
equivalent impulse response h(t)  = (l/T)p( -t). The receive 
filter output can be expressed as 

Fig. 2. Phasor diagram of the received signal. 

- from (2m.rrlM; m = 0, l , . . . ,  M - 1) that is closest to 

~ ( t )  = ;(t) expj0 + w(t) (2 )  

where B ( t )  = s ( t )  8 h(t)  is the receive filter response to s ( t )  
(here, @ is the convolution operation), 0 is the unknown phase 
offset, and w(t) is the filtered AWGN component. We assume 
that 0 is constant over the time interval (n- L - l)T < t 5 nT 
with L being an integer, where the time interval (L + l)T 
represents the observation length for making a decision. After 
amplitude limiting, the phase of the filtered signal plus noise 
~ ( t )  is detected by the phase detector and sampled at t = nT; 
the sampled phase is denoted by 4n. Since overall (transmit 
plus receive) filter response forms an intersymbol interference 
(1SI)-free Nyquist filter response at the sampling instant (i.e., 
i(nT) = Jm expj&), $n = arg (rn), where 

(3) 

with wTj, = w ( n T )  being the zero-mean complex Gaussian 
noise sample with variance E(Iwn12) = 2No/T. The phasor 
diagram of the received signal is shown in Fig. 2. Denoting 
the AWGN-induced phase noise by q,, gn can be expressed as 

The conventional DPD detector produces the phase difference 
of successive two phases: 

Agn (1). The transmitted log2M-bit symbol is then recovered 
from A&. Since the reference phase of conventional DPD, as 
shown in (3, is which is perturbed by AWGN, its BER 
performance is inferior to that of CD. 

B. DF-DPD Algorithm 

A total of L DPD detectors of orders of 1 to L symbols 
is used to make a decision on the transmitted symbol A$,. 
Using (4) and the relation 

the output of an l-symbol DPD detector can be expressed as 

where Aq,(l) = qn - qn-l is the differential phase noise. It is 
shown in the Appendix that for large values of E,/No, qn-l's 
can be approximated as uncorrelated, zero-mean Gaussian 
variables with the same variance O.~(E,/NO)-~. From this 
and noting that all Aq,(Z)'s contain the phase noise qn 
in common, Aq,(I) are found to be approximately, jointly 
Gaussian distributed. The covariance matrix R = (AqTAq) 
of Aq = (Avn(1), Aqn(2),...,Aqn(L)), where (.)T is the 
transpose, has the elements 

where i, j = 1, 2 , . . . , L  . Therefore, it can be shown from 
(7) that for large E,/No,  the a posteriori joint pdf p(A+ I 
Aq5) of A+ = (A$,(l)% A $ J , ( ~ ) , . . . , A $ ~ ( L ) )  given that 
Aq5 = (A4n, A&-l, ' .  . , A 4 n - ~ + l )  has been sent can be 
approximated as 

1 pTR-Ip 
I = (2a)L/2(detR)1/2 [ - T I  (9) 

At this stage, the unknown phase d is removed. The con- 
ventional DPD decision is to find the phase difference A?, 
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BER performance of DF-DPD using L = 2 and 3. Cross terms are 

where detR and R-' are the determinant and the inverse 
of R, respectively, and p = (1-11, 1-12, . . . , p ~ )  with pc~1 = 
? $ ~ ~ ( l )  - EiZ;A&-i) mod 27r is the phase error vector of 

DPD detectors. The optimal decision is to find the sequence 
A+ that maximizes (9). However, we want to derive a symbol- 
by-symbol decision algorithm for A&. Here, we feedback the 
L - 1 past detected symbols A$,-,, I = 1, 2 , .  . . , L - 1, and 
use them instead of A&l. We substitute 

1-1 

A$,(l) - A4n - EA$,,- ,  
i=l 

in (9) and obtain a DF-DPD algorithm based on maximizing 
p(A+ I A&, A?,,, . . . , A$n-L+l). Taking the logarithm 
of p(A+ I A&, Aq5n-l,. . , A$n-L+l) and neglecting the 
constants which do not affect the maximization, we arrive at 
the following decision rule: 

In particular, for L = 2 and 3, (1 1) simplifies to (12), as shown 
at the bottom of the page. We computer-simulated DF-DPD 

using L = 2 and 3 to determine the performance improvements 
for 4DPSK (M = 4) in AWGN channels. The results are plot- 
ted in Fig. 3 as a function of the signal energy per bit-to-noise 
power spectrum density ratio Eb/No (= (E,/No)/log2 M ) .  
For comparison, we plotted the theoretical performance of 
conventional DPD ( L  = 1) and that of CD [the BER's are 
given by (24)]. It can be seen that DF-DPD using L = 2 (3) 
can achieve a 0.64 (1.0) dB improvement over conventional 
DPD at BER = lop3. 

As seen in (12), the decision feedback algorithm involves 
computation of the cross terms of the phase errors. Since 
the cross terms can take positive and negative values, their 
effect on decision may be negligible on average. Computer 
simulation confirmed this (no performance difference was 
observed below Eb/No = 9 dl3). This greatly simplifies the 
algorithm. The simplified algorithm is based on minimizing the 
sum of the squared phase errors of multiple l-symbol DPD 
detectors. This corresponds to approximating the correlation 
matrix R as a diagonal matrix with elements of Rij = 
(Es/N0)-' if i = j and = 0 otherwise. Thus, the decision 
rule for A& simplifies to 

Hereafter, we refer to this algorithm simply as DF-DPD. 

C. Implementation of DF-DPD Receiver 

The direct implementation of the DF-DPD receiver requires 
L multiple-symbol DPD detectors of orders of 1 to L symbols. 
However, we can show that all pi's are generated from the 
single conventional DPD detector. Using the relation 

/1-1 \ 

1-11 can be generated in the recursive form as 

where 1-11 = (A$n(l) - A&) mod 27r and A$,( l )  is the 
conventional DPD detector output. Noting that [A&-l+l 
(1) - A&-l+l] is the phase error associated with the past 
decision at t = (n - I + 1)T, a simplified DF-DPD algorithm 
can be derived and is shown in Fig. 4. It should be pointed out 
that the DF-DPD algorithm can be added to the conventional 
DPD receiver, and therefore, it is considered very practical. 
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Fig. 4. Implementation of DF-DPD receiver. 

111. BER ANALYSIS 

to provide a reference introduces problems of error propa- 
gation; previous decision error directs the reference phase 
towards the wrong value. We first analyze the effect of 
decision error propagation and then, derive an approximate 
BER expression for DF-DPD. 

with correct symbol feedback. Note that when L = 1, no 

The decision feedback algorithm utilizing detected symbols decision propagation 

B. BER Derivation 

An approximate expression for the BER of DF-DPD with 
correct symbol feedback, i.e., S&-l = 0, 1 = 1. 2, . . . .  L - 1, 
is derived. From (7), (lo), and (13), we define 

A. Error Propagation 

Let A& = A& + 6&, where 64, = {2mr/M; m = 
0, fl, f 2 ,  . . . .  f ( M / 2  - 1). -M/2} is the decision phase 
error (note that m = 0 corresponds to no decision error). We 
assume that an error has been just caused by AWGN on the 
nth decision, i.e., 6& = 2 m r / M  with m # 0 and S$n-l = 0, 
1 = 1, 2 , . . . ,  L - 1. It can be shown from (7), (lo), and (13) 
that the n + lth decision becomes 

-67,) mod2rI2. (16) 

Apparently, 6&+, = -@,, with high probability, and a 
symbol error with the same number of bit errors as in the 
previous incorrect decision is produced (we assume Gray code 
bit mapping). Since 6,+, + 65, = 0, the n + 2th decision 
will be 

(17) 
which implies that the n + 2th decision is not affected by the 
decision error made on the nth decision. As a consequence, 
once a single decision error is caused by AWGN, a double- 
symbol error is likely produced by error propagation (this will 
be confirmed by computer simulation in Section IV-A). Thus, 
the BER of DF-DPD, taking account of the decision error 
propagation effect, can be approximately given as twice that 

1=1 

for the nth decision, where m, k = 0, f l :  f2,. . . .  f (M/2  - 
l),  -M/2. If A(m, k) < 0 for all k but k # m, = 
2mr/M. Since, for large E,/No, the phase noises Av,(L)’s 
are distributed within the vicinity of zero radians, the mod 27r 
operation in (18) can be omitted. Remembering that Av,(l) = 
qn - ~ ~ - 1 ,  (18) can be simplified to 

where 

We can show from (19) that the decision will be 6$, = 
2mr/M when (2m - l ) r /M < Aqn,  DF < (2m + l)7r/M. 
When L = 1, Av,,.,(= Av,(l)) represents the differential 
phase noise of the conventional DPD detector. This implies 
that the second term of RHS of (20) can be considered as 
the noise in the phase reference of the DF-DPD scheme. We 
define the phase reference noise as 

. L  
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As L increases, the phase reference noise is smoothed. At the 
limit of L + 03, it becomes zero and the BER of DF-DPD 
approaches that of CD. 

For deriving the BER, we need to know the statistics of 
qn-l, DF. Since exact statistics are not available, we present 
here an approximate analysis. qn-l is the phase noise of 
the received signal rn-l having SNR = E,/No. In the 
Appendix, it is shown that ~ ~ - 1 ’ s  can be approximated as 
uncorrelated zero-mean Gaussian variables with the same 
variance O.~(E,/NO)-~. Since ~ ~ - 1 , ~ ~  is the average of L 
uncorrelated zero-mean Gaussian variables, it also becomes a 
zero-mean Gaussian, but with a reduced variance of OS(L x 
E,/No)-~. This discussion suggests that the distribution of 
qn- 1, DF is close to that of the phase noise of the received signal 
having an improved SNR of L x E, / N O .  This approximation 
allows the BER to be analyzed based on Pawula et al.’s case 
2 [8]. Since Aqn-l,DF (= qn - ~ ~ - 1 , ~ ~ )  is symmetrically 
distributed with respect to zero, it is sufficient to consider 
the negative range only. Substituting p2 = E,/No and p1 = 
L x E,/No into U ,  V, W of [8, (ll)], the distribution of 
A q n , D F  can be expressed as Prob[-r 5 AT,,,, 5 771 = 
F ( q )  - F(-7r) for ri < 0, where 

-Wsinq 

~J_ ;  

F(V)  = 7 
dt (22) 

with U = (L + l)E,/No, V = (L - l)E,/No, and 
W = &E,/No. For 2 DPSK, a bit error is produced 
when Aqn,DF < -a/2 and the BER with correct symbol 

single bit error is produced when -37r/4 I A q n , D F  < - ~ / 4  
and two-bit error when Aqn,DF < -37r/4, and thus we 

the probability of Aqn,DF falling in error regions other 
than the nearest region (-37rlM I A q n , D F  < -7r/M) 

is negligible and thus, the BER can be well approximated 
as Pb, m P S K  = (2/log2 M ) F ( - r / M ) .  For large values of 
E,/No, the limits of integration in (22) can be extended 
to *7r with negligibly small error. We should remember 
that in the case of M = 2, this extension leads to 2 times 
F(-7r/2) since the value of W cos (--7r/2) cost always is 
zero. For M = 4, this extension gives the exact result for 
F ( - r / 4 ) + F ( - 3 ~ / 4 ) .  As a consequence, taking into account 
decision error propagation, the BER of DF-DPD for L 2 2 
can be approximated as 

f e x p - [ ~ - ~ s i n t -  ~ c o s q c o s t ]  
u - Vsint - Wcosqcost 

feedback iS given by Pb, ~ D P S K  = 2F( -7r/2), For 4DPSK, a 

have Pb,*DpSK = F(-7r/4) + F(-37r/4). For k! > 4, 

2 a ( ~ )  a s i n s  I 
log2M L +  1 7r 

Pb,DF-DPD = 

’ d t  (Z, L2+2L cos %+l 
1-  J L+1 cost 

where a ( M )  = 1 (2) for M = 2(> 4).  Equation (23) is an 
approximation for M 2 8. 

DF-DPD reduces to conventional DPD when L = 1 and 
approaches CD as L + 03. When L = 1, a factor of 2 increase 

I” i ZDPSK 
AWGN channel 
Simulated 

t 
10-5I I I 1 I I 1  I I 

5 6 7 8 9 
EdNo (de) 

Fig. 5. 

in the BER is not necessary because decision error propagation 
does not exist. For deriving the BER of CD, we can refer to 
[9]. The BER expressions for the two limiting cases can be 
given by 

BER of DF-DPD for 2DPSK. 

a M sin = 
‘b, conventional DPD = 1 s  + 

which are approximation for M 2 8. 

C. Numerical Results 

We calculated the BER performances of 2 and 4DPSK with 
DF-DPD using (23) and those with conventional DPD and 
CD using (24). The results are plotted in Figs. 5 and 6 as 
a function of Eb/No. The difference in the required & , / N o  
values at BER = between conventional DPD and CD is 
1.8 (0.6) dB for 4 DPSK (2DPSK). It is clearly seen that the 
performance improves as L increases and approaches that of 
CD. The performance improvement for L = 4 at BER = lop3 
is 1.2 (0.5) dB for 4 DPSK (2DPSK). The performance with 
L = 10 equals that of CD to within 0.2 (0.04) dB for 4 DPSK 
(2DPSK). 

IV. COMPUTER SIMULATIONS 
The BER performance of DF-DPD is evaluated by computer 

simulations for 2DPSK and 4DPSK transmission in AWGN 
and Rayleigh fading channels. DF-DPD performance is also 
compared with other multiple-symbol detection schemes: ML- 
DD, Viterbi-DD, and DF-DD. 
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Fig. 6. BER of DF-DPD for 4DPSK. 

A. AWGN Channel 

We adopted the Gaussian phase noise assumption and 
derived the DF-DPD algorithm in Section II. However, the 
DPD detector output noise is not exactly Gaussian, so the 
raising factor of 2 of the phase errors may not be optimum. 
In general, we may be able to use the sum of the vth (> 0) 
power of the absolute values of phase errors. Accordingly, the 
decision rule of (13) is modified to 

The impact of v on BER was investigated for 4DPSK in 
the AWGN channel and the results are plotted in Fig. 7 for 
various values of L at &/No = 7 dB. It can be seen that 
the BER performance is almost insensitive to the value of 
v ;  the selection of v is not important. By choosing v = 1, 
multiplication operations are not necessary and the algorithm 
can be performed using addition operations only. This reduces 
the computation complexity of DF-DPD significantly. Thus, 
in the following, we use v = 1. 

In Section 111, we showed that decision feedback most likely 
produces double-symbol errors. To confirm this, we measured 
the probability of n-symbol solid burst error with n being 
integer. The solid burst emor is defined as consecutive symbol 
errors between correctly detected symbols (at least one sym- 
bol). The measured result at &/No = 6 dB is shown in Fig. 8. 
Double-symbol errors occur with large probability (30.8%) 
even for conventional DPD; the reason is well explained in 
[ 101. Double-symbol errors are much more predominant in the 
decision feedback scheme. The probability of double-symbol 
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Fig. 8. Burst error probability. 

errors is 64.1% when L = 2. It increases with L, reaching 
94.4% when L = 10. 

The simulation results for the BER performance with DF- 
DPD are plotted in Figs. 5 and 6. It is seen that the simulation 
results are in good agreement with the theoretically predicted 
BER values; the approximate expression derived in Section 
I11 is very accurate. We also computer-simulated ML-DD 
[l], Viterbi-DD [2], and DF-DD [5],  and compared their 
performance improvements with that of the proposed DF-DPD. 
It is shown [7] that the approximate BER performance of DF- 
DD' is equal to the BER upper bound of ML-DD. We can show 
that the expression for the BER of DF-DPD is also identical 
to that of DF-DD (compare (23) to [7, Eq. (3)]). This implies 
that DF-DPD, DF-DD, and ML-DD provide almost the same 

The exact BER expression of DF-DD with correct symbol feedback was 
derived by Edbauer [5 ] .  Multiplying it by two gives an approximate BER 
when taking into account error propagation. 
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BER performance. To confirm this, we plotted the simulated 
BER’s, as well as theoretically predicted approximate BER’s 
of DF-DPD calculated from (23), at &/NO = 7 dB in Fig. 9. 
Although DF-DPD provides slightly larger BER’s than ML- 
and DF-DD, we found that the performance difference in the 
required &/No for less than 0.1 dB. Also plotted are the 
BER’s achieved by Viterbi-DD (20-symbol decoding depth). 
It is seen from Fig. 9 that our DF-DPD using L = 4,6, and 10 
corresponds to Viterbi-DD using L = 2,3, and 4, respectively. 

B. Rayleigh Fading Channel 
The BER performance of 4DPSK was evaluated. A 

frequency-nonselective (multiplicative) Rayleigh faded signal 
was generated based on Jakes model [ 111 assuming constant 
amplitude 16 multipaths. The BER dependence on L is plotted 
in Fig. 10 for foT = 1.25 x loW3 and 1 x loW2, where 
fo is the maximum Doppler frequency given by traveling 

Fig. 11. Average BER performance under Rayleigh fading. 

speedcarrier wavelength.2 The simulated BER’s of DF-DPD 
using L = 5 are plotted as a function of average Eb/No 
in Fig. 11 for foT = 1.25 x loF3. For comparison, the 
theoretical BER performances of conventional DPD and 
ideal CD (the perfect knowledge of random phase variations 
is assumed) are also shown as the solid line and dotted 
line, respectively. The BER performances of 4DPSK using 
conventional DPD and CD for very slow Rayleigh fading are 
obtained by averaging (24) with the exponentially distributed 
Eb/NO (= 0.5(&/NO)) as 

r 1 
1 

‘b, conventionalDPD = 2 - 

where r is the average &/No. The decision feedback scheme 
assumes that the random phase 0 of the received signal remains 
almost constant over the time duration of (L + 1)T. In fading 
environments, however, 8 fluctuates. Furthermore, most errors 
are produced in small &/No regions, say, less than 3 dB, 
where the improvement obtained by the algorithm is small 
(see Figs. 5 and 6). For these reasons, DF-DPD only slightly 
(by a fraction of dB) improves the BER performance for the 
case of very slow fading (foT = 1.25 x For the case of 
fast fading (foT = 1 x the conventional DPD ( L  = 1) 
provides better performance than DF-DPD. 

V. CONCLUSION 

We have presented a decision feedback multiple-symbol 
DPD (DF-DPD) scheme for M-ary DPSK. The idea of de- 
cision feedback [5 ] ,  [6] was applied to differential phase 
detection (DPD). The results obtained in this paper are sum- 
marized as follows. 1) Adopting a Gaussian phase noise 
assumption, we derived the DF-DPD decision algorithm based 
on feeding back the L - 1 past detected symbols and mini- 
mizing the sum of the squared phase errors of 1 to L-symbol 

2Assuming 1 GHz carrier frequency and 32 ksymboVs transmission rate, the 
normalized Doppler spread of ~ D T  = 1 .25  x 10W3(1 x lo-’) corresponds 
to a traveling speed of 43.2 (345.6) km/h. 
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DPD detectors. 2) An accurate approximate BER expression 
for DF-DPD in the AWGN channels was derived. It was 
shown that if the nine past detected symbols are fedback 
( L  = lo), the BER performance in the AWGN channel 
approaches that of CD within 0.2 (0.04) dB for 4DPSK 
(2DPSK). 3) A practical implementation of the DF-DPD 
receiver that recursively generates the phase errors from the 
conventional DPD detector output was presented. It was shown 
that decision can be based on the sum of the absolute phase 
errors instead of the squared phase errors with no performance 
degradation; thus, only one-dimensional modulo-27r phase 
addition operations are required. 4) The application limitation 
of DF-DPD in Rayleigh fading environments was discussed. 
DF-DPD slightly improves the BER performance for the case 
of very slow fading; for the case of very fast fading, the 
conventional DPD ( L  = 1) provides better performance than 
DF-DPD. 

APPENDIX 

A phasor diagram showing the sum of the signal and 
noise vectors is shown in Fig. 2. The detected phase ?,b, 
fluctuates around & + 19 due to AWGN. The exact pdf of 
the AWGN-induced phase noise qn is shown in [8, Eqs. (67) 
and (68)l. We will show below that the pdf of q, can be 
approximated as a Gaussian distribution for large E,/No.  
Referring to Fig. 2, we introduce a new variable E, defined as 
En = w, exp - ~ ’ ( 4 ,  + 19); En becomes a zero-mean complex 
Gaussian variable with variance 2No/T. Since 

the following approximation holds for large E, /NO:  

where Re [ z ]  and Im [ z ]  are the real and imaginary parts of 
the complex value z ,  respectively. Since Im[(,] is a zero- 
mean Gaussian variable with variance NOIT, qn becomes a 
Gaussian variable with variance 0.5(ES/&)-l. Noting that 
w,’s are uncorrelated, q,’s can also be approximated as 
uncorrelated, zero-mean Gaussian variables with the same 
variance 0.5(ES/No)-’. 
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