Buckling of the CuO₂ Plane in Single Crystals of La-Based High-TC Cuprates Observed by NMR

Goto Takayuki, Ueda Masanori, Sumikawa Hidemitsu, Suzuki Takao, Fujita Masaki, Yamada Kazuyoshi, Adachi Tadashi and Koike Yoji

Journal or Publication Title: AIP Conference Proceedings
Volume: 850
Page Range: 421-422
Year: 2006
URL: http://hdl.handle.net/10097/51561
doi: 10.1063/1.2354765
Buckling of the CuO$_2$ Plane in Single Crystals of La-Based High-T_C Cuprates Observed by NMR

Takayuki Gotoa, Masanori Uedaa, Hidemitsu Sumikawaa, Takao Suzukia, Masaki Fujitab, Kazuyoshi Yamadab, Tadashi Adachic, and Yoji Koikec

aFaculty of Science and Technology, Sophia University, Tokyo 102-8554 Japan
bInstitute for Materials Research, Tohoku University, Sendai 980-8577, Japan
cGraduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

Abstract. The buckling of CuO$_2$ plane in single crystals of La-based high-T_C cuprates LSCO (x=0.15) and LBCO (x=0.08) was directly observed by Cu-NMR. In both the cases, buckling patterns obtained by NMR disagree with those expected in the averaged structure at the vicinity of the structural phase transitions.

Keywords: NMR, local structure, La-based cuprate.

PACS: 74.72.Dn, 76.60.-k, 61.72.Hh

INTRODUCTION

La-based high-T_C cuprates show the structural phase transition from $I4/mmm$ phase to $Cmca$ at the temperature T_{d1}. Among them, La$_2$-Ba$_x$CuO$_4$ (LBCO) and Nd-doped La$_2$-Sr$_x$CuO$_4$ (LSCO) show the successive transition to $P4_2/nmc$ at still lower temperature T_{d2}[1]. These two structural phase transitions are associated with the change in the flatness of CuO$_2$ plane. In $I4/mmm$ phase, the plane is flat, and CuO$_6$ octahedra stand vertically. In low temperature phases, there appear a characteristic buckling pattern in the plane. Especially, the pattern in the $P4_2/nmc$ phase is believed to pin the dynamically fluctuating stripe and stabilize it. This static stripe order suppresses the superconductivity as is well known in Nd-doped LSCO and LBCO[2,3].

However, there is a disagreement in reported experimental results on the bucking in the CuO$_2$ plane. Billinge et al. reported by the study on the pair distribution function of the neutron scattering that the CuO$_6$ octahedra in LBCO tilt randomly even in the $I4/mmm$ phase[4]. They claim that the local structure is quite different from the averaged one. Some other reports by techniques of XAFS, XANES etc., also support the existence of the local structure, while still others do not [5~9]. The purpose of this work is to investigate the existence of the local structure in single crystals by Cu-NMR, which is a local probe, and is expected to detect local structures. We also expect that this study will give a further insight to the role of the structure of CuO$_2$ plane in the stripe order.

EXPERIMENTAL

The single crystals of LSCO (x=0.15, T_C=37K) and LBCO (x=0.08, T_C=24K) were prepared by the conventional floating zone method [3,10]. Cu-NMR “angle-swept spectra” were obtained by recording the spin-echo amplitude while rotating a single crystal in a constant magnetic field.

FIGURE 1. Angle-swept spectra of $^{63/65}$Cu-NMR in LSCO (left), and calculated curves with parameters of 63v$_0$ = 35.9 MHz, $K \approx 0.5\%$ and $\eta = 0$ (right). The field is tilted from c-axis to $(\cos 29^\circ, \sin 29^\circ, 0)$, in the tetragonal notation.
Temperature dependence of NMR-splitting

The temperature dependence of profile of angle-swept spectra in LSCO. Arrows show peak positions calculated assuming that the principal axis of the EFG tensor is tilted from c-axis by 3.5°.

RESULTS AND DISCUSSION

Figure 1 shows the rotational pattern of Cu-NMR spectra in LSCO. Each peak shows a slight split when the direction of the applied field is tilted from c-axis. We made a calculation of the quadrupolar shift with a second order perturbation assuming that the principal axis of the electric field gradient is parallel with the direction of the apical oxygen. In Cmca phase, there are the four tilting directions of the octahedron (±1,±1,0), for the sample has a twin structure. In P4/nmc phase, the tilting directions are (±1,0,0) or (0,±1,0). The calculated peak positions are shown by arrows in Fig. 2. One can see that Cmca with the tilting angle 3.5° reproduces the observed splitting at 50K. This indicates that the local structure observed by NMR is identical with the averaged structure which is reported to be Cmca.

When the temperature is raised, the split shrinks in the high temperature phase I4/mmm. Figure 3 shows the temperature dependence of the splitting width and the ultrasonic velocity. The latter is a good probe for the structural phase transition. In general, the lattice shows the softening around the transition temperature. In La-based cuprates, T_d1 is determined from the

velocity data as the crossing point of linear extrapolations from the both sides of the transition[11]. Thus determined T_d1 agrees with the onset of the orthorhombicity observed by X-ray diffraction. Note that onset of the NMR peak split is T’=205K much higher than T_d1=180K. In the temperature region between T_d1 and T’, where the averaged structure is I4/mmm, what NMR sees is the local structure of Cmca. This local structure is static in time, because the characteristic time scale of NMR is very slow. As the temperature is decreased to T_d1, the static but non-periodic buckling pattern is first formed at T’, and then it is aligned periodically at T_d1 .

Finally, we show in Fig. 4 the rotational profile of 63Cu-NMR in LBCO (x=0.08), T_d2 of which is reported to be around 10K[12]. Calculated peak positions based on the local structure of P4/nmc and Cmca are shown by arrows. The observed profile of a single spired peak suggests that the local structure is likely to be the former up to 100K, while the averaged one is the latter. The existence of the buckling pattern of P4/nmc can be related with the recently reported field-induced stripe order in LBCO with x slightly apart from 1/8[10].

REFERENCES