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We discuss applications of quantum computation to geometric data processing. These applications include
problems on convex hulls, minimum enclosing balls, linear programming, and intersection problems. Technically,
we apply well-known Grover’s algorithm (and its variants) combined with geometric algorithms, and no further
knowledge of quantum computing is required. However, revealing these applications and emphasizing potential
usefulness of quantum computation in geometric data processing will promote research and development of
quantum computers and algorithms.

1. Introduction

Quantum computation is one of recent computing paradigms that may give breakthrough against barriers for the
standard RAM (random access machine) model computation. Although the computational ability of current quantum
computers is far from practical, its potential power is quite attractive. The theory of quantum computing has two major
trends: (1) investigating the computational complexity classes to structure new hierarchy by using quantum models
(e.g. [4]), and (2) comparing theoretical efficiency of the quantum model with the RAM model. In the latter trend,
positive results demonstrating advantage of the quantum computation to the RAM model computation give motivations
for development of quantum computers. In the literature, Grover’s data search algorithm [14] and Shor’s factorization
algorithm [23] have been major driving-forces for the recent development of quantum computers.

One major use of commercialized computers is to handle a data set consisting of d-dimensional vectors of real
numbers. A set of d-dimensional vectors can be considered to be a set of n points in the d-dimensional Euclidean space.
More generally, we can consider geometric data processing problems, where the input is a set of n geometric objects in
a d-dimensional space.

For one dimensional vectors (i.e. real numbers), they can be ordered with respect to their values. In the RAM model,
sorted list is a very powerful data structure to handle an ordered set (of size n), so that we can query/insert/delete a data
in Oðlog nÞ time. Therefore, if each item of the data consists of a single real number, we often assume that data is sorted.
Unfortunately, querying a data in a sorted list needs �ðlog nÞ time in a quantum model [2]. This implies that the
advantage of quantum computation is not very large for processing an sorted list.

If d � 2, in contrast to the one-dimensional case, no universal method to ‘‘sort’’ points in the space is known; indeed,
a ‘‘geometric sorted’’ data structure highly depends on both the problem that we want to solve and the number of
dimensions. Voronoi diagrams, convex hulls, and simplex range search data structures are examples of data structures
for solving a variety of geometric problems; Unfortunately, they are not very effective if the number of dimensions is
large (say, larger than three).

The aim of this paper is to show that the quantum model can be considerably advantageous to the RAM model for
geometric data processing. The introduction of random sampling method [9, 10] has created a new trend in
computational geometry, and enormous research results have been produced on the application of probabilistic methods
to geometric data processing. In the same way, one may expect that quantum computation (regarded as a kind of biased
random sampling method) opens new aspects of computational geometry.

We mainly deal with problems in the complexity class P (polynomial-time soluble problems in RAM model) in this
paper, and want to consider the following question: ‘‘What kind of geometric problems can be solved in sublinear time
in the quantum model?’’. In contrast to the parallel computation (PRAM) model where we seek for NC (i.e.
polylogarithmic time and polynomial-size work) algorithms, it seems to be valuable to seek for sublinear time
algorithms for the quantum model.

For example, consider the problem of finding the lowest point in the intersection of n upper-halfspaces in the d-
dimensional Euclidean space. The problem can be solved in �ðnÞ time if d is a constant in RAM model. Regarding the
problem as a parametric minimax problem [25], and by combining the quantum minimum finding algorithm and
multidimensional searching technique, we can solve it in Oð

ffiffiffi
n

p
log2d�1 nÞ time.

We do not introduce novel quantum operations for designing our algorithms; Indeed, little knowledge of quantum
computation is necessary to read this paper, provided that we admit some well-known theorems on modified versions of
Grover’s algorithm. In other words, we introduce some advanced geometric functions in a quantum database system
based on Grover’s query algorithm.
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We first utilize a view of Grover’s algorithm as a biased random sampling method [15, 16], which we call quantum
sampling, and show that several query problems in a set of n points can be done in Oð

ffiffiffi
n

p
Þ time for any d without any

preprocessing. For example, the extremal query, the nearest neighbor query, and the farthest neighbor query are such
queries. In the dual form, if the input is a set of n hyperplanes (or halfspaces), we can do the separation query and ray
shooting query in Oð

ffiffiffi
n

p
Þ time.

Next, as a showcase problem of our approach, we consider the problem of computing the lowest point in the upper
envelope of an arrangement of hyperplanes; in other words, the lowest point in the intersection of given upper
halfspaces. Then, we show some other geometric optimization problems such as the minimum enclosing ball problem
and linear programming problems can be solved efficiently in quantum model if d is a constant. Also, some output-
sensitive convex-hull algorithms and the ellipsoid algorithm for solving a general dimensional convex programming
problem can be accelerated by using the quantum model.

Finally, we discuss another approach based on the ideas in quantum element-distinctness algorithm [8], and apply it
to some geometric intersection detection problems, although the details will be given in a separate paper [19].

Recently, we have informed that W. Smith also investigate similar geometric algorithms in the quantum model [24].

2. Quantum Sampling and Geometric Queries

2.1 Preliminaries on Grover’s algorithm and its applications

Grover’s database search algorithm can be considered to be a biased (or controlled) sampling method. Although this
fact is well-known, we briefly introduce the outline.

We have a set S of n data items p1;p2; . . . ;pn 2 U, where U is a universe to which data items belong. We also have a
function f from U to f1;�1g such that f ðxÞ can be computed for each element x of U independently.

What we want is to find a data item pi satisfying f ðpiÞ ¼ 1 (we call such a data item target data item or target data.)
If there is no target data in S, we report ‘‘none’’.

In the RAM model, a naive way is to check all the member of U in OðnÞ time (here, we assume that f ðxÞ can be
computed in Oð1Þ time for each x for simplicity). If there are k target data in S, random sampling is a well-known
method: we randomly choose a sample from S until we find a target data. Unfortunately, this takes Oðn=kÞ time, and
does not effectively work if there are few (or no) target data in S. On the other hand, in a parallel model such as CRCW
PRAM, we can obviously solve the problem in Oð1Þ time by using n processors.

The quantum model is an intermediate model between them (note that the description in this paper is simplified so
that it is sufficient for solving the problems discussed here): In the quantum model, the value f ðpiÞ is computed for each
i (i ¼ 1; 2; . . . ; n) independently in parallel. We also compute a state vector v ¼ ðv1; v2; . . . ; vnÞ in a parallel fashion, so
that we can read the contents (e.g., pi and f ðpiÞ) of the i-th ‘‘processor’’ as an output with a probability jvij2=jvj2. A
major restriction is that we can only apply parallel computations realized as unitary transformations on the state vector.
Moreover, the read operation affects on the state vector, and hence, we cannot re-use intermediate state vectors once we
read an output. Note that the classical random algorithm can be considered a special quantum algorithm where no
interaction between processors is allowed.

We only need the following well-known result in the quantum computation, and the rest of the paper does not require
knowledge from quantum computation at all.

Theorem 2.1 (Boyer et al. [6]). If the number k of target data in S satisfies that k � k0 > 0, we can read a target data
with a probability larger than 1=c for a fixed constant c after Oð

ffiffiffiffiffiffiffiffiffi
n=k0

p
Þ steps of quantum computation. Moreover, the

output target data is randomly sampled from the set of all target data.

The following corollary is also well known.

Corollary 2.1 (Dürr and H�yer [13]). Given a real valued function g on S, we can report maximizing gðpiÞ in Oð
ffiffiffi
n

p
Þ

time with a probability greater than 1=2 in the quantum model.

Theorem 2:1 and corollary 2:1 are essential tools in this paper. For the quantum oracle used in Grover’s algorithm,
we can use Deutsch–Jozsa algorithm [11].

2.2 Geometric queries

We show some straightforward quantum algorithms for geometric queries that are important subroutines in several
geometric algorithms. Consider a set S of n points in the d-dimensional space. Many of geometric queries for the point
set S are basically maximum-finding queries. For example,
Nearest-neighbor query: Answer the nearest point in S to a query point q.
Farthest-neighbor query: Answer the farthest point in S from a query point q.
Extremal query: Given a linear function f , compute a point p in S maximizing the value f ðpÞ.
A typical approach in computational geometry is to preprocess S to have a data structure to attain a fast query time
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algorithm. For a set of points in a plane (i.e., d ¼ 2), Voronoi diagrams, farthest Voronoi diagrams, and convex hull are
efficient data structures for the purpose. Unfortunately, these methods are inefficient in high dimensional cases (for
example, d � 4). Methods based on simplex range searching works for a general constant dimensional case, although
(unless we use huge data space and preprocessing) the query time is Oðn1�tðdÞÞ where tðdÞ approaches to zero if d
becomes large. Note that such a query can be done in Oðlog nÞ time in the PRAM model with n processors.

Lemma 2.1. Each of nearest-neighbor query, farthest-neighbor query, and extremal query can be done in Oð
ffiffiffi
n

p
Þ time

in the quantum model, where the success probability is at least 1=2.

Proof. As we have seen in the previous section, maximum element can be found in Oð
ffiffiffi
n

p
Þ time in the quantum model,

and each of the geometric queries is basically a maximum-finding procedure. For example, for the nearest neighbor
query, each point of S compute the distance from q in parallel to form a state vector, and we apply a quantum
maximum-finding algorithm. �

Corollary 2.2. Each of nearest-neighbor query, farthest-neighbor query, and extremal query can be done in
Oð

ffiffiffi
n

p
log nÞ time in the quantum model, where the success probability is at least 1� 1=nc for any constant c.

Remark: We could apply a better analysis given in [7], although we do not apply it in this paper for simplicity.

3. Lowest Point in the Upper Envelope

It is known [1, 25] that several geometric problems can be considered as parametric versions of geometric query
problems, and hence efficiently solved if the queries can be done efficiently. As a show-case problem of designing
quantum algorithms in geometric data processing, we consider the problem of computing the lowest point in an upper
envelope in an arrangement of hyperplanes, which can be considered as a parametric maximum finding problem.

Given a setH of n hyperplanes in the d-dimensional space Rd where the d-th coordinate is denoted by y, consider the
locus UðHÞ of the highest (with respect to y-value) halfplane. In other words, if y ¼ giðxÞ ¼ giðx1; x2; . . . xd�1Þ is the
equation defining the i-th hyperplane Hi of H, UðHÞ is defined by y ¼ max1�i�n giðxÞ.

Lowest point in the upper envelope of an arrangement of hyperplanes: Given a set H of n hyperplanes
compute the point p in the upper envelope UðHÞ minimizing the y-coordinate value.

Since an upper envelope is a convex surface, the problem is a minimization problem of a piecewise linear convex
function. The problem is a special LP problem, which finds the point minimizing y satisfying y � giðxÞ for
i ¼ 1; 2; . . . ; n.

3.1 Two-dimensional problem

We first consider two-dimensional case to get intuition. The set H ¼ fH1;H2; . . .Hng, where Hi is a line defined by
y ¼ giðxÞ. The upper envelope UðHÞ is the trajectory of the function

GðxÞ ¼ max
1�i�n

giðxÞ:

Thus, if the solution point is p ¼ ðpx;pyÞ, py ¼ GðpxÞ ¼ min�1�x�1 GðxÞ. For simplicity, we assume that H has both
negative-slope lines and positive-slope lines, and also it has no line horizontal or vertical to the x-axis. Hence, px is
neither 1 nor �1.

For a given value a, GðaÞ can be computed as the maximum of n values giðaÞ (i ¼ 1; 2; . . . ; n). Hence, if we consider
x as a parameter, the problem of computing p is a minimax parametric optimization problem [25].

Hence, we can apply a simple binary searching strategy: We consider an interval I ¼ ½sðIÞ; tðIÞ� of x-values
containing px. We also have the lines lðsðIÞÞ and lðtðIÞÞ that contain points ðsðIÞ;GðsðIÞÞÞ and ðtðIÞ;GðtðIÞÞÞ, respectively.
The line lðsðIÞÞ must have a negative slope and lðtðIÞÞ have a positive slope.

We then compute GðmðIÞÞ for the mid point mðIÞ of I. If GðmðIÞ is on a line lðmðIÞÞ with a positive (resp. negative)
slope, px < mðIÞ (resp. py > mðIÞ). Let us assume that the line has a positive slope. Then, we compute the intersection
point q ¼ ðqx; qyÞ of lðsðIÞÞ and lðtðIÞÞ, and check whether q is on the upper envelope or not by computing GðqxÞ. If q is
on the upper envelope, it is the solution. Otherwise, we replace I with ðsðtÞ;mðtÞÞ, and recursively continue the
operation. If the coefficients of lines are represented by quotient numbers of integers in the range ½��;�� (we call � the
precision of the input), the binary search stops in Oðlog �Þ steps, where each step corresponding to computation of a
value on the upper envelope.

In the quantum model, we can compute GðaÞ for a given a in Oð
ffiffiffi
n

p
Þ time with a probability larger than 1=2 by using

the maximum finding algorithm (Corollary 2:1). Since we do not want to fail in the decision of the binary search
procedure, we spend Oð

ffiffiffi
n

p
log nÞ time to reduce the failure probability to n�c of a suitable large constant c.

Hence, we can compute the lowest point in the upper envelope (thus, in the intersection of upper-halfplanes) in
Oð

ffiffiffi
n

p
log n log �Þ time. The above algorithm is weakly polynomial (dependent on precision of the input). Theoretically,
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we want to have a strongly-polynomial efficient algorithm. There are several techniques to transform a weakly-
polynomial algorithm into a strongly-polynomial: Parametric searching [20] is a famous general method, however it
does not seem to be adequate for designing quantum algorithms because it needs help of an algorithm with a parallel
structure with small work, while most of quantum algorithms have large amount of total work. Another popular method
for linear programming type problems is the prune-and-search method [12, 17], and its randomized version can be
applied as follows:

Theorem 3.1. The lowest point in the intersection of n upper-halfplanes can be computed in Oð
ffiffiffi
n

p
log2 nÞ time with a

probability 1� n�c for any constant c in the quantum model.

Proof. Without loss of generality, we assume that no three lines intersect at a point. Let p ¼ ðpx;pyÞ be the solution
point. We randomly pick a line ‘ fromH, and consider (implicitly) the intersection points on ‘ with other lines. We can
binary search on the set of intersection points in the quantum model to find two consecutive intersection points
q ¼ ðqx; qyÞÞ and q0 ¼ ðq0x; q0yÞÞ such that qx � px � q0x. This can be done in Oðn1=2 log nÞ time by using the quantum
binary searching [18] Oðlog nÞ times, each of which takes Oðn1=2Þ time. Now, we recognize the set S1 of lines above (or
through) q. The expected number of lines in S1 is n=2, and since q and q0 are consecutive on ‘, p is the minimum point
in the upper envelope of S1. We amplify the lines in S1, and apply the same procedure to S1 until the size of the set of
lines becomes constant. This is a prune-and-search strategy. In the RAM model, the prune and search strategy shrinks
the input size and hence attains OðtðnÞÞ time complexity if it takes tðnÞ time for pruning n=2 elements; however, in the
quantum model, we cannot explicitly prune away elements, and we can only attain OðtðnÞ log nÞ time complexity by
using the fact that the problem size is reduced to a constant in Oðlog nÞ iterations. Thus, the time complexity is
Oðn1=2 log2 nÞ. �

3.2 Higher dimensional case

Next, we consider the case where the number of dimensions is more than two. It is easy to design an
Oð

ffiffiffi
n

p
log n logd�1 �Þ time algorithm for computing the lowest point in the intersection of n upper-halfspaces, since the

binary searching for the first coordinate works, where the decision is given by solving the ðd � 1Þ-dimensional problem.
In precise, suppose that x1 is the first coordinate, y is the last coordinate, and x2; . . . ; xd�1 are other coordinates. For a
given value a of x1, we solve the ðd � 1Þ dimensional problem of computing the lowest point in the intersection of the
upper envelope and the vertical hyperplane HðaÞ : x1 ¼ a. The solution lies on a line (intersection of ðd � 1Þ
hyperplanes inH), and we can decide in which side of HðaÞ the solution point p lies by computing the slope of the line.

In order to make the algorithm strongly-polynomial, we need to use a multidimensional searching technique in an
arrangement of hyperplanes instead of binary searching on a line.

3.2.1 Multidimensional searching in an arrangement

Given a set H of n hyperplanes in the d-dimensional space, consider the arrangement AðHÞ of the hyperplanes. We
are given a point p in the space, and assume that we can detect whether p 2 H, p 2 Hþ, or p 2 H� for any given
hyperplane H in OðtÞ time (H need not be in H). Multidimensional searching is to find a (possibly lower dimensional)
simplex �p which contains p and is contained in the same face as p in the arrangement. In one-dimensional case, this
is a binary searching in a given set of n real values.

We first select r hyperplanes randomly from H, and triangulate it; in other words, we construct a cutting of the
arrangement of a constant size. We can find a triangle � in the cutting containing p in OðtÞ time (in each of PRAM and
the quantum model). Now, we randomly choose r hyperplanes intersecting � by using the quantum model in Oð

ffiffiffiffiffiffiffiffiffi
n=m

p
Þ

time with a high probability, and recursively search in �. With high probability, m < cn=r for a constant c independent
of n and r, and we take r > 2c. Thus, we can find a point in the same face as p in Oð

ffiffiffi
n

p
þ t log nÞ time with a high

probability.

3.2.2 Algorithm for a higher dimensional case

Theorem 3.2. The lowest point in the upper envelope of an d-dimensional arrangement can be computed in
Oðn1=2 log2d�1 nÞ time with high probability in the quantum model.

Proof. We only give an outline of the algorithm. Let p ¼ ðp1;p2; . . . ;pd�1;pyÞ be the solution point (i.e., minimizing
the y-coordinate value). We randomly select a hyperplane F in H, and consider the arrangement AðHÞ \ F obtained by
restricting the arrangement AðHÞ on F. Let q ¼ Projðp;FÞ be the point on F whose first d � 1 coordinate values are the
same as those of p. We apply the multidimensional searching in the arrangement AðHÞ \ FÞ to find a simplex �q

containing q. Here, we can decide in which side of a hyperplane H in AðHÞ \ F the point q is located by solving the
ðd � 1Þ-dimensional problem on the hyperplane containing H and parallel to the y-axis in the original space. Thus,
t ¼ Tðd � 1Þ, where Tðd � 1Þ is the time for solving the ðd � 1Þ-dimensional problem.

The set of hyperplanes above �q must contain the optimal solution, and the expected size of the set is approximately
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n=2. Hence, the size of the problem is reduced to half in OðTðd � 1Þ log nÞ time, and reduce to a constant in OðTðd �
1Þ log2 nÞ time. Thus, TðdÞ ¼ Oð

ffiffiffi
n

p
log2d�1 nÞ. �

4. Geometric Optimization Problems

4.1 Minimum enclosing ball

Given a set S of n points, its minimum enclosing ball is the minimum radius ball containing all the points of S. We
assume that the number d of dimensions of the space is a constant independent of n. The problem of computing the
minimum enclosing ball is an LP-type problem, and can be solved in OðnÞ time, by using a randomized incremental
algorithm [22]. A natural question is whether we can solve it in sublinear time in the quantum model. We could modify
the incremental algorithm into a quantum algorithm that seems to be efficient; however, the authors have not yet
succeeded to analyze it theoretically.

Instead, we regard the minimum enclose ball problem as a minimization problem of the parametric farthest-
neighbor-query problem [25]; in other words, it is computation of the lowest point in the upper envelope of surfaces
defined from the distance functions from points. For each point u ¼ ðu1; u2; . . . udÞ 2 S, we consider a function gu on R

d

defined by guðxÞ ¼
P

1�i�dðui � xiÞ2 for x ¼ ðx1; x2; . . . ; xdÞ: Let us consider the upper envelope U of the surfaces
y ¼ guðxÞ for all the points u 2 S in the ðd þ 1Þ-dimensional space. Then, the following is easy to see:

Lemma 4.2. The surface U is a convex surface, and if its lowest point is p ¼ ðp1;p2; . . . ;pd;pyÞ, the point ProjðpÞ ¼
Projðp;RdÞ ¼ ðp1;p2; . . . ;pdÞ is the center of the minimum enclosing ball.

Moreover, if we consider the function ~guguðxÞ ¼ guðxÞ �
P

1�i�d x
2
i , it is a linear function, and its upper envelope ~UU is

a piecewise convex function. Although the lowest point in ~UU does not correspond to the lowest point p in U, ProjðpÞ
becomes a projection image of a vertex of ~UU. Note that a projection image of a vertex of ~UU is called a farthest-neighbor
Voronoi vertex in the literature. First, we give a weakly-polynomial sublinear time algorithm.

Proposition 4.1. Minimum enclosing ball can be computed in Oð
ffiffiffi
n

p
minflogd � log n; log2dþ1 ngÞ time with a high

probability in the quantum model, where � is the precision of the input.

Proof. We first apply a binary searching paradigm where we utilize convexity of U. Consider a vertical hyperplane
H : x1 ¼ a for a given a. We compute the lowest point in H \U by solving the ðd � 1Þ-dimensional problem. From the
solution, we can decide in which side of H the point p is located similarly to the argument in the previous section.
Hence, we have a recursion that TðdÞ ¼ log �Tðd � 1Þ for the time complexity TðdÞ for solving the d-dimensional
problem. For the case where d ¼ 0, the problem is simply computing the maximum of n real values, and hence can be
solved in Oð

ffiffiffi
n

p
log nÞ time with a probability 1� n�c for any constant c. Hence, we obtain TðdÞ ¼ Oð

ffiffiffi
n

p
logd � log nÞ.

We apply the prune-and-search strategy to design a strongly-polynomial sublinear time algorithm. Here, we utilize
the arrangement of hyperplanes defined by y ¼ ~guguðxÞ ðu 2 SÞ. We pick randomly a hyperplane F from it, and apply
multidimensional searching for the point obtained by projecting p onto F along the y-direction, and then prune away
hyperplanes (and also associated hypersurfaces inU) below F at ProjðpÞ. Thus, we can applying similar analysis as the
previous section to obtain the Oð

ffiffiffi
n

p
log2dþ1 nÞ time complexity. �

4.2 Common-intersection emptiness and LP

Consider a set of n convex objects in R
d, and we want to detect whether the common intersection of all these objects

is empty or not.
The easiest case is that we have a set of n intervals in R. For this case, if we compute the maximum x1 of the left

endpoints of intervals and the minimum x2 of the right endpoints of interval, the intersection of the intervals is
nonempty if and only if x1 � x2. Hence, the problem is reduced to the maximum finding problem, and solved in Oð

ffiffiffi
n

p
Þ

time in the quantum model. A similar argument holds for a set of axis parallel rectangles in R
d.

A little more nontrivial case is where we have a set of convex polytopes consisting of n facets in total. This includes
intersection detection of two convex polytopes in d-dimensional space as a special case. Here, the problem is just the
feasibility problem of the linear programming problem associated with the n linear inequalities defining facets.

Theorem 4.1. A linear programming problem with n linear constraints in the d-dimensional space can be solved in
Oð

ffiffiffi
n

p
log2d�1 nÞ time with a high probability in the quantum model. In particular, the feasibility problem of a system of

n linear inequalities can be solved in Oð
ffiffiffi
n

p
log2d�1 nÞ time.

Proof. Without loss of generality, we assume that the problem is minimizing the y-coordinate value under a constraint
given by n linear inequalities. We consider the halfspaces associated with the linear inequalities, and classify them into
upper-halfspaces and lower-halfspaces with respect to the d-th coordinate y. Indeed, y � fiðxÞ ði ¼ 1; 2; . . . ;mÞ and
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y � fiðxÞ ði ¼ mþ 1;mþ 2; . . . ; nÞ are corresponding inequalities. Let U and L be the upper envelope of the
hyperplanes defining upper-halfspaces and the lower envelope of the hyperplanes defining lower-halfspaces,
respectively. We first check the feasibility in our algorithm. If the system is feasible, we keep a point u in the feasible
region. we find the lowest point p of the upper envelope of the upper halfspaces in S under the condition that the point
is in the feasible region. The only difference from the solution in Sect. 3 is that if we solve a ðd � 1Þ-dimensional
problem in a vertical hyperplane and find out that the problem is infeasible in the hyperplane, we decide p is on the
same side of the hyperplane as u.

Thus, it suffice to show how to check feasibility. Let us consider GþðxÞ ¼ max1�i�m fiðxÞ, G�ðxÞ ¼
minmþ1�i�n fiðxÞ, and GðxÞ ¼ GþðxÞ � G�ðxÞ. Clearly, GðxÞ is a convex function. The system is feasible if and
only if there is a point p inL aboveU, in other words, satisfying that GðpÞ � 0. Thus, this is a parametric optimization
problem, and we can apply the multidimensional prune-and-search strategy. If we randomly select a hyperplane, and
execute the multidimensional searching in the arrangement on it. If the hyperplane defines a upper-halfspace, half of the
upper-halfspaces are eliminated (in expectation) implicitly; otherwise, half of the lower-halfspaces are eliminated. The
expected number of eliminated halfspaces is m2=2nþ ðn� mÞ2=2n � n=4. Hence, the prune-and-search works, and we
obtain the proposition. �

Next, we consider the case where we have a set of general convex objects Q1;Q2; . . . ;Qn, and would like to detect
whether they have a common intersection point or not. We take a representative point qi in each Qi. We assume that the
objects are defined by constant degree algebraic equations. For any point x in the space, consider the half-line ‘i
emanated from qi through x, and define a separation distance dsepðx;QiÞ ¼ dðx; qiÞ=dðqi; riðxÞÞ, where dðÞ is the
Euclidean distance and riðxÞ is the intersection point of ‘i and the boundary of Qi. If ‘i does not intersect the boundary
(this may occur only if Qi is an unbounded region), we set dsepðx;QiÞ ¼ 0. The intersection [n

i¼1Qi 6¼ ; if and only if
there exists a point x satisfying that max1�i�n dsepðx;QiÞ � 1.

Under the assumption that we can compute dsepðx;QiÞ in Oð1Þ time for each i, and the comparison of dsepðx;QiÞ and
dsepðx;QjÞ can be done in Oð1Þ time for each i and j, we have the following:

Theorem 4.2. We can detect whether [n
i¼1Qi ¼ ; or not in Oð

ffiffiffi
n

p
logd � log nÞ time with a high probability in the

quantum model.

Proof. The function max1�i�n dsepðx;QiÞ is a convex function, and for a given p, max1�i�n dsepðp;QiÞ can be
computed in Oð

ffiffiffi
n

p
log nÞ time with a probability 1� n�c. Hence, we can solve the problem as a parametric

optimization problem to have the time complexity. �

We finally consider the case where each Qi ði ¼ 1; 2; . . . ;mÞ is given as the convex hull of a point set Pi. We assume
that the total of the numbers of the points in Pi (i ¼ 1; 2; . . . ;m) is n. In this case, if we can compute the facet
representation of Qi, we can apply the method given above; however, it needs �ðnÞ time even in the two-dimensional
case (even in the quantum model), and much more expensive if d � 4. Instead, we solve the problem without
constructing convex hulls explicitly as follows:

Theorem 4.3. We can detect whether [m
i¼1ConvðPiÞ ¼ ; or not in Oð

ffiffiffi
n

p
log2d � log nÞ time with a high probability in

the quantum model. Here, n ¼
Pm

i¼1 jPij.

Proof. As the representative point of Qi ¼ ConvðPiÞ, we take an arbitrary point qi 2 Pi for each i ¼ 1; 2; . . . ;m. For a
given point x in the space, it suffices to compute the distance dsepðx;QiÞ. For the purpose, we need to find the point riðxÞ
(the intersection point of the halfline emanating from qi through x on the boundary of the convex hull). This is indeed
the dual of the LP problem. and thus we can obtain the theorem. �

4.3 Convex hull computation

Consider the problem of computing the convex hull ConvðSÞ of a set S of n points in the d-dimensional space. This is
a fundamental problem, and an Oðnbd=2cÞ time algorithm, which is optimal in the worst case, is known. Our interest is on
the output sensitive computation. See [21] for a survey of convex hull algorithms.

Let M be the number of faces of ConvðSÞ. Cole et. al. gave a method based on hand probing oracle, where a hand
probing is indeed an extremal query. In the algorithm, we can compute the convex hull with OðMLðnÞÞ time, where LðnÞ
is the time for the extremal query. Moreover, Seidel gave an Oðn2 þM log nÞ time algorithm, and Matousek improved
its first term to n2�2=bðdþ2Þ=2c. One important operation in Seidel’s algorithm is to detect whether a point S is a vertex of
convðSÞ or not. This is the dual of the linear programming query, which, as we have seen, can be performed
Oð

ffiffiffi
n

p
log2d�1 nÞ time.

Hence, we have the following:

Theorem 4.4. ConvðSÞ can be computed in OðminfM
ffiffiffi
n

p
log n; n1:5 log2d�1 nþM log ngÞ time in the quantum model

134 SADAKANE, SUGAWARA and TOKUYAMA



with a high probability.

If M is small, the time complexity may become sublinear. For example, if the point set is uniformly distributed in a
(two-dimensional) disk, the expected number of M is Oðn1=3Þ [5], and hence the expected time complexity becomes
Oðn5=6 log nÞ.

As the dual problem of the convex hull, we have the following:

Corollary 4.3. Let A be an arrangement of n hyperplanes in the d-dimensional space. Given a point p, we can
construct the cell of A containing p in OðminfM

ffiffiffi
n

p
log n; n1:5 log2d�1 nþM log ngÞ time in the quantum model with a

high probability, where M is the number of faces in the cell.

4.4 Separation query and convex programming

Let S be a set of n regions in the d-dimensional space, and consider the following separation query: Given a query
point p, if p is in the intersection of the region of S, report that fact, otherwise, report a region that does not contain p.
Note that if each region is a halfspace, this can be considered as the dual of the extremal query (with a slight
modification).

Lemma 4.3. If it can be detected whether p is contained in each region of S in Oð1Þ time, the separation query can be
done in Oð

ffiffiffi
n

p
log nÞ time with a high probability.

The ellipsoid algorithm for solving a convex programming problem is based on the separation queries. Thus, we can
speed up the ellipsoid algorithm by using the quantum model. In particular, for the feasibility check problem of the
constant dimensional linear programming problem, the number of calls of separation queries is Oðlog �Þ, if each entry
of the constraint matrix is represented as a quotient number of two integers whose absolute values are bounded by �.
We can solve an (optimization version of) linear programming problem by calling the feasibility check Oðlog �Þ time.
Hence, we have the following:

Proposition 4.2. A constant-dimensional linear programming problem can be solved in Oð
ffiffiffi
n

p
log n log2 �Þ time in the

quantum model.

The above time complexity is better than Theorem 4:1 if d is large and � is small, although we do not know how to
convert it into a strongly polynomial one; Indeed, it is a big (and widely considered to be difficult) open problem how to
convert the ellipsoid method into strongly polynomial in the usual RAM model computation.

5. Intersection Detection and Proximity Problems

We can solve some intersection problems and proximity problems by using another type of quantum algorithms; In
one-dimensional case, given a set of n points on a line, the problem to detect a pair of ‘‘intersecting’’ points (points at
the same position) is called the element distinctness problem. Buhrman et al. [8] gave a one-sided bounded error
quantum algorithm solving the element distinctness problem in Oðn3=4 log nÞ time. The algorithm is based on a quantum
version of the birthday trick, which is a basic strategy in randomized algorithms. We can apply the same strategy to
some geometric problems. Because of space limitation, we only list results, and details will be given in a separate paper
[19].

Theorem 5.1 (Segment intersection detection). Given a set S of n line segments in the plane, we can detect whether
S has a pair of intersecting segments in ~OOðn7=8Þ time in the quantum model, where ~OO is the Big-O notation ignoring
polylogarithmic factors.

Theorem 5.2 (Nearest pair computation). Given a set S of n points in the Rd, we can compute a pair of points of S
with the minimum distance in Oðn3=4 log2 nÞ time for d ¼ 2, and in ~OOðn1�1=4dd=2eÞ time for d � 3.

Theorem 5.3 (Hausdorff distance computation). Given two convex polygonal bodies P and Q in the plane, we can
compute the Hausdorff distance dðP;QÞ in Oðn7=8 log2 nÞ time. Here, the Hausdorff distance is defined by
dðP;QÞ ¼ inff�jP � Qþ �B;Q � Pþ �Bg, where þ is the Minkowski sum and B is the unit disk.

6. Concluding Remarks

We have considered two types of problems: (1) geometric optimization problems considered as a minimization of
convex objective functions in parameters, and (2) geometric version of the element distinctness problem. The solutions
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are depending on Grover’s data search algorithm; however, we can notice difference between solutions of problems of
(1) and those of (2). In precise, the solutions for problems of (2) needs higher space complexity and mechanism to
construct data structures such as Voronoi diagrams (details will be given in [19]), whereas those of (1) only need
Grover’s algorithm. It is desired to develop many useful subroutines to attack geometric problems by the quantum
computing model. On the other side, there are several geometric problems with linear lower bounds; for example,
counting range searching query cannot be done in sublinear time without preprocessing in the quantum model (we can
apply Ambanis’s lower bound technique [3]).
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