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Reduction of Finite Topological Spaces
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In this paper, we define two reductions of finite topological spaces. Our reductions are the processes to decrease the num-
ber of points of a finite topological space without changing the homotopy groups of the space. Indeed, there is a weak
homotopy equivalence from the original space to its reduction.
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1 Introduction

McCord ([2]) showed that exactly the same singular homology groups and homotopy groups can occur in

finite topological spaces as in finite simplicial complexes. The following theorem are easily induced from
McCord ([2], Th. 2).
Theorem 1.1. (McCord [2]). There exists a correspondence that assigns to each finite topological Ty-space X
a finite simplicial complex " (X), whose vertices are the points of X, and a weak homotopy equivalence fx:
| (X)| = X. Each continuous map ¢: X — Y between finite topological Ty-spaces corresponds to a simplicial
map | A (@)|: 1A (X)) = | A (Y),and @ ° fx=Ffy o A (p)l.

Stong ([4]) also showed that each finite topological To-space X has a subspace Xy, called a core, which is a
deformation retract of X. Finite topological Tj-spaces have the same homotopy type if and only if they have
homeomorphic cores. So we can classify the homotopy types of finite topological Ty-spaces by using the homeo-
morphic types of their cores.

We shall show in this paper that #" (X) collapses simplicially to 2" (X,) for any finite topological Ty-space X
and its core X, (see Theorem 3.3). In particular any finite topological Ty-space corresponding to a non collapsi-
ble simplicial complex is a core.

The purpose of the present paper is to define the process to reduce the number of points of a core without
changing its homotopy groups. For this purpose, we prove the following our main theorems (Theorem 1.2 and
1.3) and define two reductions called open reduction and closed reduction.

Theorem 1.2. Let X be a finite topological Ty-space. Let x € X be a point such that the intersection of U, (cf.
§2) and U, is path-connected and the homotopy groups of the intersection vanish in dimensions greater than
zero for all y € X. Then the identification p: X = X/ U, is a weak homotopy equivalence.

The process of making X/ U, from X is called open reduction and described by or(x).

Theorem 1.3. Let X be a finite topological Ty-space. Let x e X be a point such that the intersection of Cx (cf.
§2) and C, is path-connected and the homotopy groups of the intersection vanish in dimensions greater than
zero for all y ¢ X. Then the identification p: X — X/ Cy is a weak homotopy equivalence.

The process of making X/ C, from X is called closed reduction and described by cr(x).

It is unknown whether by a sequence of the reductions or and cr, each finite topological Ty-space can be
reduced to the smallest space having the same homotopy groups. For example, however, we obtain such
smallest spaces for S! and S? (see §4). In §2, we quote the McCord’s results in [2] and Stong’s results in [4]. In
§3, we study further properties of finite topological T,-spaces in relation to finite simplicial complexes. In par-
ticular, we will see that the homotopy type classification of finite topological To-spaces is not a good approach to
investigate the homotopy types of the corresponding simplicial complexes. In §4, we introduce two reductions
or and cr. Finally, we give examples of the smallest finite topological Ty-space obtained from a core by using the
reductions or and cr. .

2 Properties of Finite Topological Spaces

In this paper, we consider finite topological Ty-spaces, where a finite topological Ty-space means a finite topo-
logical space satisfying the 7, separation axiom: for each pair of distinct points, there exists an open set contain-
ing one but not the other. It is clear that if a finite topological space is Ti-space then it is in fact discrete. To-
spaces would be more interesting.
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In this section, we give a notation for a finite topological space, some definitions and theorems which will be
used in subsequent sections.

Let X be a finite topological Ty-space. For each x € X, let U, be the intersection of all open sets of X contain-
ing x, and let C, be the closure of x. The collection of all U,, x € X, forms a minimal base for the topology of
X. For Ty-spaces, the partial order by inclusion on the minimal base induces a partial order, so that for points x,
yof X, x < yis equivalent to U, C U, (or x € U,). Then X is a Ty-space if and only if x < y and y < x implies
y = x. Let X and Y be finite topological To-spaces. Let f: X — Y be a function. fis continuous if and only if x
=< y implies f(x) =< f(»).

For a finite topological spaces X = {1, 2,- - -, n}, the relation matrix M = (m;;) of X is defined by

{mij =1 je G
m;; = 0 otherwise.

For instance, if X is the set {1, 2} with the system of open sets {0, {1}, {2}, {1, 2}}, then the relation matrix is

o)

Another example is the set X = {1, 2} with the system of open sets {0, {1}, {1, 2}}, whose the relation matrix

is
11
o)
If M = (my;) is the relation matrix of a finite topological Ty-space X = {1,2,---,n} andif B; = {i e XImy;

= 1}, then B; = U; (see [3], Th. 1).
A continuous map f: X — Y is a weak homotopy equivalence if the induced maps

Jo: mi(X, x) = m:(Y, f(x))

are isomorphisms for all x in X and all / = 0 (for i = 0, ‘“isomorphism’’ simply means a bijection). In the fol-
lowing, if K is a simplicial complex, | K| always denotes the underlying polyhedron. All maps of spaces are as-
sumed to be continuous.

The following two theorems are easily induced from McCord ([2], Th. 2 and Th. 3).

Theorem 2.1. There exists a correspondence that assigns to each finite topological Ty-space X a finite simplicial
complex A" (X), whose vertices are the points of X, and a weak homotopy equivalence fx: |4 (X)| — X. Each
continuous map ¢: X — Y between finite topological Ty-spaces corresponds to a simplicial map |A (¢)
il (X)) = 1o (Y)| such that ¢ ° fx=fy o | A (p)].

Theorem 2.2. There exists a correspondence that assigns to each finite simplicial complex K a finite To-space
& (K), which consists of the barycenters of the simplices of K, and a weak homotopy equivalence fx: |K| —
% (K). Furthermore, to each simplicial map v: K — L, we can associate a map % (¢): & (K) — % (L) such that
& () ° fx is homotopic to fr ° |yl.

It will be readily seen from the construction below that both 4" and % are covariant functors. In fact, the cor-
relation of the functors /" and % are represented by the equation K’ = (& (K)), where K’ is the first barycen-
tric subdivision of the simplicial complex K.

Definition of 7" (X). Let X be a finite topological Ty-space. The vertices of the complex # (X)) are the points
of X. The simplices of /" (X) are the totally ordered subsets of X.

If Y is a subspace of the finite topological To-space X, then # (Y) is a full subcomplex of ¢ (X).
Definition of the map fx: | (X)| > X. Ifue |4 (X)| (where X is a finite topological To-space), then u is
contained in a unique open simplex (xo, X1, -+, X;) Where xo < x; < -+ < X, in X. We let fx(u) = xo.
Definition of % (K). Let K be a finite simplicial complex. For each simplex o of K, let b(g) be the barycenter
of g. Let & (K) = {b(o)|loc € K}. Now & (K) has a partial order defined by b(c) < b(c’) if ¢ C ¢’. Thus
& (K) becomes a finite topological Ty-space.

Definition of the map fx: |K| = % (K). Let the map fx be simply the map fz «x)-

In the remainder of this section, we review the homotopy theory of finite topological spaces from [4].

Let X be a finite topological To-space. We say that x € X is linear if there exists y € X with y > x such that z
> x(z € X)implies z = y, colinear if there exists y € X withy < xsuchthatz < x(z € X) impliesz < y. A
finite topological Ty-space X (resp. (X, p)) is called a core if neither linear points nor colinear points lie on X
(resp. X\ {p}). A core of a finite topological To-space X (resp. (X, p)) is a subspace X, of X (resp. (X, p)) such
that X, (resp. (Xo, p)) is a core and such that X, (resp. (Xo, p)) is a strong deformation retract of X (resp. (X, p)).
For (X, p), the point p is called the base point of X. By the statement that (Xy, p) is a strong deformation retract
of (X, p), we mean the existence of a strong deformation retraction of X to X, preserving p.

Theorem 2.3. A finite topological Ty-space X (resp. (X, p)) always has a core.
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Theorem 2.4. Let X (resp. (X, p)) be a core. Then any map f: X — X (resp. f: X — X preserving p) which is
homotopic to the identity (resp. identity relative to base points) is the identity.

Theorem 2.5. Let X, Y (resp. (X, p), (Y, q)) be finite topological Ty-spaces with cores Xo, Yo. Then X (resp.
(X, p)) is homotopically equivalent to Y (resp. (Y, q)) if and only if X, (resp. (Xo, p)) is homeomorphic to Y,
(resp. (Yo, q)).

By the statement (X, p) is homeomorphic to (Y, g), we mean the existence of a homeomorphism of X onto Y
which maps p to gq.

Proposition 2.6. Both U, and C, are contractible.
Proposition 2.7. Connectedness and path-connectedness are equivalent for finite topological Ty-spaces.

The following example shows that the homotopical classifications of finite topological Ty-spaces are too strict
to investigate the homotopy type of simplicial complexes. This is why we introduce the concept of reduction.
Example 2.8. Let X, Y be finite topological Ty-spaces, where X consists of four points and Y consists of six
points. The relation matrices of X and Y are the following.

Y
X 1 00110
1 011 010101
0111 001011
0010 000100
0 0 01 000O0T10O0
0 00 0O0°1

Both A (X) and A" (Y) are the triangulations of S*. In particular, |4 (X)| is homeomorphic to | (Y)I,
though X is not homeomorphic to Y. Moreover X is not homotopically equivalent to Y because X and Y are
themselves cores.

3 Further Properties

In this section, we investigate more about finite topological Ty-spaces and the associated simplicial complexes.
By Theorem 3.3, we will see that the simplicial complex 2 (X)) associated with a finite topological Ty-space X
simplicially collapses to the simplicial complex ¢ (X,) associated with a core X, of X.

Proposition 3.1. For a finite topological Ty-space X, we have the following:

@ U={ye Xly =x}.

) C.={ye Xly =x}.

Proof. By the definition of the order of X, (i) is straightforward. To see (ii), put D, = {y € X|y = x}. Then
U,ND, = P for all z € X\D,. This means that D, is closed. Hence C, is included by D,. For contradiction, as-
sume that z € D\ Cs. Then U, N C, = @. But U, includes x because z = x. This is a contradiction. Thus D,\ Cyx
= ¢. O

Let X, X’ be finite topological Ty-spaces such that X and X’ coincide set-theoretically, and that X and X’
have inverse order. Then the identity map id: X — X" is not always continuous. Therefore, X is not necessarily
homeomorphic to X’ and the same thing is true also for homotopy equivalence. However, the following the-
orem holds for such spaces.

Theorem 3.2. Let X and X' be the spaces just as stated above. Then A (X) and A" (X') are isomorphic.
Proof. By the definition of the X", it is clear that the vertices of 2 (X) are the vertices of ¢ (X”). Further-
more, let o be a simplex of o#" (X). Consider the corresponding totally ordered subset S of X. Clearly, S is also
totally ordered in X", because X’ has the inverse order of X. Hence, o is again a simplex of # (X’). O

Before stating the next theorem, we recall the definitions of an elementary simplicial collapse and a simplicial
collapse.

Let K, C K be simplicial complexes. Suppose A and a4 are not in K, but are simplices of K, where a is a ver-
tex of Ky, and suppose further that K = Ky U {A} U {aA4}. Here, a4 denotes the join of a and A. Then we say
that K collapses to K, by an elementary simplicial collapse, and we write K ™ * K,. We say that K collapses sim-
plicially to Ky, denoted by K “* K,, if there is a finite sequence K = K, N* K, % - -+ N* K, (see [1]).
Theorem 3.3. Let X be a finite topological To-space and X, be a core of X. Then " (X) collapses simplicially
to A (Xo).

Proof. In the proof of Theorem 2.3, Stong ([4], Th. 2) repeatedly used the fact that if x is linear or colinear
then X\ {x} is a strong deformation retract of X. For the proof of Theorem 3.3, it suffices to show that A" (X)
collapses simplicially to " (X\{x}). We only treat the case where x is linear. Because if x is colinear, the proof
is straightforward from Theorem 3.2 and the case where x is linear. Let y be a point of X with y > x such that z
> ximplies z = y. Let o4, 03, * *, 0% be the simplices of 2#" (X) having the vertex x. The suffix is always chosen
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in such a way that i < j implies dim o; < dim g;. Clearly oy has the vertex y. Let n be the dimension of agx. Let
Z< < <5 <Xx<Yy<Zi+1 < - < Za—1 be the vertices of gx. Let g, be the (n — 1)-simplex which
has the vertices z1 <z < -+ < 2; < X < Zi+1 < *** < Zy-1. Then oy, is included by just one n-simplex a.
The reason is the following. A simplex which includes o , must have the vertices 21 < 2, < - <z, < x < )’
< Zit1 < -+ < Zn—1. But ¥’ must coincide with y by the linearity of x. Hence oy, is included just by ag%. This
means that the process of removing simplices {o%, gx,,} is an elementary simplicial collapse.

This process can be applied to all n-simplices of 7y, g2, - -, 6. So let K| be the simplicial complex obtained by
removing all such n-simplices from & (X') by such elementary simplicial collapses. Some (z — 1)-simplices are
also removed.

Similarly let 71, 7, - -, 7, be the simplices of K; which has the vertex x. Then dim 7, = n — 1. All these sim-
plices have the vertex y. The reason is the following. The (n — 1)-simplex 7; (1 < i < /) which does not have the
vertex y is included in the n-simplex yt;. Then {7;, y1;} is already removed by the previous process. In particular,
every (n — 1)-simplex 7; has the vertex y. Let 7., be the (n — 2)-face of 7, which does not have the vertex y. Clear-
ly 7, is included only in 7;. Therefore the process of removing simplices {7, 7;,} is an elementary simplicial
collapse.

Repeating this process, we obtain the simplicial complex K, which contains no simplices having the vertex x.
Then o (X\{x})is equal to K,,, because o (X \ {x}) is the full subcomplex. So " (X) N (X\{x}). Immedi-
ately we have " (X) N (Xp). O
Corollary 3.4. Let X and Y be finite topological Ty-spaces which are homotopically equivalent. Then A (X)
and A (Y') have the same simple-homotopy type.

Proof. By Theorems 3.3 and 2.5, the proof is straightforward. O

Cor. 3.4 shows that the homotpy type classification of finite topological Ty-spaces is finer than the simple
homotopy type classification of the corresponding simplicial complexes. Thus it is too strict to investigate the
homotopy types of the corresponding simplicial complexes. The following example shows that two triangula-
tions of the same manifold S', which are not collapsible, correspond to finite topological spaces which are not
homotopically equivalent.

Example 3.5. Let K, be a triangulation of S* which has just three 1-simplices and let K, be a triangulation of S!
which has just four 1-simplices. The relation matrices of % (K,) and % (K.) are the following:

& (K3)

% (K1) 10001100
100110 01 001001
010 01 00100110
001011 00010011
000100 000010°O0TO0]
000010 0000O0T1U0O0O0
0000O0O0°1 0000O0UO0OTI1O

0000O0O0U 0?1

& (Ky) and % (K) are cores, because K, and K, are not collapsible. Clearly, % (K,) is not homeomorphic to
& (K>). Hence % (K1) is not homotopically equivalent to % (K,). However, | K| is homotopically equivalent to
|Kz|. Moreover |K,| is homeomorphic to 1K,|.

4 Reduction of Finite Topological Spaces

In the previous section, we study the relation between a homotopy of a finite topological T,-space and a sim-
plicial collapse of a finite simplicial complex. Cor. 3.4 in particular implies that the homotopy type classification
of finite topological Ty-space is too strict to investigate the homotopy type of a simplicial complex. There is a
case that finite topological Ty-spaces X and Y have the distinct hotomopy types, but simplicial complexes £ (X)
and ¢ (Y) have the same homotpy type. In this section we will consider a weak homotopy equivalence between
finite topological spaces.

A quotient space of a topological space X is a quotient set X’ of X topologized by the topology coinduced by
the projection map X — X’. If A C X, then X/ A will denote the quotient space of X obtained by identifying
all of A4 to a single point. We call the natural projection p: X = X/ A the identification.

Now, we have Theorem 1.2, one of our main theorems. Before getting into the proof, we induce a theorem
from [2], Th. 6. An open cover % of a space X is said to be basis-likeif xe UNVand U, V € %, there exists
We % suchthatxe WcCc UNYV.

Theorem 4.1. (See KcCord [2]), Th. 6. Let p: E = B be a map between finite topological Ty-spaces E and B
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Jfor which there exists a basis-like open cover % of B satisfying the following condition: For each U ¢ %, the res-
triction p|p~'(U): p~Y(U) = U is a weak homotopy equivalence. Then p itself is a weak homotopy equiva-
lence.

Proof of Theorem 1.2. Let % = {U,|ly € X/U,}. Then % is a basis-like open cover. It suffices to show that

plp~'(U):p~'(U,)) » U,

is a weak homotopy equivalence for all y € X/ U,. If U,Np(x) = @, then p~'(U,) = U,, and the above map-
ping is a weak homotopy equivalence. The remainder is the case U, N p(x)#@. In this case p~'(U;) = U,V U,
C X. The proof is reduced to showing that 7;(U,U U,) = 0 (i = 1) and that U, U U, is path-connected, because
U, C X/ U, is contractible.

Path-connectedness is clear, because U,, U, and U, N U, are path-connected. We next observe that n;(U,U
U,) is isomorphic to m:(1" (U, U U,)|). We therefore consider |4 (U, U U,)I.

H(UUU) = A (U)UA (Uy) and H(U.NU,) = A (U)NA (U).

By van Kampen’s theorem, we obtain 7;(12#" (U, U U,)|) = 0. By Mayer-Vietoris exact sequence, we see that
the homology groups of | (U,UU,)| are zero in dimensions greater than zero. Then we have m:(lX
(U, U U)I) = 0 (i = 1) by the Hurewicz isomorphism theorem. This implies that 7;(U,U U,) = 0 (i = 1). Thus
plp~Y(U,) is also a weak homotopy equivalence in this case. This completes the proof. O

This means that we can obtain a new finite topological Ty-space with fewer points than the original space and
with the same homotopy groups. Remember that the new space is not always homotopically equivalent to the
original space.
Theorem 4.2. Let X be a finite topological Ty-space. Let x € X be a point as in Theorem 1.2. Let p: X =
X/ U, be the identification. Then the map | A (p)|: 14 (X)| = | (X/Uy)| is a weak homotopy equivalence.
Proof. The following diagram is commutative.

1# (p)]
| (X)) — |AH(X/UpI

KoL L fu,
X —_— > X/ U:

This immediately implies p, © fxx = fx/us ° | (p)|s. By Theorems 2.1 and 1.2, we see that the maps p,
Jxx and fx/u_, are isomorphisms, and so is |4 (p)|,. O

The homotopy equivalence between | ¢ (X)| and | (X/U,)| follows immediately from Theorem 4.2, be-
cause they are CW-complexes. This means that we can obtain a new simplicial complex with fewer vertices than
the original complex and with the same homotopy type.

We have Theorem 1.3, the other one of our main theorems.
Proof of Theorem 1.3. Let X’ be the set stated in Theorem 3.2. By Proposition 3.1, C, is mapped to U, by the
map id: X = X'. If C,N C, C X satisfies a topological condition as above, then U,N U, C X" also satisfies the
condition. Hence this theorem follows from Theorem 1.2. 0

For this theorem, the same property as Theorem 4.2 is also available.
Definition. The process of Theorem 1.2 (resp. 1.3) is called a open (resp. closed) reduction and is written as
or(x) (resp. cr(x)). The following are the examples of spaces which can be reduced to the smallest spaces by
reductions or and cr. V
Example 4.3. The following are examples of such reductions applied to the 6-pointed space, which cor-
responds to the triangulation of S* with just three 1-simplices. In order to understand this easily, we number the
columns of the relation matrices.

& (K)
1 2 3 4 5 6 F(K)/ U,
1 00 011 1 4 5 6
01 0101 1 011
001110 ww|0 1 11
=
000100 0010
000010 0 0 01
0 00 0 01
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% (K)

1 23456 % (K)/ U,
100011 1 235
010101 110
00111070100

—

000100 011 1
000O0T1O0 000 1
0000O0O0 1

As in the above diagram, the finite-topological Ty-space is reduced to 4-pointed space by both reductions. These
4-pointed spaces are the smallest finite topological To-spaces such that there exists a weak homotopy equivalence
of S'.

We easily see that every finite topological To-space corresponding to the triangulation of S! can be reduced to
the 4 points space.
Example 4.4. The following is an example of the reductions applied to the 14-pointed space, which cor-
responds to the triangulation of S* with just four 2-simplices. We again number the columns of the relation
matrices.

¥ (K)
1 23 456 7 8 91011121314
1 0001101001110
01 001010101101
0010011001101 1
0001000111011 1
0000100O0OO0OO0T1T1O00
0000O010O0O0OGO0OTI1O0T1D0
00000O0100O0T1O0O0 1] oqs
oy
0000O0O0OO0OTI1O0O0GO0OTI1T1FQO0
0000O0O0OOO0OT1O0O0T1OQ0:1
0000O0O0OO0CO0OOTI1O0O0TI'1
0000O0O0O0OO0OOOTI1O0TO0D0
0000O0O0OO0OOOOOT1O0OO0
00000O0O0O0O0OOOOT1O
000O0O0OO0OOOO0OOOTO 01
& (K)/ U
1145 6 8 111213 (& (K)/ Uws)/ Cs
10111111 1145 6 8 13
01111111 101111
00100110 011111
00010101 |an|001000
-3
00001011 001101
0000O0T10O0 001011
00000O0GO0T1UO0 0000011
0 0000O0O0O 0?1

The 6-pointed space is the smallest finite topological space such that there exists a weak homotopy equivalence
of 8% In this example, we need to use both reductions. ‘

In both examples, we see that |7 (X)I, |4 (X/U,)| and |4 (X/C,)| are homeomorphic. So we have a con-
jecture.
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Conjecture. Let X be a finite topological space such that |# (X)| is a manifold. For an open (resp. closed)
reducible point x € X, | (X)!| is homeomorphic to |4 (X/U,)| (resp. |4 (X/Cy)l).
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