A Note on Twisted Linear Actions on a Sphere

Tohl ASOH

Graduate School of Information Science, Tōhoku University, Katahira, Sendai, 980-77, Japan

Received May 13, 1996; final version accepted June 17, 1996

Let G be a Lie group. A TC-pair (ρ, M) of G gives a twisted linear action on a sphere. Assume that $G/\ker \rho$ is non-compact. Then the TC-pairs are equivalent, if the corresponding twisted linear actions are coincides with each other. Hence also so, if the corresponding twisted linear actions are transitive and equivariantly diffeomorphic.

KEYWORDS: Non-compact Lie group action, Sphere, Twisted linear action, Transitive action

1. Introduction

A series of non-compact Lie group actions on a sphere is constructed and studied by F. Uchida [6-8]. Let G be a Lie group. We say that (ρ, M) is a TC-pair of degree $n + 1$ if $\rho: G \rightarrow GL(n + 1, R)$ is a representation and M is a real square matrix of degree $n + 1$ satisfying

\begin{equation}
\forall xMx > 0 \text{ and } \rho(g)M = M\rho(g) \text{ for any } x \in R^{n+1} - \{0\}, \ g \in G,
\end{equation}

i.e., the transversality and the commutative conditions. Then we have a smooth G-action $\phi: G \times S^a \rightarrow S^a$.

\begin{equation}
\phi(g, x) = (\exp t(g, x)M)\rho(g)x \in S^a \text{ for } (g, x) \in G \times S^a,
\end{equation}

where $t: G \times S^a \rightarrow R$ is a smooth function. This action ϕ is called the twisted linear action of G on S^a determined by a TC-pair (ρ, M) (cf. [6; §1.2]).

We say that TC-pairs (ρ_i, M_i) ($i = 1, 2$) are equivalent if there exist $A \in GL(n + 1, R)$ and $c > 0$ such that $\rho_i(g) = A^{-1}\rho_2(g)A(g \in G)$ and $cM_i = A^{-1}M_2A$.

Thus the following holds (cf. [6; Lemma 1.2]).

\begin{equation}
\text{If TC-pairs } (\rho_i, M_i) \ (i = 1, 2) \text{ are equivalent, then the corresponding twisted linear actions } \phi_1 \text{ and } \phi_2 \text{ are equivariantly diffeomorphic to each other.}
\end{equation}

We consider the question whether the converse of this fact is true. In this note we state a partial affirmative answer to this question.

Assume that G is a connected semi-simple Lie group. Then we have the following.

THEOREM 1.4. Let ϕ_i be the twisted linear action determined by a TC-pair (ρ_i, M_i) of degree $n + 1 \geq 3$ ($i = 1, 2$). Assume that $G/\ker \rho_i$ is non-compact. Then $\phi_1 = \phi_2$ implies $(\rho_1, M_1) = (\rho_2, cM_2)$ for some $c > 0$.

As a corollary of this theorem, we obtain the following.

COROLLARY 1.5. Suppose that the twisted linear action ϕ_i of (ρ_i, M_i) is transitive on S^a ($n \geq 2$), and that $G/\ker \rho_i$ is non-compact ($i = 1, 2$). Then (ρ_1, M_1) and (ρ_2, M_2) are equivalent if ϕ_1 is equivariantly diffeomorphic to ϕ_2.

In §2 we state some results on twisted linear actions on a sphere. After preparing some lemmas in §3, we show Theorem 1.4 in §4 and Corollary 1.5 in §5.

2. Twisted linear actions

Let G be a Lie group, and \mathfrak{g} be the Lie algebra of G. Denote by $\mathfrak{x} (S^n)$ the Lie algebra of smooth vector fields on S^n. For a smooth G-action ϕ on S^n, the following is known (cf. [5; Ch. II, Theorem III]).

\begin{equation}
\text{The map } \phi^*: \mathfrak{g} \rightarrow \mathfrak{x} (S^n), \text{ given by }
\phi^*(X), h = \lim_{r \to 0} \{ h(\phi(\exp (-rX), x)) - h(x) \}/r \ (X \in \mathfrak{g})
\end{equation}

for any smooth function h around $x \in S^n$, is a Lie algebra homomorphism.
In the rest of this section, assume that there is given a TC-pair \((\rho, M)\) of degree \(n + 1\), and let \(\phi\) be the twisted linear action determined by \((\rho, M)\).

The differential of \(\rho\) induces the representation \(d\rho: g \to g(n + 1, R)\). For each \(X \in g\) we set

\[
\gamma_X(x) = 'xd\rho(X)x \quad \text{and} \quad \eta(x) = 'xMx > 0 \quad (x \in R^{n+1} - \{0\}),
\]

where `'x` denotes the transposed of \(x\).

Lemma 2.2. For each \(X \in g\)

\[
\phi^+(X)_x = -d\rho(X)x + (\gamma_X(x)/\eta(x))Mx \in T_xS^* \subset R^{n+1} \quad (x \in S^n).
\]

Proof: For \(X \in g\) and \(x \in S^n\) we have \(\phi(\exp rX, x) = (\exp t_x(x)M)(\exp rX)x \in S^n(r \in R)\) by (1.2), where \(t_x(x) = t(\exp rX, x)\). Hence by (2.1)

\[
-\phi^+(X)_x = d\rho(X)x + (dt_x(x)/dr)(0)Mx \in T_xS^*,
\]

since \(d\rho(X) = (d\rho(\exp rX)/dr)(0)\). Therefore (2.3) follows immediately from `'\(\phi^+(X)_x = 0\). ■

Denote by \(\langle , \rangle\) the standard metric on \(R^{n+1}\). For a vector field \(X = \sum_{i=1}^{n+1} h_i(\partial/\partial x_i)\) on \(S^n(\subset R^{n+1})\), the divergence \(\text{div} X\) and the Riemannian connection \(\nabla_vX(v \in T_xS^n)\) of \(X\) are given by the following formulas.

\[
\text{div} X = \sum_{i=1}^{n+1} \partial h_i/\partial x_i \quad \text{and} \quad \nabla_vX = \sum_{i=1}^{n+1} v(h_i)(\partial/\partial x_i) + \langle X, v \rangle \sum_{i=1}^{n+1} x_i(\partial/\partial x_i).
\]

For each \(X \in g\) and \(x \in R^{n+1} - \{0\}, y \in R^{n+1},\) we put

\[
\alpha_X(x, y) = (1/\eta(x))\gamma(y(d\rho(X) + 'd\rho(X) - (\gamma_X(x)/\eta(x))(M + 'M))x.
\]

Obviously \(\alpha_X(x, x) = 0\) and \(\alpha_X(x, y)\) is linear on the second factor \(y\). Furthermore we have

\[
v(\gamma_X(\eta) = \alpha_X(x, v) \quad \text{for} \quad v \in T_xR^{n+1} = R^{n+1}.
\]

Lemma 2.6. For each \(X \in g\) and \(x \in S^n, v \in T_xS^n\)

\[
(\text{div } \phi^+(X))(x) = \langle \gamma_X(x)/\eta(x), X \rangle \quad \text{and} \quad \text{Trace } M = \text{Trace } d\rho(X) - (\phi^+(X)_x, \log \eta),
\]

\[
(\nabla_v\phi^+(X))(x) = -d\rho(X)v + (\gamma_X(x)/\eta(x))Mv + \alpha_X(x, v)Mx + \langle v, \phi^+(X), x \rangle x.
\]

Proof: By routine calculations, the lemma follows from Lemma 2.2 and (2.4–5). ■

Lemma 2.9. \(\phi^+(X) = 0\) if and only if \(d\rho(X) = cM\) for some \(c \in R\).

Proof: The sufficiency is clear. Suppose \(\phi^+(X) = 0\). By (2.7) we get \(\gamma_X(x)/\eta(x) = \text{Trace } d\rho(X)/\text{Trace } M = c,\) and the lemma follows immediately from (2.3). ■

3. Preliminaries

Let \((\rho, M)\) be a TC-pair of degree \(n + 1 \geq 3\). In this section, we assume that \(g\) is a non-compact semi-simple Lie algebra, and that \(d\rho: g \to \mathfrak{sl}(n + 1, R)\) is a faithful representation, i.e., \(\ker d\rho = \{0\}\).

We have a direct sum decomposition (a Cartan decomposition)

\[
g = \mathfrak{t} \oplus \mathfrak{p},
\]

where \(\mathfrak{t}\) is a maximal compact subalgebra and \(\mathfrak{p} \neq \{0\}\) is a vector subspace. The following is known (cf. [3; Ch. IX, Theorem 7.4]).

(3.1) \(g\) contains a subalgebra isomorphic to \(\mathfrak{sl}(2, R)\), and hence \(\dim \mathfrak{p} \geq 2\).

Since \((M + 'M)/2\) is symmetric and positive definite, we find a square matrix \(L\) satisfying \((M + 'M)/2 = LL^\top\). Take \(X \in g\). Let \(a_i \in R\) and \(L_{vi} (i = 1, 2, \ldots, n + 1)\) be the eigen-value and the eigen-vector of \(L^{-1}(d\rho(X) + 'd\rho(X))L^{-1}/2\), respectively, such that \(\langle L_{vi}, L_{vj} \rangle = \delta_{ij}\). Then

\[
(d\rho(X) + 'd\rho(X))_{vi} = a_i(M + 'M)v_i \quad (1 \leq i \leq n + 1).
\]

Clearly we have \(\eta(v_i) = 1, a_i = \gamma_X(v_i)\) and

\[
\alpha_X(v_i, x) = 0 \quad \text{for any} \quad x \in R^{n+1} - \{0\} \quad (1 \leq i \leq n + 1).
\]

Now we prepare some lemmas and a proposition.
Lemma 3.3. \[a_1 r_1 + a_2 r_2 + \cdots + a_{n+1} r_{n+1} = 0 \] for \(r_i = \|(M + 'M) v_i/2\|_2 \quad (1 \leq i \leq n+1). \)

Proof: Set \(U = (L v_1 L v_2 \cdots L v_{n+1}) \in O(n + 1). \) Hence

\[U^{-1} L (dp(X) + 'dp(X)) L^{-1} U / 2 = U^{-1} L' L U D, \]

where \(D = (a_1 a_2 \cdots a_{n+1}) \) is the diagonal matrix. The diagonal elements of \(U^{-1} L' L U \) is given by \((L v_i) L' L (L v_i) = r_i \) \((1 \leq i \leq n+1). \)

Therefore the lemma follows from (\(\ast \)), since Trace \(dp(X) = 0. \)

Lemma 3.4. Suppose \(0 \neq X \in \mathfrak{p}. \) Then for any \(a_i \) there exists \(a_j \) such that \(a_i \neq a_j. \)

Proof: Assume \(a_1 = a_2 = \cdots = a_{n+1}. \) Thus Lemma 3.3 implies \(a_i = 0 \) \((1 \leq i \leq n + 1), \) and hence \(dp(X) + 'dp(X) = 0. \) Then \(dp(X) = 0, \) because of \(X \in \mathfrak{p}. \) This is contrary to the conditions that \(dp \) is faithful and \(X \neq 0. \)

Lemma 3.5. There exists \(X \in \mathfrak{p} \) such that if \(a_i \neq a_j \) then \(a_k \neq a_j \) for some \(k \neq i. \)

Proof: Assume \(a_1 \neq a_2 = \cdots = a_{n+1} \) for each \(0 \neq X \in \mathfrak{p}. \) By Lemma 3.3 we have \(a_i \neq 0 \) \((1 \leq i \leq n + 1). \) Then the eigen-value of \(dp(X) + 'dp(X) \) is non-zero for each \(0 \neq X \in \mathfrak{p}. \)

Let \(X \) and \(Y \) be linearly independent elements in \(\mathfrak{p} \) by (3.1). From the assumption, the corresponding eigenvalues \(a_i \) and \(b_j \) \((1 \leq i \leq n + 1) \) for \(X \) and \(Y, \) respectively, satisfy

\[a_1 \neq a_2 = \cdots = a_{n+1} \quad \text{and} \quad b_1 \neq b_2 = \cdots = b_{n+1}, \]

where \(n \geq 2. \) Thus we can choose \(0 \neq v \in R^{n+1} \) such that

\[(dp(X) + 'dp(X)) v = a_0 (M + 'M) v \quad \text{and} \quad (dp(Y) + 'dp(Y)) v = b_0 (M + 'M) v. \]

By setting \(Z = b_2 X - a_2 Y \in \mathfrak{p}, \) we obtain \((dp(Z) + 'dp(Z)) v = 0. \) This leads a contradiction.

The proof of the lemma is completed.

For each \(X \in \mathfrak{g} \) and \(x, y \in R^{n+1} - \{0\}, \) we set

\[\beta_X(x, y) = \gamma_x(x) / \eta(x) - \gamma_x(y) / \eta(y). \]

Then \(\beta_x(v_i, v_j) = a_i - a_j \) \((1 \leq i, j \leq n + 1), \) and we have the following.

Proposition 3.6. There exists \(X \in \mathfrak{p} \) satisfying the following two conditions: (i) For any \(i \) there exists \(j \) such that \(\beta_X(v_i, v_j) \neq 0, \) and (ii) If \(\beta_X(v_i, v_j) \neq 0, \) then \(\beta_X(v_k, v_j) \neq 0 \) for some \(k \neq i \) \((1 \leq i, j, k \leq n + 1). \)

Proof: The proposition follows immediately from Lemmas 3.4 and 3.5.

4. Proof of Theorem 1.4

In this section we prove Theorem 1.4. Assume that \(G \) is a connected non-compact semi-simple Lie group. Then the Lie algebra \(\mathfrak{g} \) of \(G \) is also non-compact and semi-simple.

Let \((\rho, M_i) \) be a TC-pair of degree \(n + 1 \geq 3 \) with Trace \(M_i = 1 \) \((i = 1, 2), \) and \(\phi_i \) be the twisted linear action determined by \((\rho, M_i) \) \((i = 1, 2). \) We use the notations \(\gamma_X, \eta_i, \alpha_X, \alpha_X^{(i)} \) and \(\beta_X^{(i)} \) for \(X \in \mathfrak{g} \) and \((\rho, M_i) \) as in the previous sections.

Assume \(\phi_1 = \phi_2. \) Then we have the following lemmas.

Lemma 4.1. For \(X \in \mathfrak{g} \) and \(x, y \in R^{n+1} - \{0\}, \)

\[\alpha_X^{(i)}(x, y) M_i x + \beta_X^{(i)}(x, y) M_i y = \alpha_X^{(i)}(x, y) M_2 x + \beta_X^{(i)}(x, y) M_2 y. \]

Proof: From Trace \(M_i = 1 \) and \(\phi_1 = \phi_2, \) (2.8) implies

\[-dp_1(X) v + (\gamma_X^{(i)}(x) / \eta_1(x)) M_i v + \alpha_X^{(i)}(x, v) M_i x \]

\[= -dp_1(X) v + (\gamma_X^{(i)}(x) / \eta_2(x)) M_2 v + \alpha_X^{(i)}(x, v) M_2 x \]

for \(X \in \mathfrak{g}, x \in S^n \) and \(v \in T_x S^n. \) Since both sides of (\(\ast \)) is linear on \(v \) and \(\alpha_X^{(i)}(x, x) = 0, \) we see that (\(\ast \)) also holds for any \(X \in R^{n+1} - \{0\} \) and \(v \in R^{n+1}. \) Therefore the lemma follows from the definition of \(\beta_X^{(i)}. \)

As in §3, let \(L v_i \) be the eigen-vector of \('L^{-1}(dp_1(X) + 'dp_1(X))L^{-1}/2 \) such that \(\langle L v_i, L v_j \rangle = \delta_{ij} \) \((1 \leq i, j \leq n + 1) \) for \(X \in \mathfrak{g}, \) where \((M_1 + 'M_1)/2 = LL \). By (3.2) and Lemma 4.1 we get

\[\beta_X^{(i)}(v_i, v_j) M_i v_j = \alpha_X^{(i)}(v_i, v_j) M_2 v_i + \beta_X^{(i)}(v_i, v_j) M_2 v_i. \]

Consider the following condition for \(X \in \mathfrak{g}. \)

(4.3) (i) For any \(i \) there exists \(j \) such that \(\beta_X^{(i)}(v_i, v_j) \neq 0, \) and (ii) If \(\beta_X^{(i)}(v_i, v_j) \neq 0, \) then \(\beta_X^{(i)}(v_k, v_j) \neq 0 \) for
some $k \neq i$ ($1 \leq i, j, k \leq n + 1$).

Lemma 4.4. Let $X \in p$ with (4.3). Then $\alpha_X^{ij}(v_i, v_j) = 0$ for any $1 \leq i, j \leq n + 1$.

Proof: (i) If $\beta_X^{ij}(v_i, v_j) = 0$, then (4.2) shows $\alpha_X^{ij}(v_i, v_j) = 0$. (ii) Suppose $\beta_X^{ij}(v_i, v_j) \neq 0$. By (4.3) we have $\beta_X^{ij}(v_k, v_j) \neq 0$ for some $k \neq i$. The equations (4.2) for (v_i, v_j) and (v_k, v_j) imply $\beta_X^{ij}(v_k, v_j)\alpha_X^{ij}(v_i, v_j) = 0$. Therefore $\alpha_X^{ij}(v_i, v_j) = 0$, as desired.

Lemma 4.5. Let $X \in p$ with (4.3). Then

$$\eta_i(v_i)/\eta_2(v_i) = \eta_i(v_j)/\eta_2(v_j) \quad (1 \leq i, j \leq n + 1).$$

Proof: By (4.2) and Lemma 4.4 we have

$$\beta_X^{ij}(v_i, v_j)M_{ij} = \beta_X^{ij}(v_i, v_j)M_{ij}.$$

Hence $\beta_X^{ij}(v_i, v_j)\eta_i(v_i) = \beta_X^{ij}(v_i, v_j)\eta_2(v_i)$.

(i) If $\beta_X^{ij}(v_i, v_j) \neq 0$, then we have $\eta_i(v_i)/\eta_2(v_i) = \beta_X^{ij}(v_i, v_j)/\beta_X^{ij}(v_i, v_j) = \eta_i(v_i)/\eta_2(v_i)$.

(ii) Suppose $\beta_X^{ij}(v_i, v_j) = 0$. By (4.3) we get $\beta_X^{ij}(v_k, v_j) = \beta_X^{ij}(v_k, v_j) \neq 0$ for some k. Clearly $\beta_X^{ij}(v_k, v_j) = \beta_X^{ij}(v_k, v_j)$ follows from $\beta_X^{ij}(v_k, v_j) = 0$. By using (i) we have

$$\eta_i(v_i)/\eta_2(v_i) = \beta_X^{ij}(v_k, v_i)/\beta_X^{ij}(v_k, v_i) = \beta_X^{ij}(v_k, v_i)/\beta_X^{ij}(v_k, v_i) = \eta_i(v_i)/\eta_2(v_i).$$

Then the proof of the lemma is completed.

Proof of Theorem 1.4: (i) By Lemma 2.9, we see that $\phi^+_i(X) = 0$ if and only if $d\rho_i(X) = 0$ for each $X \in \mathfrak{g}$ ($i = 1, 2$). Hence we get $d\rho_1 = d\rho_2$, since $\phi^+_i = \phi^+_2$. Then $g = g' \oplus \ker d\rho_i$ for some semi-simple ideal g' of g. To show our theorem we may assume that $d\rho_i$ is faithful ($i = 1, 2$). From Proposition 3.6 we choose $X \in p$ satisfying (4.3). By (4.3) (i) and Lemma 4.5 we have

$$c = \eta_i(v_i)/\eta_2(v_i) = \beta_X^{ij}(v_i, v_j)/\beta_X^{ij}(v_i, v_j) \quad (1 \leq j \leq n + 1)$$

for some i. Then $M_{ij} = \beta_X^{ij}(v_j, v_j)$ by (4.6), and hence $M_i = cM_2$. Since $\text{Trace} M_i = 1$, we obtain $M_i = M_2$.

(ii) From (2.7) and $\phi^+_i = \phi^+_2$, we get

$$\gamma_X^{ij}(x)/\eta_i(x) - \gamma_X^{ij}(x)/\eta_2(x) = \phi^+_i(X)(\log (\eta_2/\eta_i)) = 0 \quad (x \in S^n),$$

for each $X \in \mathfrak{g}$. Then $d\rho_1(X) = d\rho_2(X) (X \in \mathfrak{g})$ follows from (2.3) and (i). Thus $\rho_1 = \rho_2$ holds, since G is connected.

Therefore $(\rho_1, M_i) = (\rho_2, M_2)$, and the proof of Theorem 1.4 is completed.

5. Transitive actions on a sphere

Let K be the connected subgroup of G with Lie algebra \mathfrak{f}. Then K is a maximal compact subgroup of G. First we notice the result due to F. Uchida [6; Theorem 3.3].

(5.1) For each TC-pair (ρ, M) of degree $n + 1$, there exists a TC-pair (ρ', M') which is equivalent to (ρ, M) and $\rho'(K) \subset O(n + 1)$.

Then, by (1.3), the restricted K-action of a twisted linear action is equivariantly diffeomorphic to a linear action.

Let U be a compact connected Lie group which acts effectively and transitively on S^n ($n \geq 1$), and H be its isotropy subgroup. It is known that such U-action is equivariantly diffeomorphic to a linear action via a representation $v: U \to O(n + 1)$, and further v is unique up to equivalence in $O(n + 1)$. Denote by $N(H, U)$ and $Z(v(U), O(n + 1))$ the normalizer of H in U and the centralizer of $v(U)$ in $O(n + 1)$, respectively. Then the following is known (cf. [1; Lemmas 2.2-3]).

(5.2) $Z(v(U), O(n + 1)) \cong N(H, U)/H \cong S^m$ ($m = 0, 1, 3$).

Let $\text{Homeo}^0(S^n)$ denote the group of U-equivariant homeomorphisms of S^n, which is naturally isomorphic to $N(H, U)/H$. Then we see the following lemma.

Lemma 5.3. The mapping

$$L: Z(v(U), O(n + 1)) \to \text{Homeo}^0(S^n),$$

given by $L(A)(x) = Ax$ ($x \in S^n$) for $A \in Z(v(U), O(n + 1))$, is isomorphic.

Proof: Clearly L is monomorphic, and a monomorphism between S^m ($m = 0, 1, 3$) is isomorphic. Then the lemma follows from (5.2).
Let ϕ_i be the twisted linear action determined by a TC-pair (ρ_i, M_i) of degree $n + 1 \geq 3$ ($i = 1, 2$). Assume that ϕ_i is transitive and that ϕ_i is equivariantly diffeomorphic to ϕ_2. Then we have the following lemmas.

Lemma 5.4. There exists a TC-pair (ρ'_i, M'_i), which is equivalent to (ρ_i, M_i) ($i = 1, 2$), satisfying $\rho'_i | K = \rho'_2 | K: K \to O(n + 1)$.

Proof: By (5.1) we may assume $\rho_i(K) \subset O(n + 1)$ ($i = 1, 2$). From the result of D. Montgomery [4], the restricted K-action $\phi_i | K \times S^n$ is also transitive on S^n, and this is a linear action via $\rho_i | K$. Then $\rho_i | K$ is equivalent to $\rho_2 | K$ in $O(n + 1)$, i.e., $\rho_i(k) = A^{-1} \rho_2(k) A$ ($k \in K$) for some $A \in O(n + 1)$.

Set

$$\rho'_2(g) = A^{-1} \rho_2(g) A \quad (g \in G) \quad \text{and} \quad M'_2 = A^{-1} M_2 A.$$

Therefore (ρ'_2, M'_2) is equivalent to (ρ_2, M_2), and $\rho'_i | K = \rho_i | K$.

The proof of the lemma is completed. ■

Lemma 5.5. Suppose $\rho_i | K = \rho_2 | K: K \to O(n + 1)$. Then there exists (ρ'_i, M'_i), which is equivalent to (ρ_i, M_i), such that the twisted linear action ϕ'_i of (ρ'_i, M'_i) coincides with ϕ_2.

Proof: Let $\Phi: S^n \to S^n$ be an equivariant diffeomorphism from ϕ_i to ϕ_2. Because the K-action on S^n via $\rho_i | K$ is transitive, there exists a connected normal subgroup U of $\rho_i(K)$, which is effective and transitive on S^n. Since $\Phi \in \text{Homeo}^U(S^n)$, we get $\Phi(x) = Ax$ ($x \in S^n$) for some $A \in Z(U, O(n + 1))$ by Lemma 5.3. Set

$$\rho'_i(g) = A \rho_i(g) A^{-1} \quad (g \in G) \quad \text{and} \quad M'_i = AM_i A^{-1}.$$

Thus (ρ'_i, M'_i) is a TC-pair, and let ϕ'_i be the twisted linear action determined by (ρ'_i, M'_i). Then, for $g \in G$ and $x \in S^n$,

$$\phi'_2(g, \Phi(x)) = \Phi \phi_2(g, x) = A(\exp t M_i) \rho_i(g) x = (\exp t M'_i) \rho_i(g) \Phi(x) = \phi'_i(g, \Phi(x)).$$

This shows $\phi_2 = \phi'_i$ as desired. ■

Proof of Corollary 1.5: The corollary follows from Lemmas 5.4–5 and Theorem 1.4.

Therefore the proof of the corollary is completed. ■

References