On the Iterated Martingale Transforms

Litan YAN

Department of Mathematics, Toyama University, Toyama 930-8555, Japan
E-mail address: yan@math.sci.toyama-u.ac.jp

Received June 27, 2000; final version accepted November, 2000

Let $f = (f_n, \mathcal{F}_n)_{n \geq 0}$ be a martingale on some filtered complete probability space (Ω, \mathcal{F}, P) with the usual conditions. We define the iterated martingale transforms $I_n^{(m)}(f) = (I_n^{(m)}, (\mathcal{F}_n)) (m \geq 1)$ with respect to f, the discrete analogues of the iterated stochastic integrals. We obtain the $L^p (1 \leq p)$-estimates of $I_n^{(m)}(f)$

$$\|I_n^{(m)}f\|_p \leq (4mp)^n \|S^n(f)\|_p$$

and we also characterize a continuous martingale by the limit of the iterated martingale transforms.

KEYWORDS: Martingale Transforms, L^p-estimate and the Hermite polynomials

1. Introduction

Let $f = (f_n, \mathcal{F}_n)_{n \geq 0}$ be a martingale defined on some filtered complete probability space (Ω, \mathcal{F}, P) with the usual conditions. It is well-known that Burkholder’s martingale transform g is defined as

$$g_n = \sum_{k=1}^{n} v_{k-1} d_k, \quad n \geq 1, \quad g_0 = 0,$$

where $v = (v_n)_{n \geq 0}$ is an adapted sequence with $v_0 = 0$, $d_0 = 0$ and $d_k = f_k - f_{k-1}$ ($k = 1, 2, 3, \ldots$) is the difference sequence of f. The operator $T_2 : f \rightarrow g$ has become a powerful tool on the study of martingales.

In this note, we consider $I_n^{(m)}(f) = (I_n^{(m)}, (\mathcal{F}_n)) (m \geq 0)$, the particular types of the martingale transforms, defined by inductively

$$I_n^{(m)} = \sum_{j=0}^{n} I_{n-j}^{(m-1)} d_j \quad \text{and} \quad I_0^{(m)} = 0 \quad (m \geq 0)$$

with

$$I_n^{(0)} = 1 \quad \text{and} \quad I_n^{(1)} = f_n \quad \text{for} \; n = 0, 1, 2, \ldots,$$

which are the discrete analogues of the iterated stochastic integrals. Clearly, $I_n^{(m)}(f)$ is a local martingale for every m, and we shall call it an iterated martingale transform of degree m (with respect to martingale $f = (f_n, \mathcal{F}_n)$) from now on.

As usual, we set $f_0 = 0$ and

$$f^*_n = \sup_{j \leq n} |f_j|, \quad f^*_n = \sup_{n \geq 0} |f_n|;$$

$$S_n(f) = \left(\sum_{k=0}^{n} d_k^2 \right)^{1/2}, \quad S(f) = S_n(f),$$

where $d = (d_k)$ is the difference sequence of f.

2. Two properties for $I_n^{(m)}(f)$

In this section, we give two simple properties for $I_n^{(m)}(f)$.

Proposition 1. Let $f = (f_n)_{n \geq 0}$ be a martingale with the difference sequence $d = (d_n)_{n \geq 0}$. Then we have

$$\sum_{m=0}^{n} \frac{\lambda^m}{m!} I_n^{(m)} = \prod_{j=0}^{n} (1 + \lambda d_j) \quad (n \geq 0).$$

Proof. By using induction on n, we can prove the proposition.

Indeed, clearly, (2) is true if $n = 0$ and $n = 1$. We now suppose that (2) is established for $n - 1$ in place of n. Since

Dedicated to Professor Norihiko Kazamaki on his sixtieth birthday.
\[I^{(m)}_n - I^{(m)}_{n-1} = mI^{(m-1)}_{n-1} d_n, \]

we have
\[
\prod_{j=0}^{n} (1 + \lambda d_j) = \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} I^{(m)}_{n-1} + \lambda d_n \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} I^{(m)}_{n-1} \\
= 1 + \sum_{m=1}^{\infty} \frac{\lambda^m}{m!} (I^{(m)}_{n-1} + mI^{(m-1)}_{n-1} d_n) = \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} I^{(m)}_n,
\]

which means that (2) is valid for every \(n \geq 0 \).

It follows that if \(X = (X_n, \mathcal{F}_n) \) is a solution of the following stochastic difference equation
\[X_n = 1 + \lambda \sum_{j=1}^{n} X_{j-1} d_j,
\]

then \(X \) can be expressed as
\[X_n = \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} I^{(m)}_n.
\]

On the other hand, from (2) we see that \(I^{(m)}(f) \) is similar to an orthogonal polynomial of degree \(m \) with the "generating function" \(\prod_{j=0}^{n} (1 + \lambda d_j) \). By using induction on \(m \) we can obtain the following recursion relation.

Proposition 2. For \(m \geq 1 \),
\[I^{(m)}_n = I^{(m-1)}_n f_n - (m - 1)I^{(m-2)}_n S^2_1(f) + A_{m,n}, \]

where
\[A_{m,n} = \sum_{j=3}^{m} (-1)^{j-1} \frac{(m-1)!}{(m-j)!} \sum_{k=0}^{n} \frac{\lambda^m}{m!} I^{(m-j)}_n d_k.
\]

Proof. Fix \(\omega \in \Omega \). Let \(\lambda \) be in a neighborhood of 0 such that for every \(k \geq 1 \)
\[\frac{1}{1 + \lambda d_k} = \sum_{j=0}^{\infty} (-1)^j \lambda^j d_k^n \]

holds. Differentiating both sides of (2) with respect to \(\lambda \), we get
\[\sum_{m=0}^{\infty} \frac{\lambda^m}{m!} I^{(m+1)}_n = \sum_{k=0}^{n} \frac{d_k}{1 + \lambda d_k} \prod_{j=0}^{n} (1 + \lambda d_j) \quad (n \geq 0).
\]

On the other hand, we have
\[
\sum_{k=0}^{n} \frac{d_k}{1 + \lambda d_k} \prod_{j=0}^{n} (1 + \lambda d_j) = \sum_{k=0}^{n} d_k \sum_{j=0}^{\infty} (-1)^j \lambda^j \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} I^{(m)}_n \\
= \sum_{k=0}^{n} \sum_{m=0}^{\infty} \sum_{j=0}^{\infty} (-1)^j \lambda^j \frac{\lambda^m}{m!} I^{(m)}_n \\
= \sum_{k=0}^{n} \sum_{p=0}^{\infty} \sum_{l=0}^{\infty} (-1)^j \lambda^j \frac{\lambda^p}{(p-l)!} I^{(p-l)}_n \\
= \sum_{p=0}^{\infty} \left(\sum_{j=0}^{\infty} (-1)^j \frac{\lambda^j}{(p-l)!} I^{(p-l)}_n \sum_{k=0}^{n} d_k^{l+1} \right) \lambda^p
\]
and so
\[\sum_{m=0}^{\infty} \frac{\lambda^m}{m!} I^{(m+1)}_n = \sum_{m=0}^{\infty} \left(\sum_{j=0}^{m} (-1)^j \frac{\lambda^j}{(m-j)!} I^{(m-j)}_n \sum_{k=0}^{n} d_k^{l+1} \right) \lambda^p,
\]

which gives
\[I^{(m+1)}_n = \sum_{j=0}^{m} (-1)^j \frac{m!}{(m-j)!} I^{(m-j)}_n \sum_{k=0}^{n} d_k^{l+1} \\
= I^{(m)}_n f_n - mI^{(m-1)}_n S^2_1(f) + \sum_{j=3}^{m} (-1)^{j-1} \frac{m!}{(m+1-j)!} I^{(m+1-j)}_n \sum_{k=0}^{n} d_k.
\]

This completes the proof of the proposition.
3. L^p-estimates of $I^{(m)}(f)$

In this section, we shall give a sufficient condition for the iterated stochastic integrals $I^{(m)}(f) = (I^{(m)}_n, (\mathcal{F}_n))$ to be a true martingale for every $m \geq 2$.

The martingale inequalities

$$c_p \|S(f)\|_p \leq \|f^*\|_p \leq c_p \|S(f)\|_p \quad (1 \leq p < \infty) \tag{5}$$

are celebrated as the Burkholder-Davis-Gundy inequalities. We need here the inequalities

$$\|f^*\|_p \leq 4p \|S(f)\|_p \quad (1 \leq p < \infty). \tag{6}$$

For this proof, see [4].

Theorem 1. For $1 \leq p < \infty$ and $m \geq 1$, the inequality

$$\|I^{(m)}\|_p \leq (4mp)^m \|S^m(f)\|_p \tag{7}$$

holds for every martingale f.

Proof. Assume $1 \leq p < \infty$.

The inequality (7) is verified by induction.

Clearly, (7) is true for $m = 1$ by (6). Let (7) be true for $1, 2, \ldots, m - 1$.

From (3) we have

$$S^2_2(I^{(m)}) = m^2 \sum_{j=1}^{n} (I^{(m-1)}(f))^2 \, d_j^2$$

and so

$$S(I^{(m)}(f)) \leq mI^{(m-1)}S(f). \tag{8}$$

Applying the Hölder inequality with exponents $r = m/(m-1)$ and $s = m$ to (8), we get

$$\|S(I^{(m)})\|_p \leq m \|I^{(m-1)}\|_{mp/m-1} \|S(f)\|_{mp}.$$

Combining this with (6), we get

$$\|I^{(m)}\|_p \leq 4p \|S(I^{(m)})\|_p \leq 4mp \|I^{(m-1)}\|_{mp/(m-1)} \|S(f)\|_{mp}.$$

and so by the induction hypothesis

$$\|I^{(m)}\|_p \leq (4mp)^m \|S(f)\|_{mp}^m = (4mp)^m \|S^m(f)\|_p.$$

This completes the proof of the theorem. \hfill \Box

As a corollary, it follows at once that, if $\|S(f)\|_{\infty} < \infty$, then every $I^{(m)}(f)$ is a martingale bounded in L^p for all $p \geq 1$. To be exact, we obtain the following.

Corollary 1. If $\|S(f)\|_{\infty} < \infty$, then for $1 \leq p < \infty$ and $m \geq 1$

$$\|I^{(m)}\|_p \leq m!(C_p)^m \|S(f)\|_{\infty}^m$$

where $C_p = \sqrt{10p}$ if $1 \leq p < 2$ and $C_p = p$ if $2 \leq p < \infty$.

Proof. It is well-known that the right hand side inequality in (5) is valid with $C_p = p$ if $2 \leq p < \infty$ and $C_p = \sqrt{10p}$ if $1 \leq p < 2$ (see (3.4) in [2, p. 87] and II 2.8 in [4, p. 37]). Thus, in the same way as in the proof of Theorem 1, we may obtain the corollary. \hfill \Box

Let now

$$s_n(f) = \left(\sum_{k=0}^{n} E[d^2_k | \mathcal{F}_{k-1}] \right)^{\frac{1}{2}}$$

and

$$s(f) = s_\infty(f).$$

Corollary 2. Let $m \geq 2$ and $1 \leq p < \infty$. Then

$$\|s(I^{(m)})\|_p \leq \frac{(4mp)^{m+1}}{32p} \|S^m(f)\|_p. \tag{9}$$

Proof. Since $I^{(m)}_j$ is \mathcal{F}_j-measurable for $j \geq 1$, we have

$$S^2_n(I^{(m)}) = \sum_{j=0}^{n} E[(I^{(m)}_j - I^{(m)}_{j-1})^2 | \mathcal{F}_{j-1}]$$

$$= m^2 \sum_{j=0}^{n} (I^{(m-1)}_j)^2 E[d^2_j | \mathcal{F}_{j-1}]$$

The proof is then straightforward. \hfill \Box
\[\leq m^2 I^{(m-1)\ast 2} S_n^2(f). \]

It follows from the Hölder inequality with exponents \(r = m/(m - 1) \) and \(s = m \) that
\[\|s(I^{(m)})\|_p \leq m\|I^{(m-1)\ast}\|_{mp/(m - 1)}\|s(f)\|_{mp}, \]
and therefore by (7)
\[\|s(I^{(m)})\|_p \leq m4mp^{m-1}\|S(f)\|_{mp}^{m-1}\|s(f)\|_{mp}. \]

Recall that the inequality
\[\|s(f)\|_p \leq \sqrt{\frac{1}{2}} \|S(f)\|_p \quad (2 \leq p < \infty) \]
holds (see IV.1.4 in [4, p. 126]). Thus (9) is obtained.

\[\square \]

4. **Approximation to a continuous martingale**

Let \(M = (M_t, \mathcal{F}_t)_{t \geq 0} \) be a continuous martingale with the quadratic variation process \(\langle M \rangle \), and let \(H_m(x, y) \) \((m \geq 0)\) be the Hermite polynomials with parametric variable \(y > 0 \), that is,
\[H_m(x, y) = (-y)^m e^{x^2/2} \frac{d^m}{dx^m} e^{-(x^2/2)} \quad (m \geq 0). \]

It is well-known that \(H_m(M, \langle M \rangle) = (H_m(M_t, \langle M \rangle_t), \mathcal{F}_t) \) is a continuous local martingale for any \(m \geq 1 \) (see Proposition 3.8 in [6, p. 151]), and for \(1 < p < \infty \), furthermore, \(H_m(M, \langle M \rangle) \) is an \(L^p \)-bounded martingale if and only if \(M \) is an \(L^\infty \)-bounded martingale (see [3]).

In this section, we shall approximate \(H_m(M, \langle M \rangle) \) by the iterated martingale transforms.

Define the martingale \(f(n) = (f_{n,j}, \mathcal{F}_{n,j})_{0 \leq j \leq n} \) for every \(n \geq 1 \) by
\[f_{n,j} = M_{j/n}, \quad \mathcal{F}_{n,j} = \mathcal{F}_{j/n} \quad (j = 0, 1, 2, \ldots, n). \]

Then it is well-known that for every \(t \in [0, 1] \)
\[S_{[nt]}^2(f(n)) = \sum_{j=1}^{[nt]} (M_{j/n} - M_{(j-1)/n})^2 \rightarrow \langle M \rangle_t \quad \text{in probability} \]
as \(n \rightarrow \infty \).

Let now \(I^{(m)}(n, t) = (I^{(m)}(n, t), \mathcal{F}_{n,t})_{0 \leq t \leq 1} \) \((0 \leq t \leq 1)\), which is the iterated martingale transform of degree \(m \geq 1 \) with respect to martingale \(f(n) \) for every \(n \geq 1 \).

Theorem 2. Let \(M = (M_t, \mathcal{F}_t)_{t \geq 0} \) be a continuous martingale. Then for every \(t \in [0, 1] \)
\[I^{(m)}(n) \rightarrow H_m(M_t, \langle M \rangle_t) \quad \text{in probability} \quad (m = 1, 2, 3, \ldots, n) \quad (10) \]
as \(n \rightarrow \infty \).

Proof. We shall inductively prove the theorem, without loss of generality, we may assume \(t = 1 \).

First, the theorem is true if \(m = 1 \) and \(m = 2 \). Indeed,
\[I^{(1)}_n(n) = M_1 = H_1(M_1, \langle M \rangle _1) \]
and by (4)
\[I^{(2)}_n(n) = I^{(1)}_n M_1 - \sum_{j=0}^{n} (M_{j/n} - M_{(j-1)/n})^2 \rightarrow M_1^2 - \langle M \rangle_1 = H_2(M_1, \langle M \rangle_1) \quad \text{in probability} \]
as \(n \rightarrow \infty \).

Next, we suppose that (10) is established for \(m - 1 \) in place of \(m \). Applying this to (4) and noting that
\[\sum_{k=1}^{n} |a_k|^2 = \sum_{k=1}^{n} |M_{k/n} - M_{(k-1)/n}|^2 \leq \max_{0 \leq k \leq n} |M_{k/n} - M_{(k-1)/n}|^2 \quad \sum_{k=1}^{n} (M_{k/n} - M_{(k-1)/n})^2 \rightarrow 0 \quad (n \rightarrow \infty) \]
for all \(j > 2 \), we get
\[\Delta_{m,n} \to 0 \text{ in probability } (n \to \infty) \]

and so
\[I_n^{(m)}(n) \to H_{m-1}(M_1, \langle M \rangle_1)M_1 - (m - 1)H_{m-2}(M_1, \langle M \rangle_1)\langle M \rangle_1 \text{ in probability} \]
as \(n \to \infty \). Thus, the recursion relation of the Hermite polynomials
\[H_m(x, y) = H_{m-1}(x, y)x - (m - 1)H_{m-2}(x, y)y \]
implies that
\[I_n^{(m)}(n) \to H_m(M_1, \langle M \rangle_1) \text{ in probability} \]
as \(n \to \infty \). This completes the proof.

Acknowledgement

Author would like to thank Professor N. Kazamaki for his guidance and kindness on the study of martingales and the research of this paper. Also, author wish to thank Professor M. Kikuchi for helpful discussions. Author would also like to thank two anonymous earnest referees for the careful reading of the manuscript and many helpful comments.

REFERENCES