<table>
<thead>
<tr>
<th>著者</th>
<th>Ono Takashi</th>
</tr>
</thead>
<tbody>
<tr>
<td>ご飯名</td>
<td>未定</td>
</tr>
<tr>
<td>ご飯名</td>
<td>未定</td>
</tr>
<tr>
<td>出所</td>
<td>Interdisciplinary Information Sciences</td>
</tr>
<tr>
<td>出所</td>
<td>未定</td>
</tr>
<tr>
<td>タイムライン</td>
<td>未定</td>
</tr>
<tr>
<td>タイムライン</td>
<td>未定</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10097/48325</td>
</tr>
<tr>
<td>doi</td>
<td>10.4036/iis.2010.1</td>
</tr>
</tbody>
</table>
A Note on Galois Cohomology of Algebraic Integers

Takashi ONO

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland, 21218, U.S.A.

Received January 7, 2009; final version accepted March 6, 2009

We consider an admissible system \((g, (G, M))\) where \(g\) is the group of a Galois extension \(k/Q\) of number fields, \(G\) the ring \(O_k\) of integers of \(k\) and \(M = (O_k)^2\). The cohomology group \(H^1(g, O_k)\) is nicely described by a naive submodule \(\Xi_k\) of \(O_k\) and the Poincare’ index \(i_j(g, M)\), \(j \in H^1(g, O_k)\), for the system \((g, (G, M))\), can be expressed in terms of \(\Xi_k\).

KEYWORDS: Galois extension, number fields, ring of integers, cohomology, system

1. The module \(\Xi_k\)

Let \(k/Q\) be a finite Galois extension. Denote by \(g\) the Galois group \(\text{Gal}(k/Q)\) and by \(d\) the degree \(|g| = [k : Q]\). Let \(O_k\) be the ring of integers in \(k\). We set

\[
\Xi_k = \{\xi \in O_k; \quad ^g\xi \equiv \xi \mod d, \quad \forall \sigma \in g.\}
\]

(1)

This is a \(Z\)-module in \(O_k\). It contains \(Z\) and \(dO_k\), and is \(g\)-stable as is easily seen. The definition implies that

\[
\Xi_k/dO_k = (O_k/dO_k)^g,
\]

(2)

where, for any \(g\)-module \(M\), \(M^g\) denotes the subset of elements of \(M\) invariant under the action of \(g\).

For each \(\xi \in \Xi_k\) and \(\sigma \in g\), we can define an element \(t(\xi)_\sigma\) in \(O_k\) by

\[
t(\xi)_\sigma = t(\xi)_\sigma = (\xi - ^\sigma\xi)/d.
\]

(3)

As the group \(g\) acts on the additive group of the ring \(O_k\), we may speak of the first cohomology group \(H^1(g, O_k) = Z^1(g, O_k)/B^1(g, O_k)\). In view of (3), we have

\[
t(\sigma) = t_\sigma + ^\sigma t_t\tag{4}
\]

and hence a homomorphism

\[
t : \Xi_k \rightarrow Z^1(g, O_k), \quad \text{defined by} \quad t(\xi)_\sigma = (\xi - ^\sigma\xi)/d.
\]

(5)

Proposition 1. The map \(t\) in (5) induces an isomorphism

\[
\Xi_k/Z \cong Z^1(g, O_k).
\]

(6)

Proof. (i) \(\ker t = Z\). In fact,

\[
\xi \in \ker t \iff t(\xi) = 0 \iff \xi - ^\sigma\xi = 0, \quad \sigma \in g \iff \xi \in O_k \cap Q = Z.
\]

(ii) \(t\) is surjective. Let \(u\) be any cocycle in \(Z^1(g, O_k)\). We will find a \(\xi \in \Xi_k\) so that \(u = t(\xi)\). Let us try the following element

\[
\xi = \sum_{\tau \in \sigma} u_\tau \in O_k.
\]

It is not obvious at this moment that \(\xi \in \Xi_k\) but the following argument implies it. In fact, we have

\[
(\xi - ^\sigma\xi)/d = \left(\sum_{\tau} u_\tau - \sum_{\tau} ^\sigma u_\tau\right) / d = \left(\sum_{\tau} u_{\sigma\tau} - \sum_{\tau} ^\sigma u_\tau\right) / d = \left(\sum_{\tau} u_\sigma\right) / d = u_\sigma
\]

which shows that our \(\xi \in \Xi_k\) and \(u = t(\xi)\).

\(\square\)

From Proposition 1 we have the relation:
\[\Theta_k / \mathbb{L} \supset \Xi_k / \mathbb{L} \cong \mathbb{Z}^1 (g, \Theta_k). \] (7)

Let \(H \) be the subgroup of \(\Xi_k / \mathbb{L} \) corresponding to the coboundary group:
\[B^1 (g, \Theta_k) = \{ v \in \mathbb{Z}^1 (g, \Theta_k); \eta = \eta - v, \eta \in \Theta_k \}. \] (8)

Denoting by \([\xi]\) the class of \(\xi \in \Theta_k \) modulo \(\mathbb{L} \), we have, for \(\xi \in \Xi_k \),
\[[\xi] \in H \iff t(\xi) = (\xi - \eta) / d = \eta - \eta, \eta \in \Theta_k \iff \xi - d\eta = \eta(\xi - d\eta) \iff \xi - d\eta \in \mathbb{L}. \]

In other words,
\[H = d(\Theta_k / \mathbb{L}) = (\mathbb{L} + d\Theta_k) / \mathbb{L}. \] (9)

By (6), (7), (8), (9), we obtain

Proposition 2. Let \(k / \mathbb{Q} \) be a finite Galois extension of degree \(d \) with the Galois group \(g \) and let \(\Xi_k \) be the module given by (1). Then we have
\[H^1 (g, \Theta_k) \cong \Xi_k / (\mathbb{L} + d\Theta_k). \]

We note here an obvious relation:
\[\Theta_k / d\Theta_k \cong (\mathbb{L} / d\mathbb{L})^d. \] (10)

In connection with the cohomology group \(H^1 (g, \Theta_k) \), we will study the \(g \)-fixed points of the finite module \(\Theta_k / d\Theta_k \). Let us look at the sequence of modules:
\[\Theta_k \supset \Xi_k \supset \mathbb{L} + d\Theta_k \supset d\Theta_k \] (11)

We already know structures of several portions of (11). By (10), we have
\[(\Theta_k : d\Theta_k) = d^d, \] (12)
by (2)
\[(\Xi_k : d\Theta_k) = |(\Theta_k / d\Theta_k)^g|, \] (13)
by Proposition 2
\[(\Xi_k : \mathbb{L} + d\Theta_k) = |H^1 (g, \Theta_k)|. \] (14)

Combining (12), (13), (14) with the obvious isomorphism
\[(\mathbb{L} + d\Theta_k) / d\Theta_k \cong \mathbb{L} / d\mathbb{L}, \]
we obtain

Theorem 1. Let \(k / \mathbb{Q} \) be a finite Galois extension of degree \(d \) with the Galois group \(g \). Then we have
\[|H^1 (g, \Theta_k)| = |(\Theta_k / d\Theta_k)^g|/d. \]

2. The module \((\Theta_k / d\Theta_k)^g\)

Notations being as before, let us express an element \(\xi \in \Theta_k \) as
\[\xi = x_1 \omega_1 + \cdots + x_d \omega_d = \Xi x, \quad \Omega = (\omega_1, \ldots, \omega_d). \] (15)

where \(\{\omega_i\} \) being a \(\mathbb{Z} \)-basis of \(\Theta_k \) with
\[x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \in \mathbb{Z}^d. \]

Then
\[\sigma \xi = \sigma \Xi x, \quad \sigma \in g. \]
If we define a unimodular matrix \(A_\sigma \) by
\[\sigma \Omega = \Omega A_\sigma, \] (16)
then, we have
\[A_{\sigma T} = A_{\sigma}A_{T}, \quad \sigma, \tau \in \mathfrak{g}. \]

In other words,
\[A : \quad \sigma \mapsto A_{\sigma} \in GL_d(\mathbb{Z}) \tag{17} \]
is an integral representation of the Galois group \(\mathfrak{g} \) of degree \(d = \lbrack k : \mathbb{Q} \rbrack \).

As for the base change \(\Omega \to \Omega' \) afforded by \(\Omega' = \Omega T, T \in GL_d(\mathbb{Z}) \), let \(A'_\sigma \) be the matrix for the new basis. One then finds
\[A'_\sigma = T^{-1}A_\sigma T, \]
so \(A' \) is \(\mathbb{Z} \)-equivalent to \(A : A' \sim A \).

Let \(\xi = \Omega x \) be the relation in (15). We want to translate the condition \(\xi \in \mathbb{Z}_k \) in terms of one for \(x \in \mathbb{Z}^d \). Now follow the following sequence of equivalences
\[\xi \in \mathbb{Z}_k \iff ^{\sigma}\xi \equiv \xi \pmod{(d)} \iff ^{\sigma}\Omega x \equiv \Omega x (d) \iff \Omega A_\sigma x \equiv \Omega x (d) \iff (A_\sigma - I)x \equiv 0 (d). \]

Therefore we obtain the following theorem:

Theorem 2. Notations being as above, we have
\[|(\Theta_k/d\Theta_k)^\mathfrak{g}| = |(x \in \mathbb{Z}^d/d\mathbb{Z}^d; (A_\sigma - I)x \equiv 0 \mod d)|. \]

3. Case \(d = 2 \)

Let us study here a special case where \(d = \lbrack g \rbrack = \lbrack k : \mathbb{Q} \rbrack = 2 \). Let \(\sigma \) be the generator of \(\mathfrak{g} \). As we know there is an \(\Omega \) of the form \(\Omega = (1, \omega) \). [In general, it is true that 1 can appear in a basis of \(\mathcal{O}_k \) for any number field \(k \).] Then the matrix \(A_\sigma, \sigma \neq 1 \), satisfying (16) must be of the form
\[\begin{pmatrix} 1 & b \\ 0 & -1 \end{pmatrix}. \tag{18} \]

Furthermore it is easy to check that the parity of \(b \) in (18) is unchanged by the base change \(\Omega = (1, \omega) \to \Omega' = (1, \omega') \). We shall call the parity of \(b \) simply the parity of the quadratic field \(k \). Let us set \(p(k) = 1 \) or 2 according as the parity is odd or even. Theorem 1 and Theorem 2, with elementary facts on quadratic fields, imply the following

Proposition 3. Let \(k/\mathbb{Q} \) be a quadratic field. Then
\[p(k) = |H^1(\mathfrak{g}, \mathcal{O}_k)| = \frac{1}{2}|H^0(\mathfrak{g}, \mathcal{O}_k/2\mathcal{O}_k)|. \]

4. The system \((\mathfrak{g}, (G, M))\)

To begin with let us introduce a simple general setting
\[(\mathfrak{g}, (G, M)) \]
where \(G \) is a group, \(M \) a left \(G \)-module and \(\mathfrak{g} \) is a finite group acting on \((G, M) \) naturally. Namely, we assume that \(G \) is a left \(\mathfrak{g} \)-group, \(M \) is a left \(\mathfrak{g} \)-module so that
\[^{\sigma}sx = ^{\sigma}s\mathfrak{x}, \quad \sigma \in \mathfrak{g}, s \in G, x \in M. \]

For a cocycle \(C \) with values in \(G \), we associate a subgroup \(M_C \) of \(M \) by
\[M_C = \{x \in M; C_\sigma x = x, \quad \sigma \in \mathfrak{g}\}. \tag{19} \]

We consider also a subgroup of \(M_C \) given by
\[P_C = \{y = p_C(x), \quad x \in M\} \tag{20} \]
where
\[p_C(x) = \sum_{\tau \in \mathfrak{g}} C_{\tau}^{-1}x. \tag{21} \]

One verifies that the structure of the module \(M_C/P_C \) depends only on the cohomology class \(\gamma = [C] \in H^1(\mathfrak{g}, G) \). If we put \(C = 1 \) in (19), (20) then we have \(M_1 = M^0, P_1 = N(M) \) hence \(M_1/P_1 = \tilde{H}^0(\mathfrak{g}, M), \) the Tate cohomology group. For a general \(\gamma = [C] \in H^1(\mathfrak{g}, G), \) we have a right to make identification.
\[M_C/P_C = \hat{H}^1(g, M) \]

and call this the Tate group twisted by \(\gamma \). Furthermore, we shall put

\[i_\gamma(g, M) = [M_C : P_C], \quad \gamma = [C] \in H^1(g, G). \] (22)

The determination of the index \(i_\gamma(g, M) \) is a theme inspired by Poincaré. (See [1], Appendix 3 (in English) and references there.)

Now let \(k/Q \) be a finite Galois extension with the Galois group \(g \). As for the group \(G \) and the module \(M \), we set

\[G = \{ g = (t_i), \quad t \in O_k \}, \quad M = \{ x = (x_i), \quad x_1, x_2 \in O_k \}. \]

With the natural action of \(G \) on \(M \) and those of \(g \) on each of \(g \) and \(M \), we obtain an admissible system \((g, (G, M))\). The action of \(G \) on \(M \) is the matrix multiplication: \(g \circ x = (t_i)x = (t_i + x) \). For our Galois actions, the relation \(\sigma (t \circ x) = (\sigma t) \circ (\sigma x) \) is trivial. We can use matrices \(C_\sigma = (c_{i,j})_\sigma \in Z^1(g, G) \). Instead of additive relation (4), we have this, a multiplicative one: \(C_{\sigma \tau} = C_\sigma \tau \). Since any cocycle \(t \in Z^1(g, O_k) \) is of the form \(t_\sigma = t(\xi) = (\xi - \xi)/d \) for some \(\xi \in \mathbb{Z}_k \) by (6), we can write

\[C_\sigma = A(\xi) \cdot \sigma A(\xi)^{-1} \] (23)

with the matrix

\[A(\xi) = \begin{bmatrix} 1 & 0 \\ \xi/d & 1 \end{bmatrix}. \]

Along with (19), (20), for the cocycle \(C \), we associate a \(Z \)-module \(M_C \) by

\[M_C = \{ x \in M, \quad C_\sigma x = x, \quad \sigma \in g \}. \] (24)

We have also a submodule of \(M_C \) given by

\[P_C = \{ y = p_C(x), \quad x \in M \} \] (25)

where \(p_C(x) = \sum \tau C_\tau^\tau x \).

We know that the quotient \(M_C/P_C \) depends only on the cohomology class \(\gamma = [t] = [t(\xi)] \in H^1(g, O_k) \) and is identified with the module \(\hat{H}^1(g, M) \). Finally we set index \(i_\gamma(g, M) = [M_C : P_C] \).

In what follows, when a \(\xi \in \mathbb{Z}_k \) is fixed, we set simply \(A = A(\xi) \).

(i) \(M_C \). For \(x \in M \),

\[x \in M_C \iff C_\sigma^\tau x = x \iff A^\sigma A^{-1} \tau x = x \iff A^{-1} x = (A^{-1} \tau x). \]

Hence we have

\[A^{-1}M_C = \{ A^{-1} x \in A^{-1} M \cap (Q^2) \}. \]

In other words,

\[A^{-1}M_C = (A^{-1} M)^\sigma. \] (26)

(ii) \(P_C \). By (20), we find

\[A^{-1}P_C = \left\{ A^{-1} \sum \tau C_\tau^\tau x \right\} = \left\{ \sum \tau (A^{-1} \tau x) \right\} = \{ Tr(A^{-1} x), \quad x \in M \}. \]

In other words,

\[A^{-1}P_C = Tr(A^{-1} M). \] (27)

By (24), (25) we obtain

Theorem 3. Let \(k/Q \) be a finite Galois extension with the Galois group \(g \). Let \(M = (O_k)^2 \). For a cocycle class \(\gamma = [C] \in H^1(g, O_k) \) corresponding to an element \(\xi \in \mathbb{Z}_k \) by (6), we have \(i_\gamma(g, M) = |\hat{H}^1(g, A(\xi)^{-1} M)| \).

REFERENCES