
Matrix Analysis: Matrix Monotone Functions,
Matrix Means, and Majorization

Fumio HIAI�

Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai 980-8579, Japan

Received February 26, 2010; final version accepted July 20, 2010
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Preface

These lecture notes are largely based on my course at Graduate School of Information Sciences of Tohoku University
during April–July of 2009. The aim of my lectures was to explain several important topics on matrix analysis from the
point of view of functional analysis. These notes are also suitable for an introduction to functional analysis though the
arguments are mostly restricted to the finite-dimensional situation.

The main topics covered in these notes are matrix/operator monotone and convex functions (the so-called Löwner
and Kraus theory), operator means (the so-called Kubo–Ando theory), majorization for eigen/singular values of
matrices and its applications to matrix norm inequalities, and means of matrices and related norm inequalities. These
have been chosen from my knowledge and interest while there are many other important topics on the subject.

I have tried to make expositions as transparent as possible and also as self-contained as possible. To do so, some
technical stuffs rather apart from matrix analysis are compiled in Appendices. The proof of the theorem of Kraus is also
deferred into Appendices since it seems too much to include in the main body. A number of exercises are put in these
lecture notes, which are supplements of my expositions as proofs omitted, examples, and further remarks. Concerning
References I should mention that their list and citations are not so complete.

At the moment I am collaborating with D. Petz in writing a more comprehensive textbook on matrix analysis, hoping
that some parts of these notes will be incorporated into the forthcoming book.

I express my gratitude to Professors T. Ando and H. Kosaki. Ando sent me his English translation of the German
paper by Kraus, without which I could not understand the characterization of matrix convex functions due to Kraus.
Kosaki gave me comments on Chapter 5, which were helpful to update the content of the chapter. I am thankful to
Professor N. Obata, Editor-in-Chief of Interdisciplinary Information Sciences, who suggested me to submit these
lecture notes as GSIS selected lectures, a newly launched section of the journal. Finally, this work was partially
supported by Grant-in-Aid for Scientific Research (C)21540208.

1. Basics on Matrices

1.1 Basic definitions

For each n 2 N, Mn ¼ MnðCÞ denotes the space of all n� n complex matrices, which is an n2-dimensional complex
vector space with the linear operations

�A :¼ ½�aij�; Aþ B :¼ ½aij þ bij�

for A ¼ ½aij�ni; j¼1;B ¼ ½bij�ni; j¼1 2 Mn and for � 2 C. For i; j ¼ 1; . . . ; n let Eij be the n� n matrix of ði; jÞ-entry equal to
one and all other entries equal to zero. Then Eij, 1 � i; j � n, are called matrix units and form a basis of Mn as

A ¼ ½aij�ni; j¼1 ¼
Xn
i; j¼1

aijEij:

2010 Mathematics Subject Classification: 15A42, 15A45, 15A60, 47A64.
� Corresponding author. E-mail: hiai@math.is.tohoku.ac.jp

Interdisciplinary Information Sciences Vol. 16, No. 2 (2010) 139–248
#Graduate School of Information Sciences, Tohoku University
ISSN 1340-9050 print/1347-6157 online
DOI 10.4036/iis.2010.139

http://dx.doi.org/10.4036/iis.2010.139


The product AB of A ¼ ½aij�ni; j¼1 and B ¼ ½bij�ni; j¼1 is defined by

AB ¼ ½cij�ni:j¼1 with cij :¼
Xn
k¼1

aikbkj:

Moreover, the adjoint matrix A� of A is defined as the conjugate transpose of A, i.e.,

A� :¼ A
t ¼ ½aji�ni; j¼1 where A :¼ ½aij�ni; j¼1; A

t :¼ ½aji�ni; j¼1:

Then Mn becomes a �-algebra:
ðABÞC ¼ AðBCÞ; ðAþ BÞC ¼ AC þ BC; AðBþ CÞ ¼ ABþ AC;

ðAþ BÞ� ¼ A� þ B�; ð�AÞ� ¼ �A�; ðA�Þ� ¼ A; ðABÞ� ¼ B�A�:

The identity of Mn is the n� n identity matrix I (¼ In) that is the diagonal matrix of all diagonals equal to one. The
most significant feature of matrices is noncommutativity: AB 6¼ BA. For example,

0 1

0 0

� �
0 0

1 0

� �
¼

1 0

0 0

� �
;

0 0

1 0

� �
0 1

0 0

� �
¼

0 0

0 1

� �
:

The vector space Cn of all n-dimensional vectors of complex numbers is a complex Hilbert space with the Hermitian
inner product

hx; yi :¼
Xn
i¼1

�i�i for x ¼

�1

..

.

�n

2664
3775; y ¼

�1

..

.

�n

2664
3775:

A matrix A 2 Mn acts on C
n as a linear operator defined by

�1

..

.

�n

2664
3775 ¼ A

�1

..

.

�n

2664
3775; �i :¼

Xn
j¼1

aij�j; 1 � i � n:

In fact, Aðxþ yÞ ¼ Axþ Ay and Að�xÞ ¼ �Ax for all x; y 2 C
n and � 2 C. The product AB corresponds to the

composition of linear operators: ðABÞx ¼ AðBxÞ, x 2 C
n. The adjoint A� is determined via inner product: hAx; yi ¼

hx;A�yi, x; y 2 C
n. The identity matrix corresponds to the identity operator: Ix ¼ x, x 2 C

n.

1.2 Finite-dimensional Hilbert space

Let H be an abstract n-dimensional complex Hilbert space with inner product h� ; �i, i.e., for every x; y; z 2 H and
� 2 C,

hx; xi � 0; hx; xi ¼ 0 () x ¼ 0;

h�x; yi ¼ �hx; yi; hxþ y; zi ¼ hx; zi þ hy; zi; hx; yi ¼ hy; xi;

�
so that hx; yi is linear in y, i.e.,

hx; �1y1 þ �2y2i ¼ �1hx; y1i þ �2hx; y2i

while conjugate-linear in x, i.e.,

h�1x1 þ �2x2; yi ¼ �1hx1; yi þ �2hx2; yi:

(This is the physics convention; in mathematics, hx; yi is linear in x and conjugate-linear in y.) The norm of x 2 H is
defined by

kxk :¼ hx; xi1=2:

Then we have the Schwarz inequality

jhx; yij � kxk kyk; x; y 2 H ð1:2:1Þ

and k � k indeed satisfies the properties of norm, i.e., for every x; y 2 H and � 2 C,

kxk � 0; kxk ¼ 0 () x ¼ 0;

k�xk ¼ j�j kxk; kxþ yk � kxk þ kyk:

�
ð1:2:2Þ

Exercise 1.2.1. Show the Schwarz inequality (1.2.1) and that the equality jhx; yij ¼ kxk kyk occurs if and only if x; y
are linearly dependent. Also, show the properties (1.2.2) of norm.
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Two vectors x; y 2 H is said to be orthogonal, denoted by x ? y, if hx; yi ¼ 0. A basis fe1; . . . ; eng of H is said to be
orthonormal if hei; eji ¼ �ij for i; j ¼ 1; . . . ; n. Such a basis is obtained by applying the Gram–Schmidt procedure to any
linear basis. That is, for a linear basis fv1; . . . ; vng of H, we define

e1 :¼
1

kv1k
v1;

e2 :¼
1

kw2k
w2 with w2 :¼ v2 � he1; v2ie1;

e3 :¼
1

kw3k
w3 with w3 :¼ v3 � he1; v3ie1 � he2; v3ie2;

..

.

en :¼
1

kwnk
wn with wn :¼ vn � he1; vnie1 � � � � � hen�1; vnien�1:

Exercise 1.2.2. Show that fe1; . . . ; eng constructed via the Gram–Schmidt procedure above is an orthonormal basis
of H.

Now, fix an orthonormal basis fe1; . . . ; eng of H. Then each x 2 H is written as a unique linear combination of
fe1; . . . ; eng as

x ¼
Xn
i¼1

hei; xiei:

This is called the Fourier expansion of x, and hei; xi, 1 � i � n, are called the coordinates of x with respect to
fe1; . . . ; eng. Since

hx; yi ¼
Xn
i¼1

hei; xihei; yi; x; y 2 H; ð1:2:3Þ

it follows that H is isomorphic to C
n as Hilbert spaces via x 2 H 7!ðhei; xiÞni¼1 2 C

n.
Let f : H ! C be a linear functional on H. Set �i :¼ f ðeiÞ for 1 � i � n. Then for every x 2 H,

f ðxÞ ¼ f
Xn
i¼1

hei; xiei

 !
¼
Xn
i¼1

hei; xi f ðeiÞ ¼
Xn
i¼1

�ihei; xi ¼
Xn
i¼1

�iei; x

* +
:

Hence, if we set xf :¼
Pn

i¼1 �iei, then

f ðxÞ ¼ hxf ; xi; x 2 H;

and such an xf 2 H is uniquely determined. (This is the Riesz representation theorem in the finite-dimensional case.)
When M is a subspace of H, the orthogonal complement M? of M is the subspace of H defined by

M? :¼ fx 2 H : hx; yi ¼ 0 for all y 2 Mg:

Choose an orthonormal basis fe1; . . . ; emg ofM where m ¼ dimM. One can enlarge fe1; . . . ; ekg to an orthonormal basis
fe1; . . . ; em; emþ1; . . . ; eng of H. Then femþ1; . . . ; eng is an orthonormal basis of M? so that H has the orthogonal
decomposition

H ¼ M�M?;

that is, for every x 2 H there exist unique x0 2 M and x1 2 M? such that x ¼ x0 þ x1.
Let BðHÞ denote the set of all linear operators on H, which is a vector space with usual linear operations.

The product AB of A;B 2 BðHÞ is defined as the composition. The adjoint A� of A 2 BðHÞ is defined as

hx;Ayi ¼ hA�x; yi; x; y 2 H: ð1:2:4Þ

In fact, for each x 2 H, we have a linear functional y 2 H 7!hx;Ayi 2 C so that by the Riesz representation theorem,
there exists a unique A�x 2 H for which (1.2.4) holds. Then it is easy to see that x 7!A�x is a linear operator on H,
i.e., A� 2 BðHÞ.

Exercise 1.2.3. Show that BðHÞ becomes a �-algebra with the operations introduced above.

For each A 2 BðHÞ we associate an n� n matrix ½aij� given by

aij :¼ hei;Aeji; 1 � i; j � n; ð1:2:5Þ

that is,
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Aej ¼
Xn
i¼1

aijei; 1 � i � n:

When x ¼
Pn

i¼1 �iei and y ¼ Ax ¼
Pn

i¼1 �iei, we have

�i ¼ hei;Axi ¼ ei;
Xn
j¼1

�jAej

* +
¼
Xn
j¼1

�jhei;Aeji ¼
Xn
j¼1

aij�j; 1 � i � n;

so that the equation y ¼ Ax is rewritten in terms of the coordinates of x and y as

�1

..

.

�n

2664
3775 ¼

a11 � � � a1n

..

. . .
. ..

.

an1 � � � ann

2664
3775

�1

..

.

�n

2664
3775:

Proposition 1.2.4. Let � be the map sending A 2 BðHÞ to ½aij� 2 Mn defined by (1.2.5). Then � is a �-isomorphism
between BðHÞ and Mn, that is, � is a linear map from BðHÞ onto Mn such that �ðABÞ ¼ �ðAÞ�ðBÞ and �ðA�Þ ¼
�ðAÞ� for all A;B 2 BðHÞ.

Proof. Let �ðAÞ ¼ ½aij� and �ðBÞ ¼ ½bij�. Since

ðABÞej ¼ AðBejÞ ¼ A
Xn
k¼1

bkjek

 !
¼
Xn
k¼1

bkjAek

¼
Xn
k¼1

bkj
Xn
i¼1

aikei

 !
¼
Xn
i¼1

Xn
k¼1

aikbkj

 !
ei;

we have

�ðABÞ ¼
Xn
k¼1

aikbkj

" #n

i; j¼1

¼ ½aij� ½bij� ¼ �ðAÞ�ðBÞ:

Since

hei;A�eji ¼ hA�ej; eii ¼ hej;Aeii ¼ aji;

we have

�ðA�Þ ¼ ½aji�ni; j¼1 ¼ ½aij�� ¼ �ðAÞ�:

The linearity of � is easy to check, so we omit the details. Finally, for every ½cij� 2 Mn, define

Cx :¼
Xn
i¼1

Xn
j¼1

cij�j

 !
ei for x ¼

Xn
i¼1

�iei 2 H:

Then it is immediate to see that C 2 BðHÞ and �ðCÞ ¼ ½cij� so that � is surjective. �

Thus, BðHÞ can be identified with Mn as �-algebras when H is n-dimensional. In particular, BðCnÞ ¼ Mn.
More generally, let BðH;KÞ denote the set of all linear operators between two finite-dimensional Hilbert spaces

H andK of possibly different dimensions. For each A 2 BðH;KÞ one can define the adjoint A� 2 BðK;HÞ similarly to
(1.2.4):

hu;AxiK ¼ hA�u; xiH ; x 2 H; u 2 K:

Fix orthonormal bases fe1; . . . ; eng of H and f f1; . . . ; fmg of K, and associate with A an m� n matrix ½aij� by

aij :¼ h fi;AejiK; 1 � i � m; 1 � j � n;

that is, Aej ¼
Pm

i¼1 aij fi, 1 � i � n. Then Ax ¼
Pm

i¼1 �i fi for x ¼
Pn

j¼1 �jej is rewritten in the matrix form:

�1

..

.

�m

2664
3775 ¼

a11 � � � a1n

..

. ..
.

am1 � � � amn

2664
3775

�1

..

.

�n

2664
3775:

Let Mm;n denote the set of all m� n complex matrices. Then BðH;KÞ can be identified with Mm;n as complex vector
spaces when dimH ¼ n and dimK ¼ m. In particular, BðCn;CmÞ ¼ Mm;n.
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1.3 Basic notions of operators and matrices

Let I (¼ IH) denote the identity operator on a finite-dimensional Hilbert space H. For A 2 BðHÞ, the kernel and the
range of A are

kerA :¼ fx 2 H : Ax ¼ 0g; ranA :¼ fAx : x 2 Hg;

respectively, which are subspaces of H. The dimension formula familiar in linear algebra is

dimH ¼ dimðkerAÞ þ dimðranAÞ: ð1:3:1Þ

We say that A 2 Mn is invertible if there is an B 2 BðHÞ such that AB ¼ BA ¼ I. In this case, such a B 2 BðHÞ is
unique and we write B ¼ A�1, called the inverse of A. It is seen from (1.3.1) that A 2 BðHÞ is invertible if and only if
kerA ¼ f0g (i.e., A is injective), that is also equivalent to ranA ¼ H (i.e., A is surjective).

Lemma 1.3.1. (1) For every A 2 BðHÞ and every x; y 2 H,

hy;Axi ¼
1

4
fhxþ y;Aðxþ yÞi � hx� y;Aðx� yÞi

þ ihxþ iy;Aðxþ iyÞi � ihx� iy;Aðx� iyÞig: ð1:3:2Þ

(This identity is called the polarization identity.)
(2) If A 2 BðHÞ and hx;Axi ¼ 0 for all x 2 H, then A ¼ 0.

Proof. (1) is obtained by a direct computation, and (2) immediately follows from (1). �

An operator A 2 BðHÞ is said to be normal if A�A ¼ AA�, and self-adjoint or Hermitian if A ¼ A�. If hx;Axi � 0 for
all x 2 H, then A is said to be positive semidefinite or simply positive, and we write A � 0. Moreover, if hx;Axi > 0 for
all x 2 H with x 6¼ 0, then A is positive definite or strictly positive, and we write A > 0. The sets of all self-adjoint
operators and of all positive semidefinite operators in BðHÞ are denoted by BðHÞsa and BðHÞþ, respectively. If
A;B 2 BðHÞsa and B� A � 0, i.e., hx;Axi � hx;Bxi for all x 2 H, then we write A � B.

Proposition 1.3.2.
(1) A 2 BðHÞ is normal if and only if kAxk ¼ kA�xk for all x 2 H.
(2) A 2 BðHÞ is self-adjoint if and only if hx;Axi 2 R for all x 2 H.
(3) A � B is a partial order relation on BðHÞsa.
(4) If A;B 2 BðHÞsa and A � B then C�AC � C�BC for all C 2 BðHÞ.

Proof. (1) follows from Lemma 1.3.1 (2) since

hx; ðA�A� AA�Þxi ¼ hAx;Axi � hA�x;A�xi ¼ kAxk2 � kA�xk2:

(2) is also seen from the same lemma since

hx; ðA� A�Þxi ¼ hx;Axi � hAx; xi ¼ hx;Axi � hx;Axi:

(3) For A;B 2 BðHÞsa, if A � B and A � B then hx; ðA� BÞxi ¼ 0 and so A ¼ B. Other properties for a partial order
are immediate.

(4) Under the assumption of (4), hx;C�ACxi ¼ hCx;ACxi � hCx;BCxi ¼ hx;C�BCxi for all x 2 H. �

An operator U 2 BðHÞ is called a unitary if U�U ¼ UU� ¼ I, i.e., U� is the inverse of U.

Proposition 1.3.3. For U 2 BðHÞ the following are equivalent:
(i) U is a unitary;
(ii) hUx;Uyi ¼ hx; yi for all x; y 2 H;
(iii) kUxk ¼ kxk for all x 2 H.

Proof. If U is a unitary then hUx;Uyi ¼ hx;U�Uyi ¼ hx; yi. Hence (i) ) (ii). (ii) ) (iii) is obvious. If (iii) is satisfied,
then hx; ðU�U � IÞxi ¼ kUxk2 � kxk2 ¼ 0 for all x 2 H. By Lemma 1.3.1 (2), U�U ¼ I. In particular, U is injective
and so invertible. Hence U� ¼ U�1 and (iii) ) (i). �

Clearly, the set of all normal operators on H includes the set of all unitaries on H and also BðHÞsa (	 BðHÞþ).
Another important notion of operators is that of orthogonal projections. Let M be a subspace of H. For each x 2 H

take the orthogonal decomposition x ¼ x0 þ x1 with x0 2 M and x1 2 M?, and define PMx :¼ x0. Then it is immediate
to see that PM is a linear operator onH with ranPM ¼ M. The operator PM is called the orthogonal projection fromH

onto M.

Proposition 1.3.4. P 2 BðHÞ is the orthogonal projection onto a subspace of H if and only if P� ¼ P ¼ P2.

Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 143



Proof. For a subspace M of H, P2
M ¼ PM is clear. For every x; y 2 M take the orthogonal decompositions x ¼ x0 þ x1

and y ¼ y0 þ y1 with x0; y0 2 M and x1; y1 2 M?. Then

hx;PMyi ¼ hx0 þ x1; y0i ¼ hx0; y0i ¼ hx0; y0 þ y1i ¼ hPMx; yi;

implying that PM ¼ P�
M. Conversely, assume that P� ¼ P ¼ P2 and set M :¼ ranP. For every x write x ¼ x0 þ x1 with

x0 2 M and x1 2 M?. Since x0 ¼ Pz for some z 2 H, Px0 ¼ P2z ¼ Pz ¼ x0. Moreover, hy;Px1i ¼ hPy; x1i ¼ 0 for all
y 2 H so that Px1 ¼ 0. Hence Px ¼ Px0 þ Px1 ¼ x0 ¼ PMx, implying that P ¼ PM. �

Next, let H and K be two finite-dimensional Hilbert spaces. For each A 2 BðH;KÞ we have A� 2 BðK;HÞ as
defined in the preceding section, and so A�A 2 BðHÞ and AA� 2 BðKÞ. If kAxk � kxk for all x 2 H, then A is called a
contraction. Moreover, A is called an isometry if kAxk ¼ kxk for all x 2 H.

Exercise 1.3.5. Let A 2 BðH;KÞ. Prove the following assertions:
(1) The following conditions are equivalent: (i) A is a contraction, (ii) A�A � IH , and (iii) AA� � IK.
(2) A is an isometry if and only if A�A ¼ IH . In this case, AA� is the orthogonal projection from K onto ranA.

Finally, note that all the materials in this section can be, in particular, applied to matrices in Mn ¼ BðCnÞ and in
Mm;n ¼ BðCn;CmÞ. We write M

sa
n and M

þ
n for the sets of all n� n Hermitian matrices and of all n� n positive

semidefinite matrices. An important fact in linear algebra is that A 2 Mn is invertible if and only if detA 6¼ 0, i.e., A has
the non-zero determinant. All n� n unitary matrices form a group, the so-called unitary group of order n.

Exercise 1.3.6. Let U 2 Mn and u1; . . . ; un be n column vectors of U, i.e., U ¼ ½u1 u2 � � � un�. Prove that U is a
unitary matrix if and only if fu1; . . . ; ung is an orthonormal basis of Cn.

1.4 Spectral decomposition and polar decomposition

Let H be an n-dimensional Hilbert space. For A 2 BðHÞ and � 2 C, we say that � is an eigenvalue of A if there is a
non-zero vector v 2 H such that Av ¼ �v, i.e., v 2 kerðA� �IÞ. Such a vector v is called an eigenvector of A

for the eigenvalue � . Recall that � 2 C is an eigenvalue of A if and only if A� �I is not invertible, which is
equivalent to detð�I � AÞ ¼ 0. Here, note that detB of B 2 BðHÞ can be defined by regarding B as an n� n matrix
under some orthonormal basis of H (see Section 1.2). In fact, the definition of detB is independent of the choice of an
orthonormal basis of H. Since detð�I � AÞ is a polynomial of degree n, A has exactly n eigenvalues with counting
multiplicities.

Theorem 1.4.1. Assume that A 2 BðHÞ is normal, i.e., A�A ¼ AA�. Then there exist �1; . . . ; �n 2 C and u1; . . . ; un 2
H such that fu1; . . . ; ung is an orthonormal basis of H and Aui ¼ �iui for all i ¼ 1; . . . ; n (i.e., each �i is an eigenvalue
of A and ui is the corresponding eigenvector).

Proof. Let us prove this by induction on n ¼ dimH. The case n ¼ 1 trivially holds. Suppose the assertion for
dimension n� 1. Assume that dimH ¼ n and A 2 BðHÞ is normal. Choose a root �1 of detð�I � AÞ ¼ 0. As explained
before the theorem, �1 is an eigenvalue of A so that there is an eigenvector u1 with Au1 ¼ �1u1. One may assume that u1
is a unit vector, i.e., ku1k ¼ 1. Since A is normal, we have

ðA� �1IÞ�ðA� �1IÞ ¼ ðA� � �1IÞðA� �1IÞ
¼ A�A� �1A� �1A� þ �1�1I
¼ AA� � �1A� �1A� þ �1�1I
¼ ðA� �1IÞðA� �1IÞ�;

that is, A� �1I is also normal. Therefore, by Proposition 1.3.2 (1),

kðA� � �1IÞu1k ¼ kðA� �1IÞ�u1k ¼ kðA� �1IÞu1k ¼ 0

so that A�u1 ¼ �1u1. Let H1 :¼ fu1g?, the orthogonal complement of fu1g. If x 2 H1 then

hAx; u1i ¼ hx;A�u1i ¼ hx; �1u1i ¼ �1hx; u1i ¼ 0;

hA�x; u1i ¼ hx;Au1i ¼ hx; �1u1i ¼ �1hx; u1i ¼ 0

so that Ax;A�x 2 H1. Hence we have AH1 
 H1 and A�H1 
 H1. So one can define A1 :¼ AjH1
2 BðH1Þ. Then

A�
1 ¼ A�jH1

, which implies that A1 is also normal. Since dimH1 ¼ n� 1, the induction hypothesis can be applied to
obtain �2; . . . ; �n 2 C and u2; . . . ; un 2 H1 such that fu2; . . . ; ung is an orthonormal basis of H1 and A1ui ¼ �iui for all
i ¼ 2; . . . ; n. Then fu1; u2; . . . ; ung is an orthonormal basis of H and Aui ¼ �iui for all i ¼ 1; 2; . . . ; n. Thus the assertion
holds for dimension n as well. �

Here, let us introduce a convenient notation. For any u; v 2 H define

ðjuihvjÞx :¼ hv; xiu; x 2 H:
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Then we have juihvj 2 BðHÞ, whose range is the one-dimensional subspace Cu generated by u if u; v 6¼ 0 (otherwise,
juihvj ¼ 0). The physics symbol juihvj is often written as u� v and called the Schatten form in mathematics.
In particular, juihuj for a unit vector u is the orthogonal projection onto Cu.

Exercise 1.4.2. Show the following properties:

ðjuihvjÞ� ¼ jvihuj; ðju1ihv1jÞðju2ihv2jÞ ¼ hv1; u2iju1ihv2j;
AðjuihvjÞ ¼ jAuihvj; ðjuihvjÞA ¼ juihA�vj for all A 2 BðHÞ:

The conclusion of the above theorem is put together into the form

A ¼
Xn
i¼1

�ijuiihuij; ð1:4:1Þ

that is called the Schmidt decomposition of A. Now, let �1; . . . ; �m be the distinct eigenvalues of A from �1; . . . ; �n. The
set f�1; . . . ; �mg is often called the spectrum of A and denoted by �ðAÞ. Define

Pj :¼
X

i : �i¼�j

juiihuij; 1 � j � m:

Then Pj is the orthogonal projection onto the eigenspace kerðA� �jIÞ for 1 � j � m andXm
j¼1

Pj ¼
Xn
i¼1

juiihuij ¼ I:

Thus, fP1; . . . ;Pmg is a partition of unity or a spectral measure, and we have

A ¼
Xm
j¼1

�jPj; ð1:4:2Þ

which is called the spectral decomposition of A. Note that the normality is indeed necessary for A 2 Mn to have the
Schmidt decomposition (1.4.1) or the spectral decomposition (1.4.2). Also, note that the spectral decomposition of A is
uniquely determined while the Schmidt decomposition of A is not unique if some eigenvalue of A is not simple.

Corollary 1.4.3. Let A 2 BðHÞ be normal and �ðAÞ be the spectrum of A. Then the following hold:
(1) A is self-adjoint if and only if �ðAÞ 
 R.
(2) A � 0 if and only if �ðAÞ 
 ½0;1Þ.
(3) A > 0 if and only if �ðAÞ 
 ð0;1Þ.
(4) A is a unitary if and only if �ðAÞ 
 T :¼ f� 2 C : j�j ¼ 1g.
(5) A is an orthogonal projection if and only if �ðAÞ 
 f0; 1g.

Proof. With the spectral decomposition (1.4.2) we have

A� ¼
Xm
j¼1

�jPj; A�A ¼
Xm
j¼1

j�jj2Pj; A2 ¼
XM
j¼1

�2j Pj:

Then A� � A ¼
Pm

j¼1ð�j � �jÞPj ¼ 0 if and only if �1; . . . ; �m 2 R or �ðAÞ 
 R. The arguments for other properties
are similar. �

Let f be a complex-valued function on D 
 C. When A 2 BðHÞ is normal with �ðAÞ 
 D, one can define
f ðAÞ 2 BðHÞ by

f ðAÞ :¼
Xn
i¼1

f ð�iÞ juiihuij ¼
Xm
j¼1

f ð�jÞPj ð1:4:3Þ

via the decompositions (1.4.1) and (1.4.2). The correspondence f 7! f ðAÞ so defined for functions f whose domain
contains the eigenvalues of A is called the functional calculus of A. In particular, when f is a function on an interval J
in R, f ðAÞ is defined for any A 2 BðHÞsa whose eigenvalues are contained in J. When f ð�Þ ¼ �k with k 2 N, it is
obvious that f ðAÞ ¼ Ak (the k-fold product of A). When f ð�Þ � 1, f ðAÞ ¼ I. Hence, for any polynomial pð�Þ, pðAÞ
coincides with the usual definition by substitution of A for �.

Example 1.4.4.
(1) Consider fþðtÞ :¼ maxft; 0g and f�ðtÞ :¼ maxf�t; 0g for t 2 R. For each A 2 BðHÞsa define Aþ :¼ fþðAÞ and

A� :¼ f�ðAÞ. Since fþðtÞ; f�ðtÞ � 0, fþðtÞ � f�ðtÞ ¼ t and fþðtÞ f�ðtÞ ¼ 0, we have

Aþ;A� � 0; A ¼ Aþ � A�; AþA� ¼ 0:

These Aþ and A� are called the positive part and the negative part of A, respectively, and A ¼ Aþ þ A� is called
the Jordan decomposition of A.
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(2) For any A � 0 and for any positive p > 0, define Ap :¼ fpðAÞ � 0 for the function fpðtÞ :¼ t p, t � 0. This Ap is
called the pth (fractional) power of A � 0. In particular, when p ¼ 1=2, A1=2 is called the square-root of A � 0.
Here, it is worth noting that, unlike the nonnegative number case, Ap � Bp does not generally follow from
A � B � 0 and p > 0. For example, when A � B � 0, A1=2 � B1=2 is always valid while A2 � B2 is not, as will be
studied in Chapter 2.

(3) For each A 2 BðHÞ, note that A�A � 0 since hA�Ax; xi ¼ kAxk2 � 0 for all x 2 H. So, define jAj :¼ ðA�AÞ1=2 that
is called the absolute value of A. More generally, for each A 2 BðH;KÞ, since A�A 2 BðHÞ and AA� 2 BðKÞ are
positive semidefinite, one can define the absolute values jAj :¼ ðA�AÞ1=2 2 BðHÞ and jA�j :¼ ðAA�Þ1=2 2 BðKÞ.

Corollary 1.4.5. For each A 2 BðHÞ, A � 0 if and only if A ¼ B�B for some B 2 BðHÞ, and A > 0 if and only if
A ¼ B�B for some invertible B 2 BðHÞ.

Proof. If A ¼ B�B then hAx; xi ¼ kBxk2 � 0 and hence A � 0. Conversely, if A � 0 then with the square root
B :¼ A1=2 in Example 1.4.4 (2), we have B � 0 and A ¼ B2 ¼ B�B. The latter assertion is seen since B 2 BðHÞ is
invertible if and only if B�B > 0. �

Theorem 1.4.1 is rephrased as the diagonalization theorem for normal matrices in the following way.

Theorem 1.4.6. For every normal matrix A 2 Mn, there exist �1; . . . ; �n 2 C and a unitary matrix U 2 Mn such that

A ¼ UDiagð�1; � � � ; �nÞU�; ð1:4:4Þ

where Diagð�1; � � � ; �nÞ stands for the diagonal matrix of diagonals �1; . . . ; �n. Furthermore, �1; . . . ; �n are uniquely
determined (up to permutations) as the eigenvalues of A with counting multiplicities.

Proof. By Theorem 1.4.1 there exist �1; . . . ; �n 2 C and u1; . . . ; un 2 C
n such that fu1; . . . ; ung is an orthonormal basis

of Cn and Aui ¼ �iui for 1 � i � n. Define U :¼ ½u1 u2 � � � un� that is a unitary thanks to Exercise 1.3.6. We then have

AU ¼ ½Au1 Au2 � � � Aun� ¼ ½�1u1 �2u2 � � � �nun�
¼ ½u1 u2 � � � un�Diagð�1; �2; � � � ; �nÞ ¼ UDiagð�1; �2; � � � ; �nÞ

so that (1.4.4) is obtained. In this case, since

detð�I � AÞ ¼ detðDiagð� � �1; � � � ; � � �1ÞÞ ¼ ð� � �1Þ � � � ð� � �nÞ;

it follows that �1; . . . ; �n are the roots of detð�I � AÞ ¼ 0, or the eigenvalues of A with multiplicities. �

The formula (1.4.4) of diagonalization is rewritten as

A ¼ ½�1u1 � � � �nun�

u�1

..

.

u�n

2664
3775 ¼

Xn
i¼1

�iuiu
�
i ;

that is the Schmidt decomposition (1.4.1). In fact, uv� is nothing but juihvj in the case where H ¼ C
n.

The following decomposition theorem is quite useful in operator/matrix analysis, which is the operator analog of the
polar representation � ¼ j�jei� for � 2 C.

Theorem 1.4.7. For every A 2 BðHÞ there exists a unitary U 2 BðHÞ such that

A ¼ UjAj: ð1:4:5Þ

Proof. Notice that

k jAjxk ¼ hx; jAj2xi1=2 ¼ hx;A�Axi1=2 ¼ kAxk; x 2 H: ð1:4:6Þ

Set K :¼ fjAjx : x 2 Hg and L :¼ fAx : x 2 Hg, which are subspaces of H. We define U0 : K ! L by

U0ðjAjxÞ :¼ Ax; x 2 H: ð1:4:7Þ

The well-definedness of U0 is guaranteed by (1.4.6). In fact, if jAjx ¼ jAjy then kAx� Ayk ¼ kAðx� yÞk ¼
k jAjðx� yÞk ¼ 0 so that Ax ¼ Ay. Moreover, it is immediate to see that U0 is linear. Hence by (1.4.6), U0 is a linear
isometry from K onto L. This implies also that dimK ¼ dimL and so dimK? ¼ dimL?. Hence one can choose
orthogonal bases fu1; . . . ; ukg of K? and fv1; . . . ; vkg of L?. Define U1 : K

? ! L? by U1uj ¼ vj for 1 � j � k and
extending it by linearity. Then U1 is a linear isometry from K? onto L?. Since K�K? ¼ L�L? ¼ H, one can
define a linear isometry U on H by

Uðx0 þ x1Þ ¼ U0x0 þ U1x1 for x0 2 K; x1 2 K?:

Then by Proposition 1.3.3, U is a unitary. By the definition (1.4.7) we have A ¼ UjAj. �
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The expression (1.4.5) is called the polar decomposition of A. Note that a unitary U is not unique unless A is
invertible. If A is invertible, then so is jAj and U is given by U ¼ AjAj�1. In this case, we directly check that
U�U ¼ jAj�1A�AjAj�1 ¼ jAj�1jAj2jAj�1 ¼ I.

Exercise 1.4.8. Let A 2 BðH;KÞ with finite-dimensional Hilbert spaces H and K. Show that there exist partial
isometries V 2 BðH;KÞ and W 2 BðH;KÞ such that

A ¼ VjAj ¼ jA�jW ;

where V 2 BðH;KÞ is called a partial isometry if V�V 2 BðHÞ is an orthogonal projection (or equivalently, if
VV� 2 BðKÞ is an orthogonal projection).

It may be conceptually natural to consider normal, self-adjoint, and positive semidefinite operators/matrices as
noncommutative counterparts of complex, real, and nonnegative numbers, respectively, and also unitary operators/
matrices as complex numbers of modulus one. In this way, the noncommutative analysis is considered as the analysis
over operators/matrices in place of real/complex numbers.

1.5 Norms and trace

The operator norm of A 2 BðHÞ is defined by

kAk :¼ supfkAxk : x 2 H; kxk � 1g

¼ sup
kAxk
kxk

: x 2 H; x 6¼ 0

� �
¼ supfjhx;Ayij : x; y 2 H; kxk; kyk � 1g: ð1:5:1Þ

This k � k on BðHÞ indeed has the properties of norm, i.e., for every A;B 2 BðHÞ and � 2 C,

kAk � 0; kAk ¼ 0 () A ¼ 0;

k�Ak ¼ j�j kAk; kAþ Bk � kAk þ kBk:

�
ð1:5:2Þ

Exercise 1.5.1. Prove that the three expressions in (1.5.1) are equal. Also show the properties (1.5.2) and
kABk � kAk kBk.

Significant properties of the operator norm are:

Proposition 1.5.2. For every A 2 BðHÞ,
kA�k ¼ kAk; kA�Ak ¼ kAk2:

Proof. Since jhx;A�yij ¼ jhA�y; xij ¼ jhy;Axij, the first identity follows from the last expression of (1.5.1). For the
second identity, kA�Ak � kA�k kAk ¼ kAk2 by the first. Moreover, by the Schwarz inequality (1.2.1), we have

kAxk2 ¼ jhx;A�Axij � kA�Axk kxk � kA�Ak kxk2

so that kAxk � kA�Ak1=2kxk, implying that kAk � kA�Ak1=2. Hence kAjj2 � kA�Ak. �

When fe1; . . . ; eng is an orthonormal basis of H, the trace TrA of A 2 BðHÞ is defined as

TrA :¼
Xn
i¼1

hei;Aeii:

The definition is independent of the choice of an orthonormal basis, as we will see shortly. Obviously, Tr is a linear
functional on Mn, which is positive and faithful, i.e., for any A � 0, TrA � 0 and TrA ¼ 0 only if A ¼ 0. In fact, the
faithfulness is shown since TrA ¼

Pn
i¼1 kA

1=2eik2 ¼ 0 implies that A1=2 ¼ 0 and so A ¼ 0. A principal property of the
trace is

TrAB ¼ TrBA for all A;B 2 BðHÞ:

In fact, thanks to (1.2.3),

TrAB ¼
Xn
i¼1

hei;ABeii ¼
Xn
i¼1

hA�ei;Beii ¼
Xn
i¼1

Xn
j¼1

hej;A�eiihej;Beii

¼
Xn
j¼1

Xn
i¼1

hei;B�ejihei;Aeji ¼
Xn
j¼1

hej;BAeji ¼ TrBA:

Now, let f f1; . . . ; fng be another orthonormal basis of H. Then we have a unitary U defined by Uei ¼ fi, 1 � i � n, so
that
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Xn
i¼1

h fi;Afii ¼
Xn
i¼1

hUei;AUeii ¼ TrU�AU ¼ TrAUU� ¼ TrA;

which says that the definition of TrA is actually independent of the choice of an orthonormal basis.
When A 2 Mn ¼ BðCnÞ, the trace of A is nothing but the sum of the principal diagonal entries of A:

TrA ¼ a11 þ a22 þ � � � þ ann for A ¼ ½aij�ni; j¼1:

Proposition 1.5.3. For every A 2 BðHÞ, TrA is the sum of the eigenvalues of A with counting multiplicities.

Proof. Taking the matrix representation with respect to an orthonormal basis, we may prove the result when A is an
n� n matrix. Let �1; . . . ; �n be the eigenvalues of A with multiplicities. Then

detðtI � AÞ ¼ ðt � �1Þðt � �2Þ � � � ðt � �nÞ: ð1:5:3Þ

From the usual definition of determinant we notice that the tn�1 term in the left-hand side of (1.5.3) appears only from
the product ðt � a11Þðt � a22Þ � � � ðt � annÞ. Hence the coefficient of tn�1 in the left-hand side is �TrA. On the other
hand, that in the right-hand side of (1.5.3) is �ð�1 þ �2 þ � � � þ �nÞ so that the assertion follows. �

By use of the trace, define the Hilbert–Schmidt inner product on BðHÞ by

hA;BiHS :¼ TrA�B; A;B 2 BðHÞ:

It is immediately verified that h� ; �iHS is an inner product on BðHÞ. The norm on BðHÞ induced by h� ; �iHS is

kAkHS :¼ hA;Ai1=2HS ¼ ðTrA�AÞ1=2; A 2 BðHÞ;

which is called the Hilbert–Schmidt norm of A.
For every linear functional  : BðHÞ ! C, by the Riesz representation theorem, there exists a unique D 2 BðHÞ

such that

 ðXÞ ¼ hD�
 ;XiHS ¼ TrD X; X 2 BðHÞ:

The operator D is sometimes called the Radon–Nikodym derivative of  with respect to Tr. A linear functional  on
BðHÞ is said to be positive if  ðXÞ � 0 for all X 2 BðHÞþ, and called a state if  is positive and  ðIÞ ¼ 1. The set of all
states on BðHÞ is a convex set, whose extreme points are called pure states.

Exercise 1.5.4. Let ! be a linear functional on BðHÞ. Prove:
(1) ! is a state if and only if D! � 0 and TrD! ¼ 1. Such an operator on H is called a density operator.
(2) ! is a pure state if and only if there is a unit vector u 2 H such that !ðXÞ ¼ hu;Xui for X 2 BðHÞ (or equivalently,

D! ¼ juihuj).
(3) For each X 2 BðHÞ, X 2 BðHÞþ if and only if !ðXÞ � 0 for all states ! on BðHÞ.

In the case BðHÞ ¼ Mn, since

hA;BiHS ¼
Xn
i; j¼1

aijbij; A ¼ ½aij�; B ¼ ½bij�;

we notice that h� ; �iHS is actually the Hermitian inner product when Mn is regarded as Cn2 . Hence, ðMn; h� ; �iHSÞ is an
n2-dimensional Hilbert space and the matrix units Eij, 1 � i; j � n, form a canonical orthonormal basis.

Exercise 1.5.5. Prove the following inequalities for A 2 Mn:

maxfka1k; � � � ; kankg
maxfka01k; � � � ; ka0nkg

�
� kAk � kAkHS;

where a1; . . . ; an are the column vectors and a01; . . . ; a
0
n are the row vectors of A, i.e., A ¼ ½a1 � � � an� ¼ ½a01 � � � a0n�

t.

Exercise 1.5.6.
(1) Show that the following hold for all A;X 2 BðHÞ:

kA�kHS ¼ kAkHS; kAXkHS � kAk kXkHS; kXAkHS � kAk kXkHS:

(2) For each A 2 BðHÞ define LA;RA : BðHÞ ! BðHÞ by the left and the right multiplications:

LAX :¼ AX; RAX :¼ XA; X 2 BðHÞ;

which are obviously linear operators on ðBðHÞ; h� ; �iHSÞ. Prove:
(a) The operator norms of LA and RA are equal to kAk, i.e., kLAk ¼ kRAk ¼ kAk.
(b) ðLAÞ� ¼ LA� and ðRAÞ� ¼ RA� .

148 HIAI



(c) If A 2 BðHÞþ then LA � 0 and RA � 0, i.e., hLAX;XiHS � 0 and hRAX;XiHS � 0 for all X 2 BðHÞ,
and vice versa.

(3) When A ¼ a11 a12
a21 a22

� �
2 M2, find the matrix representations of LA and RA on M2 with respect to the basis

fE11;E12;E21;E22g of M2. When A ¼ a1 0

0 a2

� �
, find what those are.

The spectral radius of A 2 BðHÞ is defined as

rðAÞ :¼ maxfj�j : � 2 �ðAÞg:

Also, the numerical range of A 2 BðHÞ is

WðAÞ :¼ fhx;Axi : x 2 H; kxk ¼ 1g;

and the numerical radius of A is

wðAÞ :¼ maxfjhx;Axij : x 2 H; kxk ¼ 1g:

Proposition 1.5.7.
(1) For any A;B 2 BðHÞ, �ðABÞ ¼ �ðBAÞ and hence rðABÞ ¼ rðBAÞ.
(2) The numerical radius wð�Þ is a norm on BðHÞ.
(3) For every A 2 BðHÞ,

rðAÞ � wðAÞ � kAk � 2wðAÞ:

(4) If A 2 BðHÞ is normal, then rðAÞ ¼ wðAÞ ¼ kAk.

Proof. (1) It is enough to show that detð�I � ABÞ ¼ detð�I � BAÞ for A;B 2 Mn. Assume first that A is invertible.
We then have

detð�I � ABÞ ¼ detðA�1ð�I � ABÞAÞ ¼ detð�I � BAÞ

and hence �ðABÞ ¼ �ðBAÞ. When A is not invertible, choose a sequence f"kg in C n �ðAÞ with "k ! 0, and set
Ak :¼ A� "kI. Then

detð�I � ABÞ ¼ lim
k!1

detð�I � AkBÞ ¼ lim
k!1

detð�I � BAkÞ ¼ detð�I � BAÞ:

(2) It is obvious that wðAÞ � 0 and wðAÞ ¼ 0 implies A ¼ 0 by Lemma 1.3.1 (2). For every A;B 2 BðHÞ and
x 2 H, kxk ¼ 1, we have

jhx; ðAþ BÞxij � jhx;Axij þ jhx;Bxij � wðAÞ þwðBÞ

and hence wðAþ BÞ � wðAÞ þwðBÞ.
(3) For each � 2 �ðAÞ choose a unit vector v 2 H such that Av ¼ �v. Then j�j ¼ jhv;Avij � wðAÞ. Hence the first

inequality holds. The second inequality follows from the Schwarz inequality. The last inequality will be proved after
the proof of (4).

(4) Since rðAÞ � wðAÞ � kAk was proved in (3), it suffices to show that kAk � rðAÞ for normal A. By the Schmidt
decomposition (1.4.1) we have

kAxk ¼
Xn
i¼1

�ihui; xiui

�����
����� ¼

Xn
i¼1

j�ihui; xij2
 !1=2

� max
1�i�n

j�ij
� � Xn

i¼1

jhui; xij2
 !1=2

¼ rðAÞ kxk;

which implies that kAk � rðAÞ.
Finally, let us prove that kAk � 2wðAÞ. For any A 2 BðHÞ let

B :¼
1

2
ðAþ A�Þ; C :¼

1

2i
ðA� A�Þ:

Then B;C 2 BðHÞsa and A ¼ Bþ iC (called the Descartes decomposition of A). Hence by (4), we have

kAk � kBk þ kCk ¼ wðBÞ þ wðCÞ:

Since wðAÞ ¼ wðA�Þ as immediately seen, wðBÞ � wðAÞ and wðCÞ � wðAÞ by (2). Therefore, kAk � 2wðAÞ. �

Exercise 1.5.8. Let A ¼ 0 1

0 0

� �
. Since A has only zero eigenvalues, rðAÞ ¼ 0. Compute wðAÞ and kAk.
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Note that the spectral radius rð�Þ is not a norm on Mn. For example, rðAþ A�Þ ¼ 1 but rðAÞ ¼ rðA�Þ ¼ 0 for A in the
above exercise.

1.6 Tensor product and Schur product

To introduce tensor products of operators/matrices, we start with tensor product for Hilbert spaces. Let H and K be
finite-dimensional Hilbert spaces with dimH ¼ n and dimK ¼ m. The tensor product vector space H �K is
abstractly defined as the quotient vector space of the free vector space over fx� u : x 2 H; u 2 Kg by the subspace
spanned by

ðxþ yÞ � u� x� u� y� u; x� ðuþ vÞ � x� u� y� v;

ð�xÞ � u� �ðx� uÞ; x� ð�uÞ � �ðx� uÞ

for all x; y 2 H, u; v 2 K and � 2 C. Fix orthonormal bases fe1; . . . ; eng and f f1; . . . ; fmg of H and K, respectively.
Then fei � fj : 1 � i � n; 1 � j � mg is a linear basis of H �K. So H �K may be more conveniently introduced as
the vector space over fei � fj : 1 � i � n; 1 � j � mg. We next introduce an inner product on H �K byXp

k¼1

xk � uk;
Xq
l¼1

yl � vl

* +
:¼
Xp
k¼1

Xq
l¼1

hxk; ylihuk; vli ð1:6:1Þ

for xk; yl 2 H and uk; vl 2 K. The well-definedness of (1.6.1) is seen by the universality of the tensor product as
follows: Let F be the vector space of all conjugate-linear functionals on H �K. For each x 2 H and u 2 K, since
ðy; vÞ 2 H �K 7!hx; yihu; vi is bilinear, we have a unique linear functional ’ðx; uÞ on H �K such that
’ðx; uÞðy� vÞ ¼ hx; yihu; vi, y 2 H, v 2 K. It is easy to see that ðx; uÞ 2 H �K 7!’ðx; uÞ 2 F is a bilinear map, so
we have a unique linear map F : H �K ! F such that Fðx� uÞ ¼ ’ðx; uÞ, x 2 H, u 2 K. Then the form (1.6.1) is
written as h�; �i ¼ Fð�Þð�Þ for � ¼

Pp
k¼1 xk � uk and � ¼

Pq
l¼1 yl � vl, so (1.6.1) is well-defined. Any � 2 H �K is

written as � ¼
Pm

j¼1 xj � fj with xj 2 H. Since

h�; �i ¼
Xm
j;k¼1

hxj; xkih fj; fki ¼
Xm
j¼1

kxjk2;

h�; �i ¼ 0 implies that xj ¼ 0 for all j and so z ¼ 0. The other properties of inner product for (1.6.1) are easy to see.
Thus H �K becomes an nm-dimensional Hilbert space, called the tensor product Hilbert space of H and K, and it is
clear that fei � fj : 1 � i � n; 1 � j � mg is an orthonormal basis. (Note that the completion procedure is further
necessary to define the tensor product of infinite-dimensional Hilbert spaces but the completeness is automatic in the
finite-dimensional case.)

For each A 2 BðHÞ and B 2 BðKÞ, a linear operator A� B, called the tensor product of A and B, on H �K is
defined by

ðA� BÞ
Xp
k¼1

xk � uk

 !
:¼
Xp
k¼1

Axk � Buk

for xk 2 H and uk 2 K, where the well-definedness is seen similarly to that of (1.6.1) above.
Now, consider H ¼ C

n and K ¼ C
m with fe1; � � � ; eng and f f1; . . . ; fmg being the standard bases, respectively. Then

C
n � C

m is identified with C
nm by arranging the basis

fe1 � f1; . . . ; e1 � fm; e2 � f1; . . . ; e2 � fm; . . . . . . ; en � f1; . . . ; en � fmg:

For A ¼ ½aij� 2 Mn (¼ BðCnÞ) and B ¼ ½bkl� 2 Mm (¼ BðCmÞ), the matrix representation of A� B with respect to the
above basis is written in the block-matrix form as

A� B ¼

a11B a12B � � � a1nB

a21B a22B � � � a2nB

..

. ..
. . .

. ..
.

an1B an2B � � � annB

266664
377775; ð1:6:2Þ

since hei � fk; ðA� BÞðej � flÞi ¼ aijbkl. This form of A� B is often called the Kronecker product of A and B.

Proposition 1.6.1. Let A;A1;A2 2 BðHÞ, B;B1;B2 2 BðKÞ and �1; �2 2 C. Then
(1) ð�1A1 þ �2A2Þ � B ¼ �1ðA1 � BÞ þ �2ðA2 � BÞ, A� ð�1B1 þ �2B2Þ ¼ �1ðA� BÞ þ �2ðA� B2Þ.
(2) ðA1 � B1ÞðA2 � B2Þ ¼ A1A2 � B1B2, ðA� BÞ� ¼ A� � B�.
(3) If A;B are invertible, then so is A� B and ðA� BÞ�1 ¼ A�1 � B�1.
(4) If A � 0 and B � 0, then A� B � 0.

Proof. The proofs of (1)–(3) are left for exercises. To show (4), let A � 0 and B � 0. With the square-roots A1=2 � 0

and B1=2 � 0, we have
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A� B ¼ ðA1=2Þ2 � ðB1=2Þ2 ¼ ðA1=2 � B1=2Þ2 ¼ ðA1=2 � B1=2Þ�ðA1=2 � B1=2Þ � 0

by (2) and Corollary 1.4.5. �

Exercise 1.6.2. Show (1)–(3) of the above proposition.

The Schur product or the Hadamard product A 
 B of two n� n matrices A and B is defined by the entrywise
product as

A 
 B :¼ ½aijbij�ni; j¼1 for A ¼ ½aij�ni; j¼1; B ¼ ½bij�ni; j¼1:

It is obvious that

A 
 B ¼ B 
 A; ðA 
 BÞ� ¼ A� 
 B�; ð�Aþ 	BÞ 
 C ¼ �ðA 
 CÞ þ 	ðB 
 CÞ

for all A;B;C 2 Mn and �; 	 2 C. An important property of this product is the following Schur product theorem.

Theorem 1.6.3. If A;B 2 M
þ
n then A 
 B 2 M

þ
n .

Proof. Let A;B 2 M
þ
n and represent the tensor product A� B by an n2 � n2 matrix as in (1.6.2) with respect to the

basis fe1 � e1; . . . ; e1 � en; e2 � e1; . . . ; e2 � en; . . . . . . ; en � e1; . . . ; en � eng. Then A 
 B is realized as a principal
submatrix of A� B corresponding to a sub-basis fe1 � e1; e2 � e2; . . . ; en � eng. We have A� B � 0 by
Proposition 1.6.1 (4). It is clear that a principal submatrix of a positive semidefinite matrix is also positive
semidefinite. Hence A 
 B � 0 follows. �

Exercise 1.6.4. Prove the following:
(1) If A;B 2 M

sa
n then A 
 B 2 M

sa
n .

(2) If A1 � A2 � 0 and B1 � B2 � 0 in Mn then A1 
 B1 � A2 
 B2.
(3) If A > 0 and B > 0 in Mn then A 
 B > 0.

1.7 Positive maps and completely positive maps

Let H and K be finite-dimensional Hilbert spaces, and let � : BðHÞ ! BðKÞ be a linear map. The map � is said to
be positive if �ðAÞ 2 BðKÞþ for all A 2 BðHÞþ, and � is said to be unital if �ðIHÞ ¼ IK.

Exercise 1.7.1. Show that if � is positive, then �ðA�Þ ¼ �ðAÞ� for all A 2 BðHÞ; in particular, �ðAÞ 2 BðKÞsa for all
A 2 BðHÞsa.

The method using 2� 2-block matrices will be useful in later discussions, so let us first prepare some basics on 2� 2

block matrices. For two (finite-dimensional) Hilbert spaces H1 and H2 consider the direct sum Hilbert space

H1 �H2 :¼ fx1 � x2 : x1 2 H1; x2 2 H2g

equipped with the inner product

hx1 � x2; y1 � y2i :¼ hx1; y1i þ hx2; y2i; x1; y1 2 H1; x2; y2 2 H2:

A general A 2 BðH1 �H2Þ is represented as a 2� 2 block matrix

A ¼
A11 A12

A21 A22

� �
with A11 2 BðH1Þ, A12 2 BðH2;H1Þ, A21 2 BðH1;H2Þ and A22 2 BðH2Þ, which acts on H1 �H2 in the matrix
form

y1

y2

� �
¼

A11 A12

A21 A22

� �
x1

x2

� �
¼

A11x1 þ A12x2

A21x1 þ A22x2

� �
for x1 � x2 2 H1 �H2 and y1 � y2 ¼ Aðx1 � x2Þ. Then the product and the adjoint in BðH1 �H2Þ are computed in the
conventional way for matrices. In particular, when H1 ¼ H2 ¼ H, one can identify H �H with the tensor product
Hilbert space C

2 �H and then BðH �HÞ ¼ BðC2 �HÞ with

M2 � BðHÞ ¼
A11 A12

A21 A22

� �
: Aij 2 BðHÞ

� �
:

The next lemma will be of some use.

Lemma 1.7.2. If C 2 BðHÞ, then I C

C� I

� �
� 0 if and only if kCk � 1.

Proof. This is seen as
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I C

C� I

� �
� 0 ()

x

y

� �
;

I C

C� I

� �
x

y

� �� 	
� 0 for all x; y 2 H

() hx; xi þ 2Rehx;Cyi þ hy; yi � 0 for all x; y 2 H

() jhx;Cyij �
hx; xi þ hy; yi

2
for all x; y 2 H

() kCk � 1: �

When � is positive and unital, Kadison’s inequality

�ðAÞ2 � �ðA2Þ

holds for every A 2 BðHÞsa. The following is an extension of Kadison’s inequality due to Choi [26]. The proof below is
from Bhatia [14, Sect. 2.3] (also [7, Sect. 4]).

Theorem 1.7.3. If � is positive and unital, then

�ðAÞ��ðAÞ � �ðA�AÞ

for every normal A 2 BðHÞ.

Proof. Let A ¼
Pm

j¼1 �jPj be the spectral decomposition. Then A� ¼
P

j �jPj and A�A ¼
P

j j�jj
2Pj. Under the

identification BðC2 �KÞ ¼ M2 � BðKÞ, since I ¼ �ðIÞ ¼
P

j �ðPjÞ, we can write

�ðA�AÞ �ðAÞ�

�ðAÞ I

� �
¼
Xm
j¼1

j�jj2�ðPjÞ �j�ðPjÞ
�j�ðPjÞ �ðPjÞ

" #
¼
Xm
j¼1

j�jj2 �j

�j 1

" #
��ðPjÞ:

Since
j�jj2 �j
�j 1

� �
2 M

þ
2 and �ðPjÞ 2 BðKÞþ by positivity of �, it follows that

�ðA�AÞ �ðAÞ�

�ðAÞ I

� �
� 0:

Hence it suffices to show that
B C�

C I

� �
� 0 if and only if C�C � B. To prove this, we may assume by continuity that

B is invertible. Then
B C�

C I

� �
� 0 is equivalent to

B�1=2 0

0 I

� �
B C�

C I

� �
B�1=2 0

0 I

� �
¼

I B�1=2C�

CB�1=2 I

" #
� 0:

By Lemma 1.7.2 this is also equivalent to kCB�1=2k � 1, that is, B�1=2C�CB�1=2 � I or C�C � B. �

The following is also due to Choi [26] with proof from [7, 14].

Theorem 1.7.4. If � is positive and unital, then

�ðAÞ�1 � �ðA�1Þ

for every invertible A 2 BðHÞþ.

Proof. Since A � �I for some � > 0, we have �ðAÞ � ��ðIÞ ¼ �I so that �ðAÞ is invertible too. Let A ¼
Pm

j¼1 �jPj

be the spectral decomposition with �j > 0. Then A�1 ¼
Pm

j¼1 �
�1
j Pj and hence

�ðA�1Þ I

I �ðAÞ

� �
¼
Xm
j¼1

��1
j 1

1 �j

" #
��ðPjÞ � 0

since
��1
j 1

1 �j

� �
� 0. Multiplying

I 0

0 �ðAÞ�1=2

� �
from both sides of the above gives

�ðA�1Þ �ðAÞ�1=2

�ðAÞ�1=2 I

" #
� 0:

By the argument in the proof of Theorem 1.7.3 we have �ðAÞ�1 � �ðA�1Þ. �

Theorem 1.7.5. If � is positive and unital, then k�k ¼ 1, where
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k�k :¼ sup
X 6¼0

k�ðXÞk
kXk

:

Proof. Since �ðIÞ ¼ I, k�k � 1. We need to show that k�ðAÞk � 1 for all A 2 BðHÞ with kAk � 1. For any unitary
U 2 BðHÞ, by Theorem 1.7.3 we have

�ðUÞ��ðUÞ � �ðU�UÞ ¼ �ðIÞ ¼ I

so that k�ðUÞk � 1. For every A 2 BðHÞ with kAk � 1, take the polar decomposition A ¼ UjAj with a unitary U and
the spectral decomposition jAj ¼

Pm
j¼1 �jPj. Since 0 � �j � 1, �j ¼ cos �j with 0 � �j � 
=2. Define V1 :¼

P
j e

i�jPj

and V2 :¼
P

j e
�i�jPj. Then V1 and V2 are unitaries and jAj ¼ ðV1 þ V2Þ=2 so that A ¼ ðUV1 þ UV2Þ=2. Hence

k�ðAÞk �
k�ðUV1Þk þ k�ðUV2Þk

2
� 1;

as required. �

Proposition 1.7.6. If � is positive, then k�k ¼ k�ðIÞk.

Proof. For each " > 0 define a linear map �" : BðHÞ ! BðKÞ by

�"ðAÞ :¼ �ðAÞ þ "ðTrAÞIK; A 2 BðHÞ:

Then �" is positive and �"ðIÞ is invertible. So, further define a linear map �" : BðHÞ ! BðKÞ by

�"ðAÞ :¼ �"ðIÞ�1=2�"ðAÞ�"ðIÞ�1=2; A 2 BðHÞ;

which is positive and unital. By Theorem 1.7.5, k�"k ¼ 1. Hence, if kAk � 1 then

k�"ðAÞk ¼ k�"ðIÞ1=2�"ðAÞ�"ðIÞ1=2k � k�"ðIÞ1=2k2 ¼ k�"ðIÞk:

Letting "& 0 gives k�ðAÞk � k�ðIÞk. Therefore, k�k ¼ k�ðIÞk. �

Let � : BðHÞ ! BðKÞ and ~�� : Bð ~HHÞ ! Bð ~KKÞ be two linear maps. Then the tensor product map

�� ~�� : BðHÞ � Bð ~HHÞ ¼ BðH � ~HHÞ �! BðKÞ � Bð ~KKÞ ¼ BðK� ~KKÞ

is defined by setting

ð�� ~��ÞðA� ~AAÞ :¼ �ðAÞ � ~��ð ~AAÞ; A 2 BðHÞ; ~AA 2 Bð ~HHÞ;

and by extending it by linearity. Here it might be expected that if both � and ~�� are positive then so is �� ~��.
However, it is not true in general. This inconvenience tells us that the notion of positivity for linear maps is not very
suitable in the noncommutative setting for matrices (operators). This is the reason why we need a stronger notion of
positivity instead of simple positivity.

For each n 2 N the map � is said to be n-positive if idn �� : Mn � BðHÞ is positive, where idn denotes the identity
map on Mn. In a slightly more concrete notation with block matrices, � is n-positive if and only if

�ðA11Þ � � � �ðA1nÞ

..

. . .
. ..

.

�ðAn1Þ � � � �ðAnnÞ

2664
3775 � 0 in Mn � BðKÞ

whenever

A11 � � � A1n

..

. . .
. ..

.

An1 � � � Ann

2664
3775 � 0 in Mn � BðHÞ:

Clearly, 1-positivity means the usual positivity, and n-positivity implies m-positivity with m < n. Furthermore, � is
said to be completely positive (often abbreviated as CP) if it is n-positive for every n 2 N. Since

�� ~�� ¼ ðidBðKÞ � ~��Þð�� idBð ~HHÞÞ;

it is obvious that �� ~�� is positive (indeed, completely positive) if both � and ~�� are completely positive. Thus, the
complete positivity is a satisfactory notion for linear maps between noncommutative �-algebras. For example, in
quantum physics and quantum probability, a system is usually given by the �-algebra BðHÞ over a Hilbert space H, and
the composite system of the two BðHÞ and Bð ~HHÞ is described by the tensor product BðHÞ � Bð ~HHÞ, so the positivity of
the tensor product of linear maps is essential.

Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 153



Proposition 1.7.7. If � is 2-positive and unital, then it is a Schwarz map in the sense that

�ðAÞ��ðAÞ � �ðA�AÞ; A 2 BðHÞ:

Proof. For every A 2 BðHÞ, since A�A A�

A I

� �
� 0 in M2 � BðHÞ, we have

�ðA�AÞ �ðAÞ�

�ðAÞ I

� �
� 0:

As in the proof of Theorem 1.7.3, this implies that �ðAÞ��ðAÞ � �ðA�AÞ. �

In this way, we have the following implications for unital linear maps:

CP ) � � � ) 3-positivity ) 2-positivity ) Schwarz map ) positivity:

Example 1.7.8. Let � be the transpose map on Mn, n � 2, i.e.,

�ðAÞ ¼ At ¼ ½aji�ij for A ¼ ½aij�ij:

Then it is obvious that � is a positive and unital linear map. But it is not a Schwarz map. Indeed, assume that � is a
Schwarz map. Then ðAtÞ�At � ðA�AÞt, i.e., AAt � AtA for all A 2 Mn. Replacing A with A we must have AA� � A�A.
But of course, this does not hold in general. In particular, the transpose map on M2 is positive but not 2-positive.

There are nice characterizations and representations for completely positive maps, which are summarized in the next
theorem without proofs. For the details see [14, Chapter 2] and [66, §11.7] for example.

Theorem 1.7.9. Let � : BðHÞ ! BðKÞ be a linear map with n ¼ dimH and m ¼ dimK. Then the following
conditions are equivalent:
(i) � is completely positive.
(ii) For the matrix units Eij, 1 � i; j � n, of BðHÞ,

�ðE11Þ � � � �ðE1nÞ

..

. . .
. ..

.

�ðEn1Þ � � � �ðEnnÞ

2664
3775 � 0 in Mn � BðKÞ:

(iii) There are operators Vi : H ! K, 1 � i � r, such that

�ðAÞ ¼
Xr
i¼1

ViAV
�
i ; A 2 BðHÞ;

where r can be chosen at most nm.
(iv) For any A1; . . . ;Ak 2 BðHÞ and B1; . . . ;Bk 2 BðKÞ with any k 2 N,Xk

i; j¼1

B�
i �ðA�

i AjÞBj � 0

holds.
(v) There are a Hilbert space ~KK, a representation (or �-homomorphism) 
 : BðHÞ ! Bð ~KKÞ, and an operator

V : K ! ~KK such that

�ðAÞ ¼ V�
ðAÞV ; A 2 BðHÞ;

where dim ~KK can be chosen at most n2m.

The above characterization (ii) is due to Choi, and the block matrix there is often called the Choi matrix. The
representation in (iii) is called the Kraus representation. The representation in (v) is famous as the Stinespring
representation. These representations are quite useful to treat completely positive maps.

When � is the transpose map on M2, the Choi matrix of � is

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

26664
37775;

which is not positive semidefinite since the determinant is �1. This re-proves the last statement in Remark 1.7.8.
From (ii) we see that if � is n-positive where n ¼ dimH, then it is completely positive. This can be slightly

generalized in such a way that � is k-positive with k :¼ minfdimH; dimKg, then it is completely positive. If a positive
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linear map � has the range included in a commutative �-subalgebra (in particular, � is a positive linear functional),
then it is completely positive. More generally, we may consider a linear map � : A ! B, where A 
 BðHÞ and
B 
 BðKÞ are �-subalgebras, and the positivity and complete positivity are similarly defined for �. If A or B is
commutative and � is positive, then � is completely positive. A typical example of completely positive maps is a
conditional expectation, i.e., a positive linear map E from a �-algebra A (
 BðHÞ) onto a unital (i.e., IB ¼ IA)
�-subalgebra B of A such that EðB1AB2Þ ¼ B1EðAÞB2 for all A 2 A and B1;B2 2 B.

Exercise 1.7.10. Show the following statements.
(1) The linear maps

TrK : BðHÞ � BðKÞ ! BðHÞ; TrH : BðHÞ � BðKÞ ! BðKÞ

are uniquely determined by

TrKðA� BÞ ¼ ðTrBÞA; TrHðA� BÞ ¼ ðTrAÞB; A 2 BðHÞ; B 2 BðKÞ:

These TrK and TrH are called the partial traces.
(2) ðdimKÞ�1 TrK and ðdimHÞ�1 TrH are conditional expectations from BðHÞ � BðKÞ onto the �-subalgebras

BðHÞ ¼ BðHÞ � IK and BðKÞ ¼ IH � BðKÞ, respectively.
(3) TrK and TrH are completely positive. (This follows from (2) and a general result mentioned above, however

prove this directly.)

2. Operator Monotone and Operator Convex Functions

2.1 Definitions of operator monotonicity and convexity

Throughout this chapter, let H be a finite-dimensional Hilbert space. The following is the famous Löwner–Heinz
inequality, which provides essential examples of operator monotone functions.

Theorem 2.1.1. For every A;B 2 BðHÞþ, A � B implies Ap � Bp for all p 2 ½0; 1� with the convention A0 :¼ I.

Proof. The following proof is due to Pedersen. Assume first that A � B > 0, and set

� :¼ fp 2 R : Ap � Bpg:

Since Ap;Bp are continuous in p, � is a closed set. Clearly, 0; 1 2 �. Hence, to prove that � 	 ½0; 1�, it suffices to
show that if p; q 2 � then ðpþ qÞ=2 2 �. So, assume that Ap � Bp and Aq � Bq. Then A�p=2BpA�p=2 �
A�p=2ApA�p=2 ¼ I so that by Proposition 1.5.2

kBp=2A�p=2k2 ¼ kðBp=2A�p=2Þ�ðBp=2A�p=2Þk ¼ kA�p=2BpA�p=2k � 1:

Hence kBp=2A�p=2k � 1 and similarly kBq=2A�q=2k � 1. Therefore, using (3), (1) and (4) of Proposition 1.5.7
we have

1 � kðBp=2A�p=2Þ�ðBq=2A�q=2Þk ¼ kA�p=2BðpþqÞ=2A�q=2k
� rðA�p=2BðpþqÞ=2A�q=2Þ ¼ rðAðq�pÞ=4A�ðpþqÞ=4BðpþqÞ=2A�q=2Þ
¼ rðA�ðpþqÞ=4BðpþqÞ=2A�q=2Aðq�pÞ=4Þ ¼ rðA�ðpþqÞ=4BðpþqÞ=2A�ðpþqÞ=4Þ
¼ kA�ðpþqÞ=4BðpþqÞ=2A�ðpþqÞ=4k:

This implies that I � A�ðpþqÞ=4BðpþqÞ=2A�ðpþqÞ=4 and so AðpþqÞ=2 � BðpþqÞ=2, i.e., ðpþ qÞ=2 2 �. Hence the assertion
follows when A;B are invertible.

When A � B � 0, for any " > 0 we have Aþ "I � Bþ "I > 0 so that ðAþ "IÞp � ðBþ "IÞp for all p 2 ½0; 1�.
Letting "& 0 gives the assertion. �

The inequality in the above theorem does not hold when p > 1, as the next example shows.

Example 2.1.2. Consider A :¼ 3=2 0

0 3=4

� �
and B :¼ 1=2 1=2

1=2 1=2

� �
. Then A � B � 0 is immediately checked.

Since B is an orthogonal projection, for each p > 0 we have Bp ¼ B and

Ap � Bp ¼
ð3=2Þp � 1=2 �1=2

�1=2 ð3=4Þp � 1=2

� �
:

Compute

detðAp � BpÞ ¼
3

8

� �p

3p �
2p þ 4p

2

� �
:
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If Ap � Bp then we must have detðAp � BpÞ � 0 so that ð2p þ 4pÞ=2 � 3p, which is not satisfied when p > 1.
Hence Ap � Bp does not hold for any p > 1.

Definition 2.1.3. Let J be an interval (whichever closed or open) of R and f be a real-valued function on J.
(1) It is said that f is matrix monotone of degree n or n-monotone if, for every A;B 2 M

sa
n with �ðAÞ; �ðBÞ 
 J,

A � B implies f ðAÞ � f ðBÞ:

If f is n-monotone for every n 2 N (or the above property holds for every A;B 2 BðHÞ with arbitrary H)), then f

is said to be operator monotone.
(2) It is said that f is matrix convex of degree n or n-convex if

f ð�Aþ ð1� �ÞBÞ � � f ðAÞ þ ð1� �Þ f ðBÞ; � 2 ð0; 1Þ; ð2:1:1Þ

for all A;B 2 M
sa
n with �ðAÞ; �ðBÞ 
 J. Note that when f is a continuous function on J, the mid-point convexity,

i.e., f ððAþ BÞ=2Þ � ð f ðAÞ þ f ðBÞÞ=2 for all A;B as above is enough for f to be n-convex. If f is n-convex for
every n 2 N (or the above convexity property holds for every A;B 2 BðHÞ with arbitrary H), then f is said to be
operator convex. Also, f is said to be n-concave or operator concave if � f is n-convex or operator convex,
respectively.

Exercise 2.1.4. (1) Show that the square function t2 on R is operator convex, i.e.,

Aþ B

2

� �2

�
A2 þ B2

2
for all A;B 2 M

sa
n :

(2) For A;B 2 M
sa
n and " > 0, check that

ðAþ "BÞ3 þ ðA� "BÞ3

2
�

ðAþ "BÞ þ ðA� "BÞ
2

� �3

¼ "2ðAB2 þ BABþ B2AÞ:

To show that t3 on ½0;1Þ is not operator convex, find an example of A > 0 and B � 0 such that AB2 þ BABþ B2A 6� 0.

2.2 Divided differences

In this and the next sections we prepare a certain differentiation technique, which will play a key role in Section 2.4.
Let f be a real-valued function on an open interval ða; bÞ, where �1 � a < b � 1. Let x1; x2; � � � be distinct points

in ða; bÞ. We have an important notion of divided differences defined as follows:

f ½0�ðx1Þ :¼ f ðx1Þ; f ½1�ðx1; x2Þ :¼
f ðx1Þ � f ðx2Þ

x1 � x2

and recursively for n ¼ 2; 3; � � � ,

f ½n�ðx1; x2; . . . ; xnþ1Þ :¼
f ½n�1�ðx1; x2; . . . ; xnÞ � f ½n�1�ðx2; x3; . . . ; xnþ1Þ

x1 � xnþ1

:

We call f ½1�, f ½2� and f ½n� the first, the second, and the nth divided differences, respectively, of f . By induction on n it is
easy to see that

f ½n�ðx1; x2; . . . ; xnþ1Þ ¼
Xnþ1

k¼1

f ðxkÞQ
1�j�nþ1; j 6¼kðxk � xjÞ

: ð2:2:1Þ

This expression shows that f ½n�ðx1; x2; . . . ; xnþ1Þ is symmetric in the arguments x1; x2; . . . ; xnþ1, i.e., invariant under
permutations of the arguments.

Exercise 2.2.1. Verify the expression (2.2.1).

Exercise 2.2.2. When f ðxÞ ¼ xk with k 2 N, verify that

f ½n�ðx1; x2; � � � ; xnþ1Þ ¼
X

l1;l2;...;lnþ1�0
l1þl2þ���þlnþ1¼k�n

xl11 x
l2
2 � � � x

ln
n x

lnþ1

nþ1:

(Hence, f ½k� � 1 and f ½n� � 0 if n > k.)

Lemma 2.2.3. Let �1; �2; � � � be distinct points in ða; bÞ, and define polynomials

p0ðxÞ :¼ 1; pkðxÞ :¼
Yk
j¼1

ðx� �jÞ for k � 1:

Then
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p½n�k ð�1; �2; . . . ; �nþ1Þ ¼
1 if n ¼ k,

0 otherwise.

�

Proof. Let k � 0 be arbitrarily fixed. By induction on n it is easy to see that

p½n�k ð�m; �mþ1; � � � ; �mþnÞ ¼ 0 if 1 � m � mþ n � k:

Hence p½n�k ð�1; . . . ; �nþ1Þ ¼ 0 for all n < k. By (2.2.1) we have

p½k�k ð�1; . . . ; �kþ1Þ ¼
pkð�kþ1ÞQk

j¼1ð�kþ1 � �jÞ
¼ 1:

This implies that

p½kþ1�
k ð�1; . . . ; �kþ2Þ ¼

p½k�k ð�1; . . . ; �k; �kþ1Þ � p½k�k ð�1; . . . ; �k; �kþ2Þ
�kþ1 � �kþ2

¼ 0;

and recursively p½n�k ð�1; � � � ; �nþ1Þ ¼ 0 for all n > k. �

The divided differences of f can be defined without restriction of the xi’s being distinct when f is sufficiently many
times differentiable, as the next lemma shows.

Lemma 2.2.4. Let n 2 N and assume that f is Cn on ða; bÞ. Then
(1) The nth divided difference f ½n�ðx1; x2; . . . ; xnþ1Þ is extended to a symmetric continuous function on the whole

ða; bÞnþ1.
(2) For every �1; �2 . . . ; �nþ1 2 ða; bÞ there exists a point � in the smallest interval containing the �i’s such that

f ½n�ð�1; . . . ; �nþ1Þ ¼
f ðnÞð�Þ
n!

:

In particular,

f ½n�ðx; x; . . . ; xÞ ¼
f ðnÞðxÞ
n!

; x 2 ða; bÞ:

Proof. First we prove (2) when �1; . . . ; �nþ1 are distinct. From the symmetry of f ½n� we may assume that �1 <
�2 < � � � < �nþ1. With the polynomials pk, 0 � k � n, given in Lemma 2.2.3, we consider the Cn function

hðxÞ :¼ f ðxÞ �
Xn
k¼0

f ½k�ð�1; �2; . . . ; �kþ1ÞpkðxÞ; x 2 ða; bÞ:

By Lemma 2.2.3 we have

h½m�ð�1; . . . ; �mþ1Þ ¼ f ½m�ð�1; . . . ; �mþ1Þ �
Xn
k¼0

f ½k�ð�1; . . . ; �kþ1Þp½m�k ð�1; . . . ; �mþ1Þ

¼ f ½m�ð�1; . . . ; �mþ1Þ � f ½m�ð�1; . . . ; �mþ1Þ ¼ 0

for all m ¼ 0; 1; . . . ; n. Thanks to the expression (2.2.1) this implies that hð�kÞ ¼ 0 for all k ¼ 1; . . . ; nþ 1. Hence
Rolle’s theorem implies that there are �1; . . . ; �n such that �1 < �1 < �2 < �2 < � � � < �n < �n < �nþ1 and h0ð�kÞ ¼ 0

for all k ¼ 1; . . . ; n. Repeating this argument yields a � 2 ð�1; �nþ1Þ such that hðnÞð�Þ ¼ 0. Since

hðnÞð�Þ ¼ f ðnÞð�Þ � f ½n�ð�1; . . . ; �nþ1Þ n!;

we have

f ½n�ð�1; . . . ; �nþ1Þ ¼
f ðnÞð�Þ
n!

:

Secondly we prove (1) by induction on n. The initial case n ¼ 0 trivially holds since the statement is just the C1 of
f ½0�ðx1Þ ¼ f ðx1Þ. Let us prove the statement for n under the assumption of that for n� 1, where n � 1. Assume now that
f is Cn on ða; bÞ, so by the induction hypothesis, f ½n�1�ðx1; . . . ; xnÞ is a symmetric continuous function on ða; bÞn. We
have to extend f ½n�ðx1; . . . ; xnþ1Þ originally defined for distinct x1; . . . ; xnþ1 in ða; bÞ to the whole ða; bÞnþ1. For each
ðx1; . . . ; xnþ1Þ 2 ða; bÞnþ1 choose a sequence fðxðkÞ1 ; . . . ; x

ðkÞ
nþ1Þg in ða; bÞnþ1 such that xðkÞ1 ; . . . ; x

ðkÞ
nþ1 are distinct and xðkÞj !

xj as k ! 1 for all j ¼ 1; . . . ; nþ 1. Assume that xi 6¼ xj for some i; j 2 f1; . . . ; nþ 1g. Since xðkÞi 6¼ xðkÞj for all k, we
have
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f ½n�ðxðkÞ1 ; . . . ; x
ðkÞ
nþ1Þ

¼
f ½n�1�ðxðkÞ1 ; . . . ; x

ðkÞ
j�1; x

ðkÞ
jþ1; . . . ; x

ðkÞ
n Þ � f ½n�1�ðxðkÞ1 ; . . . ; x

ðkÞ
i�1; x

ðkÞ
iþ1; . . . ; x

ðkÞ
nþ1Þ

xðkÞi � xðkÞj

�!
f ½n�1�ðx1; . . . ; xj�1; xjþ1; . . . ; xnÞ � f ½n�1�ðx1; . . . ; xi�1; xiþ1; . . . ; xnþ1Þ

xi � xj

as k ! 1. Hence one can define

f ½n�ðx1; . . . ; xnþ1Þ

:¼ lim
k!1

f ½n�ðxðkÞ1 ; . . . ; x
ðkÞ
nþ1Þ

¼
f ½n�1�ðx1; . . . ; xj�1; xjþ1; . . . ; xnÞ � f ½n�1�ðx1; . . . ; xi�1; xiþ1; . . . ; xnþ1Þ

xi � xj
ð2:2:2Þ

independently of the choice of the sequence fðxðkÞ1 ; . . . ; x
ðkÞ
nþ1Þg and also of the choice of ði; jÞ with xi 6¼ xj. Moreover, for

any sequence fð ~xxðkÞ1 ; . . . ; ~xx
ðkÞ
nþ1Þg converging to ðx1; . . . ; xnþ1Þ with ~xxðkÞ1 ; . . . ; ~xx

ðkÞ
nþ1 not necessarily distinct, it is seen from

(2.2.2) and the continuity of f ½n�1� that

f ½n�ðx1; . . . ; xnþ1Þ ¼ lim
k!1

f ½n�ð ~xxðkÞ1 ; . . . ; ~xx
ðkÞ
nþ1Þ:

Hence f ½n�ðx1; . . . ; xnþ1Þ is continuous on ða; bÞnþ1 n�, where � :¼ fðx; x; . . . ; xÞ : x 2 ða; bÞg.
Next assume that x1 ¼ � � � ¼ xnþ1 ¼ x. Then xðkÞj ! x as k ! 1 for all j. By (1) for distinct �i’s proved above,

for each k there is a �ðkÞ in the smallest interval containing xðkÞ1 ; . . . ; x
ðkÞ
nþ1 such that

f ½n�ðxðkÞ1 ; . . . ; x
ðkÞ
nþ1Þ ¼

f ðnÞð�ðkÞÞ
n!

;

Since �ðkÞ ! x and f is Cn, it follows that

f ½n�ðxðkÞ1 ; . . . ; x
ðkÞ
nþ1Þ �!

f ðnÞðxÞ
n!

as k ! 1:

Hence one can define

f ½n�ðx; . . . ; xÞ :¼ lim
k!1

f ½n�ðxðkÞ1 ; . . . ; x
ðkÞ
nþ1Þ ¼

f ðnÞðxÞ
n!

:

For any sequence fxðkÞg with xðkÞ ! x, we have

f ½n�ðxðkÞ; . . . ; xðkÞÞ ¼
f ðnÞðxðkÞÞ

n!
�!

f ðnÞðxÞ
n!

¼ f ½n�ðx; . . . ; xÞ:

Let fð ~xxðkÞ1 ; . . . ; ~xx
ðkÞ
nþ1Þg be any sequence in ða; bÞnþ1 n� converging to ðx; . . . ; xÞ. From the continuity of f ½n�1�, for each k

one can choose ðxðkÞ1 ; . . . ; x
ðkÞ
nþ1Þ such that xðkÞ1 ; . . . ; x

ðkÞ
nþ1 are distinct, jxðkÞj � ~xxðkÞj j < 1=k for 1 � j � nþ 1 and

jf ½n�ðxðkÞ1 ; . . . ; x
ðkÞ
nþ1Þ � f ½n�ð ~xxðkÞ1 ; . . . ; ~xx

ðkÞ
nþ1Þj < 1=k. We then have

lim
k!1

f ½n�ð ~xxðkÞ1 ; . . . ; ~xx
ðkÞ
nþ1Þ ¼ lim

k!1
f ½n�ðxðkÞ1 ; . . . ; x

ðkÞ
nþ1Þ ¼

f ðnÞðxÞ
n!

by (1) for distinct �i’s again. Hence f ½n�ðx1; . . . ; xnþ1Þ is continuous at ðx; . . . ; xÞ. Thus the statement of (1) for n is
proved.

Finally we prove (2) for general �i’s. Choose a sequence fð� ðkÞ
1 ; . . . ; �

ðkÞ
nþ1Þg in ða; bÞnþ1 converging to ð�1; . . . ; �nþ1Þ

with distinct � ðkÞ1 ; . . . ; �
ðkÞ
nþ1. For each k there is a �ðkÞ in the smallest interval containing � ðkÞ

1 ; . . . ; �
ðkÞ
nþ1 such that

f ½n�ð� ðkÞ
1 ; . . . ; �

ðkÞ
nþ1Þ ¼ f ðnÞð�ðkÞÞ=n!. Let � be a limit point of f�ðkÞg. Then it is clear that � is in the smallest interval

containing �1; . . . ; �nþ1. By taking the limit thanks to (1) proved above, we have f ½n�ð�1; . . . ; �nþ1Þ ¼ f ðnÞð�Þ=n!. �

2.3 Fréchet derivatives of matrix functional calculus

Let f be a real-valued function on ða; bÞ, and we denote by M
sa
n ða; bÞ the set of all A 2 M

sa
n with �ðAÞ 
 ða; bÞ, i.e.,

aI < A < bI. It is clear that Msa
n ða; bÞ is an open subset of the real Banach space M

sa
n with the Hilbert–Schmidt

norm k � kHS. In this section we discuss the differentiability property of the matrix functional calculus
A 2 M

sa
n ða; bÞ 7! f ðAÞ 2 M

sa
n . Let us first introduce the notion of Fréchet differentiability. The matrix functional

calculus A 7! f ðAÞ is said to be Fréchet differentiable at A0 2 M
sa
n ða; bÞ if there exists a Df ðA0Þ 2 BðMsa

n ;M
sa
n Þ, the

space of linear maps from M
sa
n into itself, such that
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k f ðA0 þ XÞ � f ðA0Þ � Df ðA0ÞðXÞkHS
kXkHS

�! 0 as kXkHS ! 0 for X 2 M
sa
n :

Then Df ðA0Þ is called the Fréchet derivative of the matrix function f ðAÞ at A0. This notion is inductively extended to
the general higher degree. To do this, we denote by BððMsa

n Þ
m;Msa

n Þ the set of all m-multilinear maps from ðMsa
n Þ

m :¼
M

sa
n � � � � �M

sa
n (m times) to M

sa
n , and introduce the norm of � 2 BððMsa

n Þ
m;Msa

n Þ as

k�k :¼ sup
k�ðX1; . . . ;XmÞkHS
kX1kHS � � � kXmkHS

: X1; . . . ;Xm 2 M
sa
n n f0g

� �
: ð2:3:1Þ

Now assume that m 2 N with m � 2 and the ðm� 1Þth Fréchet derivative Dm�1 f ðAÞ exists for all A 2 M
sa
n ða; bÞ in a

neighborhood of A0 2 M
sa
n ða; bÞ. We say that f ðAÞ is m times Fréchet differentiable at A0 if Dm�1 f ðAÞ is one more

Fréchet differentiable at A0, i.e., there exists a Dm f ðA0Þ 2 BðMsa
n ;BððM

sa
n Þ

m�1;Msa
n ÞÞ ¼ BððMsa

n Þ
m;Msa

n Þ such that

kDm�1 f ðA0 þ XÞ � Dm�1 f ðA0Þ � Dm f ðA0ÞðXÞk
kXkHS

�! 0 as kXkHS ! 0 for X 2 M
sa
n ;

with respect the norm (2.3.1) of BððMsa
n Þ

m�1;Msa
n Þ. Then Dm f ðA0Þ is called the mth Fréchet derivative of f ðAÞ at A0.

Note that the norms ofMsa
n and BððMsa

n Þ
m;Msa

n Þ are irrelevant to the definition of Fréchet derivatives since the norms on
a finite-dimensional vector space are all equivalent; we used the Hilbert–Schmidt norm just for convenience sake.

The following theorem is essentially due to Daleckii and Krein [28], where the higher derivatives of the function
t 7! f ðAþ tXÞ were obtained for self-adjoint operators in an infinite-dimensional Hilbert space while the derivatives
treated in [28] are Gâteaux derivatives weaker than Fréchet derivatives. Our proof below is an extension of that in [13]
for the case m ¼ 1. The proof is based on a useful criterion of the existence of the mth Fréchet derivative via Taylor’s
theorem, which is mentioned in Appendix A.1.

Theorem 2.3.1. Let m 2 N and assume that f is Cm on ða; bÞ. Then the following hold true:
(1) f ðAÞ is m times Fréchet differentiable at every A 2 M

sa
n ða; bÞ.

(2) If A ¼ UDiagð�1; . . . ; �nÞU� is the diagonalization of A 2 M
sa
n ða; bÞ, then the mth Fréchet derivative Dm f ðAÞ is

given as

Dm f ðAÞðX1; . . . ;XmÞ ¼ U

" Xn
k1;...;km�1¼1

f ½m�ð�i; �k1 ; . . . ; �km�1
; �jÞ

�
X
�2Sm

ðU�X�ð1ÞUÞik1 ðU
�X�ð2ÞUÞk1k2 � � � ðU

�X�ðm�1ÞUÞkm�2km�1
ðU�X�ðmÞUÞkm�1j

#n

i; j¼1

U�

for all X1; . . . ;Xm 2 M
sa
n , where Sm is the permutations on f1; . . . ;mg.

(3) The map A 7!Dm f ðAÞ is a norm-continuous map from M
sa
n ða; bÞ to BððMsa

n Þ
m;Msa

n Þ.
(4) The Taylor formula holds: for every A 2 Mnða; bÞ,

f ðAþ XÞ ¼ f ðAÞ þ
Xm
k¼1

1

k!
Dk f ðAÞðX; . . . ;XÞ þ oðkXkmHSÞ as kXkHS ! 0 for X 2 M

sa
n :

(5) For every A 2 M
sa
n ða; bÞ and every X1; . . . ;Xm 2 M

sa
n ,

Dm f ðAÞðX1; . . . ;XmÞ ¼
@m

@t1 � � � @tm
f ðAþ t1X1 þ � � � þ tmXmÞ





t1¼���¼tm¼0

:

Proof. The proof is by induction on m. To perform an induction procedure, one can take the initial case m ¼ 0. The
statements (1)–(5) for the case m ¼ 0 reduce to the obvious fact that if f is continuous on ða; bÞ then the map
A 2 M

sa
n ða; bÞ 7! f ðAÞ 2 M

sa
n is norm-continuous. In fact, the induction argument below can work also when m ¼ 1,

under the above interpretation for the initial case.
Let m � 1 and assume that, for r ¼ 0; 1; . . . ;m� 1, the statements (1)–(5) hold for the order r if f is Cr on ða; bÞ.

Upon this assumption let us prove (1)–(5) for m if f is Cm on ða; bÞ. The proof is divided into several steps. In the
following let A 2 M

sa
n ða; bÞ with the diagonalization A ¼ UDiagð�1; . . . ; �nÞU� and X1; . . . ;Xm 2 M

sa
n .

Step 1. When f ðxÞ ¼ xk, it is easily verified by a direct computation that Dm f ðAÞ exists and

Dm f ðAÞðX1; � � � ;XmÞ ¼
X

l0;l1;...;lm�0
l0þl1þ���þlm¼k�m

X
�2Sm

Al0X�ð1ÞA
l1X�ð2ÞA

l2 � � �Alm�1X�ðmÞA
lm ð2:3:2Þ

(in particular, this is zero if m > k). The above expression is further written as
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X
l0;l1;...;lm�0

l0þl1þ���þlm¼k�m

X
�2Sm

U

" X
k1;...;km�1¼1

� l0
i �

l1
k1
� � � � lm�1

km�1
� lm
j

� ðU�X�ð1ÞUÞik1ðU
�X�ð2ÞUÞk1k2 � � � ðU

�X�ðm�1ÞUÞkm�2km�1
ðU�X�ðmÞUÞkm�1j

#n

i; j¼1

U�

¼ U

264 Xn
k1;...;km�1¼1

X
l0;l1;...;lm�0

l0þl1þ���þlm¼k�m

� l0
i �

l1
k1
� � � � lm�1

km�1
� lm
j

0B@
1CA

�
X
�2Sm

ðU�X�ð1ÞUÞik1 ðU
�X�ð2ÞUÞk1k2 � � � ðU

�X�ðm�1ÞUÞkm�2km�1
ðU�X�ðmÞUÞkm�1j

375
n

i; j¼1

U�

¼ U

" Xn
k1;��� ;km�1¼1

f ½m�ð�i; �k1 ; . . . ; �km�1
; �jÞ

�
X
�2Sm

ðU�X�ð1ÞUÞik1 ðU
�X�ð2ÞUÞk1k2 � � � ðU

�X�ðm�1ÞUÞkm�2km�1
ðU�X�ðmÞUÞkm�1j

#n

i; j¼1

U�

by Exercise 2.2.2. Hence it follows that Dm f ðAÞ exists and the expression in (2) is valid for all polynomials f .
Let us extend this for all Cm functions f on ða; bÞ by a continuity argument.

Step 2. Let f be Cm on ða; bÞ and denote the right-hand side of the expression in (2) by Dm f ðAÞðX1; . . . ;XmÞ; then
Dm f ðAÞ is a symmetric (under permutation of arguments) m-multilinear map from ðMsa

n Þ
m to M

sa
n since f ½m� is

symmetric and X
�2Sm

ðU�X�ð1ÞUÞik1ðU�X�ð2ÞUÞk1k2 � � � ðU�X�ðm�1ÞUÞkm�2km�1
ðU�X�ðmÞUÞkm�1 j

¼
X
�2Sm

ðU�X�ð1ÞUÞjkm�1
ðU�X�ð2ÞUÞkm�1km�2

� � � ðU�X�ðm�1ÞUÞk2k1ðU
�X�ðmÞUÞk1i

for X1; . . . ;Xm 2 M
sa
n . By Lemma 2.2.4 (2) we have

jf ½m�ð�i; �k1 ; � � � ; �km�1
; �jÞj � max

x2�ðAÞ

jf ðmÞðxÞj
m!

for all i; k1; . . . ; km�1; j, where �ðAÞ denotes the smallest interval containing the eigenvalues of A. Therefore,

kDmðAÞðX1; . . . ;XmÞkHS

� max
x2�ðAÞ

jf ðmÞðxÞj
m!

(Xn
i; j¼1

 Xn
k1;...;km�1¼1

X
�2Sm

jðU�X�ð1ÞUÞik1 ðU
�X�ð2ÞUÞk1k2 � � � ðU

�X�ðm�1ÞUÞkm�2km�1
ðU�X�ðmÞUÞkm�1jj

!2)1=2

� max
x2�ðAÞ

jf ðmÞðxÞj
m!

(Xn
i; j¼1

 Xn
k1;...;km�1¼1

X
�2Sm

kX�ð1ÞkHSkX�ð2ÞkHS � � � kX�ðmÞkHS

!2)1=2

� max
x2�ðAÞ

jf ðmÞðxÞj � nmkX�ð1ÞkHSkX�ð2ÞkHS � � � kX�ðmÞkHS:

This implies that the norm of Dm f ðAÞ on ðMsa
n Þ

m is bounded as

kDm f ðAÞk � nm max
x2�ðAÞ

jf ðmÞðxÞj: ð2:3:3Þ

Step 3. For each A 2 M
sa
n ða; bÞ and each X 2 M

sa
n we write

eRRf ðA;XÞ :¼ f ðAþ XÞ �
Xm�1

k¼0

1

k!
Dk f ðAÞðXðkÞÞ;

Rf ðA;XÞ :¼ eRRf ðA;XÞ �
1

m!
Dm f ðAÞðXðmÞÞ;

where XðkÞ denotes k times X; . . . ;X and 1
k!
Dk f ðAÞðXðkÞÞ for k ¼ 0 means f ðAÞ. Here, the existence of Dk f ðAÞ for

1 � k � m� 1 and for A 2 M
sa
n ða; bÞ is guaranteed by the induction hypothesis. We show that
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kRf ðB;XÞkHS
kXkmHS

�! 0 as ðB;XÞ 2 M
sa
n ða; bÞ �M

sa
n , ðB;XÞ ! ðA; 0Þ;

that is, for every A 2 M
sa
n ða; bÞ and every " > 0, there exists a � > 0 such that

kRf ðAþ Y ;XÞkHS � "kXkmHS
for all X;Y 2 M

sa
n with kXkHS; kYkHS � �. To prove this, choose a �0 > 0 such that

a0 :¼ min�ðAÞ � 2�0 > a; b0 :¼ max�ðAÞ þ 2�0 < b:

Let X;Y 2 M
sa
n with kXkHS; kYkHS � �0. Since kX þ Yk � kX þ YkHS � 2�0, it is clear that �ðAþ Y þ XÞ 


½a0; b0� 
 ða; bÞ. Since f is Cm on ða; bÞ, one can choose a sequence f fig of polynomials such that f ðkÞi ! f ðkÞ as i ! 1
uniformly on ½a0; b0� for all k ¼ 0; 1; . . . ;m. For each Z 2 M

sa
n define a real-valued function

�iðtÞ :¼ hZ; fiðAþ Y þ tXÞiHS; t 2 ½0; 1�:

Then the �i’s are Cm on ½0; 1� and

�ðkÞi ðtÞ ¼ hZ;Dk fiðAþ Y þ tXÞðXðkÞÞiHS;

�ðmÞi ðtÞ ¼ hZ;Dm fiðAþ Y þ tXÞðXðmÞÞiHS ¼ hZ;Dm fiðAþ Y þ tXÞðXðmÞÞiHS;

since Dm fi ¼ Dm fi for polynomials fi as shown in Step 1. By Taylor’s theorem applied to �i � �j, there exists a
�0 2 ð0; 1Þ such that

�ið1Þ � �jð1Þ ¼
Xm�1

k¼0

�ðkÞi ð0Þ � �ðkÞj ð0Þ
k!

þ
�ðmÞi ð�0Þ � �ðmÞj ð�0Þ

m!
;

that is,

hZ; eRRfiðAþ Y ;XÞ � eRRfjðAþ Y ;XÞiHS ¼
1

m!
hZ;Dmð fi � fjÞðAþ Y þ �0XÞðXðmÞÞiHS:

Since

jhZ;Dmð fi � fjÞðAþ Y þ �0XÞðXðmÞÞiHSj � sup
�2½0;1�

kDmð fi � fjÞðAþ Y þ �XÞk � kXkmHSkZkHS;

we have

keRRfiðAþ Y ;XÞ � eRRfj ðAþ Y ;XÞkHS � sup
�2½0;1�

kDmð fi � fjÞðAþ Y þ �XÞk � kXkmHS: ð2:3:4Þ

For any " > 0 choose an i0 2 N such that

sup
t2½a0;b0�

jf ðmÞi ðtÞ � f ðmÞj ðtÞj �
"

3nm
for all i; j � i0;

sup
t2½a0;b0�

jf ðmÞi0
ðtÞ � f ðmÞðtÞj �

"

3nm
:

Since �ðAþ Y þ �XÞ 
 ½a0; b0� for all � 2 ½0; 1�, it follows from (2.3.3) that

sup
�2½0;1�

kDmð fi � fjÞðAþ Y þ �XÞk �
"

3
for all i; j � i0; ð2:3:5Þ

kDmð fi0 � f ÞðAþ YÞk �
"

3
: ð2:3:6Þ

By using (2) for 1 � k � m� 1 (the induction hypothesis) and Lemma 2.2.4 (2), we notice that

kDkð fi � f ÞðAþ YÞðXðkÞÞkHS �! 0 as i ! 1, 1 � k � m� 1

as well as fiðAþ Y þ XÞ ! f ðAþ Y þ XÞ and fiðAþ YÞ ! f ðAþ YÞ as i ! 1. Therefore,

keRRfi ðAþ Y ;XÞ � eRRf ðAþ Y ;XÞkHS �! 0 as i ! 1:

So, letting i ! 1 and j ¼ i0 in (2.3.4) and by applying (2.3.5) we obtain

keRRf ðAþ Y ;XÞ � eRRfi0
ðAþ Y ;XÞkHS �

"

3
kXkmHS: ð2:3:7Þ

Again by Taylor’s theorem applied to �i0 , there exists a �1 2 ð0; 1Þ such that
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�i0ð1Þ ¼
Xm�1

k¼0

�ðkÞð0Þ
k!

þ
�ðmÞð�1Þ

m!
;

that is,

hZ; eRRfi0
ðAþ Y ;XÞiHS ¼

1

m!
hZ;Dm fi0ðAþ Y þ �1XÞðXðmÞÞiHS:

Therefore,

jhZ;Rfi0
ðAþ Y ;XÞiHSj ¼

1

m!
jhZ;Dm fi0ðAþ Y þ �1XÞðXðmÞÞ �Dm fi0 ðAþ YÞðXðmÞÞiHSj

� sup
�2½0;1�

kDm fi0 ðAþ Y þ �XÞ �Dm fi0 ðAþ YÞk � kXkmHSkZkHS

for every Z 2 M
sa
n and hence

kRfi0
ðAþ Y ;XÞkHS � sup

�2½0;1�
kDm fi0ðAþ Y þ �XÞ �Dm fi0ðAþ YÞk � kXkmHS:

For a polynomial fi0 it is rather easy to see (left to Exercise 2.3.2 below) that the map Dm fi0 ¼ Dm fi0 from M
sa
n into

BððMsa
n Þ

m;Msa
n Þ is norm-continuous. Hence there exists a � 2 ð0; �0Þ, independently of Y with kYkHS � �0, such that

sup
�2½0;1�

kDm fi0 ðAþ Y þ �XÞ �Dm fi0 ðAþ YÞk �
"

3

whenever X 2 M
sa
n satisfies kXkHS � �. So we have

kRfi0
ðAþ Y ;XÞkHS �

"

3
kXkmHS: ð2:3:8Þ

Combining (2.3.6)–(2.3.8) implies that

kRf ðAþ Y ;XÞkHS � keRRf ðAþ Y ;XÞ � eRRfi0
ðAþ Y ;XÞkHS þ kRfi0

ðAþ Y ;XÞkHS
þ kDm fi0 ðAþ YÞðXðmÞÞ �Dm f ðAþ YÞðXðmÞÞkHS

�
"

3
kXkmHS þ

"

3
kXkmHS þ

"

3
kXkmHS ¼ "kXkmHS

whenever X;Y 2 M
sa
n satisfy kXkHS; kYkHS � � (� �0), as required.

Step 4. Next, we show that the map A 7!Dm f ðAÞ from M
sa
n ða; bÞ into BððMsa

n Þ
m;Msa

n Þ is norm-continuous. Let
A 2 M

sa
n ða; bÞ and �0 be as in Step 3, and choose a sequence f fig of polynomials as above. Then for any " > 0 one can

choose an i0 2 N such that (2.3.6) holds for all Y 2 M
sa
N with kYkHS � �0. Moreover, by Exercise 2.3.2 below, there

exists a �1 2 ð0; �0Þ such that kDm fi0 ðAþ YÞ �Dm fi0 ðAÞk � "=3 for all Y 2 M
sa
n with kYkHS � �1. Therefore, if

kYkHS � �1 then

kDm f ðAþ YÞ �Dm f ðAÞk
� kDmð f � fi0 ÞðAþ YÞk þ kDm fi0ðAþ YÞ �Dm fi0ðAÞk þ kDmð fi0 � f ÞðAÞk

�
"

3
þ
"

3
þ
"

3
¼ ";

which yields the continuity of A 7!Dm f ðAÞ.
Step 5. We finally present the proofs of the statements (1)–(5) for m.
(1) By Steps 3 and 4 we can apply a general criterion in Lemma A.1.1 of Appendix A.1 to see that Dm f ðAÞ exists

and Dm f ðAÞ ¼ Dm f ðAÞ for every A 2 M
sa
n ða; bÞ.

(2) follows since Dm f ðAÞ ¼ Dm f ðAÞ.
(3) is contained in Step 4.
(4) is contained in Step 3; just let Y ¼ 0 there.
(5) Since Fréchet differentiability implies Gâtaux (or directional) differentiability, one can differentiate

f ðAþ t1X1 þ � � � þ tmXmÞ as
@m

@t1 � � � @tm
f ðAþ t1X1 þ � � � þ tmXmÞ





t1¼���¼tm¼0

¼
@m

@t1 � � � @tm�1

Df ðAþ t1X1 þ � � � þ tm�1Xm�1ÞðXmÞ




t1¼���¼tm�1¼0

¼ � � � ¼ Dm f ðAÞðX1; . . . ;XmÞ: �
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Theorem 2.3.1 in the case m ¼ 1 says that if f is C1 on ða; bÞ, then f ðAÞ is Fréchet differentiable at every
A 2 M

sa
n ða; bÞ and the Fréchet derivative Df ðAÞ at A is written as

Df ðAÞðXÞ ¼ U
�
½ f ½1�ð�i; 	jÞ�ni; j¼1 
 ðU

�XUÞ
�
U�; ð2:3:9Þ

where A ¼ UDiagð�1; . . . ; �nÞU� is the diagonalization and 
 denotes the Schur product (see Section 1.6). In particular,
when A ¼ Diagð�1; . . . ; �nÞ is in M

sa
n ða; bÞ,

Df ðAÞðXÞ ¼ ½ f ½1�ð�i; �jÞ�ni; j¼1 
 X:

The assertion for the case m ¼ 2 says that if f is C2 on ða; bÞ, then the second Fréchet derivative D2 f ðAÞ at
A ¼ Diagð�1; . . . ; �nÞ 2 M

sa
n ða; bÞ is written as

D2 f ðAÞðX;YÞ ¼
Xn
k¼1

f ½2�ð�i; �k; �jÞðXikYkj þ YikXkjÞ

" #n

i; j¼1

:

Exercise 2.3.2. Let m 2 N and f be a polynomial. By using the expression (2.3.2), show that the map A 7!Dm f ðAÞ
from M

sa
n into BððMsa

n Þ
m;Msa

n Þ is norm-continuous with respect to the norms kAkHS and k�k of � 2 BððMsa
n Þ

m;Msa
n Þ in

(2.3.1).

Note that the Taylor formula (4) follows if the map A 7! f ðAÞ is Cm (i.e., (1) and (3) hold). But in our proof of
Theorem 2.3.1, we first proved a stronger form of (4) as well as (3), and (1) was obtained from those two.

2.4 Characterizations of n-monotone and n-convex functions

The next theorem is due to Löwner [62] and the proof below is also based on the exposition in [30].

Theorem 2.4.1. Assume that f is a 2-monotone function on ða; bÞ. Then f is C1 on ða; bÞ, and moreover f 0 > 0 and f 0

is convex on ða; bÞ unless f is a constant.

Proof. The proof of the theorem is divided into several steps. Assume that f is 2-monotone on ða; bÞ and is not a
constant. Let �1 < �1 < �2 < �2 be arbitrary in ða; bÞ.

Step 1. Let A :¼ �1 0

0 �2

� �
. We show that there exist �1; �2 > 0 such that B :¼ Aþ Q has the eigenvalues �1; �2 if

we set Q :¼ �1
ffiffiffiffiffiffiffiffiffiffi
�1�2

pffiffiffiffiffiffiffiffiffiffi
�1�2

p
�2

� �
. In fact, since

detð�I � BÞ ¼ �2 � ð�1 þ �2 þ �1 þ �2Þ� þ �1�2 þ �1�2 þ �2�1;

the required condition is

�1 þ �2 þ �1 þ �2 ¼ �1 þ �2;
�1�2 þ �1�2 þ �2�1 ¼ �1�2:

�
This can be explicitly solved as

�1 ¼
ð�1 � �1Þð�2 � �1Þ

�2 � �1
; �2 ¼

ð�2 � �1Þð�2 � �2Þ
�2 � �1

;

which are positive numbers.
Step 2. We prove that

det
f ½1�ð�1; �1Þ f ½1�ð�1; �2Þ
f ½1�ð�2; �1Þ f ½2�ð�2; �2Þ

" #
� 0: ð2:4:1Þ

Choose �1; �2 > 0 as in Step 1. Since Q � 0 so that A � B, we have f ðAÞ � f ðBÞ. There is a unitary U ¼ u11 u12
u21 u22

� �
such that B ¼ UeBBU� with eBB :¼ �1 0

0 �2

� �
. Note that UeBB� AU ¼ QU. Since

UeBB� AU ¼
ð�1 � �1Þu11 ð�2 � �1Þu12
ð�1 � �2Þu21 ð�2 � �2Þu22

� �
and
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QU ¼
�1u11 þ

ffiffiffiffiffiffiffiffiffiffi
�1�2

p
u21 �1u12 þ

ffiffiffiffiffiffiffiffiffiffi
�1�2

p
u22ffiffiffiffiffiffiffiffiffiffi

�1�2
p

u11 þ �2u21
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
u12 þ �2u22

� �
;

it follows that

ð�1 � �1Þu11 ¼ �1u11 þ
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
u21; ð�2 � �1Þu12 ¼ �1u12 þ

ffiffiffiffiffiffiffiffiffiffi
�1�2

p
u22;

ð�1 � �2Þu21 ¼
ffiffiffiffiffiffiffiffiffiffi
�1�2

p
u11 þ �2u21; ð�2 � �2Þu22 ¼

ffiffiffiffiffiffiffiffiffiffi
�1�2

p
u12 þ �2u22:

�
ð2:4:2Þ

On the other hand,

U f ðeBBÞ � f ðAÞU

¼ U
f ð�1Þ 0

0 f ð�2Þ

� �
�

f ð�1Þ 0

0 f ð�2Þ

� �
U

¼
ð f ð�1Þ � f ð�1ÞÞu11 ð f ð�2Þ � f ð�1ÞÞu12
ð f ð�1Þ � f ð�2ÞÞu21 ð f ð�2Þ � f ð�2ÞÞu22

� �
¼

f ½1�ð�1; �1Þ
ffiffiffiffiffi
�1

p ð ffiffiffiffiffi
�1

p
u11 þ

ffiffiffiffiffi
�2

p
u21Þ f ½1�ð�1; �2Þ

ffiffiffiffiffi
�1

p ð ffiffiffiffiffi
�1

p
u12 þ

ffiffiffiffiffi
�2

p
u22Þ

f ½1�ð�2; �1Þ
ffiffiffiffiffi
�2

p ð ffiffiffiffiffi
�1

p
u11 þ

ffiffiffiffiffi
�2

p
u21Þ f ½1�ð�2; �2Þ

ffiffiffiffiffi
�2

p ð ffiffiffiffiffi
�1

p
u12 þ

ffiffiffiffiffi
�2

p
u22Þ

" #

thanks to (2.4.2). Hence

detðU f ðeBBÞ � f ðAÞUÞ

¼ det
f ½1�ð�1; �1Þ f ½1�ð�1; �2Þ
f ½1�ð�2; �1Þ f ½2�ð�2; �2Þ

" # ffiffiffiffiffiffiffiffiffiffi
�1�2

p
ð
ffiffiffiffiffi
�1

p
u11 þ

ffiffiffiffiffi
�2

p
u21Þð

ffiffiffiffiffi
�1

p
u12 þ

ffiffiffiffiffi
�2

p
u22Þ:

Thanks to (2.4.2) again we have

detU ¼ det

ffiffiffiffi
�1

p ð ffiffiffiffi�1p
u11þ

ffiffiffiffi
�2

p
u21Þ

�1��1

ffiffiffiffi
�1

p ð ffiffiffiffi�1p
u12þ

ffiffiffiffi
�2

p
u22Þ

�2��1ffiffiffiffi
�2

p ð ffiffiffiffi�1p
u11þ

ffiffiffiffi
�2

p
u21Þ

�1��2

ffiffiffiffi
�2

p ð ffiffiffiffi�1p
u12þ

ffiffiffiffi
�2

p
u22Þ

�2��2

24 35
¼ det

1
�1��1

1
�2��1

1
�1��2

1
�2��2

24 35 ffiffiffiffiffiffiffiffiffiffi
�1�2

p
ð
ffiffiffiffiffi
�1

p
u11 þ

ffiffiffiffiffi
�2

p
u21Þð

ffiffiffiffiffi
�1

p
u12 þ

ffiffiffiffiffi
�2

p
u22Þ:

Noting that

� :¼ det

1
�1��1

1
�2��1

1
�1��2

1
�2��2

" #
> 0;

we have

det
f ½1�ð�1; �1Þ f ½1�ð�1; �2Þ
f ½1�ð�2; �1Þ f ½1�ð�2; �2Þ

" #
¼ detðU f ðeBBÞ � f ðAÞUÞ � �ðdetUÞ�1

¼ � detðU f ðeBBÞ � f ðAÞUÞ detU�

¼ � detðU f ðeBBÞU� � f ðAÞÞ
¼ � detð f ðBÞ � f ðAÞÞ � 0:

Step 3. We show that f is absolutely continuous on any closed subinterval of ða; bÞ. To prove this, it suffices to show
that f is Lipschitz continuous on any closed interval ½c; d� 
 ða; bÞ. Fix �1 2 ða; cÞ and �2 2 ðd; bÞ. For every �1 < �2 in
½c; d�, it follows from (2.4.1) that

f ð�2Þ � f ð�1Þ
�2 � �1

�
f ð�2Þ � f ð�1Þ
�2 � �1

�
f ð�1Þ � f ð�1Þ
�1 � �1

�
f ð�2Þ � f ð�2Þ
�2 � �2

�
ð f ð�2Þ � f ð�1ÞÞ2

ðc� �1Þð�2 � dÞ
;

since f ð�1Þ � f ð�1Þ � f ð�2Þ � f ð�2Þ. We may assume that f ð�2Þ � f ð�1Þ > 0; otherwise, f is obviously a constant on
½�1; �2� 	 ½c; d�. We then have the Lipschitz condition

f ð�2Þ � f ð�1Þ � Mð�2 � �1Þ; �1; �2 2 ½c; d�; �1 < �2;

where M :¼ ð�2 � �1Þð f ð�2Þ � f ð�1ÞÞ=ðc� �1Þð�2 � dÞ.
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Step 4. We prove that

det
f ½1�ð�1; �1Þ f ½2�ð�1; �1; �2Þ

f ½2�ð�1; �2; �1Þ f ½3�ð�1; �2; �1; �2Þ

" #
� 0: ð2:4:3Þ

In fact, the above determinant is equal to

det
f ½1�ð�1; �1Þ f ½2�ð�1; �1; �2Þ

f ½1�ð�2;�1Þ� f ½1�ð�1;�1Þ
�2��1

f ½2�ð�2;�1;�2Þ� f ½2�ð�1;�1;�2Þ
�2��1

" #

¼
1

�2 � �1
det

f ½1�ð�1; �1Þ f ½2�ð�1; �1; �2Þ
f ½1�ð�2; �1Þ f ½2�ð�2; �1; �2Þ

" #

¼
1

�2 � �1
det

f ½1�ð�1; �2Þ f ½1�ð�1;�2Þ� f ½1�ð�1;�1Þ
�2��1

f ½1�ð�2; �1Þ f ½1�ð�2;�2Þ� f ½1�ð�2;�1Þ
�2��1

24 35
¼

1

ð�2 � �1Þð�2 � �1Þ
det

f ½1�ð�1; �1Þ f ½1�ð�1; �2Þ
f ½1�ð�2; �1Þ f ½1�ð�2; �2Þ

" #
� 0

thanks to (2.4.1).
Step 5. Assume that f is smooth (or at least C3) on ða; bÞ. We then prove that

det
f 0ðxÞ f 00ðxÞ

2!

f 00ðxÞ
2!

f ð3ÞðxÞ
3!

" #
� 0 for all x 2 ða; bÞ; ð2:4:4Þ

and moreover, f 0ðxÞ > 0 and f ð3ÞðxÞ � 0 for all x 2 ða; bÞ. In fact, (2.4.4) immediately follows from (2.4.3) by letting
�j; �j ! x, j ¼ 1; 2. Also, letting �j ! �j in (2.4.1) yields

det
f 0ð�1Þ f ½1�ð�1; �2Þ

f ½1�ð�1; �2Þ f 0ð�2Þ

" #
� 0 for all �1; �2 2 ða; bÞ:

If f 0ð�1Þ ¼ 0 for some �1 2 ða; bÞ, then we must have f ½1�ð�1; �2Þ ¼ 0 so that f ð�2Þ ¼ f ð�1Þ for all �2 2 ða; bÞ,
contradicting the assumption that f is not a constant on ða; bÞ. Hence f 0ðxÞ > 0 for all x 2 ða; bÞ and so f ð3ÞðxÞ � 0

for all x 2 ða; bÞ thanks to (2.4.4).
Step 6. To finish the proof of the theorem, let us employ the regularization technique described in Appendix A.2. For

any " > 0 small enough, let f" be the regularization of f defined in (A.2.1). If A;B 2 M
sa
2 ðaþ "; b� "Þ and A � B, then

f"ðAÞ ¼
Z 1

�1

’ðtÞ f ðA� "tIÞ dt �
Z 1

�1

’ðtÞ f ðB� "tIÞ dt ¼ f"ðBÞ:

Hence f" is 2-monotone on ðaþ "; b� "Þ, so it follows from Step 5 that f 0" is nonnegative and convex on ðaþ "; b� "Þ.
Lemma A.2.1 (4) and Step 3 imply that f 0"ðxÞ converges as "& 0 to f 0ðxÞ almost everywhere on any closed interval
½c; d� 
 ða; bÞ. Choose � > 0 with 2� < minfc� a; b� dg. For any " 2 ð0; �� and x; y 2 ½c; d�, since aþ " < c� � and
d þ � < b� ", we have

f 0"ðcÞ � f 0"ðc� �Þ
�

�
f 0"ðxÞ � f 0"ðyÞ

x� y
�

f 0"ðd þ �Þ � f 0"ðdÞ
�

thanks to the convexity of f 0" on ðaþ "; b� "Þ. Hence

jf 0"ðxÞ � f 0"ðyÞj � K"jx� yj; x; y 2 ½c; d�;

where

K" :¼ max
f 0"ðcÞ � f 0"ðc� �Þ

�





 



; f 0"ðd þ �Þ � f 0"ðdÞ
�





 



� �
:

Here, changing c; d and � arbitrarily small, we may assume that f 0"ðxÞ converges as "& 0 to f 0ðxÞ at the four points
c� �, c, d, and d þ �. Then it follows that K :¼ supfK" : " 2 ð0; ��g < þ1. Hence f f 0" : " 2 ð0; ��g is equicontinuous on
½c; d�. From this we see that f 0" uniformly converges as "& 0 to a continuous function g on ½c; d� so that f 0ðxÞ ¼ gðxÞ
almost everywhere on ½c; d�. But in this case, we obtain

f ðxÞ ¼ f ðcÞ þ
Z x

c

gðtÞ dt; x 2 ½c; d�;
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which implies that f 0ðxÞ ¼ gðxÞ ¼ lim"&0 f
0
"ðxÞ for all x 2 ½c; d�. Hence f is C1 and f 0 is nonnegative and convex on

ða; bÞ. From the argument in Step 5 it also follows that f 0 > 0 on ða; bÞ if f is not a constant. �

The next theorem concerned with 2-convex functions is due to Kraus [57], whose proof is based on the essentially
same idea as that of the preceding proof but much more involved according to the stronger conclusion of C2. We prefer
to transfer the proof into Appendix A.3.

Theorem 2.4.2. Assume that f is a 2-convex function on ða; bÞ. Then f is C2 on ða; bÞ, and moreover f ½2�ðx; y; zÞ > 0

for all distinct x; y; z in ða; bÞ unless f is linear on ða; bÞ.
In fact, the theorem holds under a weaker assumption that f is conditionally 2-convex on ða; bÞ in the sense that

f ðð1� �ÞAþ �BÞ � ð1� �Þ f ðAÞ þ � f ðBÞ for all � 2 ð0; 1Þ and for all A;B 2 M
sa
2 with �ðAÞ; �ðBÞ 
 ða; bÞ such that

A � B.

In the rest of this section we present the characterizations of n-monotone functions (due to Löwner [62]) and
of n-convex functions (due to Kraus [57]) in terms of divided difference matrices. Key roles in our proofs are played by
the formulas in Theorem 2.3.1 (2) for the first and the second Fréchet derivatives of matrix functional calculus.

Theorem 2.4.3. Let n 2 N with n � 2 and let f be a real-valued function on ða; bÞ. Then the following are equivalent:
(i) f is n-monotone on ða; bÞ;
(ii) f is C1 on ða; bÞ and ½ f ½1�ð�i; �jÞ�ni; j¼1 � 0 for every choice of �1 < � � � < �n from ða; bÞ.

Proof. (i) ) (ii). Since f is at least 2-monotone, the C1 of f was proved in Theorem 2.4.1. For every choice of
�1 < � � � < �n from ða; bÞ and for any �1; . . . ; �n 2 C, define A :¼ Diagð�1; . . . ; �nÞ and X :¼ ½�i�j�ni; j¼1 (� 0). Since
Aþ "X 2 M

sa
n ða; bÞ and Aþ "X � A for all " > 0 small enough, we have f ðAþ "XÞ � f ðAÞ for such an " > 0.

Since f is C1 on ða; bÞ as mentioned above, we can apply the formula in Theorem 2.3.1 (2) for m ¼ 1 to obtain

½ f ½1�ð�i; �jÞ�i�j�ni; j¼1 ¼ ½ f ½1�ð�i; �jÞ� 
 X ¼ Df ðAÞðXÞ ¼ lim
"&0

f ðAþ "XÞ � f ðAÞ
"

� 0;

which implies that
Pn

i; j¼1 f
½1�ð�i; �jÞ�i�j � 0. Hence we have ½ f ½1�ð�i; �jÞ� � 0.

(ii) ) (i). For each A;B 2 M
sa
n ða; bÞ with A � B, define At :¼ ð1� tÞAþ tB for t 2 ½0; 1�. Note that At 2 M

sa
n ða; bÞ

and At � At0 for all t; t
0 2 ½0; 1� with t � t0. For every t 2 ½0; 1� we have

d

dt
f ðAtÞ ¼ Df ðAtÞðB� AÞ ¼ U

�
½ f ½1�ð�i; �jÞ�ni; j¼1 
 U

�ðB� AÞU
�
U�

thanks to Theorem 2.3.1 (2) for m ¼ 1, where we take the diagonalization At ¼ UDiagð�1; . . . ; �nÞU� (of course,
depending on t). Hence (ii) and the Schur product theorem (Theorem 1.6.3) imply that d

dt
f ðAtÞ � 0 for all t 2 ½0; 1�

so that

f ðBÞ � f ðAÞ ¼
Z 1

0

d

dt
f ðAtÞ dt � 0: �

Theorem 2.4.4. Let n 2 N with n � 2 and let f be a real-valued function on ða; bÞ. Then the following are equivalent:
(i) f is n-convex on ða; bÞ;
(ii) f is conditionally n-convex on ða; bÞ, i.e., (2.1.1) holds for every A;B 2 M

sa
n ða; bÞ such that A � B;

(iii) f is C2 on ða; bÞ and ½ f ½2�ð�1; �i; �jÞ�ni; j¼1 � 0 for any choice of �1; . . . ; �n from ða; bÞ.

Proof. (i) ) (ii) is obvious.
(ii) ) (iii). Since (ii) implies the same condition for n ¼ 2, the C2 of f was given in Theorem 2.4.2 while the

proof is in Appendix A.3. For any �1; . . . ; �n 2 ða; bÞ and �1; . . . ; �n 2 C, define A :¼ Diagð�1; . . . ; �nÞ and X :¼
½�i�j�ni; j¼1. There is a � > 0 such that Aþ tX 2 M

sa
n ða; bÞ for all t 2 ð��; �Þ. For every s; t 2 ð��; �Þ with s < t, since

ðAþ tXÞ � ðAþ sXÞ ¼ ðt � sÞX is positive semidefinite and of rank 1, (ii) implies that

f Aþ
sþ t

2
X

� �
¼ f

ðAþ sXÞ þ ðAþ tXÞ
2

� �
�

f ðAþ sXÞ þ f ðAþ tXÞ
2

;

which implies that t 2 ð��; �Þ 7!!ð f ðAþ tXÞÞ is a convex function for each state ! on Mn. Thanks to
Theorem 2.3.1 (5) for m ¼ 2 we have

!ðD2 f ðAÞðX;XÞÞ ¼
d2

dt2
!ð f ðAþ tXÞÞ





t¼0

� 0

so that D2 f ðAÞðX;XÞ � 0 by Exercise 1.5.4 (3). By Theorem 2.3.1 (2) for m ¼ 2 this means thatXn
k¼1

f ½2�ð�i; �k; �jÞ�ij�kj2�j

" #n

i; j¼1

� 0;
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that is, Xn
i; j¼1

Xn
k¼1

f ½2�ð�i; �k; �jÞ�ij�kj2�j�i�j � 0; �1; . . . ; �n 2 C:

Replacing �i by �i=�i under the assumption that �i 6¼ 0 for all i, we haveXn
i; j¼1

Xn
k¼1

f ½2�ð�i; �k; �jÞj�kj2�i�j � 0; �1; . . . ; �n 2 C:

Letting �1 ¼ 1 and �k ! 0 for k > 1 givesXn
i; j¼1

f ½2�ð�i; �1; �jÞ�i�j � 0; �1; . . . ; �n 2 C:

(iii) ) (i). Let A;B 2 M
sa
n ða; bÞ. Define At :¼ ð1� tÞAþ tB for t 2 ½0; 1� and X :¼ B� A. By (iii) and

Theorem 2.3.1 (2) for m ¼ 2 we have

d2

dt2
f ðAtÞ ¼ D2 f ðAtÞðX;XÞ ¼ U 2

Xn
k¼1

f ½2�ð�i; �k; �jÞðU�XUÞkiðU�XUÞkj

" #n

i; j¼1

U�;

where At ¼ UDiagð�1; . . . ; �nÞU� is the diagonalization of At (depending on t). It follows from (iii) that
½ f ½2�ð�i; �k; �jÞ�ni; j¼1 � 0 for all k ¼ 1; . . . ; n. Therefore, d2

dt2
f ðAtÞ � 0 for all t 2 ½0; 1�. Hence for every state ! on

Mn, t 2 ½0; 1� 7!!ð f ðAtÞÞ is a convex function so that

!ð f ðAtÞÞ � ð1� tÞ!ð f ðA0ÞÞ þ t!ð f ðA1ÞÞ ¼ !ðð1� tÞ f ðAÞ þ t f ðBÞÞ;

implying that f ðAtÞ � ð1� tÞ f ðAÞ þ t f ðBÞ for 0 � t � 1 by Exercise 1.5.4 (3). �

Remark 2.4.5. It is worth emphasizing that the n-convexity of a function f on ða; bÞ was originally defined in [57]
in the conditional sense (as stated in Theorem 2.4.2), and its equivalence with the unconditional sense
(Definition 2.1.3 (2)) was shown in [57]. However, the definition in all the literatures later on is given in the
unconditional sense. It is also seen from the above proof that when the C2 of f is known, the conditional 2-convexity
can be reduced to that under the condition that A � B and B� A is of rank 1.

Combining Theorems 2.4.3 and 2.4.4 we have:

Corollary 2.4.6. Let f be a real-valued function on ða; bÞ and n � 2. If f is n-convex, then f ½1�ð�; � Þ is ðn� 1Þ-
monotone for every � 2 ða; bÞ. If f ½1�ð�; � Þ is n-monotone for every � 2 ða; bÞ, then f is n-convex. Hence, f is operator
convex if and only if f is C1 on ða; bÞ and f ½1�ð�; � Þ is operator monotone for every � 2 ða; bÞ. (The last result will be
improved in Corollary 2.7.8.)

Proof. If f is n-convex, then Theorem 2.4.4 implies that f is C2 and ½ f ½2�ð�1; �i; �jÞ�ni; j¼2 � 0 for every
�1; . . . ; �n 2 ða; bÞ. Hence f ½1�ð�1; � Þ is ðn� 1Þ-monotone by Theorem 2.4.3. Conversely, assume that f ½1�ð�; � Þ is
n-monotone for every � 2 ða; bÞ. Since f ½1�ð�; � Þ is C1 for every � by Theorem 2.4.3, it follows that f itself is C1.
For any " > 0 small enough, let f" be the regularization of f defined in (A.2.1) of Appendix A.2. For every
�; x 2 ðaþ "; b� "Þ we notice that

f ½1�" ð�; xÞ ¼
f"ð�Þ � f"ðxÞ
� � x

¼
Z 1

�1

’ðtÞ
f ð� � "tÞ � f ðx� "tÞ
ð� � "tÞ � ðx� "tÞ

dt

¼
Z
�1

’ðtÞ f ½1�ð� � "t; x� "tÞ dt:

Note that the above expression is valid for the case � ¼ x as well since f 0" ¼ ð f 0Þ" by Lemma A.2.1 (4). If A � B in
M

sa
n ðaþ "; b� "Þ, then

f ½1�" ð�;AÞ ¼
Z 1

�1

’ðtÞ f ½1�ð� � "t;A� "tIÞ dt �
Z 1

�1

’ðtÞ f ½1�ð� � "t;B� "tIÞ dt ¼ f ½1�" ð�;BÞ:

Hence f ½1�" ð�; � Þ is n-monotone on ðaþ "; b� "Þ for every � 2 ðaþ "; b� "Þ. Theorem 2.4.3 implies that
½ f ½2�" ð�1; �i; �jÞ�ni; j¼1 � 0 for every �1; . . . ; �n 2 ðaþ "; b� "Þ. Hence f" is n-convex on ðaþ "; b� "Þ by Theorem 2.4.4.
Since f ðxÞ ¼ lim"&0 f"ðxÞ for all x 2 ða; bÞ, f is n-convex on ða; bÞ. �

Löwner’s original proof of Theorem 2.4.3 is rather algebraic. The idea of the above proofs of Theorems 2.4.3 and
2.4.4 using the Taylor formula is due to Daleckii, which was briefly but clearly explained in a survey paper of
Davis [29]. Theorem 2.4.3 is actually the first step of Löwner’s theorem, stated in the following without proof. The
proof is done by induction on n and by taking account of the larger degree versions of the determinants (2.4.3) and
(2.4.4). Details are found in [30].
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Theorem 2.4.7. Let f be an n-monotone function on ða; bÞ, where n � 2. Then f is C2n�3 on ða; bÞ and f ð2n�3Þ is
convex on ða; bÞ.

2.5 Hansen and Pedersen’s characterization

The aim of this section is to characterize operator convex and monotone functions based on Hansen and Pedersen’s
method in [35] using 2� 2 block matrices. See the first part of Section 1.7 for the basics on 2� 2 block matrices.

The following simple lemma is needed in the proof below.

Lemma 2.5.1. (1) Assume that A 2 BðHÞ is normal and U 2 BðHÞ is a unitary. Then for every function f on �ðAÞ,
f ðU�AUÞ ¼ U� f ðAÞU.
(2) For every X 2 BðHÞ and every function f on �ðX�XÞ, X f ðX�XÞ ¼ f ðXX�ÞX.

Proof. (1) Take the spectral decomposition A ¼
Pm

j¼1 �jPj as in (1.4.2). Since U�AU ¼
Pm

j¼1 �jU
�PjU is the spectral

decomposition of U�AU,

f ðU�AUÞ ¼
Xm
j¼1

f ð�jÞU�PjU ¼ U� f ðAÞU:

(2) Since �ðX�XÞ ¼ �ðXX�Þ by Proposition 1.5.7 (1), f ðXX�Þ is defined as well as f ðX�XÞ. Since XðX�XÞk ¼ ðXX�ÞkX
for k 2 N, the assertion holds if f is a polynomial. Let f be an arbitrary function on �ðX�XÞ ¼ f�1; . . . ; �mg. Define the
so-called Lagrange interpolation polynomial

pðtÞ :¼
Xm
j¼1

f ð�jÞ
Y

1�i�m; i 6¼j

t � �i
�j � �i

;

which is a polynomial such that pð�jÞ ¼ f ð�jÞ for 1 � j � m. Hence we have

X f ðX�XÞ ¼ XpðX�XÞ ¼ pðXX�ÞX ¼ f ðXX�ÞX: �

Theorem 2.5.2. Let 0 < � � 1 and f be a real-valued function on ½0; �Þ. Then the following conditions are
equivalent, where H is arbitrary and not fixed:
(i) f is operator convex and f ð0Þ � 0;
(ii) f is operator convex on ð0; �Þ and f ðþ0Þ � f ð0Þ � 0, where the existence of f ðþ0Þ :¼ limt&0 f ðtÞ and

f ðþ0Þ � f ð0Þ are automatic from the operator convexity of f on ð0; �Þ;
(iii) f ðtÞ=t is operator monotone on ð0; �Þ and f ðþ0Þ � f ð0Þ � 0, where the existence of f ðþ0Þ and f ðþ0Þ � 0 are

automatic from the the operator monotonicity of f ðtÞ=t on ð0;1Þ;
(iv) f ðX�AXÞ � X� f ðAÞX for every A 2 BðHÞsa with �ðAÞ 
 ½0; �Þ and every X 2 BðHÞ with kXk � 1;
(v) f ðX�AX þ Y�BYÞ � X� f ðAÞX þ Y� f ðBÞY for every A;B 2 BðHÞsa with �ðAÞ; �ðBÞ 
 ½0; �Þ and every X;Y 2

BðHÞ with X�X þ Y�Y � I;
(vi) f ðPAPÞ � Pf ðAÞP for every A 2 BðHÞsa with �ðAÞ 
 ½0; �Þ and every orthogonal projection P 2 BðHÞ.

Proof. (i) ) (iv). For A;X as in (iv) define A;U;V 2 BðH �HÞ by

A :¼
A 0

0 0

� �
; U :¼

X ðI � XX�Þ1=2

ðI � X�XÞ1=2 �X�

" #
;

V :¼
X �ðI � XX�Þ1=2

ðI � X�XÞ1=2 X�

" #
:

Since XðI � X�XÞ1=2 ¼ ðI � XX�Þ1=2X by Lemma 2.5.1 (2), U�U ¼ I 0

0 I

� �
so that U is a unitary and similarly for V.

Compute

U�AU ¼
X�AX X�AðI � XX�Þ1=2

ðI � XX�Þ1=2AX ðI � XX�Þ1=2AðI � XX�Þ1=2

" #
;

V�AV ¼
X�AX �X�AðI � XX�Þ1=2

�ðI � XX�Þ1=2AX ðI � XX�Þ1=2AðI � XX�Þ1=2

" #
:

Hence (i) together with Lemma 2.5.1 (1) implies that
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f ðX�AXÞ 0

0 f ððI � XX�Þ1=2AðI � XX�Þ1=2Þ

" #

¼ f
X�AX 0

0 ðI � XX�Þ1=2AðI � XX�Þ1=2

" # !

¼ f
U�AUþ V�AV

2

� �
�

f ðU�AUÞ þ f ðV�AVÞ
2

¼
1

2
U� f ðAÞ 0

0 f ð0ÞI

� �
Uþ

1

2
V� f ðAÞ 0

0 f ð0ÞI

� �
V

�
1

2
U� f ðAÞ 0

0 0

� �
Uþ

1

2
V� f ðAÞ 0

0 0

� �
V

¼
X� f ðAÞX 0

0 ðI � XX�Þ1=2 f ðAÞðI � XX�Þ1=2

" #
:

Comparing the ð1; 1Þ-blocks gives f ðX�AXÞ � X� f ðAÞX.
(iv) ) (v). For A, B, X and Y as in (v) define

A :¼
A 0

0 B

� �
; X :¼

X 0

Y 0

� �
:

Since X�X ¼ X�X þ Y�Y 0

0 0

� �
� I 0

0 I

� �
, kXk � 1. Also, A ¼ A� and �ðAÞ ¼ �ðAÞ [ �ðBÞ 
 ½0; �Þ. Since

X�AX ¼ X�AX þ Y�BY 0

0 0

� �
, we have

f ðX�AX þ Y�BYÞ 0

0 f ð0ÞI

� �
¼ f ðX�AXÞ � X� f ðAÞX ¼

X� f ðAÞX þ Y� f ðBÞY 0

0 0

� �
and hence f ðX�AX þ Y�BYÞ � X� f ðAÞX þ Y� f ðBÞY .

(v) ) (vi). Let X ¼ P and Y ¼ 0 in (v).
(vi) ) (i). For A;B 2 BðHÞsa with �ðAÞ; �ðBÞ 
 ½0; �Þ and 0 < � < 1, define

A :¼
A 0

0 B

� �
; U :¼

ffiffiffi
�

p
I �

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
Iffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

I
ffiffiffi
�

p
I

" #
; P :¼

I 0

0 0

� �
:

Then A ¼ A� with �ðAÞ 
 ½0; �Þ, U is a unitary and P is an orthogonal projection. Since

PU�AUP ¼
�Aþ ð1� �ÞB 0

0 0

� �
;

(vi) implies that

f ð�Aþ ð1� �ÞBÞ 0

0 f ð0ÞI

� �
¼ f ðPU�AUPÞ

� P f ðU�AUÞP ¼ PU� f ðAÞUP

¼
� f ðAÞ þ ð1� �Þ f ðBÞ 0

0 0

� �
so that f ð�Aþ ð1� �ÞBÞ � � f ðAÞ þ ð1� �Þ f ðBÞ and f ð0Þ � 0.

Thus, (i), (iv), (v), and (vi) are equivalent. In the rest we prove that (i), (ii), and (iii) are equivalent.
(i) ) (ii). The operator convexity of f on ð0;1Þ is contained in (i), which of course implies the usual convexity

of f on ð0;1Þ. The latter implies that the limit f ðþ0Þ exists and f ðþ0Þ � f ð0Þ.
(ii) ) (i). Define a function f0 on ½0; �Þ by f0ð0Þ :¼ f ðþ0Þ and f0ðtÞ :¼ f ðtÞ for t 2 ð0; �Þ. Then f0 is continuous on

½0; �Þ since it is convex on ð0; �Þ in the usual sense. Let A;B 2 BðHÞ with �ðAÞ; �ðBÞ 
 ½0; �Þ. When " > 0 is small so
that �ðAþ "IÞ; �ðBþ "IÞ 
 ½0; �Þ, we have for every � 2 ð0; 1Þ

f ð�ðAþ "IÞ þ ð1� �ÞðBþ "IÞÞ � � f ðAþ "IÞ þ ð1� �Þ f ðBþ "IÞ:
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Letting "& 0 yields

f0ð�Aþ ð1� �ÞBÞ � � f0ðAÞ þ ð1� �Þ f0ðBÞ;

that is, f0 is operator convex on ½0; �Þ. Now let A and P be as in (vi). Let Q0 be the orthogonal projection onto the kernel
of A and ~QQ0 be that onto the kernel of PAP. Then Q1 :¼ I � Q is the orthogonal projection onto the range of A and
~QQ1 :¼ I � ~QQ0 is that onto the range of PAP. One can write

f ðPAPÞ ¼ f0ðPAPÞ þ � ~QQ0;

Pf ðAÞP ¼ Pð f0ðAÞ þ �Q0ÞP ¼ Pf0ðAÞPþ �PQ0P;

where � :¼ f ð0Þ � f ðþ0Þ � 0. From (i) ) (vi) applied to f0 we have f0ðPAPÞ � Pf0ðAÞP. Furthermore, taking account
of the orthogonal decomposition C

n ¼ PCn � ðI � PÞCn, we have

f ðPAPÞ ¼ Pf ðPAPÞPþ f ð0ÞðI � PÞ � Pf ðPAPÞP
¼ Pf0ðPAPÞPþ �P ~QQ0P � Pf0ðAÞPþ �P ~QQ0P:

So, to see that f satisfies (vi) (hence (i)), it suffices to prove that P ~QQ0P � PQ0P. One can choose a � > 0 such that
A � �Q1 and ~QQ1 � �PAP. Hence ~QQ1 � �2PQ1P so that ðI � ~QQ1ÞPQ1PðI � ~QQ1Þ ¼ 0, which implies that Q1PðI � ~QQ1Þ ¼
0 so that PQ1P ¼ ~QQ1PQ1P ~QQ1 � ~QQ1 since PQ1P � I. Therefore, P ~QQ1P � PQ1P or P ~QQ0P � PQ0P.

(iv) ) (iii). Let A;B 2 BðHÞsa with A � B > 0. Letting X :¼ A�1=2B1=2 we have XX� ¼ A�1=2BA�1=2 � I and so
kXk � I. Since B ¼ X�AX, (iv) implies that

f ðBÞ � X� f ðAÞX ¼ B1=2A�1=2 f ðAÞ�1=2B1=2

and hence A�1 f ðAÞ ¼ A�1=2 f ðAÞA�1=2 � B�1=2 f ðBÞB�1=2 ¼ B�1 f ðBÞ. This means that f ðtÞ=t is operator monotone on
ð0; �Þ.

(iii)) (ii). First we prove that if g is a continuous operator monotone function on ½0; �Þ, then tgðtÞ is operator convex
on ½0; �Þ. Let hðtÞ :¼ tgðtÞ for t 2 ½0; �Þ. To prove (vi) for h, we may assume that A > 0. In fact, one can take the limit of
the inequality in (vi) for Aþ "I as "& 0. Since A1=2PA1=2 � A, we have gðA1=2PA1=2Þ � gðAÞ. Multiplying PA1=2 form
the left and A1=2P for the right, we have

PA1=2gðA1=2PA1=2ÞA1=2P � PA1=2gðAÞA1=2P:

Since gðA1=2PA1=2ÞA1=2P ¼ A1=2PgðPAPÞ by Lemma 2.5.1 (2), we have hðPAPÞ � PhðAÞP, so h is operator convex on
½0; �Þ.

Assume that f ðtÞ=t is operator monotone on ð0; �Þ. By Theorem 2.4.1, f ðtÞ=t is continuous on ð0; �Þ. For
each " > 0, f ðt þ "Þ=ðt þ "Þ is a continuous and operator monotone function on ½0; �� "Þ. By what we proved just
above, t

tþ" f ðt þ "Þ is operator convex on ½0; �� "Þ. Hence f is operator convex on ð0; �Þ by letting "& 0. This implies
that (iii) ) (ii). Moreover, the convexity of f together with the non-decreasingness of f ðtÞ=t implies that f ðþ0Þ exists
and f ðþ0Þ � 0. �

Theorem 2.5.3. If � ¼ 1 and f ðtÞ � 0 for all t 2 ½0;1Þ, then the conditions of Theorem 2.5.2 is also equivalent to
(vii) � f is operator monotone on ½0;1Þ.

Proof. Assume that f � 0 on ½0;1Þ. First we prove that (vii) is equivalent to that � f is operator monotone on ð0;1Þ
and f ðþ0Þ � f ð0Þ (� 0). In fact, if (vii) holds, then it is immediate to see that f ðþ0Þ exists and f ðþ0Þ � f ð0Þ.
Conversely, assume that � f is operator monotone on ð0;1Þ and f ðþ0Þ � f ð0Þ. Define f0 on ½0;1Þ as in the proof of
(ii) ) (i) above, so � f0 is operator monotone on ½0;1Þ. Let A � B � 0 in BðHÞ. Let Q0 and ~QQ0 be the orthogonal
projections onto the kernels of A and B, respectively. Then

f ðAÞ ¼ f0ðAÞ þ �Q0; f ðBÞ ¼ f0ðBÞ þ � ~QQ0;

where � :¼ f ð0Þ � f ðþ0Þ � 0. Since A � B � 0 yields Q0 � ~QQ0. With f0ðAÞ � f0ðBÞ this implies that f ðAÞ � f ðBÞ.
Thus it suffices to prove the equivalence between (i) and (vii) for the function f0. Since f0 is continuous on ½0;1Þ by
Theorem 2.4.1, we assume in the rest that f is continuous on ½0;1Þ.

(vii) ) (i). For A;X as in (iv) define A;U as in the proof of (i) ) (iv) of Theorem 2.5.2, and set R :¼

ðI � XX�Þ1=2AðI � XX�Þ1=2 and S :¼ X�AðI � XX�Þ1=2. Moreover, define B :¼ X�AX þ "I 0

0 
I

� �
for "; 
 > 0. Since

U�AU ¼ X�AX S

S� R

� �
, B� U�AU ¼ "I �S

�S� 
I � R

� �
and
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ðB� U�AUÞ
�

�

� �
;
�

�

� �� 	
¼

"�� S�

�S��þ 
�� R�

� �
;
�

�

� �� 	
¼ "k�k2 � 2Reh�; S�i þ 
k�k2 � hR�; �i
� "k�k2 � 2kSk k�k k�k þ ð
� kRkÞk�k2

¼
ffiffiffi
"

p
k�k �

kSkffiffiffi
"

p k�k
� �2

þ 
� kRk �
kSk2

"

� �
k�k2

for �; � 2 C
n, where Re z denotes the real part of z 2 C. Hence, for any " > 0, we have B� U�AU � 0 if 
 > 0 is

sufficiently large. Then (vii) implies that

f ðX�AX þ "IÞ 0

0 f ð
ÞI

� �
¼ f ðBÞ � f ðU�AUÞ ¼ U� f ðAÞ 0

0 f ð0ÞI

� �
U

� U� f ðAÞ 0

0 0

� �
U ¼

X� f ðAÞX �
� �

� �
so that f ðX�AX þ "IÞ � X� f ðAÞX. Letting "& 0 yields f ðX�AXÞ � X� f ðAÞX. Hence (iv) is satisfied.

(i) ) (vii). Assume that A � B � 0 in BðHÞ. For each � 2 ð0; 1Þ, since �A ¼ �Bþ ð1� �Þ�ð1� �Þ�1ðA� BÞ,

f ð�AÞ � � f ðBÞ þ ð1� �Þ f ð�ð1� �Þ�1ðA� BÞÞ:

Since f ð�ð1� �Þ�1ðA� BÞÞ � 0 thanks to f � 0, we have f ð�AÞ � � f ðBÞ. Letting � % 1 yields f ðAÞ � f ðBÞ, which
implies that � f is operator monotone. �

Corollary 2.5.4. If f is a function on ½0;1Þ such that f � 0, then f is operator monotone if and only if it is operator
concave.

Proof. This is the equivalence between (vii) and (i) above for � f . �

Lemma 2.5.5. On ð0;1Þ, the function t�1 is operator convex and �t�1 is operator monotone. On ð�1; 0Þ, t�1 is
operator concave and �t�1 is operator monotone.

Proof. Since ðð1þ tÞ=2Þ�1 � ð1þ t�1Þ=2 for t > 0, for every C > 0 in Mn we have

I þ C

2

� ��1

�
I þ C�1

2
:

For every A;B > 0 in Mn, apply the above inequality to C :¼ A�1=2BA�1=2 to obtain

Aþ B

2

� ��1

¼
A1=2ðI þ A�1=2BA�1=2ÞA1=2

2

� ��1

¼ A�1=2 I þ A�1=2BA�1=2

2

� ��1

A�1=2

� A�1=2 I þ ðA�1=2BA�1=2Þ�1

2
A�1=2 ¼

A�1 þ B�1

2
:

Hence t�1 is operator convex on ð0;1Þ.
Next, assume that A � B > 0 in Mn. Since B�1=2AB�1=2 � I, we have B1=2A�1B1=2 ¼ ðB�1=2AB�1=2Þ�1 � I and

hence A�1 � B�1. Hence �t�1 is operator monotone on ð0;1Þ. The assertions on ð�1; 0Þ immediately follow
from those on ð0;1Þ by taking account of the transformation A 7!�A. �

Corollary 2.5.6. If f is a function on ð0;1Þ such that f > 0, then (i) , (ii) , (iii) ) (iv) hold concerning the
following:
(i) f is operator monotone;
(ii) t= f ðtÞ is operator monotone;
(iii) f is operator concave;
(iv) 1= f ðtÞ is operator convex.

Proof. (i) ) (ii). For any " > 0, since f ðt þ "Þ is operator monotone on ½0;1Þ with � f ðt þ "Þ < 0, Theorem 2.5.3
implies that � f ðt þ "Þ=t is operator monotone on ð0;1Þ. So Lemma 2.5.5 implies that t= f ðt þ "Þ ¼ �ð� f ðt þ "Þ=tÞ�1

is operator monotone on ð0;1Þ. Hence (ii) follows by letting "& 0.
(ii) ) (i). For any " > 0, since ðt þ "Þ= f ðt þ "Þ is operator monotone on ½0;1Þ with �ðt þ "Þ= f ðt þ "Þ < 0,

Theorem 2.5.3 implies that �ðt þ "Þ=t f ðt þ "Þ is operator monotone on ð0;1Þ. So Lemma 2.5.5 implies that
t f ðt þ "Þ=ðt þ "Þ is operator monotone on ð0;1Þ. Letting "& 0 gives (i).

(i) , (iii). By Corollary 2.5.4 we see that

Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 171



(i) () f ðt þ "Þ is operator monotone on ½0;1Þ for any " > 0

() f ðt þ "Þ is operator concave on ½0;1Þ for any " > 0

() (iii):

(iii) ) (iv). Let gðtÞ :¼ 1= f ðtÞ and assume that A;B > 0 in Mn. Since (iii) implies that

f
Aþ B

2

� �
�

f ðAÞ þ f ðBÞ
2

;

we have by Lemma 2.5.5

g
Aþ B

2

� �
¼ f

Aþ B

2

� ��1

�
f ðAÞ þ f ðBÞ

2

� ��1

�
f ðAÞ�1 þ f ðBÞ�1

2
¼

gðAÞ þ gðBÞ
2

:

Hence g is operator convex. �

Note that (iv) ) (iii) is not valid in Corollary 2.5.6. For instance, when 1 � p � 2, the functions t� is operator
convex on ð0;1Þ (see Example 2.5.9 (4)) but t�p is not operator concave (even not concave in the usual sense) on
ð0;1Þ.

The following modification of Theorem 2.5.2 is also useful because the domain of f is a general interval and the
condition f ð0Þ � 0 in Theorem 2.5.2 is irrelevant.

Theorem 2.5.7. Let f be a real-valued function on an interval J. Then the following conditions are equivalent, where
finite-dimensional Hilbert spaces H;Hj;K are arbitrary and not fixed:
(i) f is operator convex;
(ii) for every A 2 BðHÞsa with �ðAÞ 
 J and every isometry X 2 BðK;HÞ,

f ðX�AXÞ � X� f ðAÞX;

(iii) for every m 2 N, every Aj 2 BðHjÞsa with �ðAjÞ 
 J, 1 � j � m, and every Xj 2 BðK;HjÞ, 1 � j � m, such thatPm
j¼1 X

�
j Xj ¼ IK,

f
Xm
j¼1

X�
j AjXj

 !
�
Xm
j¼1

X�
j f ðAjÞXj:

(iv) for every A;B 2 BðHÞsa with �ðAÞ; �ðBÞ 
 J and every orthogonal projection P 2 BðHÞ,

f ðPAPþ ðI � PÞBðI � PÞÞ � Pf ðAÞPþ ðI � PÞ f ðBÞðI � PÞ:

Proof. (i) ) (ii). Let A;X be as in (ii), and choose any B 2 BðKÞsa with �ðBÞ 
 J. Since X�X ¼ IK and hence
ðXX�Þ2 ¼ XðX�XÞX ¼ XX�, it follows that XX� 2 BðHÞ is an orthogonal projection. Define Q :¼ IH � XX� 2 BðHÞ,
an orthogonal projection, and A;U;V 2 BðK�HÞ by

A :¼
B 0

0 A

� �
; U :¼

0 X�

X Q

� �
; V :¼

0 �X�

�X Q

� �
:

We have

ðQXÞ�ðQXÞ ¼ X�QX ¼ X�X � ðX�XÞ2 ¼ 0

so that QX ¼ 0 and X�Q ¼ 0. Hence,

U�U ¼
X�X X�Q

QX XX� þ Q

� �
¼

IK 0

0 IH

� �
so that U is a unitary and similarly for V. Moreover, A 2 BðK�HÞsa and �ðAÞ 
 J. Since

U�AU ¼
X�AX X�AQ

QAX XBX� þ QAQ

� �
; V�AV ¼

X�AX �X�AQ

�QAX XBX� þ QAQ

� �
;

by (i) with Lemma 2.5.1 (1) we have
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f ðX�AXÞ 0

0 f ðXBX� þ QAQÞ

� �
¼ f

U�AUþ V�AV

2

� �
�

f ðU�AUÞ þ f ðV�AVÞ
2

¼
1

2
U� f ðBÞ 0

0 f ðAÞ

� �
Uþ

1

2
V� f ðBÞ 0

0 f ðAÞ

� �
V

¼
X� f ðAÞX 0

0 X f ðBÞX� þ Qf ðAÞQ

� �
;

implying that f ðX�AXÞ � X� f ðAÞX.
(ii) ) (iii). Let Aj;Xj for 1 � j � m be as in (iii). Define A 2 BðH1 � � � � �HmÞ and X 2 BðK;H1 � � � � �HmÞ by

A :¼

A1 0 � � � 0

0 A2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Am

266664
377775; i.e.; Aðx1 � � � � � xmÞ ¼ A1x1 � � � � � Amxm for xj 2 Hj;

X :¼

X1

X2

..

.

Xm

266664
377775; i.e.; Xy ¼ X1y� � � � � Xmy for y 2 K:

Then A ¼ A� and �ðAÞ 
 J. Moreover, X is an isometry since X�X ¼
Pm

j¼1 X
�
j Xj ¼ IK. Hence (ii) implies that

f
Xm
j¼1

X�
j AjXj

 !
¼ f ðX�AXÞ � X� f ðAÞX ¼

Xm
j¼1

X�
j f ðAjÞXj:

(iii) ) (iv) is obvious.
(iv) ) (i). Let A;B 2 BðHÞsa with �ðAÞ; �ðBÞ 
 J, and let 0 < � < 1. Define A;U;P 2 BðH �HÞ in the same

way as in the proof of (vi) ) (i) of Theorem 2.5.2. Since

PU�AUPþ ðI � PÞU�AUðI � PÞ ¼
�Aþ ð1� �ÞB 0

0 ð1� �ÞAþ �B

� �
;

(iv) implies that

f ð�Aþ ð1� �ÞBÞ 0

0 f ðð1� �ÞAþ �BÞ

� �
� P f ðU�AUÞPþ ðI � PÞ f ðU�AUÞðI � PÞ

¼ PU� f ðAÞ 0

0 f ðBÞ

� �
UPþ ðI � PÞU� f ðAÞ 0

0 f ðBÞ

� �
UðI � PÞ

¼
� f ðAÞ þ ð1� �Þ f ðBÞ 0

0 ð1� �Þ f ðAÞ þ � f ðBÞ

� �
so that f ð�Aþ ð1� �ÞBÞ � � f ðAÞ þ ð1� �Þ f ðBÞ. �

Exercise 2.5.8. When f is a real-valued function on J ¼ ½a; b�, show that the conditions of Theorem 2.5.7 are also
equivalent to
(v) f is operator convex on ða; bÞ, f ðaþ 0Þ � f ðaÞ and f ðb� 0Þ � f ðbÞ, where f ðaþ 0Þ :¼ limt&a f ðtÞ and

f ðb� 0Þ :¼ limt%b f ðtÞ.

The following are basic examples of operator monotone and operator convex functions.

Example 2.5.9.
(1) When � � 0, �t þ 
 is operator monotone on R.
(2) When c =2 ð�; 
Þ, ðc� tÞ�1 is operator monotone on ð�; 
Þ.
(3) When 0 � p � 1, t p is operator monotone and operator concave on ½0;1Þ. Moreover,

fp 2 R : t p is operator monotone on ð0;1Þg ¼ ½0; 1�:

(4) When 1 � p � 2, t p is operator convex on ½0;1Þ. Moreover,
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fp 2 R : t p is operator convex on ð0;1Þg ¼ ½�1; 0� [ ½1; 2�:

(5) f ðtÞ :¼ ðt � 1Þ=log t on ½0;1Þ is operator monotone, where f ð0Þ ¼ 0 and f ð1Þ ¼ 1.
(6) log t on ð0;1Þ is operator monotone and operator concave.
(7) t log t on ½0;1Þ is operator convex, where 0 log 0 ¼ 0.

Proof. (1) Obvious.
(2) Assume that A;B 2 M

sa
n , �ðAÞ; �ðBÞ 
 ð�; 
Þ and A � B. If c � � then A� cI � B� cI > 0 and so ðA� cIÞ�1 �

ðB� cIÞ�1. Hence ðcI � AÞ�1 � ðcI � BÞ�1. If c � 
 then 0 < cI � A � cI � B and so ðcI � AÞ�1 � ðcI � BÞ�1.
(3) The first assertion follows from Theorem 2.1.1 and Corollary 2.5.4. When p < 0, t p on ð0;1Þ is not monotone

increasing and so it is not operator monotone. When p > 1, t=t p ¼ t1�p on ð0;1Þ is not operator monotone, and hence
by Corollary 2.5.6, t p is not operator monotone.

(4) When 1 � p � 2, t p=t ¼ t p�1 on ð0;1Þ is operator monotone, and hence by Theorem 2.5.2, t p is operator
convex on ½0;1Þ. Moreover, when �1 � p � 0, t p ¼ 1=t�p on ð0;1Þ is operator convex by Corollary 2.5.6. When
p > 0, since the operator convexity of t p on ð0;1Þ is equivalent to that on ½0;1Þ by continuity, Theorem 2.5.2 shows
that t p on ð0;1Þ is operator convex only if t p=t ¼ t p�1 is operator monotone on ð0;1Þ. Hence, when p 2
ð0; 1Þ [ ð2;1Þ, t p is not operator convex. That t p is not operator convex when p < �1 is left for an exercise in Section
2.7 (Exercise 2.7.10).

(5) Notice that f ðtÞ ¼
R 1
0
t p dp for all t � 0. This shows that f ðAÞ ¼

R 1
0
Ap dp �

R 1
0
Bp dp ¼ f ðBÞ if A � B � 0 inMn.

Hence f is operator monotone on ½0;1Þ.
(6) By (5), t=logð1þ tÞ is operator monotone on ð0;1Þ and so logð1þ tÞ is operator monotone and operator concave

on ð0;1Þ by Corollary 2.5.6. Hence the result follows since logð"þ tÞ ¼ log "þ logð1þ "�1tÞ is operator monotone
and operator convex on ð0;1Þ for every " > 0.

(7) Since gðtÞ :¼ t log t is continuous on ½0;1Þ and gðtÞ=t ¼ log t is operator monotone on ð0;1Þ, g is operator
convex by Theorem 2.5.2. �

The following is Furuta’s observation in [33], which provides a simple way to prove (6) and (7) above by only using
the operator monotonicity (or the Löwner–Heinz inequality) and the operator concavity of the function t p, t > 0,
for 0 < p < 1. Assume that A � B > 0 in BðHÞ. Since Ap � Bp for all p 2 ð0; 1Þ, we have

logA ¼ lim
p&0

1

p
ðAp � IÞ � lim

p&0

1

p
ðBp � IÞ ¼ logB:

For every �; p 2 ð0; 1Þ we have ð�Aþ ð1� �ÞBÞp � �Ap þ ð1� �ÞBp so that

1

p
fð�Aþ ð1� �ÞBÞp � Ig �

�

p
ðAp � IÞ þ

1� �
p

ðBp � IÞ;

1

1� p
fð�Aþ ð1� �ÞBÞ � ð�Aþ ð1� �ÞBÞpg �

�

1� p
ðA� ApÞ þ

1� �
1� p

ðB� BpÞ:

Taking the limits of the above as p & 0 and p % 1, respectively, we have

logð�Aþ ð1� �ÞBÞ � � logAþ ð1� �Þ logB;
ð�Aþ ð1� �ÞBÞ logð�Aþ ð1� �ÞBÞ � �A logAþ ð1� �ÞB logB:

2.6 Pick functions

Let Cþ denote the upper half-plane, i.e., Cþ :¼ fz 2 C : Im z > 0g, where Im z is the imaginary part of z. A function
f : Cþ ! C is called a Pick function if f is analytic in C

þ and the range f ðCþÞ is included in the closed half-plane
fz 2 C : Im z � 0g. The set of all Pick functions is denoted by P. From the open mapping theorem in complex function
theory (see [27, p. 99] for example) we note that if f 2 P is not constant then the range f ðCþÞ is a domain (i.e., a
connected open subset) of C and so f ðCþÞ 
 C

þ. Obviously, P is a convex cone, and if f ; g 2 P with g non-constant,
then f 
 g 2 P as well. Typical examples of Pick functions are given in the following exercise.

Exercise 2.6.1. Verify the following:
(1) When 0 < p � 1, the function f ðzÞ ¼ zp :¼ rpeip� (the principal branch of zp) for z ¼ rei� with r > 0 and

0 < � < 
 is in P.
(2) f ðzÞ ¼ Log z :¼ log r þ i� (the principal branch of log z) for z ¼ rei� is in P.
(3) f ðzÞ ¼ �1=z is in P.
(4) f ðzÞ ¼ tan z :¼ sin z=cos z is in P, where cos z :¼ ðeiz þ e�izÞ=2 and sin z :¼ ðeiz � e�izÞ=2i.

The next Nevanlinna’s theorem provides the integral representation of Pick functions.

Theorem 2.6.2. A function f : Cþ ! C is in P if and only if there exist an � 2 R, a 
 � 0 and a positive finite Borel
measure � on R such that

174 HIAI



f ðzÞ ¼ �þ 
zþ
Z 1

�1

1þ �z
� � z

d�ð�Þ; z 2 C
þ: ð2:6:1Þ

The integral representation (2.6.1) is also written as

f ðzÞ ¼ �þ 
zþ
Z 1

�1

1

� � z
�

�

�2 þ 1

� �
d	ð�Þ; z 2 C

þ; ð2:6:2Þ

where 	 is a positive Borel measure on R given by d	ð�Þ :¼ ð�2 þ 1Þ d�ð�Þ and soZ 1

�1

1

�2 þ 1
d	ð�Þ < þ1:

The proof of the ‘‘if’’ part is easy. Assume that f is defined on C
þ as in (2.6.1). For each z 2 C

þ, since

f ðzþ�zÞ � f ðzÞ
�z

¼ 
þ
Z
R

�2 þ 1

ð� � zÞð� � z��zÞ
d�ð�Þ

and

sup
�2 þ 1

ð� � zÞð� � z��zÞ





 



 : � 2 R; j�zj <
Im z

2

� �
< þ1;

it follows from the Lebesgue dominated convergence theorem that

lim
�!0

f ðzþ�zÞ � f ðzÞ
�z

¼ 
þ
Z
R

�2 þ 1

ð� � zÞ2
d�ð�Þ:

Hence f is analytic in C
þ. Since

Im
1þ �z
� � z

� �
¼

ð�2 þ 1Þ Im z

j� � zj2
; z 2 C

þ;

we have

Im f ðzÞ ¼ 
þ
Z
R

�2 þ 1

j� � zj2
d�ð�Þ

� �
Im z � 0

for all z 2 C
þ. Therefore, we have f 2 P. The equivalence between the two representations (2.6.1) and (2.6.2) is

immediately seen from

1þ �z
� � z

¼ ð�2 þ 1Þ
1

� � z
�

�

�2 þ 1

� �
:

The ‘‘only if’’ is the significant part, whose proof based on the Poisson integral formula is exposed in
Appendix A.4.

Moreover, we note that �, 
 and � in Theorem 2.6.2 are uniquely determined by f . In fact, letting z ¼ i in (2.6.1)
we have � ¼ Re f ðiÞ. Letting z ¼ iy with y > 0 we have

f ðiyÞ ¼ �þ i
yþ
Z 1

�1

�ð1� y2Þ þ iyð�2 þ 1Þ
�2 þ y2

d�ð�Þ

so that

Im f ðiyÞ
y

¼ 
þ
Z 1

�1

�2 þ 1

�2 þ y2
d�ð�Þ:

By the Lebesgue dominated convergence theorem this yields


 ¼ lim
y!1

Im f ðiyÞ
y

:

Hence � and 
 are uniquely determined by f . By (2.6.2), for z ¼ xþ iy we have

Im f ðxþ iyÞ ¼ 
yþ
Z 1

�1

y

ðx� �Þ2 þ y2
d	ð�Þ; x 2 R; y > 0: ð2:6:3Þ

Thus the uniqueness of 	 (hence �) is a consequence of the so-called Stieltjes inversion formula. For details omitted
here, see [30, pp. 24–26] and [13, pp. 139–141].

For any open interval ða; bÞ, �1 � a < b � 1, we denote by Pða; bÞ the set of all Pick functions which admit an
analytic continuation across ða; bÞ by reflection into the lower half-plane C

� :¼ fz 2 C : Im z < 0g. More precisely,
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Pða; bÞ is the set of all f 2 P with an analytic continuation (denoted by the same f ) in ðC n RÞ [ ða; bÞ so that
f ðzÞ ¼ f ðzÞ for all z 2 C

þ. Note that if f 2 Pða; bÞ then f ðxÞ 2 R for all x 2 ða; bÞ.
The next theorem is a specialization of Nevanlinna’s theorem to functions in Pða; bÞ.

Theorem 2.6.3. A function f : Cþ ! C is in Pða; bÞ if and only if f is represented as in (2.6.1) with � 2 R, 
 � 0

and a positive finite Borel measure � on R n ða; bÞ.

Proof. Let f 2 P be represented as in (2.6.1) with � 2 R, 
 � 0 and a positive finite Borel measure � on R. It suffices
to prove that f 2 Pða; bÞ if and only if �ðða; bÞÞ ¼ 0. First, assume that �ðða; bÞÞ ¼ 0. The function f expressed by
(2.6.1) is analytic in C

þ [ C
� so that f ðzÞ ¼ f ðzÞ for all z 2 C

þ. For every x 2 ða; bÞ, since

sup
�2 þ 1

ð� � xÞð� � x��zÞ





 



 : � 2 R n ða; bÞ; j�zj <
1

2
minfx� a; b� xg

� �
< þ1;

the above proof of the ‘‘if’’ part of Theorem 2.6.2 by using the Lebesgue dominated convergence theorem can work for
z ¼ x as well, and so f is differentiable (in the complex variable z) at z ¼ x. Hence f 2 Pða; bÞ.

Conversely, assume that f 2 Pða; bÞ. It follows from (2.6.3) thatZ 1

�1

1

ðx� �Þ2 þ y2
d	ð�Þ ¼

Im f ðxþ iyÞ
y

� 
; x 2 R; y > 0:

For any x 2 ða; bÞ, since f ðxÞ 2 R, we have

Im f ðxþ iyÞ
y

¼ Im
f ðxþ iyÞ � f ðxÞ

y
¼ Re

f ðxþ iyÞ � f ðxÞ
iy

�! Re f 0ðxÞ as y & 0;

and so the monotone convergence theorem yieldsZ 1

�1

1

ðx� �Þ2
d	ð�Þ ¼ Re f 0ðxÞ; x 2 ða; bÞ:

Hence, for any closed interval ½c; d� included in ða; bÞ, we have

R :¼ sup
x2½c;d�

Z 1

�1

1

ðx� �Þ2
d	ð�Þ ¼ sup

x2½c;d�
Re f 0ðxÞ < þ1:

For each m 2 N let ck :¼ cþ ðk=mÞðd � cÞ for k ¼ 0; 1; . . . ;m. Then

	ð½c; dÞÞ ¼
Xm
k¼1

	ð½ck�1; ckÞÞ �
Xm
k¼1

Z
½ck�1;ckÞ

ðck � ck�1Þ2

ðck � �Þ2
d	ð�Þ

�
Xm
k¼1

d � c

m

� �2Z 1

�1

1

ðck � �Þ2
d	ð�Þ �

ðd � cÞ2R
m

:

Letting m ! 1 gives 	ð½c; dÞÞ ¼ 0. This implies that 	ðða; bÞÞ ¼ 0 and so �ðða; bÞÞ ¼ 0. �

Now let f 2 Pða; bÞ. The above theorem says that f ðxÞ on ða; bÞ admits the integral representation

f ðxÞ ¼ �þ 
xþ
Z
Rnða;bÞ

1þ �x
� � x

d�ð�Þ

¼ �þ 
xþ
Z
Rnða;bÞ

ð�2 þ 1Þ
1

� � x
�

�

�2 þ 1

� �
d�ð�Þ; x 2 ða; bÞ;

where �, 
 and � are as in the theorem. For any n 2 N and A;B 2 M
sa
n ða; bÞ, if A � B then ð�I � AÞ�1 � ð�I � BÞ�1

for all � 2 R n ða; bÞ (see Example 2.5.9 (2)) and hence we have

f ðAÞ ¼ �I þ 
Aþ
Z
Rnða;bÞ

ð�2 þ 1Þ ð�I � AÞ�1 �
�

�2 þ 1
I

� �
d�ð�Þ

� �I þ 
Bþ
Z
Rnða;bÞ

ð�2 þ 1Þ ð�I � BÞ�1 �
�

�2 þ 1
I

� �
d�ð�Þ ¼ f ðBÞ:

Therefore, f is operator monotone on ða; bÞ. In the next section we will prove Löwner’s theorem saying that the
converse is also true so that f is operator monotone on ða; bÞ if and only if f 2 Pða; bÞ.

The following are examples of integral representations for typical Pick functions from Exercise 2.6.1.

Example 2.6.4. The principal branch Log z of the logarithm in Exercise 2.6.1 (2) is in Pð0;1Þ. Its integral
representation in the form (2.6.2) is
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Log z ¼
Z 0

�1

1

� � z
�

�

�2 þ 1

� �
d�; z 2 C

þ:

To show this, it suffices to verify the above expression for z ¼ x 2 ð0;1Þ, that is,

log x ¼
Z 1

0

�
1

� þ x
þ

�

�2 þ 1

� �
d�; x 2 ð0;1Þ;

which is immediate by a direct computation.

Example 2.6.5. When 0 < p < 1, the principal branch of zp in Example 2.6.1 (1) is in Pð0;1Þ, whose integral
representation in the form (2.6.2) is

zp ¼ cos
p


2
þ

sin p





Z 0

�1

1

� � z
�

�

�2 þ 1

� �
j�jp d�; z 2 C

þ:

For this it suffices to verify that

xp ¼ cos
p


2
þ

sin p





Z 1

0

�
1

� þ x
þ

�

�2 þ 1

� �
� p d�; x 2 ð0;1Þ; ð2:6:4Þ

which can be shown as in the following exercise.

Exercise 2.6.6. When 0 < p < 1, show (2.6.4) as follows:
(a) Consider the integration of the function

zp�1

1þ z
:¼

r p�1eiðp�1Þ�

1þ rei�
; z ¼ rei�; 0 < � < 2
;

that is analytic in the cut plane C n ½0;1Þ except �1, along the contour

z ¼

rei� (" � r � R, � ¼ þ0),

Rei� (0 < � < 2
),

rei� (R � r � ", � ¼ 2
� 0),

"ei� (2
 > � > 0),

8>>><>>>:
where 0 < " < 1 < R. Apply the residue theorem (see [27, p. 112]) and let "& 0 and R % 1 to show
that Z 1

0

t p�1

1þ t
dt ¼




sin p

: ð2:6:5Þ

(b) For each x > 0, substitute �=x for t in (2.6.5) to obtain

xp ¼
sin p





Z 1

0

x� p�1

� þ x
d�; x 2 ð0;1Þ:

(c) Since

x

� þ x
¼

1

�2 þ 1
þ

�

�2 þ 1
�

1

� þ x

� �
�;

it follows that

xp ¼
sin p





Z 1

0

� p�1

�2 þ 1
d� þ

sin p





Z 1

0

�

�2 þ 1
�

1

� þ x

� �
� p d�; x 2 ð0;1Þ:

Substitute �2 for t in (2.6.5) with p replaced by p=2 to obtainZ 1

0

� p�1

�2 þ 1
d� ¼




2 sin p

2

:

Hence (2.6.4) follows.

2.7 Löwner’s theorem

The main aim of this section is to prove the primary result in Löwner’s theory saying that an operator monotone
function on ða; bÞ belongs to Pða; bÞ. Apart from Löwner’s original proof, three different proofs are known so far,
which are by Bendat and Sherman [12] based on the Hamburger moment problem, by Korányi [51] (also found in [3])
based on the the spectral theorem of self-adjoint operators, and by Hansen and Pedersen [35] based on the Krein–
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Milman theorem. In all of them, the integral representation of operator monotone functions was obtained to prove
Löwner’s theorem. The proof below is based on [35].

Operator monotone (or operator convex) functions on an finite open interval ða; bÞ are transformed into those on a
symmetric interval ð�1; 1Þ via the affine function x 2 ð�1; 1Þ 7! b�a

2
xþ bþa

2
. So it is essential to analyze operator

monotone (or operator convex) functions on ð�1; 1Þ. Theorem 2.4.1 says that every operator monotone function f on
ð�1; 1Þ is C1 on ð�1; 1Þ and f 0ð0Þ > 0 unless f is constant. Taking ð f � f ð0ÞÞ= f 0ð0Þ we may assume that f ð0Þ ¼ 0 and
f 0ð0Þ ¼ 1. So let K denote the set of all operator monotone functions on ð�1; 1Þ such that f ð0Þ ¼ 0 and f 0ð0Þ ¼ 1.

Lemma 2.7.1. Let f be an operator monotone function on ð�1; 1Þ. Then
(1) For every � 2 ½�1; 1�, ðxþ �Þ f ðxÞ is operator convex on ð�1; 1Þ.
(2) For every � 2 ½�1; 1�, ð1þ �

x
Þ f ðxÞ is operator monotone on ð�1; 1Þ.

(3) f is twice differentiable at 0 and

f 00ð0Þ
2

¼ lim
x!0

f ðxÞ � f 0ð0Þx
x2

:

Proof. (1) For any " 2 ð0; 1Þ, since f ðx� 1þ "Þ is operator monotone on ½0; 2� "Þ, it follows from Theorem 2.5.2 that
x f ðx� 1þ "Þ is operator convex on ½0; 2� "Þ and so ðxþ 1� "Þ f ðxÞ is operator convex on ð�1þ "; 1Þ. By letting
"& 0, ðxþ 1Þ f ðxÞ is operator convex on ð�1; 1Þ. Applying this to the operator monotone function � f ð�xÞ implies that
�ðxþ 1Þ f ð�xÞ is operator convex on ð�1; 1Þ. Hence so is ðx� 1Þ f ðxÞ by changing x to �x. Moreover, for every
� 2 ½�1; 1�, since ðxþ �Þ f ðxÞ ¼ 1þ�

2
ðxþ 1Þ f ðxÞ þ 1��

2
ðx� 1Þ f ðxÞ, ðxþ �Þ f ðxÞ is operator convex on ð�1; 1Þ.

(2) For every � 2 ½�1; 1�, set gðxÞ :¼ ðxþ �Þ f ðxÞ. By (1) and Corollary 2.4.6, g½1�ð0; xÞ ¼ gðxÞ=x ¼ ð1þ �
x
Þ f ðxÞ is

operator monotone on ð�1; 1Þ.
(3) Although Theorem 2.4.7 implies that f is actually C1 on ð�1; 1Þ, we give a proof that is tailor-made for the

situation of our exposition. By (2) and Theorem 2.4.1, ð1þ 1
x
Þ f ðxÞ as well as f ðxÞ is C1 on ð�1; 1Þ so that the function

h on ð�1; 1Þ defined by hðxÞ :¼ f ðxÞ=x for x 6¼ 0 and hð0Þ :¼ f 0ð0Þ is C1. This implies that

h0ðxÞ ¼
f 0ðxÞx� f ðxÞ

x2
�! h0ð0Þ as x ! 0:

Therefore,

f 0ðxÞx ¼ f ðxÞ þ h0ð0Þx2 þ oðjxj2Þ

so that

f 0ðxÞ ¼ hðxÞ þ h0ð0Þxþ oðjxjÞ ¼ hð0Þ þ 2h0ð0Þxþ oðjxjÞ as x ! 0;

which shows that f is twice differentiable at 0 with f 00ð0Þ ¼ 2h0ð0Þ. Hence
f 00ð0Þ
2

¼ h0ð0Þ ¼ lim
x!0

hðxÞ � hð0Þ
x

¼ lim
x!0

f ðxÞ � f 0ð0Þx
x2

: �

Lemma 2.7.2. If f 2 K then

f ðxÞ �
x

1� x
for 0 � x < 1;

f ðxÞ �
x

1þ x
for �1 < x � 0;

jf 00ð0Þj � 2:

Proof. For every x 2 ð�1; 1Þ, Theorem 2.4.3 implies that

f ½1�ðx; xÞ f ½1�ðx; 0Þ
f ½1�ðx; 0Þ f ½1�ð0; 0Þ

" #
¼

f 0ðxÞ f ðxÞ=x
f ðxÞ=x 1

� �
� 0;

and hence

f ðxÞ2

x2
� f 0ðxÞ: ð2:7:1Þ

By Lemma 2.7.1 (1),

d

dx
ðx� 1Þ f ðxÞ ¼ f ðxÞ þ ðx� 1Þ f 0ðxÞ

is increasing on ð�1; 1Þ. Since f ð0Þ � f 0ð0Þ ¼ �1, we have
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f ðxÞ þ ðx� 1Þ f 0ðxÞ � �1 for 0 < x < 1; ð2:7:2Þ
f ðxÞ þ ðxþ 1Þ f 0ðxÞ � 1 for �1 < x < 0; ð2:7:3Þ

By (2.7.1) and (2.7.2) we have

f ðxÞ þ 1 �
ð1� xÞ f ðxÞ2

x2
:

If f ðxÞ > x
1�x

for some x 2 ð0; 1Þ, then

f ðxÞ þ 1 >
ð1� xÞ f ðxÞ

x2
�

x

1� x
¼

f ðxÞ
x

so that f ðxÞ < x
1�x

, a contradiction. Hence f ðxÞ � x
1�x

for all x 2 ½0; 1Þ. A similar argument using (2.7.1) and (2.7.3)
yields that f ðxÞ � x

1þx
for all x 2 ð�1; 0�.

Moreover, by Lemma 2.7.1 (3) and the two inequalities just proved,

f 00ð0Þ
2

� lim
x&0

x
1�x

� x

x2
¼ lim

x&0

1

1� x
¼ 1

and

f 00ð0Þ
2

� lim
x%0

x
1þx

� x

x2
¼ lim

x&0

�1

1þ x
¼ �1

so that jf 00ð0Þj � 2. �

Lemma 2.7.3. The set K is convex and compact if it is considered as a subset of the topological vector space
consisting of real functions on ð�1; 1Þ with the locally convex topology of pointwise convergence.

Proof. It is obvious that K is convex. Since f f ðxÞ : f 2 Kg is bounded for each x 2 ð�1; 1Þ thanks to Lemma 2.7.2,
it follows that K is relatively compact. To prove that K is closed, let f fig be a net in K converging to a function f on
ð�1; 1Þ. Then it is clear that f is operator monotone on ð�1; 1Þ and f ð0Þ ¼ 0. By Lemma 2.7.1 (2), ð1þ 1

x
Þ fiðxÞ is

operator monotone on ð�1; 1Þ for every i. Since limx!0ð1þ 1
x
Þ fiðxÞ ¼ f 0i ð0Þ ¼ 1, we thus have

1�
1

x

� �
fið�xÞ � 1 � 1þ

1

x

� �
fiðxÞ; x 2 ð0; 1Þ:

Therefore,

1�
1

x

� �
f ð�xÞ � 1 � 1þ

1

x

� �
f ðxÞ; x 2 ð0; 1Þ:

Since f is C1 on ð�1; 1Þ by Theorem 2.4.1, the above inequalities yield f 0ð0Þ ¼ 1. �

Lemma 2.7.4. The extreme points of K have the form

f ðxÞ ¼
x

1� �x
; where � ¼

f 00ð0Þ
2

:

Proof. Let f be an extreme point of K. For each � 2 ð�1; 1Þ define

g�ðxÞ :¼ 1þ
�

x

� �
f ðxÞ � �; x 2 ð�1; 1Þ:

By Lemma 2.7.1 (2), g� is operator monotone on ð�1; 1Þ. Notice

g�ð0Þ ¼ f ð0Þ þ � f 0ð0Þ � � ¼ 0

and

g0�ð0Þ ¼ lim
x!0

ð1þ �
x
Þ f ðxÞ � �
x

¼ f 0ð0Þ þ � lim
x!0

f ðxÞ � f 0ð0Þx
x2

¼ 1þ
1

2
� f 00ð0Þ

by Lemma 2.7.1 (3). Since 1þ 1
2
� f 00ð0Þ > 0 by Lemma 2.7.2, the function

h�ðxÞ :¼
ð1þ �

x
Þ f ðxÞ � �

1þ 1
2
� f 00ð0Þ

is in K. Since
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f ¼
1

2
1þ

1

2
� f 00ð0Þ

� �
h� þ

1

2
1�

1

2
� f 00ð0Þ

� �
h��;

the extremality of f implies that f ¼ h� so that

1þ
1

2
� f 00ð0Þ

� �
f ðxÞ ¼ 1þ

�

x

� �
f ðxÞ � �

for all � 2 ð�1; 1Þ. This immediately implies that f ðxÞ ¼ x=ð1� 1
2
f 00ð0ÞxÞ. �

Theorem 2.7.5. Let f be a non-constant operator monotone function on ð�1; 1Þ, Then there exists a unique
probability Borel measure 	 on ½�1; 1� such that

f ðxÞ ¼ f ð0Þ þ f 0ð0Þ
Z 1

�1

x

1� �x
d	ð�Þ; x 2 ð�1; 1Þ: ð2:7:4Þ

Proof. Since f 0ð0Þ > 0 thanks to Theorem 2.4.1, it is enough to assume that f 2 K by considering ð f � f ð0ÞÞ= f 0ð0Þ.
Let �� ðxÞ :¼ x=ð1� �xÞ for � 2 ½�1; 1�. By Lemmas 2.7.3 and 2.7.4, the Krein–Milman theorem says that K is the
closed convex hull of f�� : � 2 ½�1; 1�g. Hence there exists a net f fig in the convex hull of f�� : � 2 ½�1; 1�g such that
fiðxÞ ! f ðxÞ for all x 2 ð�1; 1Þ. Each fi is written as fiðxÞ ¼

R 1
�1
�� ðxÞ d	ið�Þ with a probability measure 	i on ½�1; 1�

with finite support. Note that the set M1ð½�1; 1�Þ of probability Borel measures on ½�1; 1� is compact in the weak*
topology when considered as a subset of the dual Banach space of Cð½�1; 1�Þ. Taking a subnet we may assume that 	i

converges in the weak* topology to some 	 2 M1ð½�1; 1�Þ. For each x 2 ð�1; 1Þ, since �� ðxÞ is continuous in
� 2 ½�1; 1�, we have

f ðxÞ ¼ lim
i

fiðxÞ ¼ lim
i

Z 1

�1

�� ðxÞ d	ið�Þ ¼
Z 1

�1

�� ðxÞ d	ð�Þ:

To prove the uniqueness of the representing measure 	, let 	1; 	2 2 Mð½�1; 1�Þ be such that

f ðxÞ ¼
Z 1

�1

�� ðxÞ d	1ð�Þ ¼
Z 1

�1

�� ðxÞ d	2ð�Þ; x 2 ð�1; 1Þ:

Since �� ðxÞ ¼
P1

k¼0 x
kþ1�k is uniformly convergent in � 2 ½�1; 1� for any x 2 ð�1; 1Þ fixed, it follows thatX1

k¼0

xkþ1

Z 1

�1

�k d	1ð�Þ ¼
X1
k¼0

xkþ1

Z 1

�1

�k d	2ð�Þ; x 2 ð�1; 1Þ:

Hence
R 1
�1
�k d	1ð�Þ ¼

R 1
�1
�k d	2ð�Þ for all k ¼ 0; 1; 2; . . ., which implies that 	1 ¼ 	2. �

The integral representation of the above theorem is an example of Choquet’s theorem while we proved it in a direct
way. The uniqueness of the representing measure 	 shows that f�� : � 2 ½�1; 1�g is actually the set of extreme points
of K. Since the pointwise convergence topology on f�� : � 2 ½�1; 1�g agrees with the usual topology on ½�1; 1�,
we see that K is a so-called Bauer simplex (see [67]).

Theorem 2.7.6. Let f be a non-linear operator convex function on ð�1; 1Þ. Then there exists a unique probability
Borel measure 	 on ½�1; 1� such that

f ðxÞ ¼ f ð0Þ þ f 0ð0Þxþ
f 00ð0Þ
2

Z 1

�1

x2

1� �x
d	ð�Þ; x 2 ð�1; 1Þ:

Proof. It is enough to assume that f ð0Þ ¼ f 0ð0Þ ¼ 0 by considering f ðxÞ � f ð0Þ � f 0ð0Þx. By Corollary 2.4.6,
gðxÞ :¼ f ½1�ð0; xÞ ¼ f ðxÞ=x is a non-constant operator monotone function on ð�1; 1Þ. Hence by Theorem 2.7.5 there
exists a probability Borel measure 	 on ½�1; 1� such that

gðxÞ ¼ g0ð0Þ
Z 1

�1

x

1� �x
d	ð�Þ; x 2 ð�1; 1Þ:

Since g0ð0Þ ¼ f 00ð0Þ=2 is easily seen from Theorem 2.4.2, we have

f ðxÞ ¼
f 00ð0Þ
2

Z 1

�1

x2

1� �x
d	ð�Þ; x 2 ð�1; 1Þ:

Moreover, the uniqueness of 	 follows from that of the representing measure for g. �

Finally, we establish the equivalence between the operator monotone functions on ða; bÞ and the Pick functions in
Pða; bÞ in the following way.
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Theorem 2.7.7. Let �1 � a < b � 1 and f be a real-valued function on ða; bÞ. Then f is operator monotone on
ða; bÞ if and only if f 2 Pða; bÞ.

Proof. The ‘‘if’’ part was shown after Theorem 2.6.3 in the preceding section. To prove the ‘‘only if’’, it is enough to
assume that ða; bÞ is a finite open interval. In fact, if the assertion holds in this case, then for every finite interval ðc; dÞ
included in ða; bÞ, f jðc;dÞ is operator monotone and so f 2 Pðc; dÞ. Hence f 2 Pða; bÞ follows by letting c & a and
d % b. Moreover, when ða; bÞ is a finite interval, f is transformed into an operator monotone function on ð�1; 1Þ and
Pða; bÞ is transformed into Pð�1; 1Þ via the affine function mentioned in the beginning of this section. So it suffices to
prove the ‘‘only if’’ part when ða; bÞ ¼ ð�1; 1Þ. If f is a non-constant operator monotone function on ð�1; 1Þ, then by
using the integral representation (2.7.4) of Theorem 2.7.5 one can define an analytic continuation of f across ð�1; 1Þ by

f ðzÞ ¼ f ð0Þ þ f 0ð0Þ
Z 1

�1

z

1� �z
d	ð�Þ; z 2 C

þ [ C
�:

Since

Im f ðzÞ ¼ f 0ð0Þ
Z 1

�1

Im z

j1� �zj2
d	ð�Þ;

it follows that f maps Cþ into itself. Hence f 2 Pð�1; 1Þ. �

Since

x

1� �x
¼
� þ x

1� �x
�

1

�2 þ 1
�

�

�2 þ 1
;

one can substitute u�1 for � 6¼ 0 in the integral of (2.7.4) so that (2.7.4) is rewritten as

f ðxÞ ¼ f ð0Þ � f 0ð0Þ
Z 1

�1

�

�2 þ 1
d	ð�Þ þ f 0ð0Þ	ðf0gÞx

þ f 0ð0Þ
Z
½�1;0Þ[ð0;1�

� þ x

1� �x
�

1

�2 þ 1
d	ð�Þ

¼ �þ 
xþ f 0ð0Þ
Z
Rnð�1;1Þ

1þ ux

u� x
�

u2

1þ u2
d	ðu�1Þ

¼ �þ 
xþ
Z
Rnð�1;1Þ

1þ ux

u� x
d�ðuÞ;

where

� :¼ f ð0Þ � f 0ð0Þ
Z 1

�1

�

�2 þ 1
d	ð�Þ; 
 :¼ f 0ð0Þ	ðf0gÞ; d�ðuÞ :¼

f 0ð0Þu2

1þ u2
d	ðu�1Þ:

In this way, the integral representation (2.7.4) can be transformed into the form (2.6.1) of Nevanlinna’s theorem. This
may be an alternative proof of Theorem 2.7.7.

The next corollary improves the last statement of Corollary 2.4.6.

Corollary 2.7.8. Let �1 � a < b � 1 and f be a real-valued function on ða; bÞ. Then the following conditions are
equivalent:
(i) f is operator convex;
(ii) f is C1 and f ½1�ðs; � Þ is operator monotone on ða; bÞ for every s 2 ða; bÞ;
(iii) f ½1�ðs; � Þ is operator monotone on ða; bÞ for some s 2 ða; bÞ (with continuation of value at s).
Consequently, if g is a real-valued function on ða; bÞ and f ðxÞ :¼ ðx� sÞgðxÞ for any s 2 ða; bÞ, then f is operator

convex on ða; bÞ if and only if g is operator monotone on ða; bÞ.

Proof. By the same argument as in the proof of Theorem 2.7.7, we may assume that ða; bÞ ¼ ð�1; 1Þ. (ii) ) (iii) is
trivial. Although (i) ) (ii) is included in Corollary 2.4.6, we prove it below based on the integral representation of
Theorem 2.7.6.

(i) ) (ii). By Theorem 2.7.6, f admits a representation

f ðxÞ ¼ �þ 
xþ
Z 1

�1

x2

1� �x
d�ð�Þ; x 2 ð�1; 1Þ;

where �; 
 2 R and � is a positive finite Borel measure on ½�1; 1�. For any s 2 ð�1; 1Þ we write
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f ½1�ðs; xÞ ¼
f ðxÞ � f ðsÞ

x� s
¼ 
þ

Z 1

�1

1

x� s

x2

1� �x
�

s2

1� �s

� �
d�ð�Þ

¼ 
þ
Z 1

�1

ð1� �sÞxþ s

ð1� �sÞð1� �xÞ
d�ð�Þ

¼ 
þ
Z 1

�1

xþ s
1��s

1� �x
d�ð�Þ:

Hence it suffices to show that ðxþ s
1��sÞ=ð1� �xÞ is operator monotone on ð�1; 1Þ for every � 2 ½�1; 1�. This is clear

when � ¼ 0. When � 6¼ 0, we have

xþ s
1��s

1� �x
¼ �

1

�
þ

1

�2ð1� �sÞ
�

1

��1 � x
;

which is operator monotone on ð�1; 1Þ thanks to Example 2.5.9 (2) and 1=�2ð1� �sÞ > 0.
(iii) ) (i). By Theorem 2.7.5, f ½1�ðs; � Þ admits a representation

f ½1�ðs; xÞ ¼ �þ
Z 1

�1

x

1� �x
d�ðxÞ; x 2 ð�1; 1Þ;

where � 2 R and � is a positive finite Borel measure on ½�1; 1�. This implies that

f ðxÞ ¼ f ðsÞ þ �ðx� sÞ þ
Z 1

�1

xðx� sÞ
1� �x

d�ð�Þ:

Hence it suffices to show that ðx2 � sxÞ=ð1� �xÞ is operator convex on ð�1; 1Þ for every � 2 ½�1; 1�. This is clear when
� ¼ 0. When � 6¼ 0,

�2 x2 � sx

1� �x
¼ ��xþ �s� 1þ

1� �s
1� �x

:

From Example 2.5.9 (4) it is immediate to see that ð1� �xÞ�1 is operator convex on ð�1; 1Þ. Hence thanks to
1� �s > 0, ðx2 � sxÞ=ð1� �xÞ is operator convex on ð�1; 1Þ.

The latter statement is just a rewriting of the proved equivalence. �

Corollary 2.7.9. Any operator monotone function on the whole real line is a linear function f ðxÞ ¼ �þ 
x with
� 2 R and 
 � 0. Any operator convex function on the whole real line is a quadratic function f ðxÞ ¼ �þ 
xþ �x2
with �; 
 2 R and � � 0.

Proof. Assume that f is operator monotone on ð�1;1Þ. Since f 2 Pð�1;1Þ thanks to Theorem 2.7.7,
Theorem 2.6.3 implies that f ðzÞ ¼ �þ 
z with � 2 R and 
 � 0. Hence f ðxÞ ¼ �þ 
x. Next assume that f is
operator convex on ð�1;1Þ. By Corollary 2.4.6, ð f ðxÞ � f ð0ÞÞ=x is operator monotone on ð�1;1Þ and hence
ð f ðxÞ � f ð0ÞÞ=x ¼ 
þ �x with 
 2 R and � � 0. Therefore, f ðxÞ ¼ �þ 
xþ �x2 with � ¼ f ð0Þ. �

Exercise 2.7.10. When p < �1, show that the function f on ð0;1Þ defined by f ðxÞ :¼ ðxp � 1Þ=ðx� 1Þ, x 6¼ 1, and
f ð1Þ :¼ p cannot be analytically continued across ð0;1Þ to C

þ in such a way that f ðCþÞ 
 C
þ. For this, take account

of the fact that for small r > 0 the argument of f ðzÞ ¼ ðzp � 1Þ=ðz� 1Þ, z ¼ rei�, nearly behaves as �zp. By
Corollary 2.4.6 and Theorem 2.7.7, this proves that xp is not operator convex on ð0;1Þ when p < �1, settling the
remaining part of Example 2.5.9 (4).

Finally, we transform the integral expression (2.7.4) for operator monotone functions on ð�1; 1Þ into the following
expression on ½0;1Þ, which will play an important role in the next chapter.

Theorem 2.7.11. Let f be a continuous and nonnegative function on ½0;1Þ. Then f is operator monotone if and only
if there exists a positive finite Borel measure m on ½0;1� such that

f ðtÞ ¼
Z
½0;1�

tð1þ �Þ
t þ �

dmð�Þ; t 2 ½0;1Þ;

where tð1þ �Þ=ðt þ �Þ is 1 if � ¼ 0 and t if � ¼ 1. In this case, the measure m is unique, and if a :¼ mðf0gÞ and
b :¼ mðf1gÞ then

f ðtÞ ¼ aþ bt þ
Z
ð0;1Þ

tð1þ �Þ
t þ �

dmð�Þ; t 2 ½0;1Þ: ð2:7:5Þ

Also, a ¼ f ð0Þ and b ¼ limt!1 f ðtÞ=t.
Moreover, a continuous real-function function f on ½0;1Þ is operator monotone if and only if there exist a b � 0 and

a positive finite Borel measure m on ð0;1Þ such that
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f ðtÞ ¼ f ð0Þ þ bt þ
Z
ð0;1Þ

tð1þ �Þ
t þ �

dmð�Þ; t 2 ½0;1Þ:

Proof. The ‘‘if’’ part is immediately seen since, for every � 2 ½0;1Þ,

tð1þ �Þ
t þ �

¼ 1þ � �
�ð1þ �Þ
t þ �

is operator monotone on ½0;1Þ. Conversely, assume that f � 0 is continuous and operator monotone on ½0;1Þ.
Transform f ðtÞ on ð0;1Þ to an operator monotone function gðxÞ :¼ f ð ðxÞÞ on ð�1; 1Þ by

t ¼  ðxÞ :¼
1þ x

1� x
¼ �1þ

2

1� x
: ð�1; 1Þ ! ð0;1Þ:

Theorem 2.7.5 implies that there exists a probability Borel measure 	 on ½�1; 1� such that

gðxÞ ¼ gð0Þ þ g0ð0Þ
Z
½�1;1�

x

1� �x
d	ð�Þ; x 2 ð�1; 1Þ:

Since gð�1Þ ¼ limx!�1þ0 gðxÞ ¼ f ð0Þ � 0, we notice thatZ
½�1;1�

1

1þ �
d	ð�Þ < þ1;

in particular 	ðf�1gÞ ¼ 0, and hence

gðxÞ � gð�1Þ ¼ g0ð0Þ
Z
ð�1;1�

1þ x

ð1� �xÞð1þ �Þ
d	ð�Þ:

Transforming this to the expression of f ðtÞ by x ¼  �1ðtÞ and � ¼  �1ð�Þ and introducing the measure m on ð0;1� by

m :¼ ~		 
  �1; where d ~		ð�Þ :¼
g0ð0Þ
1þ �

d	ð�Þ;

we have

f ðtÞ � f ð0Þ ¼
Z
ð0;1�

tð1þ �Þ
t þ �

dmð�Þ; t 2 ½0;1Þ:

Adding the mass f ð0Þ�0 to m we have

f ðtÞ ¼
Z
½0;1�

tð1þ �Þ
t þ �

dmð�Þ; t 2 ½0;1Þ:

The uniqueness of the measure m follows from that of 	 in Theorem 2.7.5, and the remaining assertions are easily
verified. Finally, the last assertion is immediately seen by applying the above case to f � f ð0Þ. �

For example, from the integral expression

log t ¼
Z 1

0

1

1þ �
�

1

t þ �

� �
d�;

the operator monotone function logð1þ tÞ on ½0;1Þ has the expression

logð1þ tÞ ¼
Z 1

1

t

�ðt þ �Þ
d�

and the representing measure in Theorem 2.7.11 is �½1;1Þ
1

�ð1þ�Þ d� . For 0 < p < 1 the operator monotone function t p

on ½0;1Þ has the expression

t p ¼
sin p





Z 1

0

t� p�1

t þ �
d�

(see Exercise 2.6.6 (b)) and the representing measure is sin p


 � � p�1

1þ� d� .

2.8 Bhatia and Sano’s characterization of operator convex functions

Concerning matrix/operator convex functions, after showing Kraus’ characterization in terms of the second divided
difference matrices in Section 2.4, we present characterizations due to Hansen and Pedersen for operator convex
functions on ð0;1Þ in Section 2.5. In this section we present different characterizations for those functions in terms of
the first divided difference matrices, which were recently obtained by Bhatia and Sano [20]. We begin with
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Definition 2.8.1. We write C
n
0 for the subspace (of codimension 1) of Cn consisting of x ¼

�1

..

.

�n

264
375 2 C

n such that

Pn
i¼1 �n ¼ 0. An n� n Hermitian matrix A is said to be conditionally positive definite (c.p.d. for short) if hx;Axi � 0

for all x 2 C
n
0, and also conditionally negative definite (c.n.d. for short) if hx;Axi � 0 for all x 2 C

n
0. The n� n

matrix of all entries equal to 1 is denoted by Jn. Obviously, Jn is a positive semidefinite matrix (of rank 1), and x 2 C
n

belongs to C
n
0 if and only if Jnx ¼ 0.

Lemma 2.8.2. If A ¼ ½aij�ni; j¼1 2 M
sa
n is c.p.d., then the ðn� 1Þ � ðn� 1Þ matrix whose ði; jÞ-entry is

aij � ain � anj þ ann; i; j ¼ 1; . . . ; n� 1;

is positive semidefinite.

Proof. Write B :¼ ½aij � ain � anj þ ann�n�1
i; j¼1. For every x ¼

�1

..

.

�n�1

264
375 2 C

n�1 let ~xx :¼

�1

..

.

�n�1

�n

26664
37775 2 C

n
0 with �n :¼

�
Pn�1

i¼1 �i. Then

hx;Bxi ¼
Xn�1

i; j¼1

ðaij � ain � anj þ annÞ�i�j

¼
Xn�1

i; j¼1

aij�i�j �
Xn�1

i¼1

ain�i
Xn�1

j¼1

�j

 !
�
Xn�1

j¼1

anj
Xn�1

i¼1

�i

 !
�j þ ann

Xn�1

i¼1

�i

 ! Xn�1

j¼1

�j

 !

¼
Xn
i; j¼1

aij�i�j ¼ h ~xx;A ~xxi � 0

so that B is positive semidefinite. �

The next theorem shows Bhatia and Sano’s characterizations in [20] for operator convex functions on ð0;1Þ with
some improvements. A similar improvement was also obtained in [76] by a different method.

Theorem 2.8.3. Let f be a real C1-function on ð0;1Þ, and gðtÞ :¼ t f ðtÞ for t 2 ð0;1Þ. Then the following conditions
are equivalent:
(i) f is operator convex;
(ii) lim inft!1 f ðtÞ=t > �1 and ½ f ½1�ðti; tjÞ�ni; j¼1 is c.n.d. for all n 2 N and all t1; . . . ; tn 2 ð0;1Þ;
(iii) lim supt&0 gðtÞ � 0 and ½g½1�ðti; tjÞ�ni; j¼1 is c.p.d. for all n 2 N and all t1; . . . ; tn 2 ð0;1Þ.

Proof. (i) ) (ii). First, the condition lim inft!1 f ðtÞ=t > �1 is trivially satisfied as long as f is a convex function on
ð0;1Þ. For any " > 0 define

h"ðtÞ :¼ f ðt þ "Þ � f ð"Þ � f 0ð"Þt; t � 0;

which is operator convex and nonnegative on ½0;1Þ with h"ðþ0Þ ¼ h"ð0Þ ¼ 0 and h0"ð0Þ ¼ 0. Then Theorem 2.5.2
implies that h"ðtÞ=t is operator monotone on ð0;1Þ with limt&0 h"ðtÞ=t ¼ h0"ð0Þ ¼ 0. Hence by Theorem 2.7.11, the
function h"ðtÞ=t is represented as

h"ðtÞ
t

¼ ct þ
Z
ð0;1Þ

tð1þ �Þ
t þ �

dmð�Þ;

where c � 0 and m is a positive finite measure on ð0;1Þ. Therefore, we have

f"ðtÞ :¼ f ðt þ "Þ ¼ aþ bt þ ct2 þ
Z
ð0;1Þ

t2ð1þ �Þ
t þ �

dmð�Þ;

where a :¼ f ð"Þ and b :¼ f 0ð"Þ. Letting �� ðtÞ :¼ t2=ðt þ �Þ for � 2 ð0;1Þ and t 2 ½0;1Þ, one can write

f ½1�" ðs; tÞ ¼ bþ cðsþ tÞ þ
Z
ð0;1Þ

�½1�� ðs; tÞð1þ �Þ dmð�Þ; s; t 2 ½0;1Þ:

Since
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�� ðs; tÞ ¼
1

s� t

s2

sþ �
�

t2

t þ �

� �
¼

st þ �ðsþ tÞ
ðsþ �Þðt þ �Þ

¼ 1�
�2

ðsþ �Þðt þ �Þ
; s; t 2 ½0;1Þ;

we have, for every t1; . . . ; tn 2 ð0;1Þ,

½ f ½1�" ðti; tjÞ�ni:j¼1 ¼ bJn þ cðDJn þ JnDÞ þ
Z
ð0;1Þ

ðJn � �2D�JnD� Þð1þ �Þ dmð�Þ;

where

D :¼ Diagðt1; . . . ; tnÞ; D� :¼ Diag
1

t1 þ �
; . . . ;

1

tn þ �

� �
:

For every x 2 C
n
0, since Jnx ¼ 0 and D�JnD� � 0, we obtain

hx; ½ f ½1�" ðti; tjÞ�xi ¼ �
Z
ð0;1Þ

�2hx;D�JnD�xið1þ �Þ dmð�Þ � 0;

which shows that ½ f ½1�" ðti; tjÞ� is c.n.d. Since f ½1�" ðti; tjÞ ¼ f ½1�ðti þ "; tj þ "Þ and " > 0 is arbitrary, (ii) holds.
(ii) ) (i). For any " > 0, since

lim
t&0

f ðt þ "Þ � f ð"Þ
t

¼ f 0ð"Þ

and

lim inf
t!1

f ðt þ "Þ � f ð"Þ
t

> �1

thanks to the condition lim inft!1 f ðtÞ=t > �1, one can see that

inf
t2ð0;1Þ

f ðt þ "Þ � f ð"Þ
t

> �1:

So choose a �" 2 R smaller than the above infimum, and define

f"ðtÞ :¼ f ðt þ "Þ; h"ðtÞ :¼ f ðt þ "Þ � f ð"Þ � �"t; t 2 ½0;1Þ;

so that h"ðtÞ > 0 for all t 2 ð0;1Þ. For every n 2 N and every t1; . . . ; tn 2 ½0;1Þ, since

½h½1�" ðti; tjÞ�ni; j¼1 ¼ ½ f ½1�" ðti; tjÞ�ni; j¼1 � �"Jn ¼ ½ f ½1�ðti þ "; tj þ "Þ�ni; j¼1 � �"Jn;

it follows that ½h½1�" ðti; tjÞ�ni; j¼1 is c.n.d. Letting t1; . . . ; tn�1 > 0 and tn ¼ 0, we see by Lemma 2.8.2 that

� h½1�" ðti; tjÞ �
h"ðtiÞ
ti

�
h"ðtjÞ
tj

þ h0"ð0Þ
� �n�1

i; j¼1

is positive semidefinite. One can compute the above ði; jÞ-entry as follows:

h"ðtiÞ � h"ðtjÞ
ti � tj

�
h"ðtiÞ
ti

�
h"ðtjÞ
tj

þ f 0ð"Þ � �"

¼
t2j h"ðtiÞ � t2i h"ðtjÞ

tiðti � tjÞtj
þ f 0ð"Þ � �"

¼ �
h"ðtiÞ
ti

�
t2i

h"ðtiÞ �
t2j

h"ðtjÞ

ti � tj
�
h"ðtjÞ
tj

þ f 0ð"Þ � �";

noting that h"ðtÞ > 0 for t > 0. Hence it follows that

t2

h"ðtÞ

� �½1�

ðti; tjÞ

" #n�1

i; j¼1

� ð f 0ð"Þ � �"ÞDJn�1D

is positive semidefinite, where

D :¼ Diag
t1

h"ðt1Þ
; . . . ;

tn

h"ðtnÞ

� �
:

Since f 0ð"Þ � �" > 0 by the choice of �",
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t2

h"ðtÞ

� �½1�

ðti; tjÞ

" #n�1

i; j¼1

is positive semidefinite. This implies by Theorem 2.4.3 that t2=h"ðtÞ is operator monotone on ð0;1Þ. Hence by
Corollary 2.5.6, h"ðtÞ=t ¼ t=ðt2=h"ðtÞÞ is operator monotone on ð0;1Þ again. Finally, since h"ð0Þ ¼ 0, Theorem 2.5.2
implies that h"ðtÞ is operator convex on ½0;1Þ. Hence so is f ðt þ "Þ ¼ h"ðtÞ þ f ð"Þ þ �"t. Since " > 0 is arbitrary, f is
operator convex on ð0;1Þ.

(i) ) (iii). The condition lim supt&0 gðtÞ � 0 is obvious since f ðþ0Þ > �1 as long as f is a convex function on
ð0;1Þ. With the same h"ðtÞ as in the proof of (i) ) (ii), we have

g"ðtÞ :¼ t f ðt þ "Þ ¼ at þ bt2 þ ct3 þ
Z
ð0;1Þ

t3ð1þ �Þ
t þ �

dmð�Þ;

where a, b, c � 0, and m are as in the proof of (i) ) (ii). Letting  � ðtÞ :¼ t3=ðt þ �Þ, one can write

g½1�" ðs; tÞ ¼ aþ bðsþ tÞ þ cðs2 þ st þ t2Þ þ
Z
ð0;1Þ

 ½1�
� ðs; tÞð1þ �Þ dmð�Þ; s; t 2 ½0;1Þ:

Since

 ½1�
� ðs; tÞ ¼

1

s� t

s3

sþ �
�

t3

t þ �

� �
¼

stðsþ tÞ þ �ðs2 þ st þ t2Þ
ðsþ �Þðt þ �Þ

¼ sþ t � � þ
�3

ðsþ �Þðt þ �Þ
; s; t 2 ½0;1Þ;

we have, for every t1; . . . ; tn 2 ð0;1Þ,

½g½1�" ðti; tjÞ�ni; j¼1 ¼ aJn þ bðDJn þ JnDÞ þ cðD2Jn þ DJnDþ JnD
2Þ

þ
Z
ð0;1Þ

ðDJn þ JnD� �Jn þ �3D�JnD� Þð1þ �Þ dmð�Þ;

where D and D� are as in the proof of (i) ) (ii). For every x 2 C
n
0, since Jnx ¼ 0, DJnD � 0 and D�JnD� � 0, we have

hx; ½g½1�" ðti; tjÞ�xi ¼ chx;DJnDxi þ
Z
ð0;1Þ

�3hx;D�JnD�xið1þ �Þ dmð�Þ � 0

so that ½g½1�" ðti; tjÞ� is c.p.d. Since lim"&0 g"ðtÞ ¼ gðtÞ and lim"&0 g
0
"ðtÞ ¼ g0ðtÞ for all t 2 ð0;1Þ, it follows that ½g½1�ðti; tjÞ�

is c.p.d. and (iii) holds.
(iii) ) (i). Thanks to the condition lim supt&0 gðtÞ � 0, one can choose a sequence "k & 0 such that gð"kÞ > 0 for all

k when lim supt&0 gðtÞ > 0, or else limk!1 gð"kÞ ¼ 0 when lim supt&0 gðtÞ ¼ 0. Define

hkðtÞ :¼ gðt þ "kÞ � gð"kÞ � g0ð"kÞt; t 2 ½0;1Þ:

For every n 2 N and every t1; . . . ; tn 2 ½0;1Þ, since

½h½1�k ðti; tjÞ�ni; j¼1 ¼ ½g½1�ðti þ "k; tj þ "kÞ�ni; j¼1 � g0ð"kÞJn;

it follows that ½h½1�k ðti; tjÞ�ni; j¼1 is c.p.d. Now let t1; . . . ; tn�1 > 0 and tn ¼ 0. Since h0kð0Þ ¼ 0, we see by Lemma 2.8.2 that

h½1�k ðti; tjÞ �
hkðtiÞ
ti

�
hkðtjÞ
tj

� �n�1

i; j¼1

is positive semidefinite. Since the above ði; jÞ-entry is equal to

hkðtiÞ � hkðtjÞ
ti � tj

�
hkðtiÞ
ti

�
hkðtjÞ
tj

¼ ti �
hkðtiÞ
t2
i

� hkðtjÞ
t2
j

ti � tj
� tj;

it follows that

hkðtÞ
t2

� �½1�

ðti; tjÞ

" #n�1

i; j¼1

is positive semidefinite. Therefore, hkðtÞ=t2 is operator monotone on ð0;1Þ. Furthermore, since limt&0 hkðtÞ=t ¼
h0kð0Þ ¼ 0, Theorem 2.5.2 implies that hkðtÞ=t is operator convex on ð0;1Þ. Noting that

hkðtÞ
t

¼
ðt þ "kÞ f ðt þ "kÞ

t
�

gð"kÞ
t

� g0ð"kÞ;
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we see that

fkðtÞ :¼
ðt þ "kÞ f ðt þ "kÞ

t
�

gð"kÞ
t

is operator convex on ð0;1Þ. When gð"kÞ > 0 for all k, gð"kÞ=t is operator convex and so

ðt þ "kÞ f ðt þ "kÞ
t

¼ fkðtÞ þ
gð"kÞ
t

is operator convex on ð0;1Þ. Since limk!1ðt þ "kÞ f ðt þ "kÞ=t ¼ f ðtÞ for all t > 0, f is operator convex on ð0;1Þ.
When limk!1 gð"kÞ ¼ 0, limk!1 fkðtÞ ¼ f ðtÞ for all t > 0 so that f is operator convex on ð0;1Þ as well. �

Remark 2.8.4. The conditions lim supt!1 f ðtÞ=t > �1 in (ii) and lim supt&0 gðtÞ � 0 in (iii) are essential in
Theorem 2.8.3, as seen from the discussions below. When 1 � � � 2, the function t� is operator convex on ð0;1Þ.
Hence Theorem 2.8.3 implies that ½ðt�þ1Þ½1�ðti; tjÞ�ni; j¼1 is c.p.d. and so ½ð�t�þ1Þ½1�ðti; tjÞ�ni; j¼1 is c.n.d. for all t1; . . . ; tn 2
ð0;1Þ. But �t�þ1 is not operator convex on ð0;1Þ. Note that limt!1ð�t�þ1=tÞ ¼ �1.

Next, when �1 � � � 0, the function t� is operator convex on ð0;1Þ. Hence Theorem 2.8.3 implies that
½ðt�Þ½1�ðti; tjÞ�ni; j¼1 is c.n.d. and so ½ð�t�Þ½1�ðti; tjÞ�ni; j¼1 is c.p.d. for all t1; . . . ; tn 2 ð0;1Þ. But �t��1 is not operator convex
on ð0;1Þ. Note that limt&0 tð�t��1Þ � �1.

The next corollary is Theorem 2.8.3 in a special situation.

Corollary 2.8.5. Let f be a real C1-function form ð0;1Þ into itself. Then the following conditions are equivalent:
(i) f is operator convex;
(ii) all divided difference matrices of f are c.n.d., i.e., ½ f ½1�ðti; tjÞ�ni; j¼1 is c.n.d. for all n 2 N and all t1; . . . ; tn 2 ð0;1Þ;
(iii) all divided difference matrices of t f ðtÞ are c.p.d.
Moreover, if the above conditions hold, then all divided difference matrices of t= f ðtÞ and of f ðtÞ=t2 are c.n.d.

Proof. Since the additional conditions in (ii) and (iii) of Theorem 2.8.3 are trivially satisfied in this special situation,
Theorem 2.8.3 shows that (i)–(iii) are equivalent. When f is operator convex, then so are f = f ðtÞ and f ðtÞ=t2 by
Corollary 2.5.6. Hence the last assertion follows. �

For instance, all divided difference matrices of the power function tr on ð0;1Þ are c.n.d. for �1 � r � 0, positive
semidefinite for 0 � r � 1, c.n.d. for 1 � r � 2, and c.p.d. for 2 � r � 3. Since tr is not operator convex on ð0;1Þ for
r > 2, Corollary 2.8.5 shows that tr for any r > 3 has a non-c.p.d. divided difference matrix and also a non-c.n.d. one.
See [20] for more properties of divided difference matrices of tr.

Remark 2.8.6. As is easily verified by translation t 7! t þ � and by reversing t 7!�t, Theorem 2.8.3 similarly holds
also when f is a function on ð�;1Þ or ð�1; 
Þ. In the latter case, the roles of c.n.d. and c.p.d. are exchanged. However,
the theorem is not true when f is a function on a finite interval ð�; 
Þ. For instance, according to Theorem 2.7.6, the
functions

g� ðtÞ :¼
t2

1� �t
; where � 2 ½�1; 1�; ð2:8:1Þ

are operator convex on ð�1; 1Þ. The function g� has c.n.d. divided difference matrices for � 2 ½�1; 0Þ while g� does
c.p.d. divided difference matrices for � 2 ð0; 1�, as shown in [21]. But it was also shown in [21] that the function tg� ðtÞ
has c.p.d. divided difference matrices for all � 2 ½�1; 1� so that, for every operator convex function f on ð�1; 1Þ, the
function t f ðtÞ has c.p.d. divided difference matrices, which was indeed formerly proved by Horn [45] by a different
method. The proofs of these facts are left for the next exercise.

Exercise 2.8.7. Let g� , � 2 ½�1; 1�, be the functions on ½�1; 1� defined by (2.8.1). Prove the following:
(1) If t1; . . . ; tn 2 ð�1; 1Þ, then ½g½1�� ðti; tjÞ�ni; j¼1 is c.n.d. for all � 2 ½�1; 0Þ and is c.p.d. for all � 2 ð0; 1�.
(2) If h� ðtÞ :¼ tg� ðtÞ and t1; . . . ; tn 2 ð�1; 1Þ, then ½h½1�� ðti; tjÞ�ni; j¼1 is c.p.d. for all � 2 ½�1; 1�.

Exercise 2.8.8. For every m 2 N and every t1; . . . ; tn 2 ð0;1Þ, show that

hx; ½ðtmÞ½1�ðti; tjÞ�xi ¼ �hx; ½ðt2�mÞ½1�ðt�1
i ; t

�1
j Þ�xi; x 2 C

n
0:

This implies that ½ðtmÞ½1�ðti; tjÞ�ni; j¼1 is c.p.d. (resp., c.n.d.) if and only if ½ðt2�mÞ½1�ðt�1
i ; t

�1
j Þ�ni; j¼1 is c.n.d.

(resp., c.p.d.).

More recently in [44] we considered the following conditions for a C1 function f on ð0;1Þ and for each fixed integer
n � 1:
(i)n f is matrix convex of order n on ð0;1Þ;
(ii)n lim inft!1 f ðtÞ=t > �1 and ½ f ½1�ðti; tjÞ�ni; j¼1 is c.n.d. for all t1; . . . ; tn 2 ð0;1Þ;
(iii)n lim supt&0 gðtÞ � 0 and ½g½1�ðti; tjÞ�ni; j¼1 is c.p.d. for all t1; . . . ; tn 2 ð0;1Þ, where gðtÞ :¼ t f ðtÞ for t 2 ð0;1Þ.
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We further improved the above proof of Theorem 2.8.3 without use of integral representation of operator convex
functions and proved the implications

(i)2nþ1 ¼) (ii)n; (ii)4nþ1 ¼) (i)n; (i)nþ1 ¼) (iii)n; (iii)2nþ1 ¼) (i)n:

In this way, it turned out that the results in [20] (also [75]) are refined to those for each matrix order.

3. Operator Means

3.1 Operator means and parallel sum

This chapter is a brief survey on operator means. An axiomatic approach for operator means was investigated by
Kubo and Ando [58]. To introduce operator means in an axiomatic way, it is convenient to treat positive operators on a
fixed separable and infinite-dimensional Hilbert space instead of n� n positive matrices for all separate n. So,
throughout this chapter, we fix such an infinite-dimensional Hilbert space H, and let BðHÞ be the set of all bounded
linear operators on H. Let BðHÞsa denote the set of all self-adjoint A 2 BðHÞ and BðHÞþ the set of all positive
A 2 BðHÞ.

First, we review the functional calculus and the spectral decomposition for self-adjoint operators onH, which are the
infinite-dimensional extensions of those for matrices explained in Section 1.4. For A 2 BðHÞ let �ðAÞ be the spectrum
of A, i.e., the set of � 2 C such that �I � A is not invertible in BðHÞ, which is a non-empty compact subset of C with
�ðAÞ 
 f� 2 C : j�j � kAkg, kAk being the operator norm of A. Hence rðAÞ � kAk, where rðAÞ :¼ maxfj�j : � 2
�ðAÞg, the spectral radius of A. Moreover, note that rðAÞ ¼ limn!1 kAnk1=n and that rðAÞ ¼ kAk if A is normal (i.e.,
A�A ¼ AA�). Let P denote the linear space of all polynomials with complex coefficients. For pðtÞ ¼

PN
k¼0 �kt

k in P we
put pðAÞ :¼

PN
k¼0 �kA

k as usual. When A 2 BðHÞsa (hence �ðAÞ 
 ½�kAk; kAk�), we have

�ðpðAÞÞ ¼ pð�ðAÞÞ ¼ fpð�Þ : � 2 �ðAÞg

and hence

kpðAÞk ¼ kpk�ðAÞ :¼ maxfjpð�Þj : � 2 �ðAÞg:

This means that p 2 P 7!pðAÞ 2 BðHÞ is an isometry with respect to the norm kpk�ðAÞ on P and the operator norm.
This isometry can uniquely extend to Cð�ðAÞÞ, the Banach space of continuous complex functions on �ðAÞ with sup-
norm, since P is dense in Cð�ðAÞÞ. This extended isometry is written as f 2 Cð�ðAÞÞ 7! f ðAÞ 2 BðHÞ and f ðAÞ is called
the functional calculus of A by f . We have �ð f ðAÞÞ ¼ f ð�ðAÞÞ, the spectral mapping theorem. When A � 0 (i.e.,
A 2 BðHÞþ) and f ðtÞ ¼ tr on ½0;1Þ with r � 0, we write Ar for f ðAÞ. In particular, A0 ¼ I, the identity operator, by
convention.

For A;An 2 BðHÞ, n 2 N, it is said that An converges to A in the strong operator topology (or simply An ! A

strongly) if kðAn � AÞxk ! 0 for all x 2 H. Of course, the operator norm convergence kAn � Ak ! 0 implies the
convergence in the strong operator topology. When H is finite dimensional, both convergences are equivalent.

Now let A 2 BðHÞsa. For each x; y 2 H define ’x;yð f Þ :¼ hx; f ðAÞyi, f 2 Cð�ðAÞÞ, which is a bounded linear
functional on Cð�ðAÞÞ. Hence by the Riesz–Markov theorem, there is a unique complex Borel measure 	x;y on �ðAÞ such
that

hx; f ðAÞyi ¼
Z
�ðAÞ

f d	x;y; f 2 Cð�ðAÞÞ:

For each Borel subset S of �ðAÞ, it follows that 	x;yðSÞ is a sesqui-linear form on H, i.e., 	x;yðSÞ is conjugate-linear in x

and linear in y, which is bounded as j	x;yðSÞj � kxk kyk for all x; y 2 H. Hence by the Riesz representation theorem,
there is an EðSÞ 2 BðHÞ such that 	x;yðSÞ ¼ hx;EðSÞyi for all x; y 2 H. Since ’x;x � 0 on Cð�ðAÞÞ, 	x;x is a positive
measure for any x 2 H, so EðSÞ 2 BðHÞþ for all Borel sets S 
 �ðAÞ. Here one can show that EðSÞ is an orthogonal
projection for every Borel set S and Eð�Þ is �-additive in the sense that

EðSÞ ¼
X1
k¼1

EðSkÞ ¼ lim
N!1

XN
k¼1

EðSkÞ

in the strong operator topology if Sk, k 2 N, are mutually disjoint Borel subsets of �ðAÞ with S ¼
S1

k¼1 Sk. Moreover,
Eð�ðAÞÞ ¼ I since 	x;yð�ðAÞÞ ¼ hx; yi for x; y 2 H. In this way, one obtains a spectral measure Eð�Þ on �ðAÞ such that

hx;Ayi ¼
Z
�ðAÞ

t d	x;yðtÞ ¼
Z
�ðAÞ

t dhx;EðtÞyi; x; y 2 H;

that is,

A ¼
Z
�ðAÞ

t dEðtÞ; ð3:1:1Þ
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which is called the spectral decomposition of A. One can also define a resolution of identity fEtg�1<t<1 by
Et :¼ Eð�ðAÞ \ ð�1; t�Þ, which is a non-increasing and right-continuous one-parameter family of orthogonal
projections with Et ¼ 0 for t < �kAk and Et ¼ I for t � kAk. Then the representation (3.1.1) is also written as

A ¼
Z kAk

�kAk
t dEt:

When H is finite dimensional and �1; . . . ; �m are different eigenvalues of A 2 BðHÞsa with Pj the orthogonal projection
onto the eigenspace kerðA� �jIÞ for 1 � j � m, the spectral decomposition of A reduces to (1.4.2) in Section 1.4.

Exercise 3.1.1. Let f be a continuous complex function on an interval ½�; 
�. Let A;An 2 BðHÞsa, and assume that
An ! A in the strong operator topology and that �ðAnÞ 
 ½�; 
� for all n 2 N. Show that �ðAÞ 
 ½�; 
� and
f ðAnÞ ! f ðAÞ in the strong operator topology.

After the above short review on functional calculus and spectral decomposition, we now introduce the notion of
operator means in the following:

Definition 3.1.2. A binary operation � : BðHÞþ � BðHÞþ ! BðHÞþ is called an operator connection if it satisfies
the following conditions (i)–(iii) for A;B;C;D 2 BðHÞþ:

(i) A � C and B � D imply A � B � C �D (joint monotonicity),
(ii) CðA � BÞC � ðCACÞ � ðCBCÞ (transformer inequality),
(iii) An;Bn 2 BðHÞþ, An # A, and Bn # B imply An � Bn # A � B (upper semicontinuity), where An # A means that

A1 � A2 � . . . and An ! A in the strong operator topology.
An operator connection � is called an operator mean if
(iv) I � I ¼ I.

In the rest of this chapter, we always assume that A;B;C;D are elements of BðHÞþ.

Proposition 3.1.3. Assume that � is an operator connection. If C is invertible, then

CðA � BÞC ¼ ðCACÞ � ðCBCÞ: ð3:1:2Þ

For every � � 0,

�ðA � BÞ ¼ ð�AÞ � ð�BÞ ðpositive homogeneityÞ: ð3:1:3Þ

Proof. From property (ii) above,

C�1fðCACÞ � ðCBCÞgC�1 � A � B

so that

ðCACÞ � ðCBCÞ � CðA � BÞC:

This and (ii) imply (3.1.2). When � > 0, letting C :¼ �1=2I in (3.1.2) implies (3.1.3). When � ¼ 0, let 0 < �n & 0.
Then ð�nÞ � ð�nIÞ # 0 � 0 by (iii) above while ð�nIÞ � ð�nIÞ ¼ �nðI � IÞ # 0. Hence 0 ¼ 0 � 0, which is (3.1.3)
for � ¼ 0. �

Lemma 3.1.4. For invertible A;B 2 BðHÞþ define A : B 2 BðHÞþ by

A : B :¼ ðA�1 þ B�1Þ�1: ð3:1:4Þ

Then
(1) Let A;B;C;D 2 BðHÞþ be invertible. If A � C and B � D, then A : B � C : D.
(2) Let A;B;An;Bn 2 BðHÞþ for n � 1. If A;B are invertible, An # A and Bn # B, then An : Bn # A : B.
(3) Let A;B;An;Bn 2 BðHÞþ for n � 1. If An;Bn are invertible for n � 1, An # A and Bn # B, then the limit

limn An : Bn in the strong operator topology exists, and the limit is independent of the choices of An, Bn.

Proof. (1) Since A � C and B � D, A�1 � C�1 and B�1 � D�1 so that A�1 þ B�1 � C�1 þ D�1. Hence ðA�1þ
B�1Þ�1 � ðC�1 þ D�1Þ�1.

(2) Assume that A;B are invertible, An # A and Bn # B. Then A�1
1 � A�1

2 � . . ., B�1
1 � B�1

2 � . . ., A�1
n � A�1 and

B�1
n � B�1. Notice that

hx; ðA�1 � A�1
n Þxi ¼ hx;A�1

n ðAn � AÞA�1xi ¼ hA�1
n x; ðAn � AÞA�1xi

� kA�1
n xk kðAn � AÞA�1xk �! 0

for every x 2 H. This implies that A�1
n " A�1 (i.e., A�1

n increasingly converges to A in the strong operator topology).
(In fact, this is also seen from Exercise 3.1.1.) Similarly B�1

n " B�1. Hence A�1
n þ B�1

n " A�1 þ B�1. An argument
similar to the above shows that An : Bn # A : B.

Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 189



(3) For general A;B 2 BðHÞþ, let An;Bn be invertible with An # A and Bn # B. It follows from (1) that A1 : B1 �
A2 : B2 � . . . and so limn An : Bn in the strong operator topology exists. For any other invertible A0

n;B
0
n with An # A and

Bn # B, since An � An þ A0
m � A and Bn � Bn þ B0

m � B for every n;m 2 N, we have by (1)

An : Bn � ðAn þ A0
m � AÞ : ðBn þ B0

m � BÞ: ð3:1:5Þ

Since An þ A0
m � A # A0

m and Bn þ B0
m � B # B as n ! 1, it follows from (2) that ðAn þ A0

m � AÞ : ðBn þ B0
m � BÞ #

A0
m : B0

m as n ! 1. Passing to the limit of (3.1.5) as n ! 1 we have limn An : Bn � A0
m : B0

m. Hence letting m ! 1
gives limn An : Bn � limn A

0
n : B

0
n. By symmetry we have limn An : Bn ¼ limn A

0
n : B

0
n. �

Thanks to Lemma 3.1.4 (3), one can extend (3.1.4) to general A;B 2 BðHÞþ as follows:

A : B :¼ lim
"&0

ðAþ "IÞ : ðBþ "IÞ (in the strong operator topology): ð3:1:6Þ

This A : B is called the parallel sum of A;B. The next variational expression of A : B is useful.

Lemma 3.1.5. For every x 2 H,

hx; ðA : BÞxi ¼ inffhy;Ayi þ hz;Bzi : y; z 2 H; yþ z ¼ xg:

Proof. When A;B are invertible,

A : B ¼ fB�1ðAþ BÞA�1g�1 ¼ fðAþ BÞ � BgðAþ BÞ�1B ¼ B� BðAþ BÞ�1B:

For every x; y 2 H we have

hy;Ayi þ hx� y;Bðx� yÞi � hx; ðA : BÞxi
¼ hx;Bxi þ hy; ðAþ BÞyi � 2Rehy;Bxi � hx; ðA : BÞxi
¼ hx;BðAþ BÞ�1Bxi þ hy; ðAþ BÞyi � 2Rehy;Bxi
¼ kðAþ BÞ�1=2Bxk2 þ kðAþ BÞ1=2yk2 � 2RehðAþ BÞ1=2y; ðAþ BÞ�1=2Bxi
� 0:

In particular, the above is equal to 0 if y ¼ ðAþ BÞ�1Bx. Hence the assertion is shown when A;B are invertible. For
general A;B,

hx; ðA : BÞxi ¼ inf
">0

hx; fðAþ "IÞ : ðBþ "IÞgxi

¼ inf
">0

inf
y
fhy; ðAþ "IÞyi þ hx� y; ðBþ "IÞðx� yÞig

¼ inf
y
fhy;Ayi þ hx� y;Bðx� yÞig: �

Corollary 3.1.6. The parallel sum A : B is an operator connection and the following hold:
(1) For every S 2 BðHÞ, S�ðA : BÞS � ðS�ASÞ : ðS�BSÞ.
(2) ðA : BÞ þ ðC : DÞ � ðAþ CÞ : ðBþ DÞ.

Proof. Let us first show (1) and (2).
(1) When yþ z ¼ x, Lemma 3.1.5 implies that

hx; S�ðA : BÞSxi ¼ hSx; ðA : BÞSxi � hSy;ASyi þ hSz;BSzi
¼ hy; S�ASyi þ hz; S�BSzi:

Hence S�ðA : BÞS � ðS�ASÞ : ðS�BSÞ by Lemma 3.1.5 again.
(2) When yþ z ¼ x,

hx; fðA : BÞ þ ðC : DÞgxi � hy;Ayi þ hz;Bzi þ hy;Cyi þ hz;Dzi
¼ hy; ðAþ CÞyi þ hz; ðBþ DÞzi:

Hence ðA : BÞ þ ðC : DÞ � ðAþ CÞ : ðBþ DÞ.
Next, we show that A : B is an operator connection. (i) of Definition 3.1.2 is obvious from Lemma 3.1.4 (1) and

Definition (3.1.6). (ii) is contained in (1). To show (iii), let An # A and Bn # B. Since A : B � An : Bn by (i), we have
A : B � limn An : Bn. For any " > 0, since An : Bn � ðAn þ "IÞ : ðBn þ "IÞ, Lemma 3.1.4 (2) implies that limn An : Bn �
ðAþ "IÞ : ðBþ "IÞ. Hence limn An : Bn � A : B so that An : Bn # A : B. (It is also easy to show (i) and (iii) from
Lemma 3.1.5.) �

3.2 Kubo and Ando’s theorem

The next fundamental theorem of Kubo and Ando says that there is a one-to-one correspondence between operator
connections and operator monotone functions on ½0;1Þ.
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Theorem 3.2.1. For each operator connection � there exists a unique operator monotone function f � 0 on ½0;1Þ
such that

f ðtÞI ¼ I � ðtIÞ; t � 0: ð3:2:1Þ

Furthermore, the following properties are satisfied:
(1) The map � 7! f is an affine order-isomorphism between the operator connections and the nonnegative operator

monotone functions on ½0;1Þ. Here, the order-isomorphism means that when �i 7! fi for i ¼ 1; 2,
A �1 B � A �2 B for all A;B 2 BðHÞþ if and only if f1ðtÞ � f2ðtÞ for all t � 0.

(2) If A is invertible, then

A � B ¼ A1=2 f ðA�1=2BA�1=2ÞA1=2: ð3:2:2Þ

(3) � is an operator mean if and only if f ð1Þ ¼ 1. In this case, A � A ¼ A for all A.

Proof. Let � be an operator connection. First we show that if a projection P 2 BðHÞ commutes with A and B, then P

commutes A � B and

fðAPÞ � ðBPÞgP ¼ ðA � BÞP: ð3:2:3Þ

Since PAP ¼ AP � A and PBP ¼ BP � B, it follows from (ii) and (i) of Definition 3.1.2 that

PðA � BÞP � ðPAPÞ � ðPBPÞ ¼ ðAPÞ � ðBPÞ � A � B: ð3:2:4Þ

Hence fA � B� PðA � BÞPg1=2 exists so that

jfA � B� PðA � BÞPg1=2Pj2 ¼ PfA � B� PðA � BÞPgP ¼ 0:

Therefore, fA � B� PðA � BÞPg1=2P ¼ 0 and so ðA � BÞP ¼ PðA � BÞP. This implies that P commutes with A � B.
Similarly, P commutes with ðAPÞ � ðBPÞ as well, and (3.2.3) follows from (3.2.4). Hence we see that there is a function
f � 0 on ½0;1Þ satisfying (3.2.1). The uniqueness of such function f is obvious, and it follows from (iii) of
Definition 3.1.2 that f is right-continuous for t � 0. Since t�1 f ðtÞI ¼ ðt�1IÞ � I for t > 0 thanks to (3.1.3), if follows
from (iii) of Definition 3.1.2 again that t�1 f ðtÞ is left-continuous for t > 0 and so is f ðtÞ. Hence f is continuous on
½0;1Þ.

To show the operator monotonicity of f , let us prove that

f ðAÞ ¼ I � A: ð3:2:5Þ

Let A ¼
Pm

i¼1 �iPi, where �i > 0 and Pi are projections with
Pm

i¼1 Pi ¼ I. Since each Pi commute with A, using (3.2.3)
twice we have

I � A ¼
Xm
i¼1

ðI � AÞPi ¼
Xm
i¼1

fPi � ðAPiÞgPi ¼
Xm
i¼1

fPi � ð�iPiÞgPi

¼
Xm
i¼1

fI � ð�iIÞgPi ¼
Xm
i¼1

f ð�iÞPi ¼ f ðAÞ:

For general A 2 BðHÞþ choose a sequence fAng in BðHÞþ of the above form such that An # A. By (iii) of
Definition 3.1.2 and Exercise 3.1.1 we have

I � A ¼ lim
n!1

I � An ¼ lim
n!1

f ðAnÞ ¼ f ðAÞ

in the strong operator topology, and so (3.2.5) is shown. Hence, if A;B 2 BðHÞþ and A � B, then

f ðAÞ ¼ I � A � I � B ¼ f ðBÞ;

showing that f is operator monotone. In the rest we prove (1)–(3).
(1) It suffices to show that � 7! f is surjective onto the set of nonnegative operator monotone functions on ½0;1Þ,

since the remaining assertions are obvious from (3.2.1) and (3.2.5). So let f � 0 be operator monotone on ½0;1Þ. By
Theorem 2.7.11 we have a; b � 0 and a finite positive measure m on ð0;1Þ so that

f ðtÞ ¼ aþ bt þ
Z
ð0;1Þ

tð1þ �Þ
t þ �

dmð�Þ:

Define a binary operation � on BðHÞþ by

A � B :¼ aAþ bBþ
Z
ð0;1Þ

1þ �
�

fð�AÞ : Bg dmð�Þ:

In fact, since
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ð�AÞ : B � ð�kAkIÞ : ðkBkIÞ ¼
kAk kBk�

kAk� þ kBk
I

so that

1þ �
�

kð�AÞ : Bk �
kAk kBkð1þ �Þ
kAk� þ kBk

;

it follows that �
1þ� fð�AÞ : Bg is uniformly bounded for � > 0. Hence A � B is well defined as an element of BðHÞþ.

Now it is easy to see from Corollary 3.1.6 that A � B is an operator connection. For instance, we show (iii) of
Definition 3.1.2: if An # A and Bn # B, then ð�AnÞ : Bn # ð�AÞ : B for all � 2 ð0;1Þ and so by the Lebesgue
convergence theorem we have

lim
n!1

hx; ðAn � BnÞxi ¼ lim
n!1

ahx;Anxi þ bhx;Bnxi þ
Z
ð0;1Þ

hx; fð�AnÞ : Bngxi dmð�Þ
� �

¼ ahx;Axi þ bhx;Bxi þ
Z
ð0;1Þ

hx; fð�AÞ : Bgxi dmð�Þ

¼ hx; ðA � BÞxi:

Hence An � Bn # A � B. For this operator connection �, I � ðtIÞ ¼ f ðtÞI holds for all t � 0 so that f is the operator
monotone function corresponding to �.

(2) When A is invertible, it follows from (3.1.2) and (3.2.5) that

A � B ¼ A1=2ðI � A�1=2BA�1=2ÞA1=2 ¼ A1=2 f ðA�1=2BA�1=2ÞA1=2:

(3) The first assertion is immediate to see. When f ð1Þ ¼ 1, it follows from (3.2.2) that A � A ¼ A for invertible A.
By continuity this holds for all A 2 BðHÞþ. �

Let � be an operator connection and f be the operator monotone function on ½0;1Þ corresponding to � as described
in the above theorem. When A is invertible, A � B is written as in (3.2.2). For general A;B 2 BðHÞþ, by (iii) of
Definition 3.1.2 one can define as

A � B ¼ lim
"&0

A" � B" ¼ lim
"&0

A1=2
" f ðA�1=2

" B"A
�1=2
" ÞA1=2

" (in the strong operator topology);

where A" :¼ Aþ "I and B" :¼ Bþ "I. We call f the representing function of �. For scalars s; t � 0 note that ðsIÞ � ðtIÞ
is a scalar multiple of I thanks to (3.1.3) and (3.2.1), so we write s � t for this scalar. In fact, s � t ¼ s f ðt=sÞ for s > 0.

The next proposition is seen from Theorem 2.7.11 and the proof of Theorem 3.2.1.

Proposition 3.2.2. For every operator connection �, there exists a unique positive finite Borel measure m on
½0;1� such that

A � B ¼ aAþ bBþ
Z
ð0;1Þ

1þ �
�

fð�AÞ : Bg dmð�Þ; A;B 2 BðHÞþ; ð3:2:6Þ

where a :¼ mðf0gÞ and b :¼ mðf1gÞ. The map � 7!m is a bijective affine correspondence between the operator
connections and the positive finite Borel measures on ½0;1�.

Due to the integral expression (3.2.6), one can derive properties of general operator connections by checking them
for only parallel sum. For instance, the following corollary is obvious from Corollary 3.1.6 and (3.2.6).

Corollary 3.2.3. For every operator connection � the following hold:
(1) For every S 2 BðHÞ, S�ðA � BÞS � ðS�ASÞ � ðS�BSÞ (transformer inequality) and equality holds if S is invertible.
(2) ðA � BÞ þ ðC �DÞ � ðAþ CÞ � ðBþ DÞ (concavity).

It is quite instructive to consider operator connections form the point of view of electrical circuits. An impedance of
an n-port resistive network is represented by an n� n positive matrix A. The equation v ¼ Ax holds for n-dimensional
vectors of current x and voltage v, and the electrical power is given by hx;Axi. For two impedances A and B, their series
and parallel connections are given by the sum Aþ B and the parallel sum A : B, respectively. Lemma 3.1.4 means
Maxwell’s principle that current runs through a parallel connection so as to minimize the electrical power. A general
operator connection represent a formation of making a new impedance from two given impedances A;B. The integral
expression (3.2.6) shows that such a formation can be realized as a weighted series connection of (infinite) weighted
parallel connections. In this way, the theory of operator connections can be regarded as a mathematical theory of
electrical circuits. Indeed, the notion of parallel sum for positive operators was introduced from the viewpoint of
electrical circuits in [2].
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3.3 Examples and properties of operator means

The following are typical examples of operator means.

Example 3.3.1.
(1) Arithmetic mean: AOB :¼ 1

2
ðAþ BÞ, whose representing function is ð1þ tÞ=2.

(2) Harmonic mean: A !B :¼ 2ðA : BÞ, whose representing function is 2t=ð1þ tÞ.
(3) Geometric mean: A #B :¼ lim"&0 A

1=2
" ðA�1=2

" B"A
�1=2
" Þ1=2A1=2

" , whose representing function is t1=2. The notion of
geometric mean was first introduced in [69] and developed in [3, 58].

(4) For 0 � � � 1 let #� denote the �-power mean, which is the operator mean corresponding to the operator
monotone function t�. Namely, for each A;B 2 BðHÞþ with A invertible, A #� B is defined by

A #� B :¼ A1=2ðA�1=2BA�1=2Þ�A1=2:

Here we recall the convention B0 ¼ I for any B 2 BðHÞþ. Note that A #0 B ¼ A, A #1 B ¼ B, and A #1=2 B ¼ A #B.
(5) The operator mean corresponding to the operator monotone function ðt � 1Þ=log t (see Example 2.5.9 (5)) is

called the logarithmic mean and denoted by A � B.

Among the operator means O, !, #, and � , the following orders hold:

Proposition 3.3.2. For every A;B 2 BðHÞþ,

A !B � A #B � A � B � AOB:

Proof. Thanks to Theorem 3.2.1 (1) it suffices to show that

2t

1þ t
� t1=2 �

t � 1

log t
�

1þ t

2
; t > 0: ð3:3:1Þ

But these can be shown by an elementary calculus, and so the details are left for an exercise. �

Exercise 3.3.3. Show (3.3.1).

The following are the variational expressions for the geometric and the harmonic means in terms of 2� 2 operator
matrices.

Proposition 3.3.4.

(1) A #B ¼ max X 2 BðHÞþ :
A X

X B

� �
� 0

� �
.

(2) A !B ¼ max X 2 BðHÞþ :
2A 0

0 2B

� �
� X X

X X

� �� �
.

Proof. (1) When A;B are invertible, since

I A�1=2XB�1=2

B�1=2XA�1=2 I

" #
¼

A�1=2 0

0 B�1=2

" #
A X

X B

� �
A�1=2 0

0 B�1=2

" #
;

we notice that
A X

X B

� �
� 0 if and only if

I A�1=2XB�1=2

B�1=2XA�1=2 I

� �
� 0. By Lemma 1.7.2 this is equivalent to

kA�1=2XB�1=2k � 1, that is, B�1=2XA�1XB�1=2 � I or XA�1X � B. If X ¼ A #B, then

XA�1X ¼ A1=2ðA�1=2BA�1=2Þ1=2A1=2A�1A1=2ðA�1=2BA�1=2Þ1=2A1=2

¼ A1=2ðA�1=2BA�1=2ÞA1=2 ¼ B:

Also, if XA�1X � B, then A�1=2XA�1XA�1=2 � A�1=2BA�1=2 so that A�1=2XA�1=2 � ðA�1=2BA�1=2Þ1=2, implying that
X � A #B. Hence A #B is the largest X 2 BðHÞþ satisfying XA�1X � B.

For general A;B, let A" :¼ Aþ "I and B" :¼ Bþ "I for " > 0. Since
A" A" #B"

A" #B" B"

� �
� 0, we have

A A #B

A #B B

� �
� 0 by letting "& 0. If X 2 BðHÞþ and

A X

X B

� �
� 0, then

A" X

X B"

� �
� 0 so that X � A" #B"

and letting "& 0 gives X � A #B. Therefore, we obtain the conclusion.
(2) This expression is a reformulation of that in Lemma 3.1.5, whose proof is left for an exercise below. �

Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 193



Exercise 3.3.5. Prove (2) of Proposition 3.3.4.

Proposition 3.3.6. Let � be an operator mean and a; b be as in Proposition 3.2.2. Then for every orthogonal
projections P;Q,

P �Q ¼ aðP� P ^ QÞ þ bðQ� P ^ QÞ þ P ^ Q;

where P ^ Q is the orthogonal projection onto ranP \ ranQ.

Proof. For any A;B 2 BðHÞþ, we notice by Lemma 3.1.5 that kerA [ kerB 
 kerðA : BÞ. Hence

ran ðA : BÞ ¼ ðkerðA : BÞÞ? 
 ðkerA [ kerBÞ? ¼ ran A \ ranB;

where ranA denotes the closure of ranA. Hence we have ranð�PÞ : QÞ 
 ranðP ^ QÞ for all � > 0. Since P ^ Q

commutes with �P, Q, using (3.2.3) twice we have

ð�PÞ : Q ¼ fð�PÞ : QgðP ^ QÞ ¼ fð�PðP ^ QÞÞ : ðQðP ^ QÞÞgðP ^ QÞ

¼ fð�ðP ^ QÞÞ : ðP ^ QÞgðP ^ QÞ ¼ fð�IÞ : IgðP ^ QÞ ¼
�

1þ �
ðP ^ QÞ:

Therefore, Proposition 3.2.2 implies that

P �Q ¼ aPþ bQþ
Z
ð0;1Þ

dmð�Þ
� �

ðP ^ QÞ

¼ aPþ bQþ ð1� a� bÞðP ^ QÞ
¼ aðP� P ^ QÞ þ bðQ� P ^ QÞ þ P ^ Q: �

Corollary 3.3.7. For every orthogonal projections P;Q,

P !Q ¼ P #Q ¼ P � Q ¼ P ^ Q:

Proof. When f is the representing function of an operator mean �, recall (Theorem 2.7.11) that a ¼ f ð0Þ and
b ¼ limt!1 f ðtÞ=t. We have a ¼ b ¼ 0 for !, #, and � . �

In the rest of this section we discuss certain operations on operator means in connection with the corresponding
operations on operator monotone functions.

Let � be an operator mean with the corresponding function f . Note that f > 0 on ð0;1Þ. In fact, suppose that
f ð�Þ ¼ 0 for some � > 0. Then f ðtÞ ¼ 0 for all t 2 ½0; ��, and the concavity of f implies that f � 0, contradicting
f ð1Þ ¼ 1. Hence Corollary 2.5.6 implies that t= f ðtÞ is operator monotone on ð0;1Þ. Furthermore, it is easy to see that
f ðt�1Þ�1 is operator monotone on ð0;1Þ. Hence t f ðt�1Þ is also operator monotone on ð0;1Þ by Corollary 2.5.6 once
again. By fixing the value at 0 as the limit as t & 0, the functions t= f ðtÞ, f ðt�1Þ�1, and t f ðt�1Þ are operator monotone
functions on ½0;1Þ. Now the following definitions are meaningful.

Definition 3.3.8. Let � be an operator mean and f be the corresponding function.
(1) The operator mean with the representing function t f ðt�1Þ is called the transpose of � and denoted by �0.

If � ¼ �0, � is said to be symmetric.
(2) The operator mean with the representing function f ðt�1Þ�1 is called the adjoint of � and denoted by ��.
(3) The operator mean with the representing function t= f ðtÞ is called the dual of � and denoted by �?.

The assertions in the following proposition are immediately verified from the above definitions.

Proposition 3.3.9. Let � be an operator mean and f be the corresponding function.
(1) A �0 B ¼ B �A.
(2) � is symmetric if and only if f ðtÞ ¼ t f ðt�1Þ for all t > 0.
(3) When A;B are invertible, A �� B ¼ ðA�1 � B�1Þ�1.
(4) ð�0Þ0 ¼ �, ð��Þ� ¼ �, and ð�?Þ? ¼ �.
(5) �? ¼ ð�0Þ� ¼ ð��Þ0, �0 ¼ ð��Þ? ¼ ð�?Þ�, and �� ¼ ð�0Þ? ¼ ð�?Þ0.

Exercise 3.3.10. Prove Proposition 3.3.9.

For operator connections (resp., operator means) �1, �2, and �3, the operation defined by

ðA;BÞ 7! ðA �1 BÞ �3 ðA �2 BÞ

becomes an operator connection (resp., operator mean) again. If A �1 B � A �2 B holds for all A;B, then we write
�1 � �2.

Proposition 3.3.11. If � is a symmetric operator mean, then ! � � �O. That is, O is maximal and ! is minimal among
the symmetric operator means.
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Proof. Let f be the representing function of �. From Theorem 3.2.1 (1) it suffices to show that

2t

1þ t
� f ðtÞ �

1þ t

2
; t � 0:

Recall (see Theorem 2.4.1) that f is differentiable on ð0;1Þ. Since f ðtÞ ¼ t f ðt�1Þ for t > 0 by Proposition 3.3.9 (2), it
follows that f 0ð1Þ ¼ f ð1Þ � f 0ð1Þ ¼ 1� f 0ð1Þ and so f 0ð1Þ ¼ 1=2. The concavity of f implies that f ðtÞ � ð1þ tÞ=2.
Since �� is also symmetric by Proposition 3.3.9 (5), the same argument applied to f ðt�1Þ�1 implies that f ðtÞ �
2t=ð1þ tÞ. �

Furthermore, let � be an arbitrary operator mean with the corresponding function f , and let � :¼ f 0ð1Þ. From the
concavity of f we have 0 � � � 1 and

t

ð1� �Þt þ �
� f ðtÞ � ð1� �Þ þ �t; t � 0; ð3:3:2Þ

as in the proof of the above proposition. Hence A � B is between the weighted arithmetic mean ð1� �ÞAþ �B and the
weighted harmonic mean lim"&0ðð1� �ÞA�1

" þ �B�1
" Þ�1.

Proposition 3.3.12. For every operator mean � the following hold:
(1) ðA � BÞ þ ðB � AÞ � Aþ B.
(2) ðA � BÞ : ðB � AÞ � A : B.
(3) ðA � BÞ # ðA �? BÞ ¼ A #B.
(4) ðA � BÞ þ ðA �? BÞ � Aþ B.
(5) ðA � BÞ : ðA �? BÞ � A : B.

Proof. Since ðA;BÞ 7! 1
2
fðA � BÞ þ ðB � AÞg and ðA;BÞ 7!2fðA � BÞ : ðB � AÞg are symmetric operator means,

Proposition 3.3.11 implies that

1

2
fðA � BÞ þ ðB � AÞ � A O B; 2fðA � BÞ : ðB � AÞg � A !B:

Hence (1) and (2) hold.
Let f be the representing function of �. The left-hand sides of (3)–(5) are operator connections, whose representing

functions are

ð1 � tÞ # ð1 �? tÞ ¼ f ðtÞ �
t

f ðtÞ

� �1=2

¼ t1=2;

ð1 � tÞ þ ð1 �? tÞ ¼ f ðtÞ þ
1

f ðtÞ
¼

t þ f ðtÞ2

f ðtÞ
;

ð1 � tÞ : ð1 �? tÞ ¼
1

f ðtÞ
þ

f ðtÞ
t

� ��1

¼
t f ðtÞ

t þ f ðtÞ2
:

Hence (3) holds. For (4) it suffices to show that

t þ f ðtÞ2

f ðtÞ
� 1þ t; ð3:3:3Þ

which is equivalent to f f ðtÞ � 1gft � f ðtÞg � 0. This is seen because from (3.3.2) we have t � f ðtÞ � 1 if 0 � t � 1 and
1 � f ðtÞ � t if t � 1. For (5) it suffices to show that

t f ðtÞ
t þ f ðtÞ2

�
t

1þ t
;

which is equivalent to (3.3.3). �

The following is a counterpart of Corollary 3.2.3 (2).

Proposition 3.3.13. For every operator connection �,

ðA � BÞ : ðC �DÞ � ðA : CÞ � ðB : DÞ:

Proof. Since the result is clear in the case � ¼ 0, we assume that � 6¼ 0. Then we may assume that � is an operator
mean. From upper semicontinuity, it is enough to show the result when A;B;C;D are invertible. Then the inequality in
question is written as

ðA�1 �� B�1 þ C�1 �� D�1Þ�1 � fðA�1 þ C�1Þ �� ðB�1 þ D�1Þg�1:

This is seen from Corollary 3.2.3 (2). �
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4. Spectral Variation and Majorization

4.1 Majorization for vectors

Let us start with the majorization for real vectors, which was introduced by Hardy, Littlewood, and Pólya. For two
vectors a ¼ ða1; � � � ; anÞ and b ¼ ðb1; . . . ; bnÞ in R

n, the weak majorization a �w b means thatXk
i¼1

a½i� �
Xk
i¼1

b½i�; 1 � k � n; ð4:1:1Þ

where ða½1�; � � � ; a½n�Þ is the decreasing rearrangement of a, i.e., a½1� � � � � � a½n� are the components of a in decreasing
order. The majorization a � b means that a �w b and the equality holds for k ¼ n in (4.1.1). The characterizations of
majorization and weak majorization in the following propositions are fundamental.

Proposition 4.1.1. The following conditions for a; b 2 R
n are equivalent:

(i) a � b;
(ii)

Pn
i¼1 jai � rj �

Pn
i¼1 jbi � rj for all r 2 R;

(iii)
Pn

i¼1 f ðaiÞ �
Pn

i¼1 f ðbiÞ for any convex function f on an interval containing all ai; bi;
(iv) a is a convex combination of coordinate permutations of b;
(v) a ¼ Db for some doubly stochastic n� n matrix D, i.e., D ¼ ½dij�ni; j¼1 with dij � 0,

Pn
j¼1 dij ¼ 1 for 1 � i � n,

and
Pn

i¼1 dij ¼ 1 for 1 � j � n.

Proof. (i) ) (iv). We show that there exist a finite number of matrices D1; � � � ;DN of the form �I þ ð1� �Þ�, where
0 � � � 1 and � is a permutation matrix interchanging two coordinates only, such that a ¼ DN � � �D1b. Then (iv)
follows because DN � � �D1 becomes a convex combination of permutation matrices. We may assume that a1 � � � � � an
and b1 � � � � � bn. Suppose a 6¼ b and choose the largest j such that aj < bj. Then there exists a k with k > j such that
ak > bk. Choose the smallest such k. Let �1 :¼ 1�minfbj � aj; ak � bkg=ðbj � bkÞ and �1 be the permutation matrix
interchanging the jth and kth coordinates. Then 0 < �1 < 1 since bj > aj � ak > bk. Define D1 :¼ �1I þ ð1� �1Þ�1

and bð1Þ :¼ D1b. Now it is easy to check that a � bð1Þ � b and bð1Þ1 � � � � � bð1Þn . Moreover the jth or kth coordinates
of a and bð1Þ are equal. When a 6¼ bð1Þ, we can apply the above argument to a and bð1Þ. Repeating this finite times we
reach the conclusion.

(iv) ) (v) is trivial from the fact that any convex combination of permutation matrices is doubly stochastic.
(v) ) (ii). For every r 2 R we have

Xn
i¼1

jai � rj ¼
Xn
i¼1

Xn
j¼1

dijðbj � rÞ












 � Xn

i; j¼1

dijjbj � rj ¼
Xn
j¼1

jbj � rj:

(ii) ) (i). Taking large r and small r in the inequality of (ii) we have
Pn

i¼1 ai ¼
Pn

i¼1 bi. Noting that jxj þ x ¼ 2xþ
for x 2 R, where xþ ¼ maxfx; 0g, we haveXn

i¼1

ðai � rÞþ �
Xn
i¼1

ðbi � rÞþ; r 2 R: ð4:1:2Þ

Now prove that (4.1.2) implies that a �w b. When b½k� � r � b½kþ1�,
Pk

i¼1 a½i� �
Pk

i�1 b½i� follows sinceXn
i¼1

ðai � rÞþ �
Xk
i¼1

ða½i� � rÞþ �
Xk
i¼1

a½i� � kr;
Xn
i¼1

ðbi � rÞþ ¼
Xk
i¼1

b½i� � kr:

(iv) ) (iii). Suppose that ai ¼
PN

k¼1 �kb
kðiÞ, 1 � i � n, where �k > 0,
PN

k¼1 �k ¼ 1, and 
k are permutations on
f1; . . . ; ng. Then the convexity of f implies thatXn

i¼1

f ðaiÞ �
Xn
i¼1

XN
k¼1

�k f ðb
kðiÞÞ ¼
Xn
i¼1

f ðbiÞ:

(iii) ) (ii) is trivial since f ðxÞ ¼ jx� rj is convex. �

Note that (v) ) (iv) is seen directly from the well-known theorem of Birkhoff [22] saying that any doubly stochastic
matrix is a convex combination of permutation matrices.

Exercise 4.1.2. Let �n denote the set of all probability vectors in R
n, i.e., �n :¼ fp ¼ ðp1; . . . ; pnÞ : pi � 0;Pn

i¼1 pi ¼ 1g. Prove that

ð1=n; 1=n; . . . ; 1=nÞ � p � ð1; 0; . . . ; 0Þ; p 2 �n:

The Shannon entropy of p 2 �n is HðpÞ :¼ �
Pn

i¼1 pi log pi. Show that HðqÞ � HðpÞ � log n for all p � q in �n and
that, for p 2 �n, HðpÞ ¼ log n if and only if p ¼ ð1=n; � � � ; 1=nÞ.
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Proposition 4.1.3. The following conditions (i)–(iv) for a; b 2 R
n are equivalent:

(i) a �w b;
(ii) there exists a c 2 R

n such that a � c � b, where a � c means that ai � ci, 1 � i � n;
(iii)

Pn
i¼1ðai � rÞþ �

Pn
i¼1ðbi � rÞþ for all r 2 R;

(iv)
Pn

i¼1 f ðaiÞ �
Pn

i¼1 f ðbiÞ for any non-decreasing convex function f on an interval containing all ai; bi.
Moreover, if a; b � 0, then the above conditions are equivalent to the following:
(v) a ¼ Sb for some doubly substochastic n� n matrix S, i.e., S ¼ ½sij�ni; j¼1 with sij � 0,

Pn
j¼1 sij � 1 for 1 � i � n,

and
Pn

i¼1 sij � 1 for 1 � j � n.

Proof. (i) ) (ii). By induction on n. We may assume that a1 � � � � � an and b1 � � � � � bn. Let � :¼
min1�k�nð

Pk
i¼1 bi �

Pk
i¼1 aiÞ and define ~aa :¼ ða1 þ �; a2; . . . ; anÞ. Then a � ~aa �w b and

Pk
i¼1 ~aai ¼

Pk
i¼1 bi for some

1 � k � n. When k ¼ n, a � ~aa � b. When k < n, we have ð ~aa1; . . . ; ~aakÞ � ðb1; . . . ; bkÞ and ð ~aakþ1; . . . ; ~aanÞ �w

ðbkþ1; . . . ; bnÞ. Hence the induction assumption implies that ð ~aakþ1; . . . ; ~aanÞ � ðckþ1; . . . ; cnÞ � ðbkþ1; . . . ; bnÞ for some
ðckþ1; . . . ; cnÞ 2 R

n�k. Then a � ð ~aa1; . . . ; ~aak; ckþ1; . . . ; cnÞ � b is immediate from ~aak � bk � bkþ1 � ckþ1.
(ii) ) (iv). Let a � c � b. If f is non-decreasing and convex on an interval ½�; 
� containing ai; bi, then ci 2 ½�; 
�

and Xn
i¼1

f ðaiÞ �
Xn
i¼1

f ðciÞ �
Xn
i¼1

f ðbiÞ

by Proposition 4.1.1.
(iv) ) (iii) is trivial and (iii) ) (i) was already shown in the proof (ii) ) (i) of Proposition 4.1.1.
Now assume a; b � 0 and prove that (ii) , (v). If a � c � b, then we have, by Proposition 4.1.1, c ¼ Db for some

doubly stochastic matrix D and ai ¼ �ici for some 0 � �i � 1. So a ¼ Diagð�1; . . . ; �nÞDb and Diagð�1; . . . ; �nÞD is a
doubly substochastic matrix. Conversely if a ¼ Sb for a doubly substochastic matrix S, then a doubly stochastic matrix
D exists so that S � D entrywise, whose proof is left for the exercise below, and hence a � Db � b. �

Proposition 4.1.4. Let a; b 2 R
n.

(1) If a � b and f is a convex function on an interval containing all ai; bi, then f ðaÞ �w f ðbÞ, where
f ðaÞ :¼ ð f ða1Þ; . . . ; f ðanÞÞ.

(2) If a �w b and f is a non-decreasing convex function on an interval containing all ai; bi, then f ðaÞ �w f ðbÞ.

Proof. (1) If f is a convex function, then so is ð f ðxÞ � rÞþ for any r 2 R. Hence the result follows from (i) ) (iii) of
Proposition 4.1.1 and (iii) ) (i) of Proposition 4.1.3.

(2) If f is a non-decreasing convex function, then so is ð f ðxÞ � rÞþ for any r 2 R. Hence the result follows from
(i) ) (iv) and (iii) ) (i) of Proposition 4.3. �

Exercise 4.1.5. For any doubly substochastic matrix S ¼ ½sij�ni; j¼1, show that there exists a doubly stochastic matrix
D ¼ ½dij�ni; j¼1 such that sij � dij for all i; j ¼ 1; . . . ; n.

Let a; b 2 R
n and a; b � 0. We define the weak log-majorization a �wðlogÞ b whenYk

i¼1

a½i� �
Yk
i¼1

b½i�; 1 � k � n; ð4:1:3Þ

and the log-majorization a �ðlogÞ b when a �wðlogÞ b and equality holds for k ¼ n in (4.1.3). It is obvious that if a and b

are strictly positive, then a �ðlogÞ b (resp., a �wðlogÞ b) if and only if log a � log b (resp., log a �w log b), where
log a :¼ ðlog a1; � � � ; log anÞ.

Proposition 4.1.6. Let a; b 2 R
n with a; b � 0, and assume that a �wðlogÞ b. If f is a continuous non-decreasing

function on ½0;1Þ such that f ðexÞ is convex, then f ðaÞ �w f ðbÞ. In particular, a �wðlogÞ b implies a �w b.

Proof. First assume that a; b 2 R
n are strictly positive and a �wðlogÞ b, so that log a �w log b. Thanks to the assumption

on f , the function ð f ðexÞ � rÞþ is non-decreasing and convex for any r 2 R. Hence we have f ðaÞ �w f ðbÞ by (i) ) (iv)
and (iii) ) (i) of Proposition 4.1.3. When a; b � 0 and a �wðlogÞ b, we can choose aðmÞ; bðmÞ > 0 such that
aðmÞ �wðlogÞ b

ðmÞ, aðmÞ ! a, and bðmÞ ! b. Since f ðaðmÞÞ �w f ðbðmÞÞ and f is continuous, we obtain f ðaÞ �w f ðbÞ. �

4.2 Singular values of matrices

Let H is an n-dimensional Hilbert space and A 2 BðHÞ. Let sðAÞ ¼ ðs1ðAÞ; . . . ; snðAÞÞ denote the vector of the
singular values of A in decreasing order, i.e., s1ðAÞ � � � � � snðAÞ are the eigenvalues of jAj ¼ ðA�AÞ1=2 with counting
multiplicities. When A is self-adjoint, the vector of the eigenvalues of A in decreasing order is denoted by
�ðAÞ ¼ ð�1ðAÞ; . . . ; �nðAÞÞ. Of course, sðAÞ ¼ �ðAÞ if A � 0.

For every A 2 Mn, combining the polar decomposition of A (Theorem 1.4.7) and the diagonalization of jAj
(Theorem 1.4.6), one has the expression
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A ¼ UDiagðs1ðAÞ; . . . ; snðAÞÞV ð4:2:1Þ

with unitary matrices U;V 2 Mn, which is called the singular value decomposition of A.
The basic properties of sðAÞ are summarized as follows:

Proposition 4.2.1. Let A;B;X;Y 2 BðHÞ and k;m 2 f1; . . . ; ng.
(1) s1ðAÞ ¼ kAk, the operator norm of A.
(2) skð�AÞ ¼ j�jskðAÞ for � 2 C.
(3) skðAÞ ¼ skðA�Þ.
(4) Mini-max expression:

skðAÞ ¼ inffkAðI � PÞk : P is a projection, rankP ¼ k � 1g; ð4:2:2Þ

where kXk is the operator norm of X and rankX :¼ dimðranXÞ for X 2 BðHÞ. If A � 0 then

skðAÞ ¼ inf max
x2M? ; kxk¼1

hx;Axi : M is a subspace of H, dim M ¼ k � 1

� �
: ð4:2:3Þ

Furthermore, the inf in (4.2.2) and (4.2.3) can be replaced by min.
(5) Approximation number expression:

skðAÞ ¼ inffkA� Xk : X 2 BðHÞ; rankX < kg: ð4:2:4Þ

(6) If 0 � A � B then skðAÞ � skðBÞ.
(7) skðXAYÞ � kXkkYkskðAÞ.
(8) skþm�1ðAþ BÞ � skðAÞ þ smðBÞ if k þ m� 1 � n.
(9) skþm�1ðABÞ � skðAÞsmðBÞ if k þ m� 1 � n.

(10) jskðAÞ � skðBÞj � kA� Bk.
(11) skð f ðAÞÞ ¼ f ðskðAÞÞ if A � 0 and f is a non-decreasing function on ½0;1Þ with f ð0Þ � 0.

Proof. Let A ¼ UjAj be the polar decomposition of A (Theorem 1.4.7) and we write the Schmidt decomposition
of jAj as

jAj ¼
Xn
i¼1

siðAÞjuiihuij

(see (1.4.1)), where U is a unitary and fu1; . . . ; ung is an orthonormal basis of H.
(1) follows since s1ðAÞ ¼ k jAj k ¼ kAk. (2) is clear from j�Aj ¼ j�j jAj. Also, (3) immediately follows since the

Schmidt decomposition of jA�j is given as

jA�j ¼ UjAjU� ¼
Xn
i¼1

siðAÞjUuiihUuij:

(4) Let �k be the right-hand side of (4.2.2). For 1 � k � n define Pk :¼
Pk

i¼1 juiihuij, which is a projection of rank k.
We have

�k � kAðI � Pk�1Þk ¼
Xn
i¼k

siðAÞjuiihuij

�����
����� ¼ skðAÞ:

Conversely, for any " > 0 choose a projection P with rankP ¼ k � 1 such that kAðI � PÞk < �k þ ". Then there exists
a y 2 H with kyk ¼ 1 such that Pky ¼ y but Py ¼ 0. Since y ¼

Pk
i¼1hui; yiui, we have

�k þ " > k jAjðI � PÞyk ¼ k jAjyk ¼
Xk
i¼1

hui; yisiðAÞui

�����
�����

¼
Xk
i¼1

jhui; yij2siðAÞ2
( )1=2

� skðAÞ:

Hence skðAÞ ¼ �k and the inf in (4.2.2) is attained by P ¼ Pk�1.
When A � 0, we have

skðAÞ ¼ skðA1=2Þ2 ¼ minfkA1=2ðI � PÞk2 : P is a projection, rankP ¼ k � 1g:

Since kA1=2ðI � PÞk2 ¼ maxx2M?; kxk¼1hx;Axi with M :¼ ranP, the latter expression follows.
(5) Let 
k be the right-hand side of (4.2.4). Let X :¼ APk�1, where Pk�1 is as in the above proof of (4). Then we have

rankX � rankPk�1 ¼ k � 1 so that 
k � kAðI � Pk�1Þk ¼ skðAÞ. Conversely, assume that X 2 BðHÞ has rank < k.
Since rankX ¼ rank jXj ¼ rankX� by Theorem 1.4.7, the projection P onto ranX� has rank < k. Then XðI � PÞ ¼ 0

and by (4.2.2) we have
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skðAÞ � kAðI � PÞk ¼ kðA� XÞðI � PÞk � kA� Xk;

implying that skðAÞ � 
k.
(6) is an immediate consequence of (4.2.3). It is immediate from (4.2.2) that skðXAÞ � kXkskðAÞ. Also skðAYÞ ¼

skðY�A�Þ � kYkskðAÞ by (3). Hence (7) holds.
Next we show (8)–(10). By (4.2.4), for every " > 0, there exist X;Y 2 BðHÞ with rankX < k, rank Y < m such that

kA� Xk < skðAÞ þ " and kB� Yk < smðBÞ þ ". Since rank ðX þ YÞ � rankX þ rank Y < k þ m� 1, we have

skþm�1ðAþ BÞ � kðAþ BÞ � ðX þ YÞk < skðAÞ þ smðBÞ þ 2";

implying (8). For Z :¼ XBþ ðA� XÞY we have

rank Z � rankX þ rank Y < k þ m� 1;

kAB� Zk ¼ kðA� XÞðB� YÞk < ðskðAÞ þ "ÞðsmðBÞ þ "Þ:

These imply (9). Letting m ¼ 1 and replacing B by B� A in (8) we have

skðBÞ � skðAÞ þ kB� Ak;

which shows (10).
(11) When A � 0 has the Schmidt decomposition A ¼

Pn
i¼1 siðAÞjuiihuij, we have f ðAÞ ¼

Pn
i¼1 f ðsiðAÞÞjuiihuij.

Since f ðs1ðAÞÞ � � � � � f ðsnðAÞÞ � 0, skð f ðAÞÞ ¼ f ðskðAÞÞ follows. �

The following exercise is the extension of the above (4.2.3) and (6) to self-adjoint A;B 2 BðHÞ.

Exercise 4.2.2. When A 2 BðHÞ is self-adjoint, prove the mini-max expression

�kðAÞ ¼ min max
x2M?; kxk¼1

hx;Axi : M is a subspace of H, dim M ¼ k � 1

� �
for 1 � k � n. Hence, if A;B 2 BðHÞ are self-adjoint and A � B, then �kðAÞ � �kðBÞ for 1 � k � n.

Exercise 4.2.3. When A 2 BðHÞ is self-adjoint, prove the expressionXk
i¼1

�iðAÞ ¼ maxfTrAP : P is a projection, rankP ¼ kg; 1 � k � n:

Exercise 4.2.4. Let SðHÞ denote the set of all states on BðHÞ. For each ! 2 SðHÞ let D! 2 BðHÞ be the density
operator for ! (see Exercise 1.5.4). For !; ’ 2 SðHÞ we write ! � ’ if �ðD!Þ � �ðD’Þ. Prove
(1) 1

n
Tr (the tracial state) � ! � � for all ! 2 SðHÞ, where � is any pure state.

(2) ! � ’ if and only if ! belongs to the convex hull of f’ðU � U�Þ : U 2 BðHÞ is a unitaryg. In this case, it is often
said that ! is more mixed than ’.

4.3 The Lidskii–Wielandt and the Gelfand–Naimark theorems

The following majorization results are the celebrated Lidskii–Wielandt theorem for the eigenvalues of Hermitian
matrices as well as for the singular values of general matrices. The first complete proof was obtained by Wielandt [79],
where Wielandt’s mini-max representation was proved by induction. The proof is contained in [5] and [13]; in fact, [13]
contains two more different proofs of the Lidskii–Wielandt theorem, one of which was given in [41] (also found in
[37]). All of those proofs are rather involved but a surprisingly elementary and short proof was finally obtained by Li
and Mathias [60] as will be given below.

Theorem 4.3.1. For every Hermitian n� n matrices A and B,

�ðAÞ � �ðBÞ � �ðA� BÞ;

or equivalently

ð�iðAÞ þ �n�iþ1ðBÞÞ � �ðAþ BÞ:

Proof. What we need to prove is that for any choice of 1 � i1 < i2 < � � � < ik � n we haveXk
j¼1

f�ijðAÞ � �ij ðBÞg �
Xk
j¼1

�jðA� BÞ: ð4:3:1Þ

Choose the Schmidt decomposition of A� B as
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A� B ¼
Xn
i¼1

�iðA� BÞjuiihuij

with an orthonormal basis fu1; . . . ; ung of Cn. We may assume without loss of generality that �kðA� BÞ ¼ 0. In fact,
we may replace B by Bþ �kðA� BÞI, which reduces both sides of (4.3.1) by k�kðA� BÞ. In this situation, the Jordan
decomposition A� B ¼ ðA� BÞþ � ðA� BÞ� is given as

ðA� BÞþ ¼
Xk
i¼1

�iðA� BÞjuiihuij; ðA� BÞ� ¼ �
Xn
i¼kþ1

�iðA� BÞjuiihuij:

Since A ¼ Bþ ðA� BÞþ � ðA� BÞ� � Bþ ðA� BÞþ, it follows from Exercise 4.2.2 that

�iðAÞ � �iðBþ ðA� BÞþÞ; 1 � i � n:

Since B � Bþ ðA� BÞþ, we also have

�iðBÞ � �iðBþ ðA� BÞþÞ; 1 � i � n:

Hence Xk
j¼1

f�ijðAÞ � �ijðBÞg �
Xk
j¼1

f�ijðBþ ðA� BÞþÞ � �ijðBÞg

�
Xn
i¼1

f�iðBþ ðA� BÞþÞ � �iðBÞg

¼ TrðBþ ðA� BÞþÞ � TrB (by Proposition 1.5.3)

¼ TrðA� BÞþ ¼
Xk
j¼1

�jðA� BÞ;

proving (4.3.1). Moreover,
Pn

i¼1f�iðAÞ � �iðBÞg ¼ TrðA� BÞ ¼
Pn

i¼1 �iðA� BÞ.
Replacing B by �B in (4.3.1) gives the latter expression since �iðBÞ ¼ ��n�iþ1ð�BÞ for 1 � i � n. �

Theorem 4.3.2. For every n� n matrices A and B,

jsðAÞ � sðBÞj �w sðA� BÞ;
that is, Xk

j¼1

jsij ðAÞ � sij ðBÞj �
Xk
j¼1

sjðA� BÞ

for any choice of 1 � i1 < i2 < � � � < ik � n.

Proof. For every A;B 2 Mn define A;B 2 M
sa
2n by

A :¼
0 A�

A 0

� �
; B :¼

0 B�

B 0

� �
:

Since A�A ¼ A�A 0

0 AA�

� �
and hence jAj ¼ jAj 0

0 jA�j

� �
, it follows from Proposition 4.2.1 (3) that

sðAÞ ¼ ðs1ðAÞ; s1ðAÞ; s2ðAÞ; s2ðAÞ; . . . ; snðAÞ; snðAÞÞ:

On the other hand, since

I 0

0 �I

� �
A

I 0

0 �I

� �
¼ �A;

we have �iðAÞ ¼ �ið�AÞ ¼ ��2n�iþ1ðAÞ for 1 � i � 2n. Hence one can write

�ðAÞ ¼ ð�1; . . . ; �n;��n; . . . ;��1Þ;

where �1 � � � � � �n � 0. Since

sðAÞ ¼ �ðjAjÞ ¼ ð�1; �1; �2; �2; � � � ; �n; �nÞ;

we have �i ¼ siðAÞ for 1 � i � n and hence

�ðAÞ ¼ ðs1ðAÞ; � � � ; snðAÞ;�snðAÞ; � � � ;�s1ðAÞÞ:

Similarly,
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�ðBÞ ¼ ðs1ðBÞ; . . . ; snðBÞ;�snðBÞ; . . . ;�s1ðBÞÞ;
�ðA� BÞ ¼ ðs1ðA� BÞ; . . . ; snðA� BÞ;�snðA� BÞ; . . . ;�s1ðA� BÞÞ:

Theorem 4.3.1 implies that

�ðAÞ � �ðBÞ � �ðA� BÞ:

Now we note that the components of �ðAÞ � �ðBÞ are

js1ðAÞ � s1ðBÞj; . . . ; jsnðAÞ � snðBÞj;�js1ðAÞ � s1ðBÞj; . . . ;�jsnðAÞ � snðBÞj:

Therefore, for any choice of 1 � i1 < i2 < � � � < ik � n with 1 � k � n, we haveXk
j¼1

jsijðAÞ � sijðBÞj �
Xk
j¼1

�jðA� BÞ ¼
Xk
j¼1

sjðA� BÞ: �

The following results due to Ky Fan are consequences of the above theorems, which are weaker versions of the
Lidskii–Wielandt theorem.

Corollary 4.3.3.
(1) For every n� n Hermitian matrices A and B,

�ðAþ BÞ � �ðAÞ þ �ðBÞ:

(2) For every n� n matrices A and B,

sðAþ BÞ �w sðAÞ þ sðBÞ:

Proof. (1) Apply Theorem 4.3.1 to Aþ B and B. ThenXk
i¼1

f�iðAþ BÞ � �iðBÞg �
Xk
i¼1

�iðAÞ

so that Xk
i¼1

�iðAþ BÞ �
Xk
i¼1

f�iðAÞ þ �iðBÞg:

Moreover,
Pn

i¼1 �iðAþ BÞ ¼ TrðAþ BÞ ¼
Pn

i¼1f�iðAÞ þ �iðBÞg.
(2) Similarly, by Theorem 4.3.2, Xk

i¼1

jsiðAþ BÞ � siðBÞj �
Xk
i¼1

siðAÞ

so that Xk
i¼1

siðAþ BÞ �
Xk
i¼1

fsiðAÞ þ siðBÞg: �

Another important majorization for singular values of matrices is the Gelfand–Naimark theorem as follows.

Theorem 4.3.4. For every n� n matrices A and B,

ðsiðAÞsn�iþ1ðBÞÞ �ðlogÞ sðABÞ; ð4:3:2Þ
or equivalently Yk

j¼1

sij ðABÞ �
Yk
j¼1

fsjðAÞsijðBÞg ð4:3:3Þ

for any choice of 1 � i1 < i2 < � � � < ik � n.

Proof. First assume that A and B are invertible. Let A ¼ UDiagðs1; . . . ; snÞV be the singular value decomposition
(see (4.2.1)) with the singular values s1 � � � � � sn > 0 of A and unitaries U;V . Write D :¼ Diagðs1; . . . ; snÞ. Then
sðABÞ ¼ sðUDVBÞ ¼ sðDVBÞ and sðBÞ ¼ sðVBÞ, so we may replace A;B by D;VB, respectively. Hence we may assume
that A ¼ D ¼ Diagðs1; . . . ; snÞ. Moreover, to prove (4.3.3), it suffices to assume that sk ¼ 1. In fact, when A is replaced
by s�1

k A, both sides of (4.3.3) are multiplied by same s�k
k . Define ~AA :¼ Diagðs1; . . . ; sk; 1; . . . ; 1Þ; then ~AA2 � A2 and

~AA2 � I. We notice that, for every i ¼ 1; . . . ; n,
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siðABÞ ¼ siððB�A2BÞ1=2Þ ¼ siðB�A2BÞ1=2 (by Proposition 4.2.1 (11))

� siðB� ~AA2BÞ1=2 (by Proposition 4.2.1 (6))

¼ sið ~AABÞ

and

sið ~AABÞ ¼ siðB� ~AA2BÞ1=2 � siðB�BÞ1=2 ¼ siðBÞ:

Therefore, for any choice of 1 � i1 < � � � < ik � n, we haveYk
j¼1

sijðABÞ
sijðBÞ

�
Yk
j¼1

sijð ~AABÞ
sij ðBÞ

�
Yn
i¼1

sið ~AABÞ
siðBÞ

¼
det j ~AABj
det jBj

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðB� ~AA2BÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðB�BÞ

p ¼
det ~AA � jdetBj

jdetBj
¼ det ~AA ¼

Yk
j¼1

sjðAÞ;

proving (4.3.3). By replacing A and B by AB and B�1, respectively, (4.3.3) is rephrased asYk
j¼1

sij ðAÞ �
Yk
j¼1

fsjðABÞsijðB
�1Þg:

Since siðB�1Þ ¼ sn�iþ1ðBÞ�1 for 1 � i � n as readily verified, the above inequality means thatYk
j¼1

fsijðAÞsn�ijþ1ðBÞg �
Yk
j¼1

sjðABÞ:

Hence (4.3.3) implies (4.3.2) and vice versa (as long as A;B are invertible).
For general A;B 2 Mn choose a sequence of complex numbers �l 2 C n ð�ðAÞ [ �ðBÞÞ such that �l ! 0. Since

Al :¼ A� �lI and Bl :¼ B� �lI are invertible, (4.3.2) and (4.3.3) hold for those. By Proposition 4.2.2 (10),
siðAlÞ ! siðAÞ, siðBlÞ ! siðBÞ and siðAlBlÞ ! siðABÞ as l ! 1 for 1 � i � n. Hence (4.3.2) and (4.3.3) hold for
general A;B. �

An immediate corollary of this theorem is the majorization result due to Horn.

Corollary 4.3.5. For every matrices A and B,

sðABÞ �ðlogÞ sðAÞsðBÞ;

where sðAÞsðBÞ ¼ ðsiðAÞsiðBÞÞ.

Proof. A special case of (4.3.3) is Yk
i¼1

siðABÞ �
Yk
i¼1

fsiðAÞsiðBÞg

for every k ¼ 1; � � � ; n. Moreover,Yn
i¼1

siðABÞ ¼ det jABj ¼ det jAj � det jBj ¼
Yn
i¼1

fsiðAÞsiðBÞg: �

Exercise 4.3.6. Show that another formula equivalent to (4.3.2) and (4.3.3) isYk
j¼1

fsnþ1�jðAÞsijðBÞg �
Yk
j¼1

sijðABÞ

for any choice of 1 � i1 < � � � < ik � n.

The most comprehensive literature on majorization theory for vectors and matrices is Marshall and Olkin’s
monograph [63]. Ando’s two survey articles [5, 6] are the best sources on majorizations for the eigenvalues and the
singular values of matrices. The contents of this chapter are mostly based on [37].

We end this section with a brief remark on the famous Horn conjecture that was affirmatively solved just before
2000. The conjecture is related to three real vectors a ¼ ða1; . . . ; anÞ, b ¼ ðb1; . . . ; bnÞ, and c ¼ ðc1; . . . ; cnÞ. If there are
two n� n Hermitian matrices A and B such that a ¼ �ðAÞ, b ¼ �ðBÞ, and c ¼ �ðAþ BÞ, that is, a; b; c are the
eigenvalues of A;B;Aþ B, then the three vectors obey many inequalities of the typeX

k2K
ck �

X
i2I

ai þ
X
j2J

bj
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for certain triples ðI; J;KÞ of subsets of f1; . . . ; ng, including those coming from the Lidskii–Wielandt theorem, together
with the obvious equality Xn

i¼1

ci ¼
Xn
i¼1

ai þ
Xn
i¼1

bi:

Horn [47] proposed the procedure how to produce such triples ðI; J;KÞ and conjectured that all the inequalities obtained
in that way is sufficient to characterize a; b; c that are the eigenvalues of Hermitian matrices A;B;Aþ B. This
long-standing Horn conjecture was solved by two papers put together, one by Klyachko [49] and the other by Knuston
and Tao [50]. More information on this interesting conjecture is found in Fulton [32] and Bhatia [15].

4.4 Symmetric norms

A norm � on R
n is said to be symmetric if � satisfies

�ða1; a2; . . . ; anÞ ¼ �ð"1a
ð1Þ; "2a
ð2Þ; . . . ; "na
ðnÞÞ ð4:4:1Þ

for every ða1; . . . ; anÞ 2 R
n and for any permutation 
 on f1; . . . ; ng and "i ¼ �1. This condition is equivalently

written as

�ðaÞ ¼ �ða�1; a
�
2; � � � ; a

�
nÞ

for a ¼ ða1; . . . ; anÞ 2 R
n, where ða�1; . . . ; a�nÞ is the decreasing rearrangement of ðja1j; . . . ; janjÞ. A symmetric norm is

often called a symmetric gauge function. Typical examples of symmetric gauge functions on R
n are the ‘p-norms �p,

1 � p � 1, that are defined by

�pðaÞ :¼
ð
Pn

i¼1 jaij
pÞ1=p if 1 � p <1,

max
1�i�n

jaij if p ¼ 1.

(
ð4:4:2Þ

Lemma 4.4.1. Let � be a symmetric norm on R
n.

(1) If a ¼ ðaiÞ, b ¼ ðbiÞ 2 R
n and jaij � jbij for 1 � i � n, then �ðaÞ � �ðbÞ.

(2) Under the normalization �ð1; 0; . . . ; 0Þ ¼ 1,

max
1�i�n

jaij � �ðaÞ �
Xn
i¼1

jaij; a ¼ ðaiÞ 2 R
n;

that is, �1 (resp., �1) is the least (resp., greatest) symmetric gauge function.

Proof. (1) In view of (4.4.1) we may show that

�ð�a1; a2; . . . ; anÞ � �ða1; a2; . . . ; anÞ for 0 � � � 1:

This is seen as follows:

�ð�a1; a2; . . . ; anÞ

¼ �
1þ �
2

a1 þ
1� �
2

ð�a1Þ;
1þ �
2

a2 þ
1� �
2

a2; . . . ;
1þ �
2

an þ
1� �
2

an

� �
�

1þ �
2

�ða1; a2; . . . ; anÞ þ
1� �
2

�ð�a1; a2; . . . ; anÞ ¼ �ða1; a2; . . . ; anÞ:

(2) Since (4.4.1) and (1) imply that

jaij ¼ �ðai; 0; . . . ; 0Þ � �ðaÞ;

the first inequality holds. The second follows since

�ðaÞ �
Xn
i¼1

�ðai; 0; . . . ; 0Þ ¼
Xn
i¼1

jaij: �

Lemma 4.4.2. If a ¼ ðaiÞ, b ¼ ðbiÞ 2 R
n and ðja1j; . . . ; janjÞ �w ðjb1j; . . . ; jbnjÞ, then �ðaÞ � �ðbÞ.

Proof. By Proposition 4.1.3 there exists a c 2 R
n such that

ðja1j; . . . ; janjÞ � c � ðjb1j; . . . ; jbnjÞ:

Proposition 4.1.1 says that c is a convex combination of coordinate permutations of ðjb1j; . . . ; jbnjÞ. Lemma 4.4.1 (1)
and (4.4.1) imply that �ðaÞ � �ðcÞ � �ðbÞ. �
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Let H be an n-dimensional Hilbert space. A norm jjj � jjj on BðHÞ is said to be unitarily invariant if

jjjUAV jjj ¼ jjjAjjj

for all A 2 BðHÞ and all unitaries U;V 2 BðHÞ. A unitarily invariant norm on BðHÞ is also called a symmetric norm.
The following fundamental theorem is due to von Neumann [77].

Theorem 4.4.3. There is a bijective correspondence between symmetric gauge functions � on R
n and unitarily

invariant norms jjj � jjj on BðHÞ determined by the formula

jjjAjjj ¼ �ðsðAÞÞ; A 2 BðHÞ: ð4:4:3Þ

Proof. Assume that � is a symmetric gauge function on R
n. Define jjj � jjj on BðHÞ by the formula (4.4.3).

Let A;B 2 BðHÞ. Since sðAþ BÞ �w sðAÞ þ sðBÞ by Corollary 4.3.3 (2), it follows from Lemma 4.4.2 that

jjjAþ Bjjj ¼ �ðsðAþ BÞÞ � �ðsðAÞ þ sðBÞÞ � �ðsðAÞÞ þ�ðsðBÞÞ ¼ jjjAjjj þ jjjBjjj:

Also it is clear that jjjAjjj ¼ 0 if and only if sðAÞ ¼ 0 or A ¼ 0. For � 2 C we have by Proposition 4.2.1 (2)

jjj�Ajjj ¼ �ðj�jsðAÞÞ ¼ j�j jjjAjjj:

Hence jjj � jjj is a norm on BðHÞ, which is unitarily invariant since sðUAVÞ ¼ sðAÞ for all unitaries U;V .
Conversely, assume that jjj � jjj is a unitarily invariant norm on BðHÞ. Choose an orthonormal basis fe1; . . . ; eng of H

and define � : Rn ! R by

�ðaÞ :¼
Xn
i¼1

aijeiiheij






































; a ¼ ðaiÞ 2 R

n:

Then it is immediate to see that � is a norm on R
n. For any permutation 
 on f1; � � � ; ng and "i ¼ �1, one can define

unitaries U;V on H by Ue
ðiÞ ¼ "iei and Ve
ðiÞ ¼ ei, 1 � i � n, so that

�ðaÞ ¼ U
Xn
i¼1

a
ðiÞje
ðiÞihe
ðiÞj

 !
V�






































 ¼ Xn

i¼1

a
ðiÞjUe
ðiÞihVe
ðiÞj








































¼












Xn
i¼1

"ia
ðiÞjeiiheij


















 ¼ �ð"1a
ð1Þ; "2a
ð2Þ; . . . ; "na
ðnÞÞ:

Hence � is a symmetric gauge function. For any A 2 BðHÞ let A ¼ UjAj be the polar decomposition of A and
jAj ¼

Pn
i¼1 siðAÞjuiihuij be the Schmidt decomposition of jAj with an orthonormal basis fu1; . . . ; ung. We have a unitary

V defined by Vei ¼ vi, 1 � i � n. Since

A ¼ UjAj ¼ UV
Xn
i¼1

siðAÞjeiiheij

 !
V�;

we have

�ðsðAÞÞ ¼
Xn
i¼1

siðAÞjeiiheij






































 ¼ UV

 Xn
i¼1

siðAÞjeiiheij

!
V�






































 ¼ jjjAjjj;

and so (4.4.3) holds. Therefore, the assertion is obtained. �

The next proposition summarizes properties of unitarily invariant (or symmetric) norms on BðHÞ.

Proposition 4.4.4. Let jjj � jjj be a unitarily invariant norm on BðHÞ corresponding to a symmetric gauge function
� on R

n, and A;B;X;Y 2 BðHÞ. Then
(1) jjjAjjj ¼ jjjA�jjj.
(2) jjjXAY jjj � kXk kYk jjjAjjj.
(3) If sðAÞ �w sðBÞ (in particular, if jAj � jBj), then jjjAjjj � jjjBjjj.
(4) Under the normalization �ð1; 0; . . . ; 0Þ ¼ 1 (or jjjPjjj ¼ 1 for a projection of rank one), kAk � jjjAjjj � kAk1,

that is, k � k (resp., k � k1) is the least (resp., greatest) unitarily invariant norm.

Proof. By the definition (4.4.3), (1) follows from Proposition 4.2.1 (3). By Proposition 4.2.1 (7) and Lemma 4.4.1 (1)
we have (2) as

jjjXAY jjj ¼ �ðsðXAYÞÞ � �ðkXk kYksðAÞÞ ¼ kXk kYk jjjAjjj:

Moreover, (3) and (4) follow from Lemmas 4.4.2 and 4.4.1 (2), respectively. �

For instance, for 1 � p � 1, we have the unitarily invariant norm k � kp on BðHÞ corresponding to the ‘p-norm �p

in (4.4.2), that is, for A 2 BðHÞ,
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kAkp :¼ �pðsðAÞÞ ¼
f
Pn

i¼1 siðAÞ
pg1=p ¼ ðTr jAjpÞ1=p if 1 � p <1,

s1ðAÞ ¼ kAk if p ¼ 1.

�
The norm k � kp is called the Schatten p-norm. In particular, kAk1 ¼ Tr jAj is the trace-norm of A, kAk2 ¼ ðTrA�AÞ1=2
is the Hilbert–Schmidt norm kAkHS introduced in Section 1.5, and kAk1 ¼ kAk is the operator norm of A. Even
for 0 < p < 1, we may define kAkp by the same expression as above for 1 � p <1 while k � kp is not a norm but a
quasi-norm for 0 < p < 1.

Exercise 4.4.5. For any A 2 BðHÞ with the polar decomposition A ¼ UjAj and for any u 2 H, prove that

jhu;Auij �
hu; jAjui þ hu;UjAjU�ui

2
:

By summing this for u ¼ u1; � � � ; un forming an orthonormal basis, show that

jTrAj � kAk1:

Another important class of unitarily invariant norm is the Ky Fan norm k � kðkÞ defined by

kAkðkÞ :¼
Xk
i¼1

siðAÞ for k ¼ 1; � � � ; n:

Obviously, k � kð1Þ is the operator norm and k � kðnÞ is the trace-norm. In the next proposition we give two variational
expressions for the Ky Fan norms, which are sometimes quite useful since the Ky Fan norms are essential in
majorization and norm inequalities for matrices. The right-hand side of the second expression is known as the
K-functional in the real interpolation theory.

Proposition 4.4.6. For any A 2 BðHÞ and for any k ¼ 1; � � � ; n,
(1) kAkðkÞ ¼ maxfkAPk1 : P is a projection, rankP ¼ kg,
(2) kAkðkÞ ¼ minfkXk1 þ kkYk : A ¼ X þ Yg.

Proof. (1) For any projection P of rank k, we have

kAPk1 ¼
Xn
i¼1

siðAPÞ ¼
Xk
i¼1

siðAPÞ �
Xk
i¼1

siðAÞ

by Proposition 4.2.1 (4) and (7). For the converse, take the polar decomposition A ¼ UjAj with a unitary U and the
spectral decomposition jAj ¼

Pn
i¼1 siðAÞPi with mutually orthogonal projections Pi of rank 1. Let P :¼

Pk
i¼1 Pi. Then

kAPk1 ¼ kUjAjPk1 ¼

�����Xk
i¼1

siðAÞPi

�����
1

¼
Xk
i¼1

siðAÞ ¼ kAkðkÞ:

(2) For any decomposition A ¼ X þ Y , since siðAÞ � siðXÞ þ kyk by Proposition 4.1.6 (10), we have

kAkðkÞ �
Xk
i¼1

siðXÞ þ kkYk � kXk1 þ kkYk:

Conversely, with the same notations as in the proof of (1), define

X :¼ U
Xk
i¼1

fsiðAÞ � skðAÞgPi;

Y :¼ U skðAÞ
Xk
i¼1

Pi þ
Xn
i¼kþ1

siðAÞPi

( )
:

Then X þ Y ¼ A and

kXk1 ¼
Xk
i¼1

siðAÞ � kskðAÞ; kYk ¼ skðAÞ:

Hence kXk1 þ kkYk ¼
Pk

i¼1 siðAÞ. �

The following is a modification of the above expression in (1):

kAkðkÞ ¼ maxfjTrðUAPÞj : U a unitary, P a projection, rankP ¼ kg:

Here we show the Hölder inequality for matrices to illustrate the usefulness of the majorization technique.

Proposition 4.4.7. Let 0 < p; p1; p2 � 1 and 1=p ¼ 1=p1 þ 1=p2. Then

kABkp � kAkp1kBkp2 ; A;B 2 BðHÞ:
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Proof. Assume that 0 < p1; p2 <1, because the result is obvious by Proposition 4.2.1 (7) when p1 ¼ 1 or p2 ¼ 1.
Since Corollary 4.3.5 implies that

ðsiðABÞpÞ �ðlogÞ ðsiðAÞpsiðBÞpÞ;

it follows from Proposition 4.1.6 that

ðsiðABÞpÞ �w ðsiðAÞpsiðBÞpÞ:

Since ðp1=pÞ�1 þ ðp2=pÞ�1 ¼ 1, the usual Hölder inequality for vectors shows that

kABkp ¼
Xn
i¼1

siðABÞp
( )1=p

�
Xn
i¼1

siðAÞpsiðBÞp
( )1=p

�
Xn
i¼1

siðAÞp1
( )1=p1 Xn

i¼1

siðBÞp2
( )1=p2

� kAkp1kBkp2 : �

Exercise 4.4.8. Let 0 < p; p1; p2 � 1 and 1=p ¼ 1=p1 þ 1=p2. Prove the Hölder inequality for vectors (used in the
proof of Proposition 4.4.7):

�pðabÞ � �p1 ðaÞ�p2 ðbÞ; a; b 2 R
n;

where ab ¼ ðaibiÞ for a ¼ ðbiÞ, b ¼ ðbiÞ 2 R
n.

Exercise 4.4.9. This is a generalization of the Hölder inequality. Let � be a symmetric gauge function on R
n with

the corresponding unitarily invariant norm jjj � jjj on BðHÞ.
(1) Assume that 1 < p <1 and 1=pþ 1=q ¼ 1. Show that

�ða1b1; . . . ; anbnÞ � �ðja1jp; . . . ; janjpÞ1=p�ðjb1jq; . . . ; jbnjqÞ1=q; a; b 2 R
n:

(2) For every 1 < p <1 define

�ðpÞða1; . . . ; anÞ :¼ �ðja1jp; . . . ; janjpÞ1=p; a 2 R
n:

Show that �ðpÞ is a symmetric gauge function and the corresponding unitarily invariant norm is jjj j � jpjjj1=p.
(3) Let p; q be as in (1). Show that

jjjABjjj � jjj jAjpjjj1=pjjj jBjqjjj1=q; A;B 2 BðHÞ:

(Note that when jjj � jjj ¼ k � kr with 1 � r <1, the above becomes kABkr � kAkprkBkqr, the Hölder inequality
given in Proposition 4.4.7.)

Corresponding to each symmetric gauge function �, define �0 : Rn ! R by

�0ðbÞ :¼ sup
Xn
i¼1

aibi : a ¼ ðaiÞ 2 R
n; �ðaÞ � 1

( )
; b ¼ ðbiÞ 2 R

n: ð4:4:4Þ

Exercise 4.4.10. Prove that �0 defined by (4.4.4) is again a symmetric gauge function on R
n. Moreover, prove that

�00 :¼ ð�0Þ0 is equal to �.

The symmetric gauge function �0 is said to be dual to �. For example, when 1 � p � 1 and 1=pþ 1=q ¼ 1, the
‘p-norm �p is dual to the ‘q-norm �q.

The following is another generalized Hölder inequality, which can be shown as Proposition 4.4.7.

Lemma 4.4.11. Let �, �1 and �2 be symmetric gauge functions with the corresponding unitarily invariant norms
jjj � jjj, jjj � jjj1 and jjj � jjj2 on BðHÞ, respectively. If

�ðabÞ � �1ðaÞ�2ðbÞ; a; b 2 R
n;

then

jjjABjjj � jjjAjjj1jjjBjjj2; A;B 2 BðHÞ:

In particular, if jjj � jjj0 is the unitarily invariant norm corresponding to �0 dual to �, then

kABk1 � jjjAjjj jjjBjjj0; A;B 2 BðHÞ:

Proof. By Corollary 4.3.5, Proposition 4.1.6, and Lemma 4.4.2, we have
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�ðsðABÞÞ � �ðsðAÞsðBÞÞ � �1ðsðAÞÞ�2ðsðBÞÞ � jjjAjjj1jjjBjjj2;

showing the first assertion. For the second part, note by definition of �0 that �1ðabÞ � �ðaÞ�0ðbÞ for a; b 2 R
n. �

Theorem 4.4.12. Let � and �0 be dual symmetric gauge functions on R
n with the corresponding norms jjj � jjj and

jjj � jjj0 on BðHÞ, respectively. Then jjj � jjj and jjj � jjj0 are dual with respect to the duality ðA;BÞ 7!TrAB for
A;B 2 BðHÞ, that is,

jjjBjjj0 ¼ supfjTrABj : A 2 BðHÞ; jjjAjjj � 1g; B 2 BðHÞ: ð4:4:5Þ

Proof. First note that any linear functional on BðHÞ is represented as A 2 BðHÞ 7!TrAB for some B 2 BðHÞ.
We write jjjBjjjo for the right-hand side of (4.4.5). By Exercise 4.4.5 and Lemma 4.4.11 we have

jTrABj � kABjj1 � jjjAjjj jjjBjjj0

so that jjjBjjjo � jjjBjjj0 for all B 2 BðHÞ. On the other hand, let B ¼ V jBj be the polar decomposition and
jBj ¼

Pn
i¼1 siðBÞjviihvij be the Schmidt decomposition of jBj. For any a ¼ ðaiÞ 2 R

n with �ðaÞ � 1, let A :¼
ð
Pn

i¼1 aijviihvijÞV�. Then sðAÞ ¼ sð
Pn

i¼1 aijviihvijÞ ¼ ða�1; . . . ; a�nÞ, the decreasing rearrangement of (ja1j; . . . ; janj), and
hence jjjAjjj ¼ �ðsðAÞÞ ¼ �ðaÞ � 1. Moreover,

TrAB ¼ Tr
Xn
i¼1

aijviihvij

 ! Xn
i¼1

siðBÞjviihvij

 !

¼ Tr
Xn
i¼1

aisiðBÞjviihvij

 !
¼
Xn
i¼1

aisiðBÞ

so that Xn
i¼1

aisiðBÞ � jTrABj � jjjAjjj jjjBjjjo � jjjBjjjo:

This implies that jjjBjjj0 ¼ �0ðsðBÞÞ � jjjBjjjo. �

As special cases we have k � k0p ¼ k � kq when 1 � p � 1 and 1=pþ 1=q ¼ 1.
The close relation between the (log-)majorization and the unitarily invariant norm inequalities is summarized in the

following proposition.

Proposition 4.4.13. Consider the following conditions for A;B 2 BðHÞ. Then

(i) () (ii) ¼) (iii) () (iv) () (v) () (vi):

(i) sðAÞ �wðlogÞ sðBÞ;
(ii) jjjf ðjAjÞjjj � jjj f ðjBjÞjjj for every unitarily invariant norm jjj � jjj and every continuous non-decreasing function f

on ½0;1Þ such that f ð0Þ � 0 and f ðexÞ is convex;
(iii) sðAÞ �w sðBÞ;
(iv) kAkðkÞ � kBkðkÞ for every k ¼ 1; . . . ; n;
(v) jjjAjjj � jjjBjjj for every unitarily invariant norm jjj � jjj;
(vi) jjjf ðjAjÞjjj � jjj f ðjBjÞjjj for every unitarily invariant norm jjj � jjj and every non-decreasing convex function f

on ½0;1Þ such that f ð0Þ � 0.

Proof. (i) ) (ii). Let f be as in (ii). By Propositions 4.1.6 and 4.2.1 (11) we have

sð f ðjAjÞÞ ¼ f ðsðAÞÞ �w f ðsðBÞÞ ¼ sð f ðjBjÞÞ: ð4:4:6Þ

This implies by Proposition 4.4.4 (3) that jjj f ðjAjÞjjj � jjjf ðjBjÞjjj for any unitarily invariant norm.
(ii) ) (i). Take jjj � jjj ¼ k � kðkÞ, the Ky Fan norms, and f ðxÞ ¼ logð1þ "�1xÞ for " > 0. Then f satisfies the

condition in (ii). Since

sið f ðjAjÞÞ ¼ f ðsiðAÞÞ ¼ logð"þ siðAÞÞ � log ";

the inequality k f ðjAjÞkðkÞ � k f ðjBjÞkðkÞ means thatYk
i¼1

ð"þ siðAÞÞ �
Yk
i¼1

ð"þ siðBÞÞ:

Letting "& 0 gives
Qk

i¼1 siðAÞ �
Qk

i¼1 siðBÞ and hence (i) follows.
(iii) , (iv) is trivial by definition of k � kðkÞ and (vi) ) (v) ) (iv) is clear. Finally assume (iii) and let f be as in (vi).

Proposition 4.1.3 yields (4.4.6) again, so that (vi) follows. Hence (iii) ) (vi) holds. �
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By Theorems 4.3.1, 4.3.2 and Proposition 4.4.13 we have:

Corollary 4.4.14.
(1) For every A;B 2 M

sa
n and every unitarily invariant norm jjj � jjj,

jjjDiagð�1ðAÞ � �1ðBÞ; . . . ; �nðAÞ � �nðBÞÞjjj � jjjA� Bjjj:

In particular, Xn
i¼1

j�iðAÞ � �iðBÞjp
( )1=p

� kA� Bkp; 1 � p <1;

max
1�i�n

j�iðAÞ � �iðBÞj � kA� Bk ðWeyl’s inequalityÞ:

(2) For every A;B 2 Mn and every unitarily invariant norm jjj � jjj,

jjjDiagðs1ðAÞ � s1ðBÞ; . . . ; snðAÞ � snðBÞÞjjj � jjjA� Bjjj:

In particular,

Xn
i¼1

jsiðAÞ � siðBÞjp
( )1=p

� kA� Bkp; 1 � p <1;

max
1�i�n

jsiðAÞ � siðBÞj � kA� Bk:

Exercise 4.4.15. For every A;B 2 M
sa
n and every unitarily invariant norm jjj � jjj, show that

jjjA� Bjjj � jjjDiagð�1ðAÞ � �nðBÞ; �2ðAÞ � �n�1ðBÞ; . . . ; �nðAÞ � �1ðBÞÞjjj:

We close the section with an exercise containing examples of norms on Mn that are not unitarily invariant but yet
very important.

Exercise 4.4.16.
(1) The numerical radius wð�Þ is a norm on BðHÞ as shown in Proposition 1.5.7 (2). Show that wð�Þ is not unitarily

invariant but invariant under unitary conjugation, i.e., wðUAU�Þ ¼ wðAÞ for all A;U 2 BðHÞ with U unitary.
(2) For each A 2 Mn let kAkS denote the norm of A as the Schur multiplication operator, i.e.,

kAkS :¼ sup
kA 
 Xk
kXk

: X 2 Mn; X 6¼ 0

� �
;

where A 
 X is the Schur product (see Section 1.6). Show that k � kS is a norm on Mn that is even not invariant
under unitary conjugation. (It is sometimes quite difficult to compute the exact value of kAkS. See
Proposition 5.1.4 for a particular result.)

4.5 Majorizations for sums and differences of positive semidefinite matrices

In the first half of this section, we prove the subadditivity (resp., superadditivity) inequality for f ðAþ BÞ and
f ðAÞ þ f ðBÞ when f is a nonnegative concave (resp., convex) function on ½0;1Þ and A;B 2 Mn are positive
semidefinite. These inequalities are natural matricial counterparts of elementary inequalities f ðaþ bÞ � f ðaÞ þ f ðbÞ
(resp., f ðaþ bÞ � f ðaÞ þ f ðbÞ) for such a function f and scalars a; b � 0. When f is a nonnegative concave function on
½0;1Þ, the famous Rotfel’d inequality is

Tr f ðAþ BÞ � Trf f ðAÞ þ f ðBÞg

for all A;B 2 M
þ
n . Below, following [9, 25, 75] let us extend this trace inequality as follows:

jjj f ðAþ BÞjjj � jjj f ðAÞ þ f ðBÞjjj ð4:5:1Þ

for all A;B 2 M
þ
n and for any unitarily invariant norm jjj � jjj, or equivalently (see Proposition 4.4.13),

�ð f ðAþ BÞÞ �w �ð f ðAÞ þ f ðBÞÞ:

We begin with the subadditivity inequality due to Ando and Zhan [9] in the case where f is an operator concave
function. The proof was substantially simplified by Uchiyama [75] as presented below.

Theorem 4.5.1. Let f be a nonnegative continuous function on ½0;1Þ. If f is operator monotone (or operator
concave, see Corollary 2.5.4) on ½0;1Þ, then (4.5.1) holds for all A;B 2 M

þ
n and for any unitarily invariant

norm jjj � jjj.
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The main ingredient of the proof is to show the following lemma.

Lemma 4.5.2. Let g be a nonnegative continuous function on ½0;1Þ. If g is non-increasing and xgðxÞ is
non-decreasing, then

�ððAþ BÞgðAþ BÞÞ �w �ðA1=2gðAþ BÞA1=2 þ B1=2gðAþ BÞB1=2Þ
for all A;B 2 M

þ
n .

Proof. Let �ðAþ BÞ ¼ ð�1; . . . ; �nÞ be the eigenvalue vector arranged in decreasing order and u1; . . . ; un be the
corresponding eigenvectors forming an orthonormal basis of Cn. For 1 � k � n let Pk be the orthogonal projection
onto the subspace spanned by u1; . . . ; uk. Since xgðxÞ is non-decreasing, it follows that

�ððAþ BÞgðAþ BÞÞ ¼ ð�1gð�1Þ; . . . ; �ngð�nÞÞ:

Hence, what we need to prove is

TrðAþ BÞgðAþ BÞPk � TrfA1=2gðAþ BÞA1=2 þ B1=2gðAþ BÞB1=2gPk;

since the left-hand side is equal to
Pk

i¼1 �igð�iÞ and the right-hand side is less than or equal toPk
i¼1 �iðA1=2gðAþ BÞA1=2 þ B1=2gðAþ BÞB1=2Þ. The above inequality immediately follows by summing the following

two:

Tr gðAþ BÞ1=2AgðAþ BÞ1=2Pk � TrA1=2gðAþ BÞA1=2Pk; ð4:5:2Þ
Tr gðAþ BÞ1=2BgðAþ BÞ1=2Pk � TrB1=2gðAþ BÞB1=2Pk: ð4:5:3Þ

To prove (4.5.2), we write Pk, H :¼ gðAþ BÞ and A1=2 as

Pk ¼
IK 0

0 0

� �
; H ¼

H1 0

0 H2

� �
; A1=2 ¼

A11 A12

A�
12 A22

� �
in the form of 2� 2 block matrices corresponding to the orthogonal decomposition C

n ¼ K�K? with K :¼ PkC
n.

Then

PkgðAþ BÞ1=2AgðAþ BÞ1=2Pk ¼
H

1=2
1 A2

11H
1=2
1 þ H

1=2
1 A12A

�
12H

1=2
1 0

0 0

" #
;

PkA
1=2gðAþ BÞA1=2Pk ¼

A11H1A11 þ A12H2A
�
12 0

0 0

� �
:

Since g is non-increasing, we notice that

H1 � gð�kÞIK; H2 � gð�kÞIK? :

Therefore, we have

TrH
1=2
1 A12A

�
12H

1=2
1 ¼ TrA�

12H1A12 � gð�kÞTrA�
12A12 ¼ gð�kÞTrA12A

�
12 � TrA12H2A

�
12

so that

TrðH1=2
1 A2

11H
1=2
1 þ H

1=2
1 A12A

�
12H

1=2
1 Þ � TrðA11H1A11 þ A12H2A

�
12Þ;

which shows (4.5.2). (4.5.3) is similarly shown. �

Proof of Theorem 4.5.1. By continuity we may assume that A;B 2 M
þ
n are invertible. Let gðxÞ :¼ f ðxÞ=x; then g

satisfies the assumptions of Lemma 4.5.2. Hence the lemma implies that

jjjf ðAþ BÞjjj � jjjA1=2ðAþ BÞ�1=2 f ðAþ BÞðAþ BÞ�1=2A1=2

þ B1=2ðAþ BÞ�1=2 f ðAþ BÞðAþ BÞ�1=2B1=2jjj: ð4:5:4Þ

Since C :¼ A1=2ðAþ BÞ�1=2 is a contraction, Theorem 2.5.2 implies that

A1=2ðAþ BÞ�1=2 f ðAþ BÞðAþ BÞ�1=2A1=2 ¼ C f ðAþ BÞC� � f ðCðAþ BÞC�Þ ¼ f ðAÞ;

and similarly

B1=2ðAþ BÞ�1=2 f ðAþ BÞðAþ BÞ�1=2B1=2 � f ðBÞ:

Therefore, the right-hand side of (4.5.4) is less than or equal to jjjf ðAÞ þ f ðBÞjjj. �

The following superadditivity inequality obtained in [9] is an immediate corollary of Theorem 4.5.1. The particular
case where gðxÞ ¼ xm, i.e., jjjðAþ BÞmjjj � jjjAm þ Bmjjj for any m 2 N was shown by Bhatia and Kittaneh [18].

Corollary 4.5.3. Let g : ½0;1Þ ! ½0;1Þ be an increasing bijective function whose inverse function is operator
monotone. Then
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jjjgðAþ BÞjjj � jjjgðAÞ þ gðBÞjjj ð4:5:5Þ

for all A;B 2 M
þ
n and jjj � jjj as in Theorem 4.5.1.

Proof. Let f be the inverse function of g. For every A;B 2 M
þ
n , Theorem 4.5.1 implies that

f ð�ðAþ BÞÞ �w �ð f ðAÞ þ f ðBÞÞ:

Now, replace A and B by gðAÞ and gðBÞ, respectively. Then we have

f ð�ðgðAÞ þ gðBÞÞÞ �w �ðAþ BÞ:

Since f is concave and hence g is convex (and increasing), we have by Proposition 4.1.4 (2)

�ðgðAÞ þ gðBÞÞ �w gð�ðAþ BÞÞ ¼ �ðgðAþ BÞÞ;

which means by Proposition 4.4.13 that jjjgðAÞ þ gðBÞjjj � jjjgðAþ BÞjjj. �

The above corollary can be extended to the next theorem due to Kosem [56], which is the first main result of this
section. The simpler proof below is from [25].

Theorem 4.5.4. Let g : ½0;1Þ ! ½0;1Þ be a continuous convex function with gð0Þ ¼ 0. Then (4.5.5) holds for
all A;B and jjj � jjj as above.

Proof. First, note that a convex function g � 0 on ½0;1Þ with gð0Þ ¼ 0 is non-decreasing. Let � denote the set
of all nonnegative functions g on ½0;1Þ for which the conclusion of the theorem holds. It is obvious that � is closed
under pointwise convergence and multiplication by nonnegative scalars. When f ; g 2 �, for the Ky Fan norms
k � kðkÞ, 1 � k � n, and for A;B 2 M

þ
n we have

kð f þ gÞðAþ BÞkðkÞ ¼ k f ðAþ BÞkðkÞ þ kgðAþ BÞkðkÞ
� k f ðAÞ þ f ðBÞkðkÞ þ kgðAÞ þ gðBÞkðkÞ
� kð f þ gÞðAÞ þ ð f þ gÞðBÞkðkÞ;

where the above equality is guaranteed by the non-decreasingness of f ; g and the latter inequality is the triangle
inequality. Hence f þ g 2 � by Proposition 4.4.13 so that � is a convex cone. Notice that any convex function g � 0

on ½0;1Þ with gð0Þ ¼ 0 is the pointwise limit of an increasing sequence of functions of the form
Pm

l¼1 cl�alðxÞ with
cl; al > 0, where �a is the angle functions at a > 0 given as �aðxÞ :¼ maxfx� a; 0g. Hence it suffices to show that
�a 2 � for all a > 0. To do this, for a; r > 0 we define

ha;rðxÞ :¼
1

2

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2 þ r

p
þ x�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r

p o
; x � 0;

which is an increasing bijective function on ½0;1Þ and whose inverse is

x�
r=2

2xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r

p
� a

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r

p
þ a

2
: ð4:5:6Þ

Since (4.5.6) is operator monotone on ½0;1Þ, we have ha;r 2 � by Corollary 4.5.3. Therefore, �a 2 � since ha;r ! �a
as r & 0. �

Exercise 4.5.5. Show that the function ha;r defined in the above proof is increasing and bijective on ½0;1Þ and that
its inverse function is (4.5.6).

The next subadditivity inequality extending Theorem 4.5.1 was proved by Bourin and Uchiyama [25], which is the
second main result.

Theorem 4.5.6. Let f : ½0;1Þ ! ½0;1Þ be a continuous concave function. Then (4.5.1) holds for all A;B
and jjj � jjj as above.

Proof. Let �i and ui, 1 � i � n, be taken as in the proof of Lemma 4.5.2, and Pk, 1 � k � n, be also as there.
We may prove that Xk

i¼1

f ð�iÞ �
Xk
i¼1

�ið f ðAÞ þ f ðBÞÞ; 1 � k � n:

To do this, it suffices to show that

Tr f ðAþ BÞPk � Trf f ðAÞ þ f ðBÞgPk: ð4:5:7Þ

Indeed, since f is necessarily non-decreasing, the left-hand side of (4.5.7) is
Pk

i¼1 f ð�iÞ and the right-hand side is less
than or equal to

Pk
i¼1 �ið f ðAÞ þ f ðBÞÞ (see Exercise 4.2.3). Here, note by Exercise 4.5.7 that f is the pointwise limit of
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a sequence of functions of the form �þ 
x� gðxÞ where � � 0, 
 > 0, and g � 0 is a continuous convex function on
½0;1Þ with gð0Þ ¼ 0. Hence, to prove (4.5.7), it suffices to show that

Tr gðAþ BÞPk � TrfgðAÞ þ gðBÞgPk

for any continuous convex function g � 0 on ½0;1Þ with gð0Þ ¼ 0. In fact, this is seen as follows:

Tr gðAþ BÞPk ¼ kgðAþ BÞkðkÞ � kgðAÞ þ gðBÞkðkÞ � TrfgðAÞ þ gðBÞgPk;

where the above equality is due to the non-decreasingness of g and the first inequality follows from
Theorem 4.5.4. �

Exercise 4.5.7. Show that a continuous concave function f � 0 on ½0;1Þ is the pointwise limit of a sequence of
functions of the form �þ 
x�

Pm
l¼1 cl�alðxÞ with � � 0 and 
; cl; al > 0, where �a is as given in the proof of

Theorem 4.5.4.

Exercise 4.5.8. By slightly modifying the above proofs, extend Theorems 4.5.4 and 4.5.6 to any finite number of
matrices A1; . . . ;Am 2 M

þ
n . For instance, the subadditivity inequality of Theorem 4.5.4 is extended as

jjjf ðA1 þ � � � þ AmÞjjj � jjj f ðA1Þ þ � � � þ f ðAmÞjjj

if f satisfies the same assumptions as in Theorem 4.5.4. To do this, first extend Lemma 4.5.2 to A1; . . . ;Am.

Remark 4.5.9. The subadditivity inequality of Theorem 4.5.4 was further extended by Bourin [24] in such a way that
if f is a nonnegative continuous concave function on ½0;1Þ then

jjjf ðjAþ BjÞjjj � jjj f ðjAjÞ þ f ðjBjÞjjj

for all normal matrices A;B 2 Mn and for any unitarily invariant norm jjj � jjj. In particular,

jjjf ðjZjÞjjj � jjjf ðjAjÞ þ f ðjBjÞjjj

when Z ¼ Aþ iB is the Descartes decomposition of Z.

In the second half of the section, we prove the inequality between norms of f ðjA� BjÞ and f ðAÞ � f ðBÞ (or the weak
majorization for their singular values) when f is a nonnegative operator monotone function on ½0;1Þ and A;B 2 M

þ
n .

This was proved by Ando [4] long before Ando and Zhan [9] for f ðAÞ þ f ðBÞ and f ðAþ BÞ presented in the first half.

Theorem 4.5.10. Let f be a nonnegative continuous function on ½0;1Þ. If f is operator monotone on ½0;1Þ, then

jjjf ðAÞ � f ðBÞjjj � jjj f ðjA� BjÞjjj

for all A;B 2 M
þ
n and for any unitarily invariant norm jjj � jjj, or equivalently,

sð f ðAÞ � f ðBÞÞ �w sð f ðjA� BjÞÞ: ð4:5:8Þ

When f ðxÞ ¼ x� with 0 < � < 1, the weak majorization (4.5.8) was formerly proved by Birman, Koplienko and
Solomyak [23], which gives the generalized Powers–Størmer inequality

kA� � B�kp=� � kA� Bk�p
for all A;B 2 M

þ
n if 0 < � < 1 and � � p � 1. The case where � ¼ 1=2 and p ¼ 1 is known as the Powers–Størmer

inequality [68].
We first prepare simple facts to prove the theorem.

Lemma 4.5.11. For self-adjoint X; Y 2 Mn, let X ¼ Xþ � X� and Y ¼ Yþ � Y� be the Jordan decompositions.
(1) If X � Y then siðXþÞ � siðYþÞ for all i.
(2) If sðXþÞ �w sðYþÞ and sðX�Þ �w sðY�Þ, then sðXÞ �w sðYÞ.

Proof. (1) Let Q be the support projection of Xþ. Since

Xþ ¼ QXQ � QYQ � QYþQ;

we have siðXþÞ � siðQYþQÞ � siðYþÞ by Proposition 4.2.1 (7).
(2) It is rather easy to see that sðXÞ is the decreasing rearrangement of the combination of sðXþÞ and sðX�Þ.

Hence for each k 2 N we can choose 0 � m � k so that

Xk
i¼1

siðXÞ ¼
Xm
i¼1

siðXþÞ þ
Xk�m

i¼1

siðX�Þ:

Hence

Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 211



Xk
i¼1

siðXÞ �
Xm
i¼1

siðYþÞ þ
Xk�m

i¼1

siðY�Þ �
Xk
i¼1

siðYÞ;

as desired. �

Proof of Theorem 4.5.10. First assume that A � B � 0 and let C :¼ A� B � 0. In view of Proposition 4.4.13,
it suffices to prove that

k f ðBþ CÞ � f ðBÞkðkÞ � k f ðCÞkðkÞ; 1 � k � n: ð4:5:9Þ

For each � 2 ð0;1Þ let

h� ðxÞ ¼
x

xþ �
¼ 1�

�

xþ �
;

which is increasing on ½0;1Þ with h� ð0Þ ¼ 0. According to the integral representation (2.7.5) for f with a; b � 0 and a
positive finite measure m on ð0;1Þ, we have

sið f ðCÞÞ ¼ f ðsiðCÞÞ

¼ aþ bsiðCÞ þ
Z
ð0;1Þ

siðCÞð1þ �Þ
siðCÞ þ �

dmð�Þ

¼ aþ bsiðCÞ þ
Z
ð0;1Þ

ð1þ �Þsiðh� ðCÞÞ dmð�Þ;

so that

k f ðCÞkðkÞ � bkCkðkÞ þ
Z
ð0;1Þ

ð1þ �Þkh� ðCÞkðkÞ dmð�Þ: ð4:5:10Þ

On the other hand, since

f ðBþ CÞ ¼ aI þ bðBþ CÞ þ
Z
ð0;1Þ

ð1þ �Þh� ðBþ CÞ dmð�Þ

as well as the analogous expression for f ðBÞ, we have

f ðBþ CÞ � f ðBÞ ¼ bC þ
Z
ð0;1Þ

ð1þ �Þfh� ðBþ CÞ � h� ðBÞg dmð�Þ;

so that

k f ðBþ CÞ � f ðBÞkðkÞ � bkCkðkÞ þ
Z
ð0;1Þ

ð1þ �Þkh� ðBþ CÞ � h� ðBÞkðkÞ dmð�Þ: ð4:5:11Þ

By (4.5.10) and (4.5.11) it suffices for (4.5.9) to show that

kh� ðBþ CÞ � h� ðBÞkðkÞ � kh� ðCÞkðkÞ; � 2 ð0;1Þ; 1 � k � n:

As h� ðxÞ ¼ h1ðx=�Þ, it is enough to show this inequality for the case � ¼ 1 since we may replace B and C by ��1B and
��1C, respectively. Thus, what remains to prove is the following:

kðBþ IÞ�1 � ðBþ C þ IÞ�1kðkÞ � kI � ðC þ IÞ�1kðkÞ; 1 � k � n: ð4:5:12Þ

Since

ðBþ IÞ�1 � ðBþ C þ IÞ�1 ¼ ðBþ IÞ�1=2h1ððBþ IÞ�1=2CðBþ IÞ�1=2ÞðBþ IÞ�1=2

and kðBþ IÞ�1=2k � 1, we obtain

siððBþ IÞ�1 � ðBþ C þ IÞ�1Þ � siðh1ððBþ IÞ�1=2CðBþ IÞ�1=2ÞÞ
¼ h1ðsiððBþ IÞ�1=2CðBþ IÞ�1=2ÞÞ
� h1ðsiðCÞÞ ¼ siðI � ðC þ IÞ�1Þ

by repeated use of Proposition 4.2.1 (7). Therefore, (4.5.12) is proved.
Next, let us prove the assertion in the general case A;B � 0. Since 0 � A � Bþ ðA� BÞþ, it follows that

f ðAÞ � f ðBÞ � f ðBþ ðA� BÞþÞ � f ðBÞ;

which implies by Lemma 4.5.11 (1) that

kð f ðAÞ � f ðBÞÞþkðkÞ � k f ðBþ ðA� BÞþÞ � f ðBÞkðkÞ:

212 HIAI



Applying (4.5.9) to Bþ ðA� BÞþ and B, we have

k f ðBþ ðA� BÞþÞ � f ðBÞkðkÞ � k f ððA� BÞþÞkðkÞ:

Therefore,

sðð f ðAÞ � f ðBÞÞþÞ �w sð f ððA� BÞþÞÞ: ð4:5:13Þ

Exchanging the role of A;B gives

sðð f ðAÞ � f ðBÞÞ�Þ �w sð f ððA� BÞ�ÞÞ: ð4:5:14Þ

Here, we may assume that f ð0Þ ¼ 0 since f can be replaced by f � f ð0Þ. Then it is immediate to see that

f ððA� BÞþÞ f ððA� BÞ�Þ ¼ 0; f ððA� BÞþÞ þ f ððA� BÞ�Þ ¼ f ðjA� BjÞ:

Hence sð f ðAÞ � f ðBÞÞ �w sð f ðjA� BjÞÞ follows from (4.5.13) and (4.5.14) thanks to Lemma 4.5.11 (2). �

The following is an immediate corollary of Theorem 4.5.10, whose proof is similar to that of Corollary 4.5.3.

Corollary 4.5.12. Let g : ½0;1Þ ! ½0;1Þ be an increasing bijective function whose inverse function is operator
monotone. Then

jjjgðAÞ � gðBÞjjj � jjjgðjA� BjÞjjj

for all A;B and jjj � jjj as above.

In [11], Audenaert and Aujla pointed out that Theorem 4.5.10 is not true in the case where f : ½0;1Þ ! ½0;1Þ is a
general continuous concave function and that Corollary 4.5.12 is not true in the case where g : ½0;1Þ ! ½0;1Þ is a
general continuous convex function.

4.6 Majorizations of Golden–Thompson type and complementary Golden–Thompson type

We begin with providing a machinery of antisymmetric tensors, which is quite useful in deriving log-majorization
results. Let H be an n-dimensional Hilbert space as before. For each k 2 N let H�k denote the k-fold tensor product of
H, which is the nk-dimensional Hilbert space with respect to the inner product defined by

hx1 � � � � � xk; y1 � � � � � yki :¼
Yk
i¼1

hxi; yii:

For x1; . . . ; xk 2 H define x1 ^ � � � ^ xk 2 H�k by

x1 ^ � � � ^ xk :¼
1ffiffiffiffi
k!

p
X



ðsgn
Þx
ð1Þ � � � � � x
ðkÞ; ð4:6:1Þ

where 
 runs over all permutations on f1; . . . ; kg and sgn
 ¼ �1 accordingly as 
 is even or odd. The subspace ofH�k

spanned by fx1 ^ � � � ^ xk : xi 2 Hg is called the k-fold antisymmetric tensor product of H and denoted by H^k.

Lemma 4.6.1.
(1) x1 ^ � � � ^ xi ^ � � � ^ xj ^ � � � ^ xk ¼ �x1 ^ � � � ^ xj ^ � � � ^ xi ^ � � � ^ xk, where xi and xj are interchanged for

any two distinct i; j. Hence x1 ^ � � � ^ xk ¼ 0 if xi ¼ xj for some distinct i; j.
(2) hx1 ^ � � � ^ xk; y1 ^ � � � ^ yki ¼ det½hxi; yji�ki; j¼1.
(3) x1 ^ � � � ^ xk 6¼ 0 if and only if fx1; . . . ; xkg is linearly independent.
(4) The linear extension of the map x1 � � � � � xk 7! 1ffiffiffi

k!
p x1 ^ � � � ^ xk is the projection of H�k onto H^k.

(5) If fe1; . . . ; eng is an orthonormal basis of H, then fei1 ^ � � � ^ eik : 1 � i1 < � � � < ik � ng is an orthonormal basis
of H^k. Hence dimH^k ¼ n

k

� �
for 1 � k � n and H^k ¼ f0g for k > n.

Proof. (1) is obvious by definition (4.6.1). (2) is readily seen as

hx1 ^ � � � ^ xk; y1 ^ � � � ^ yki ¼
1

k!

X

;�2Sk

ðsgn
Þðsgn �Þ
Yk
i¼1

hx
ðiÞ; y�ðiÞi

¼
1

k!

X

;�2Sk

ðsgn
��1Þ
Yk
i¼1

hx
��1ðiÞ; yii

¼
X

2Sk

ðsgn
Þ
Yk
i¼1

hx
ðiÞ; yii ¼ det½hxi; yji�ki; j¼1;

and (3) follows from (2) since fx1; . . . ; xkg is linearly independent if and only if det½hxi; xji�ki; j¼1 6¼ 0.
Let P be the linear operator in question in (4). Repeated use of (1) yields that
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P2ðx1 � � � � � xkÞ ¼
1

ðk!Þ3=2
X



ðsgn
Þx
ð1Þ ^ � � � ^ x
ðkÞ

¼
1

ðk!Þ3=2
X



ðsgn
Þ2x1 ^ � � � ^ xk

¼
1ffiffiffiffi
k!

p x1 ^ � � � ^ xk ¼ Pðx1 � � � � � xkÞ:

Moreover,

hPðx1 � � � � � xkÞ; y1 � � � � � yki ¼
1

k!

X



ðsgn
Þ
Yk
i¼1

hx
ðiÞ; yii

¼
1

k!

X



ðsgn
�1Þ
Yk
i¼1

hxi; y
�1ðiÞi

¼ hx1 � � � � � xk;Pðy1 � � � � � ykÞi:
Hence (4) follows. For the last (5), it is clear that fei1 ^ � � � ^ eik : 1 � i1 < � � � < ik � ng spans H^k. The ortho-
normality of this set is immediately seen from (2). �

For each A 2 BðHÞ and k 2 N, the k-fold tensor product A�k 2 BðH�kÞ is given as

A�kðx1 � � � � � xkÞ :¼ Ax1 � � � � � Axk:

Since H^k is invariant for A�k, the antisymmetric tensor power A^k of A can be defined as A^k ¼ A�kjH^k ; in fact,

A^kðx1 ^ � � � ^ xkÞ ¼ Ax1 ^ � � � ^ Axk: ð4:6:2Þ

In matrix theory A^k is usually called the kth compound of A. By Lemma 4.6.1 note that H^n ¼ C and the scalar
A^n is equal to

A^n ¼ he1 ^ � � � ^ en;A
^nðe1 ^ � � � ^ enÞi ¼ det½hei;Aeji�ni; j¼1 ¼ detA;

where fe1; . . . ; eng is an orthonormal basis of H.
Assume that H ¼ C

n and A 2 BðCnÞ ¼ Mn, and take the orthonormal basis fei1 ^ � � � ^ eik : 1 � i1 < � � � < ik � ng
of H^k ¼ ðCnÞ^k where fe1; . . . ; eng is the standard basis of Cn. Then A^k is represented as the n

k

� �
� n

k

� �
matrix whose

entries are

hei1 ^ � � � ^ eik ;A
^kðej1 ^ � � � ^ ejk Þi ¼ det½heil ;Aejmi�

k
l;m¼1 ¼ detA

i1; . . . ; ik

j1; . . . ; jk

� �
;

where Að i1;...;ikj1;...; jkÞ is the submatrix of A consisting of rows i1 < � � � < ik and columns j1 < � � � < jk. This is indeed the
usual definition of the kth compound of A in matrix theory.

The following are elementary properties of antisymmetric tensor powers.

Lemma 4.6.2. Let X;Xj;Y ;A 2 BðHÞ and 1 � k � n.
(1) ðX�Þ^k ¼ ðX^kÞ�.
(2) ðXYÞ^k ¼ ðX^kÞðY^kÞ (sometimes called the Binet–Cauchy theorem, see [63]).
(3) If kXj � Xk ! 0, then kX^k

j � X^kk ! 0.
(4) If A � 0, then A^k � 0 and ðApÞ^k ¼ ðA^kÞp for all p > 0.
(5) jXj^k ¼ jX^kj.

Proof. (1) and (2) are the restrictions of the corresponding formulas ðX�Þ�k ¼ ðX�kÞ� and ðXYÞ�k ¼ ðX�kÞðY�kÞ to
H^k. For (3) it suffices to show the corresponding convergences for A�k, which are readily verified. If A � 0 then
A^k ¼ ððA1=2Þ^kÞ�ððA1=2Þ^kÞ � 0 by (1) and (2). When p is rational, the second assertion of (4) is immediate from (2).
Then (3) implies the assertion for general p > 0. Finally (5) follows from (1), (2), and (4). �

The following lemma supplies an important technique in the majorization theory for matrices.

Lemma 4.6.3. For every A 2 BðHÞ and every k ¼ 1; . . . ; n,Yk
i¼1

siðAÞ ¼ s1ðA^kÞ ð¼ kA^kkÞ:

Proof. By Lemma 4.6.2 (5) we may assume that A � 0. Then there exists an orthonormal basis fu1; . . . ; ung of H such
that Aui ¼ siðAÞui for all i. Thanks to (4.6.2) we have
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A^kðui1 ^ � � � ^ uik Þ ¼
Yk
j¼1

sij ðAÞ

( )
ui1 ^ � � � ^ uik ;

and so fui1 ^ � � � ^ uik : 1 � i1 < � � � < ik � ng is a complete set of eigenvectors of A^k. Hence the assertion
follows. �

Before going into the main part of this section, let us prove theWeyl majorization theorem, showing the usefulness of
the antisymmetric tensor technique.

Theorem 4.6.4. Let A 2 BðHÞ and �1ðAÞ; . . . ; �nðAÞ be the eigenvalues of A arranged as j�1ðAÞj � � � � � j�nðAÞj with
counting algebraic multiplicities. Then

ðj�1ðAÞj; . . . ; j�nðAÞjÞ �wðlogÞ sðAÞ;

that is, Yk
i¼1

j�iðAÞj �
Yk
i¼1

siðAÞ; 1 � k � n:

Proof. If � is an eigenvalue of A with algebraic multiplicity m, then there exists a set fy1; . . . ; ymg of independent
vectors such that

Ayj � �yj 2 spanfy1; . . . ; yj�1g; 1 � j � m:

Hence one can choose independent vectors x1; . . . ; xn such that Axi ¼ �iðAÞxi þ zi with zi 2 spanfx1; . . . ; xi�1g for
1 � i � n. Then it is readily checked that

A^kðx1 ^ � � � ^ xnÞ ¼ Ax1 ^ � � � ^ Axk ¼
Yk
i¼1

�iðAÞ

( )
x1 ^ � � � ^ xn

and x1 ^ � � � ^ xn 6¼ 0, implying that
Qk

i¼1 �iðAÞ is an eigenvalue of A^k. Hence Lemma 4.6.3 yields thatYk
i¼1

�iðAÞ












 � kA^kk ¼

Yk
i¼1

siðAÞ: �

The first main result of this section is the following log-majorization due to Araki [10] (also shown in [78]).

Theorem 4.6.5. For every A;B 2 BðHÞþ,

sððA1=2BA1=2ÞrÞ �wðlogÞ sðAr=2BrAr=2Þ; r � 1; ð4:6:3Þ

or equivalently

sððAp=2BpAp=2Þ1=pÞ �wðlogÞ sððAq=2BqAq=2Þ1=qÞ; 0 < p � q: ð4:6:4Þ

Proof. We can pass to the limit from Aþ "I and Bþ "I as "& 0 by Proposition 4.2.1 (10). So we may assume that A
and B are invertible. First let us show that

kðA1=2BA1=2Þrk � kAr=2BrAr=2k; r � 1: ð4:6:5Þ

To do so, it suffices to show that Ar=2BrAr=2 � I implies A1=2BA1=2 � I, equivalently Br � A�r implies B � A�1.
But this is just the Löwner–Heinz inequality. For every k ¼ 1; . . . ; n, since Lemma 4.6.2 shows that

ððA1=2BA1=2ÞrÞ^k ¼ ððA^kÞ1=2ðB^kÞðA^kÞ1=2Þr;
ðAr=2BrAr=2Þ^k ¼ ðA^kÞr=2ðB^kÞrðA^kÞr=2;

it follows from (4.6.5) with A^k;B^k instead of A;B that

kððA1=2BA1=2ÞrÞ^kk � kðAr=2BrAr=2Þ^kk:

This means thanks to Lemma 4.6.3 thatYk
i¼1

siððA1=2BA1=2ÞrÞ �
Yk
i¼1

siðAr=2BrAr=2Þ:

Hence (4.6.3) is proved. If we replace A;B by Ap;Bp and take r ¼ q=p, then

sððAp=2BpAp=2Þq=pÞ �wðlogÞ sðAq=2BqAq=2Þ;

which implies (4.6.4) by Proposition 4.2.1 (11). �
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Theorem 4.6.5 and Proposition 4.4.13 yield:

Corollary 4.6.6. Let A;B 2 BðHÞþ and jjj � jjj be any unitarily invariant norm. If f is a continuous non-decreasing
function on ½0;1Þ such that f ð0Þ � 0 and f ðetÞ is convex, then

jjjf ððA1=2BA1=2ÞrÞjjj � jjjf ðAr=2BrAr=2Þjjj; r � 1:

In particular,

jjjðA1=2BA1=2Þrjjj � jjjAr=2BrAr=2jjj; r � 1:

The following convergence lemma is a kind of the Lie–Trotter formula. Its usual form is

lim
N!1

ðeH=NeK=NÞN ¼ eHþK

for self-adjoint operators H;K 2 BðHÞ. Concerning the Lie–Trotter formula, the real difficulty appears when H;K are
unbounded operators in an infinite-dimensional Hilbert space (see [48] for example), while the finite-dimensional case
is easy to show.

Lemma 4.6.7. For every self-adjoint H;K 2 BðHÞ,
lim
r!0

ðerH=2erKerH=2Þ1=r ¼ eHþK :

Proof. Since ðerH=2erKerH=2Þ1=r ¼ ðe�rH=2e�rKe�rH=2Þ�1=r, we may consider only the case r & 0. For 0 < r < 1 let
AðrÞ :¼ erH=2erKerH=2 and BðrÞ :¼ erðHþKÞ, and 1=r ¼ mþ s with m ¼ mðrÞ 2 N and s ¼ sðrÞ 2 ½0; 1Þ. Since

kAðrÞk � kerH=2k kerKk kerH=2k � erðkHkþkKkÞ

and the same inequality holds for kBðrÞk, we have

kAðrÞ1=r � AðrÞmk � kAðrÞkmkAðrÞs � Ik � ekHkþkKkkAðrÞs � Ik �! 0

and similarly keHþK � BðrÞmk ! 0 as r & 0. Hence it suffices to prove that kAðrÞm � BðrÞmk ! 0 as r & 0.
Since

AðrÞ ¼
X1
k¼0

1

k!

rH

2

� �kX1
k¼0

ðrKÞk

k!

X1
k¼0

1

k!

rH

2

� �k

¼ I þ rðH þ KÞ þ oðrÞ

as well as BðrÞ ¼ I þ rðH þ KÞ þ oðrÞ, we have

kAðrÞm � BðrÞmk � mkAðrÞ � BðrÞkðmaxfkAðrÞk; kBðrÞkgÞm�1

�
1

r
kAðrÞ � BðrÞkekHkþkKk �! 0;

as required. �

The next corollary is the Golden–Thompson inequality strengthened to the form of log-majorization.

Corollary 4.6.8. For every self-adjoint H;K 2 BðHÞ,

sðeHþKÞ �wðlogÞ sððerH=2erKerH=2Þ1=rÞ; r > 0:

Hence, for every unitarily invariant norm jjj � jjj,

jjjeHþK jjj � jjjðerH=2erKerH=2Þ1=rjjj; r > 0;

and the above right-hand side decreases to jjjeHþK jjj as r & 0. In particular,

jjjeHþK jjj � jjjeH=2eKeH=2jjj � jjjeHeK jjj: ð4:6:6Þ

Proof. The log-majorization follows by letting p & 0 in (4.6.4) thanks to the above lemma. The second assertion
follows from the first and Proposition 4.4.13. Thanks to Proposition 4.2.1 (3) and Theorem 4.6.5 the second inequality
of (4.6.6) is seen as

jjjeHeK jjj ¼ jjj jeKeH j jjj ¼ jjjðeHe2KeHÞ1=2jjj � jjjeH=2eKeH=2jjj: �

The specialization of (4.6.6) to the trace-norm jj � jj1 is the celebrated Golden–Thompson trace inequality

Tr eHþK � Tr eHeK

established independently in [34, 72, 73]. It was shown in [71] that Tr eHþK � TrðeH=neK=nÞn for every n 2 N.
The extension (4.6.6) was given in [59, 74]. Also (4.6.6) for the operator norm is known as Segal’s inequality
(see [70, p. 260]).
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In the rest of this section we study log-majorizations and norm inequalities involving power operator means A #� B

for A;B 2 BðHÞþ, where 0 � � � 1 (see Example 3.3.1 (4)). The log-majorization in the next theorem is due to Ando
and Hiai [8], which is considered as complementary to Theorem 4.6.5.

Theorem 4.6.9. For every A;B 2 BðHÞþ,

sðAr #� B
rÞ �wðlogÞ sððA #� BÞrÞ; r � 1; ð4:6:7Þ

or equivalently

sððAp #� B
pÞ1=pÞ �wðlogÞ sððAq #� B

qÞ1=qÞ; p � q > 0: ð4:6:8Þ

Proof. First assume that both A and B are invertible. For every k ¼ 1; . . . ; n, it is easily verified from Lemma 4.6.2 that

ðAr #� B
rÞ^k ¼ ðA^kÞr #� ðB^kÞr;

ððA #� BÞrÞ^k ¼ ððA^kÞ #� ðB^kÞÞr:

So it suffices to show that

kAr #� B
rk � kðA#� BÞrk; r � 1; ð4:6:9Þ

because (4.6.7) follows from Lemma 4.6.3 by taking A^k, B^k instead of A, B in (4.6.9). To show (4.6.9), we may prove
that A #� B � I implies Ar #� B

r � I. When 1 � r � 2, let us write r ¼ 2� " with 0 � " � 1. Let C :¼ A�1=2BA�1=2.
Suppose that A #� B � I. Then C� � A�1 and

A � C��; ð4:6:10Þ

so that thanks to 0 � " � 1

A1�" � C��ð1�"Þ: ð4:6:11Þ

Now we have

Ar #� B
r ¼ A1�"

2fA�1þ"
2B � B�" � BA�1þ"

2g�A1�"
2

¼ A1�"
2fA�1�"

2 CA1=2ðA�1=2C�1A�1=2Þ"A1=2CA�1�"
2 g�A1�"

2

¼ A1=2fA1�" #� ½CðA #" C
�1ÞC�gA1=2

� A1=2fC��ð1�"Þ #� ½CðC�� #" C
�1ÞC�gA1=2

by using (4.6.10), (4.6.11), and the joint monotonicity of power means (see Definition 3.1.2 (i)). Since

C��ð1�"Þ #� ½CðC�� #" C
�1ÞC� ¼ C��ð1�"Þð1��Þ½CðC��ð1�"ÞC�"ÞC�� ¼ C�;

we have

Ar #� B
r � A1=2C�A1=2 ¼ A #� B � I:

Therefore (4.6.7) is proved when 1 � r � 2. When r > 2, write r ¼ 2ms with m 2 N and 1 � s � 2. Repeating the
above argument we have

sðAr #� B
rÞ �wðlogÞ sðA2m�1s #� B

2m�1sÞ2

..

.

�wðlogÞ sðAs #� B
sÞ2

m

�wðlogÞ sðA #� BÞr:

For general A;B 2 BðHÞþ let A" :¼ Aþ "I and B" :¼ Bþ "I for " > 0. Since

Ar #� B
r ¼ lim

"&0
Ar
" #� B

r
" and ðA #� BÞr ¼ lim

"&0
ðA" #� B"Þr;

we have (4.6.7) by the above case and Proposition 4.2.1 (10). Finally, (4.6.8) readily follows from (4.6.7) as in the last
part of the proof of Theorem 4.6.5. �

By Theorem 4.6.9 and Proposition 4.4.13 we have:

Corollary 4.6.10. Let A;B 2 BðHÞþ and k � k be any unitarily invariant norm. If f is a continuous non-decreasing
function on ½0;1Þ such that f ð0Þ � 0 and f ðetÞ is convex, then

k f ðAr #� B
rÞk � k f ððA #� BÞrÞk; r � 1:

In particular,
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kAr #� B
rk � kðA #� BÞrk; r � 1:

The next exercise is a variant of the Lie–Trotter formula. The proof is a modification of that of Lemma 4.6.7.

Exercise 4.6.11. For every self-adjoint H;K 2 BðHÞ,

lim
r!0

ðerH#�erKÞ1=r ¼ eð1��ÞHþ�K :

By Theorem 4.6.9, Exercise 4.6.11 and Proposition 4.4.13, the Golden–Thompson type log-majorization in
Corollary 4.6.8 is complemented as follows:

Corollary 4.6.12. For every self-adjoint H;K 2 BðHÞ,

sððerH#�erKÞ1=rÞ �wðlogÞ sðeð1��ÞHþ�KÞ; r > 0:

Hence, for every unitarily invariant norm jjj � jjj,

jjjðerH#�erKÞ1=rjjj � jjjeð1��ÞHþ�K jjj; r > 0;

and the above left-hand side increases to jjjeð1��ÞHþ�K jjj as r & 0.

Specializing to trace inequality we have

TrðerH#�erKÞ1=r � Tr eð1��ÞHþ�K ; r > 0;

which was first proved in [42]. The following logarithmic trace inequalities are also known for every A;B 2 BðHÞþ and
every r > 0:

1

r
TrA logBr=2ArBr=2 � TrAðlogAþ logBÞ �

1

r
TrA logAr=2BrAr=2;

1

r
TrA logðAr #BrÞ2 � TrAðlogAþ logBÞ:

See [8, 42] for details on these logarithmic trace inequalities.

5. Means for Matrices and Their Norm Inequalities

5.1 Means for matrices and their comparison

For matrices H;K;X with H;K � 0, the norm inequality

jjjH1=2XK1=2jjj �
1

2
jjjHX þ XKjjj ð5:1:1Þ

for any unitarily invariant norm jjj � jjj was established by Bhatia and Davis [16] and is known as the matrix arithmetic-
geometric inequality. To prove this, the case where H ¼ K and H is diagonal (with eigenvalues �1; . . . ; �n) is essential
due to the 2� 2 matrix trick (see the discussion after Proposition 5.1.4 below) and the unitary invariance. Then it is
plain to see that

H1=2XH1=2 ¼
2
ffiffiffiffiffiffiffiffi
�i�j

p
�i þ �j

" #



1

2
ðHX þ XHÞ

� �
;

where 
 means the Schur (or Hadamard) product (see Section 1.6). As shown in [45, 64], the above equality is quite
useful to prove (5.1.1), and a crucial point here is the positive semidefiniteness of the multiplier matrix
½2

ffiffiffiffiffiffiffiffi
�i�j

p
=ð�i þ �jÞ�. The usefulness of this approach was further exemplified in [19, 80] for example. On the other

hand, in [52] (see also [38]) Kosaki observed that

H1=2XK1=2 ¼
Z 1

�1
HitðHX þ XKÞK�it dt

2 coshð
tÞ
;

which immediately implies (5.1.1) since the density function here is positive with total mass 1/2. The positive
semidefiniteness of multiplier matrices in the former approach and the positivity of density functions in the latter are
related via the Bochner theorem in Fourier analysis as one can easily imagine, and a systematic study of means for
matrices (also for Hilbert space operators) was made in [39] (also [40]) by unifying the two approaches. For further
developments in this directions see [55]. The present chapter is a survey on means for matrices mostly based on [39].

In this section we first introduce a certain class of binary means (for positive scalars) in an axiomatic fashion and
then obtain a general norm comparison result for the corresponding matrix means, which will play a fundamental role
in the rest.

Let Mðx; yÞ be a positive real function on ð0;1Þ � ð0;1Þ, and the continuity is always assumed. A symmetric
homogeneous mean is such an M satisfying
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(1) Mðx; yÞ ¼ Mðy; xÞ,
(2) Mð�x; �yÞ ¼ �Mðx; yÞ for all � > 0,
(3) Mðx; yÞ is non-decreasing in x and y,
(4) minfx; yg � Mðx; yÞ � maxfx; yg.
We denote by M the set of all such symmetric homogeneous means (for positive scalars). We set f ðxÞ ¼ Mðx; 1Þ, and
then Mðx; yÞ ¼ y f ðx=yÞ by homogeneity and f is a continuous function on ð0;1Þ satisfying
(a) f ðxÞ ¼ x f ðx�1Þ,
(b) f is non-decreasing,
(c) f ð1Þ ¼ 1 and f ðxÞ � x for x � 1.

Conversely, when such an f is given, M defined by Mðx; yÞ ¼ y f ðx=yÞ belongs to M. Indeed, (1) follows from (a) and
(2) is clear by definition. The properties (a) and (b) imply (3), and (a)–(c) altogether imply (4).

Thanks to the non-decreasingness one can automatically extend the domain ofM 2 M to ½0;1Þ � ½0;1Þ as follows:
Mð0; yÞ ¼ lim

x&0
Mðx; yÞ; Mðx; 0Þ ¼ lim

y&0
Mðx; yÞ;

Mð0; 0Þ ¼ lim
y&0

Mð0; yÞ ¼ lim
x&0

Mðx; 0Þ:

For M 2 M and H;K 2 M
þ
n ¼ BðCnÞþ we consider the mean of the left multiplication LH by H and the right

multiplication RK by K associated with M. Since LH and RK are commuting positive linear operators on the Hilbert
space ðMn; h�; �iHSÞ (see Exercise 1.5.6 (2)), one can define a positive linear operator MðLH ;RKÞ on Mn via functional
calculus, which will be denoted simply by MðH;KÞ. More explicitly, if H ¼

Pn
i¼1 �iPi is the spectral decomposition

with the eigenvalues �1; . . . ; �n and corresponding orthogonal projections P1; . . . ;Pn of rank 1 and if K ¼
Pn

j¼1 	jQj is
similarly taken, then MðH;KÞ is given by

MðH;KÞX :¼
Xn
i; j¼1

Mð�i; 	jÞPiXQj; X 2 Mn: ð5:1:2Þ

This means that with the diagonalization

H ¼ UDiagð�1; . . . ; �nÞU�; K ¼ VDiagð	1; . . . ; 	nÞV�

via unitary matrices U;V , we have

MðH;KÞX ¼ Uð½Mð�i; 	jÞ�ij 
 ðU�XVÞÞV�; ð5:1:3Þ

where ½Mð�i; 	jÞ�ij is the matrix with the ði; jÞ-entry Mð�i; 	jÞ and 
 is the Schur product.

Exercise 5.1.1. Show the expression (5.1.3) from definition (5.1.2).

Exercise 5.1.2. Let M 2 M and define

Mð�Þðx; yÞ :¼ Mðx�1; y�1Þ�1; x; y > 0:

Show that Mð�Þ 2 M and that, for each H;K > 0 in Mn, M
ð�ÞðH�1;K�1Þ is the inverse of MðH;KÞ as operators

on Mn. Hence MðH;KÞX ¼ Y is equivalent to Mð�ÞðH�1;K�1ÞY ¼ X.

Positive operators onMn defined as above (i.e., via the left and right multiplications) were treated in [43, 65] to study
certain Riemannian metrics on matrix spaces. In fact, arbitrary nonnegative real functions on ½0;1Þ � ½0;1Þ works in
the above definition, but the restriction of M to M is convenient for our exposition on means for matrices.

When X ¼ I (the identity matrix), the matrix MðH;KÞI can be regarded as a certain mean of H;K � 0, but it is not
necessarily positive semidefinite and is different from operator means in the sense of Chapter 3. For instance, for the
geometric mean Mðx; yÞ ¼ ffiffiffiffiffi

xy
p

we have MðH;KÞI ¼ H1=2K1=2 while the geometric operator mean for H;K > 0 is
given by H1=2ðH�1=2KH�1=2Þ1=2H1=2. We will adopt the convention H0 ¼ I for any H � 0, and write His (s 2 R) only
for H > 0. So His (s 2 R) are well-defined and form a continuous one-parameter group of unitary matrices.

Theorem 5.1.3. For M;N 2 M the following conditions are equivalent:
(i) there exists a symmetric probability measure � on R such that

MðH;KÞX ¼
Z 1

�1
HisðNðH;KÞXÞK�is d�ðsÞ ð5:1:4Þ

for all matrices H;K;X of any size with H;K > 0;
(ii) jjjMðH;KÞXjjj � jjjNðH;KÞXjjj for all matrices H;K;X of any size with H;K � 0 and for any unitarily invariant

norm jjj � jjj;
(iii) kMðH;HÞXk � kNðH;HÞXk for all matrices H;X of any size with H � 0;
(iv) the matrix ½Mðxi; xjÞ=Nðxi; xjÞ�1�i; j�n is positive semidefinite for any x1; . . . ; xn > 0 with any n 2 N;
(v) the function Mðet; 1Þ=Nðet; 1Þ is positive definite on R, where the positive definiteness of a real continuous

function � on R means that ½�ðti � tjÞ�1�i; j�n is positive semidefinite for any t1; . . . ; tn 2 R with any n 2 N.
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In the above, the measure � in (i) is the representing one for Mðet; 1Þ=Nðet; 1Þ in the Bochner theorem i.e.,
Mðet; 1Þ=Nðet; 1Þ ¼

R1
�1 eits d�ðsÞ.

Proof. (i) ) (ii). The inequality in (ii) is obvious from (i) if H;K > 0. For general H;K � 0 we may take the limit of
the inequality for H þ "I;K þ "I as "& 0.

(ii) ) (iii) is trivial.
(iii) ) (iv). Let x1; . . . ; xn > 0 and aij :¼ Mðxi; xjÞ=Nðxi; xjÞ. Then A :¼ ½aij� is a Hermitian matrix with the diagonals

aii ¼ 1. Applying condition (iii) to H ¼ Diagðx1; . . . ; xnÞ and using (5.1.3), we have kA 
 Xk � kXk for all X 2 Mn. It is
immediate to see that

hX;A 
 YiHS ¼ hA 
 X;YiHS; X;Y 2 Mn: ð5:1:5Þ

Since the operator norm k � k and the trace norm k � k1 are dual norms of each other with respect to h�; �iHS
(see Theorem 4.4.12), we have

jhX;A 
 YiHSj � kA 
 Xk kYk1 � kXk kYk1
so that kA 
 Yk1 � kYk1 for all Y 2 Mn. We specialize Y to the matrix with all entries equal to 1. Then we obtain
kAk1 � n due to A 
 Y ¼ A and kYk1 ¼ n. Let �1; . . . ; �n be the real eigenvalues of A (whose nonnegativity is to be
shown), and we notice Xn

i¼1

j�ij ¼ kAk1 � n ¼ TrA ¼
Xn
i¼1

�i;

where n ¼ TrA follows from aii ¼ 1. This forces all the �i’s to be nonnegative.
(iv) ) (v) is immediate from

Mðeti�tj ; 1Þ
Nðeti�tj ; 1Þ

� �
¼

Mðeti ; etj Þ
Nðeti ; ttjÞ

� �
for t1; . . . ; tn 2 R:

(v) ) (i). Due to the Bochner theorem there exists a probability measure � on R such that Mðet; 1Þ=Nðet; 1Þ ¼R1
�1 eits d�ðsÞ for t 2 R. Since Mðet; 1Þ=Nðet; 1Þ ¼ Mðe�t; 1Þ=Nðe�t; 1Þ, it is clear that � is a symmetric measure.
For H;K > 0, with the notations in (5.1.2) we compute

MðH;KÞX ¼
Xn
k;l¼1

Mð�k; 	lÞPkXQl

¼
Xn
k;l¼1

	lMðelog �k�log	l ; 1ÞPkXQl

¼
Xn
k;l¼1

	lNðelog �k�log	l ; 1Þ
Z 1

�1

�k

	l

� �is

d�ðsÞ

 !
PkXQl

¼
Z 1

�1

Xn
k;l¼1

�k

	l

� �is

Nð�k; 	lÞPkXQl d�ðsÞ

¼
Z 1

�1
HisðNðH;KÞXÞK�is d�ðsÞ;

implying (i). �

In the following proposition, we present more established results in the background of the above theorem.
For A 2 Mn we define the Schur multiplication operator SA on the Hilbert space Mn by

SAðXÞ :¼ A 
 X; X 2 Mn;

and let kSAkðjjj�jjj;jjj�jjjÞ denote the norm of the Schur multiplication by A with respect to a norm jjj � jjj on Mn, i.e.,

kSAkðjjj�jjj;jjj�jjjÞ :¼ sup
X 6¼0

jjjA 
 Xjjj
jjjXjjj

:

In particular, we write kSAkð1;1Þ for the norm of the Schur multiplication with respect to the operator norm k � k.

Proposition 5.1.4. Let A 2 Mn and jjj � jjj be an arbitrary unitarily invariant norm. Then
(1) kSAkðjjj�jjj;jjj�jjjÞ � kSAkð1;1Þ.
(2) If A ¼ ½aij� is positive semidefinite, then kSAkðjjj�jjj;jjj�jjjÞ ¼ max1�i�n aii.

Proof. (1) Set � :¼ kSAkð1;1Þ. Notice as (5.1.5) that

hX;A 
 YiHS ¼ hA 
 X;YiHS; X; Y 2 Mn;

where A :¼ ½aij�ij for A ¼ ½aij�ij. Then, as in the proof of (iii) ) (iv) of Theorem 5.1.3, we have
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kSAkðk�k1;k�k1Þ ¼ maxfjhX;A 
 YiHSj : kXk � 1; kYk1 � 1g
¼ maxfjhA 
 X; YiHSj : kXk � 1; kYk1 � 1g ¼ kSAkð1;1Þ:

Moreover, notice that A 7!A is an isometry with respect to k � k (indeed, it is so with respect to any unitarily
invariant norm), so kA 
 Xk ¼ kA 
 Xk ¼ kA 
 Xk. Hence kSAkðk�k1;k�k1Þ ¼ kSAkð1;1Þ ¼ �. For any k ¼ 1; . . . ; n and any
decomposition X ¼ Y þ Z so that A 
 X ¼ A 
 Y þ A 
 Z, it follows from Proposition 4.4.6 (2) that

kA 
 XkðkÞ � kA 
 Yk1 þ kkA 
 Zk � �ðkYk1 þ kkZkÞ:

By Proposition 4.4.6 (2) again we have kA 
 XkðkÞ � �kXkðkÞ for 1 � k � n. Thanks to Proposition 4.4.13 this implies
that jjjA 
 Xjjj � �jjjXjjj for any unitarily invariant norm jjj � jjj, so kSAkðjjj�jjj;jjj�jjjÞ � �.

(2) Assume that A � 0. Since SA : Mn ! Mn is a positive map by the Schur product theorem (Theorem 1.6.3),
Proposition 1.7.6 shows that

kSAkð1;1Þ ¼ kSAðIÞk ¼ kDiagða11; . . . ; annÞk ¼ max
1�i�n

aii:

Hence it follows from (1) that kSAkðjjj�jjj;jjj�jjjÞ � max1�i�n aii. On the other hand, for the matrix units Eii we have

aiijjjEiijjj ¼ jjjSAðEiiÞjjj � kSAkðjjj�jjj;jjj�jjjÞjjjEiijjj

so that aii � kSAkðjjj�jjj;jjj�jjjÞ for 1 � i � n. �

Together with the famous 2� 2 matrix trick the above fact (1) is used to show that (iii) implies (ii) in Theorem 5.1.3.
In fact, for any x1; . . . ; xn > 0, (iii) implies thanks to the above (1) that

Sh
Mðxi ;xj Þ
Nðxi ;xjÞ

i������
������
ðjjj�jjj;jjj�jjjÞ

� Sh
Mðxi ;xjÞ
Nðxi ;xjÞ

i������
������
ð1;1Þ

� 1;

which shows that jjjMðH;HÞXjjj � jjjNðH;HÞXjjj for all H;X 2 Mn with H � 0. For H;K;X 2 Mn with H;K � 0

consider ~HH :¼ H 0

0 K

� �
, ~XX :¼ 0 X

0 0

� �
instead of H;X. Since Mð ~HH; ~HHÞ ~XX ¼ 0 MðH;KÞX

0 0

� �
, we have

jjjMðH;KÞXjjj ¼ jjjMð ~HH; ~HHÞ ~XXjjj � jjjNð ~HH; ~HHÞ ~XXjjj ¼ jjjNðH;KÞXjjj:

Also, the above (2) together with the 2� 2 trick shows that (iv) implies (ii) in Theorem 5.1.3.
For M;N 2 M we write M � N if M;N satisfy the equivalent conditions in Theorem 5.1.3. It is a partial order in M

and preserved under taking the pointwise limit: If Mn;Nn 2 M converge pointwise to M;N 2 M respectively, then one
hasM � N wheneverMn � Nn for all n. Also, note thatM � N is equivalent to Nð�Þ � Mð�Þ. Of course,M � N implies
the simple order M � N, i.e., Mðx; yÞ � Nðx; yÞ for all x; y > 0. Actually M � N is strictly stronger than M � N as will
be seen in examples in Sections 5.2 and 5.3. On the other hand, the next exercise shows that the simple order M � N is
related to an estimate in the Hilbert–Schmidt norm k � kHS, which may reveal why inequalities for this norm are easy to
hold and sometimes very easy to show.

Exercise 5.1.5. Let M;N be general nonnegative real functions on ½0;1Þ � ½0;1Þ. Then prove that the following
conditions are equivalent:

(i) kMðH;KÞXkHS � kNðH;KÞXkHS for all matrices H;K;X with H;K � 0;
(ii) Mðx; yÞ � Nðx; yÞ for all x; y � 0.

A kernel function M : ð0;1Þ � ð0;1Þ ! ð0;1Þ is called a positive definite kernel if ½Mðxi; xjÞ�1�i; j�n is positive
semidefinite for any x1; . . . ; xn > 0 with any n. If M;N 2 M satisfies M � N and N is a positive definite kernel, then so
is M. This is an immediate consequence of Theorem 5.1.3 (iv) and the Schur product theorem. The next proposition
says that the geometric mean G is the largest in the order � among means in M that are positive definite kernels.

Proposition 5.1.6. The following conditions are equivalent for M 2 M:
(i) MðH;HÞX � 0 for every H;X 2 BðHÞ with H;X � 0;
(ii) M is a positive definite kernel;
(iii) M � G.
If this is the case, then jjjMðH;KÞXjjj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kHk kKk

p
� jjjXjjj for all H;K;X with H;K � 0 and for any unitarily

invariant norm.

Proof. (i) ) (ii). Let X be the matrix with all entries equal to 1, and set H ¼ Diagðx1; . . . ; xnÞ with x1; . . . ; xn � 0.
Then MðH;HÞX ¼ ½Mðxi; xjÞ�1�i; j�n. Hence (i) implies the positive semidefiniteness of ½Mðxi; xjÞ�.

(ii) , (iii). For any x1; . . . ; xn > 0 notice that

Mðxi; xjÞ
Gðxi; xjÞ

� �
¼ Diagðx�1=2

1 ; . . . ; x�1=2
n Þ½Mðxi; xjÞ�Diagðx�1=2

1 ; . . . ; x�1=2
n Þ
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and

½Mðxi; xjÞ� ¼ Diagðx1=21 ; . . . ; x1=2n Þ
Mðxi; xjÞ
Gðxi; xjÞ

� �
Diagðx1=21 ; . . . ; x1=2n Þ;

which show that ½Mðxi; xjÞ� � 0 if and only if ½Mðxi; xjÞ=Gðxi; xjÞ� � 0. Hence (ii) , (iii) holds.
(iii) ) (i). Assume (iii), so we have the measure � representing the ratio Mðex; 1Þ=Gðex; 1Þ. Then, for H > 0

Theorem 5.1.3 implies that

MðH;HÞX ¼
Z 1

�1
HisðH1=2XH1=2ÞH�is d�ðsÞ;

which is positive semidefinite if so is X. Hence (i) holds for all H;X � 0 by continuity. Furthermore, by
Proposition 4.4.4 (2) we have

jjjMðH;KÞXjjj � jjjH1=2XK1=2jjj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kHk kKk

p
� jjjXjjj

for any unitarily invariant norm. �

When H is a matrix with eigenvalues x1; . . . ; xn � 0, MðH;HÞ is essentially equal to the Schur multiplication by
½Mðxi; xjÞ�1�i; j�n (up to unitary conjugation, see (5.1.3)). So one may consider the property (i) above as a generalization
of the Schur product theorem. For M 2 M, as in the proof of (ii) , (iii) above, we see also that 1=M is a positive
definite kernel if and only if G � M.

According to Theorem 5.1.3, to obtain a norm inequality between matrix means it is crucial to show the positive
definiteness of the related function on R. Among important classes of such functions are the following ratios of
hyperbolic functions:

sinhðatÞ
sinhðbtÞ

;
coshðatÞ
coshðbtÞ

; 0 � a < b:

Indeed, it is well known that these have the following inverse Fourier transforms:

sinhðatÞ
sinhðbtÞ

¼
Z 1

�1
eits

sinð
a
b
Þ

2bðcoshð

b
sÞ þ cosð
a

b
ÞÞ

ds; ð5:1:6Þ

coshðatÞ
coshðbtÞ

¼
Z 1

�1
eits

cosð
a
2b
Þ coshð 


2b
sÞ

bðcoshð

b
sÞ þ cosð
a

b
ÞÞ

ds: ð5:1:7Þ

The function t= sinhð t
2
Þ is also positive definite with the inverse Fourier transform

t

sinhð t
2
Þ
¼
Z 1

�1
eits




cosh2ð
sÞ
ds: ð5:1:8Þ

The proofs of the formulas (5.1.6)–(5.1.8) of Fourier transforms are given in Appendix A.5 for the convenience of the
reader.

5.2 Norm inequalities for A-L-G interpolating means

We will apply the general result in the previous section to several typical examples of symmetric homogeneous
means, and this method proves quite useful to obtain various norm inequalities refining the matrix arithmetic-geometric
mean inequality. Throughout this section and next, let H;K;X be matrices with H;K � 0.

For � 2 R and x; y > 0 we set

M�ðx; yÞ :¼
�� 1

�
�

x� � y�

x��1 � y��1
if x 6¼ y,

x if x ¼ y.

8<:
In particular, we have

M2ðx; yÞ ¼ Aðx; yÞ :¼
xþ y

2
(arithmetic mean);

M1ðx; yÞ ¼ Lðx; yÞ :¼
x� y

log x� log y

�
¼ lim

�!1
M�ðx; yÞ

�
(logarithmic mean);

M1=2ðx; yÞ ¼ Gðx; yÞ :¼
ffiffiffiffiffi
xy

p
(geometric mean);

M0ðx; yÞ ¼
log x� log y

y�1 � x�1

�
¼ lim

�!0
M�ðx; yÞ

�
;

M�1ðx; yÞ ¼ Hðx; yÞ :¼
2

x�1 þ y�1
(harmonic mean):
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Moreover, we may set

M1ðx; yÞ :¼ maxfx; yg
�
¼ lim

�!1
M�ðx; yÞ

�
;

M�1ðx; yÞ :¼ minfx; yg
�
¼ lim

�!�1
M�ðx; yÞ

�
:

Thus, fM�g�1���1 is a one-parameter family of means in M, which we call A-L-G interpolating means due to the
above interpolation of the means A, L, and G. For any x; y > 0 fixed, M�ðx; yÞ is continuous in � 2 ½�1;1� and
M�ðx; yÞ � M
ðx; yÞ if �1 � � < 
 � 1. Note that M1�� ¼ Mð�Þ

� , i.e., M1��ðx; yÞ ¼ M�ðx�1; y�1Þ�1 for any
� 2 ½�1;1�. The next theorem says that if � < 
 then the order M� � M
 actually holds true more strongly
than M� � M
.

Theorem 5.2.1. If �1 � � < 
 � 1, then M� � M
 and hence

jjjM�ðH;KÞXjjj � jjjM
ðH;KÞXjjj

for any unitarily invariant norm jjj � jjj.

Proof. Since M1�� ¼ Mð�Þ
� (in particular, M1=2 ¼ G ¼ Gð�Þ), we may restrict ourselves to the case 1=2 � � < 
 � 1.

When 1=2 � � < 
 <1, we have

M�ðe2t; 1Þ
M
ðe2t; 1Þ

¼
ð�� 1Þ

�ð
� 1Þ

�
ðe2�t � 1Þðe2ð
�1Þt � 1Þ
ðe2ð��1Þt � 1Þðe2
t � 1Þ

¼
ð�� 1Þ

�ð
� 1Þ

�
ðe�t � e��tÞðeð
�1Þt � e�ð
�1ÞtÞ
ðeð��1Þt � e�ð��1ÞtÞðe
t � e�
tÞ

¼
ð�� 1Þ

�ð
� 1Þ

�
sinhð�tÞ sinhðð
� 1ÞtÞ
sinhðð�� 1ÞtÞ sinhð
tÞ

with the conventions

�� 1

sinhðð�� 1ÞtÞ
¼

1

t
for � ¼ 1 and

sinhðð
� 1ÞtÞ

� 1

¼ t for 
 ¼ 1:

If 1=2 � � < 
 � 1, then

M�ðe2t; 1Þ
M
ðe2t; 1Þ

¼
ð1� �Þ

�ð1� 
Þ

�
sinhð�tÞ
sinhð
tÞ

�
sinhðð1� 
ÞtÞ
sinhðð1� �ÞtÞ

is positive definite thanks to (5.1.6) (and (5.1.8) for 
 ¼ 1). Hence M� � M
 by Theorem 5.1.3. On the other hand,
when 1 < � < 
 <1 we notice that

sinhð�tÞ sinhðð
� 1ÞtÞ
sinhðð�� 1ÞtÞ sinhð
tÞ

� 1

¼
sinhðð�� 1Þt þ tÞ sinhðð
� 1ÞtÞ � sinhðð�� 1ÞtÞ sinhðð
� 1Þt þ tÞ

sinhðð�� 1ÞtÞ sinhð
tÞ

¼
sinh tfcoshðð�� 1ÞtÞ sinhðð
� 1ÞtÞ � sinhðð�� 1ÞtÞ coshðð
� 1ÞtÞg

sinhðð�� 1ÞtÞ sinhð
tÞ

¼
sinh t

sinhð
tÞ
�
sinhðð
� �ÞtÞ
sinhðð�� 1ÞtÞ

:

If 1 < � < 
 < 2�� 1 (hence 0 < 
� � < �� 1), then the above expression shows that M�ðe2t; 1Þ=M
ðe2t; 1Þ is
positive definite and hence M� � M
. In the general case (1 < � < 
 <1), we may choose � ¼ �0 < �1 < � � � <
�m ¼ 
 satisfying �k < 2�k�1 � 1 (1 � k � m) to conclude M� � M
. Finally, the result when 1 ¼ � < 
 <1 or
1 < � < 
 ¼ 1 can be obtained from the above case by taking the limit as �! 1 or 
! 1. �

The means M� are of particular interest when � ¼ n=ðn� 1Þ (n ¼ 2; 3; . . .) and when � ¼ m=ðmþ 1Þ (m ¼ 1; 2 . . .).
Since

Mn=ðn�1Þðx; yÞ ¼
1

n
�
xn=ðn�1Þ � yn=ðn�1Þ

x1=ðn�1Þ � y1=ðn�1Þ ¼
1

n

Xn�1

k¼0

xk=ðn�1Þyðn�1�kÞ=ðn�1Þ;

Mm=ðmþ1Þðx; yÞ ¼
1

m
�
xm=ðmþ1Þ � ym=ðmþ1Þ

y�1=ðmþ1Þ � x�1=ðmþ1Þ ¼
1

m

Xm
k¼1

xk=ðmþ1Þyðmþ1�kÞ=ðmþ1Þ;

we have
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Mn=ðn�1ÞðH;KÞX ¼
1

n

Xn�1

k¼0

Hk=ðn�1ÞXKðn�1�kÞ=ðn�1Þ ðn ¼ 2; 3; . . .Þ; ð5:2:1Þ

Mm=ðmþ1ÞðH;KÞX ¼
1

m

Xm
k¼1

Hk=ðmþ1ÞXKðmþ1�kÞ=ðmþ1Þ ðm ¼ 1; 2; . . .Þ: ð5:2:2Þ

On the other hand, since Lðx; yÞ ¼
R 1
0
xty1�t dt, we have

LðH;KÞX ¼
Z 1

0

HtXK1�t dt: ð5:2:3Þ

Both (5.2.1) and (5.2.2) being considered as Riemann sums for the integral (5.2.3), it is straightforward to see
that Z 1

0

HtXK1�t dt ¼ lim
n!1

1

n

Xn�1

k¼0

Hk=ðn�1ÞXKðn�1�kÞ=ðn�1Þ

¼ lim
m!1

1

m

Xm
k¼1

Hk=ðmþ1ÞXKðmþ1�kÞ=ðmþ1Þ:

As a direct consequence of Theorem 5.2.1 we have the next result. Indeed, this was shown in [38] for Hilbert space
operators.

Corollary 5.2.2. The inequalities

jjjH1=2XK1=2jjj �
1

m

Xm
k¼1

Hk=ðmþ1ÞXKðmþ1�kÞ=ðmþ1Þ






































 �

Z 1

0

HtXK1�t dt





 







 







 




�

1

n

Xn�1

k¼0

Hk=ðn�1ÞXKðn�1�kÞ=ðn�1Þ






































 � 1

2
jjjHX þ XKjjj

hold for each integers m � 1 and n � 2 and for any unitarily invariant norm. Furthermore,

1

m

Xm
k¼1

Hk=ðmþ1ÞXKðmþ1�kÞ=ðmþ1Þ






































 increases to

Z 1

0

HtXK1�t dt





 







 







 



 as m ! 1

and

1

n

Xn�1

k¼0

Hk=ðn�1ÞXKðn�1�kÞ=ðn�1Þ






































 decreases to

Z 1

0

HtXK1�t dt





 







 







 



 as n ! 1:

When �1 � � < 
 � 1, Theorems 5.1.3 and 5.2.1 say that M�ðet; 1Þ=M
ðet; 1Þ is the Fourier transform of some
symmetric probability measure ��;
 on R and the integral expression

M�ðH;KÞX ¼
Z 1

�1
HisðM
ðH;KÞXÞK�is d��;
ðsÞ ð5:2:4Þ

holds for every H;K > 0 and X. Typical examples are

Corollary 5.2.3. Assume that H;K > 0. For 1=2 < � <1,

H1=2XK1=2 ¼
Z 1

�1
HisðM�ðH;KÞXÞK�is sinð
 ��1

� Þ
ð�� 1Þðcoshð2
� sÞ þ cosð
 ��1

� ÞÞ
ds: ð5:2:5Þ

For 1 < � <1, Z 1

0

HtXK1�t dt

¼
Z 1

�1
HisðM�ðH;KÞXÞK�is �

2
ð�� 1Þ
log

coshð2

�
sÞ � cosð2


�
Þ

coshð2

�
sÞ � 1

 !
ds: ð5:2:6Þ

Proof. For 1=2 < � <1 the formula (5.1.6) shows that
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Gðet; 1Þ
M�ðet; 1Þ

¼
�

�� 1
�
et=2ðeð��1Þt � 1Þ

e�t � 1
¼

�

�� 1
�
sinhð��1

2
tÞ

sinhð�
2
tÞ

¼
Z 1

�1
eits

sinð
 ��1
�
Þ

ð�� 1Þðcoshð2

�
sÞ þ cosð
 ��1

�
ÞÞ

ds: ð5:2:7Þ

When 1 < � � 2, we compute

Lðet; 1Þ
M�ðet; 1Þ

¼
�

�� 1
�
ðet � 1Þðeð��1Þt � 1Þ

tðe�t � 1Þ
¼

2�

�� 1
�
sinhð t

2
Þ sinhð��1

2
tÞ

t sinhð�
2
tÞ

¼
2�

�� 1

Z ��1
2

0

sinhð t
2
Þ coshðutÞ

sinhð�
2
tÞ

du

¼
�

�� 1

Z ��1
2

0

sinhðð1
2
þ uÞtÞ þ sinhðð1

2
� uÞtÞ

sinhð�
2
tÞ

du

¼
1

�� 1

Z ��1
2

0

du

Z 1

�1
eits

 
sinð
 1þ2u

� Þ
coshð2


�
sÞ þ cosð
 1þ2u

�
Þ

þ
sinð
 1�2u

�
Þ

coshð2
� sÞ þ cosð
 1�2u
� Þ

!
ds

¼
1

�� 1

Z 1

�1
eits ds

Z ��1
2

���1
2

sinð
 1þ2u
� Þ

coshð2
� sÞ þ cosð
 1þ2u
� Þ

du

¼
�

2
ð�� 1Þ

Z 1

�1
eits ds

Z � cosð2
� Þ

�1

1

coshð2

�
sÞ þ x

dx

¼
�

2
ð�� 1Þ

Z 1

�1
eits log

coshð2

�
sÞ � cosð2


�
Þ

coshð2

�
sÞ � 1

ds:

Here, we have used (5.1.6) and the Fubini theorem in the above fifth and sixth equalities. When 2 < � <1,
we can modify the above computation and arrive at the same integral. Hence (5.2.5) and (5.2.6) follow from
Theorem 5.1.3. �

Note that the density function in (5.2.5) is bounded and continuous while that in (5.2.6) has a singularity at s ¼ 0.
Moreover, from the proof of Theorem 5.2.1, it is easy to see that when 1 < � < 
 <1 the representing measure ��;

in (5.2.4) has an atom with the mass ð�� 1Þ
=�ð
� 1Þ at s ¼ 0 as well as a continuous part represented as the
convolution of a finite number of density functions similar to that in (5.2.5).

Example 5.2.4. This is an example due to T. Ando and D. Petz, showing the difference between the two orders � and
�. Let AH :¼ ðAþ HÞ=2, i.e., the average of the arithmetic and the harmonic means, and let us compare it with the
geometric mean G. Consider the function

f ðtÞ :¼
Gðe2t; 1Þ
AHðe2t; 1Þ

¼
2

cosh t þ ðcosh tÞ�1
:

It is clear that f ðtÞ � 1 for all t 2 R, so G � AH. However, G � AH fails to hold. The following reasoning is due to
H. Kosaki. Suppose that 1=ðcosh t þ ðcosh tÞ�1Þ is positive definite; then its product with 1=cosh t

1

cosh2 t þ 1
¼

2

coshð2tÞ þ 3

is also positive definite. But [19, Theorem 5.1] (also [14, 5.6.6]) says that the above function is not positive definite. It is
worth noting that a more general fact was obtained in [55, Theorem 7.10].

5.3 Norm inequalities for Heinz-type means and binomial means

In this section we deal with the following classes of means in M:

A�ðx; yÞ ¼ A1��ðx; yÞ :¼
1

2
ðx�y1�� þ x1��y�Þ for 0 � � � 1;

B�ðx; yÞ :¼
x� þ y�

2

� �1=�

for �1 � � � 1:
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Notice that fA�g0���1 is a family of means in M interpolating the arithmetic mean A0 ¼ A and the geometric mean
A1=2 ¼ G. For matrices H;K � 0 and X we have

A�ðH;KÞX ¼
1

2
ðH�XK1�� þ H1��XK�Þ:

For 0 < � < 
 � 1=2 we have

A
ðet; 1Þ
A�ðet; 1Þ

¼
e
t þ eð1�
Þt

e�t þ eð1��Þt
¼

coshðð1
2
� 
ÞtÞ

coshðð1
2
� �ÞtÞ

;

which is positive definite by (5.1.7). This implies

Proposition 5.3.1. The inequality

jjjH�XK1�� þ H1��XK�jjj � jjjHX þ XKjjj ð5:3:1Þ

holds for any 0 � � � 1 and for any unitarily invariant norm, and moreover jjjH�XK1�� þ H1��XK�jjj is
monotonically decreasing in � 2 ½0; 1=2�.

The following ‘‘difference’’ version is also known:

jjjH�XK1�� � H1��XK�jjj � j2�� 1j � jjjHX � XKjjj: ð5:3:2Þ

The inequalities (5.3.1) and (5.3.2) for the operator norm were formerly shown by Heinz [36], so we call A�’s
Heinz-type means. Those inequalities for unitarily invariant norms were given in [16, 17]. See [52] for the proof based
on the Poisson integral formula and [19] (also [64]) for the above lines of proof based on the Schur multiplier (as in the
next exercise). Furthermore, the asymmetric H�XK1�� can be treated (though it does not fit the setting described in
Section 5.1) as discussed in [39, 52], and a further development on the subject is found in [55, Chapter 4].

Exercise 5.3.2. Prove (5.3.2) in the following way:
(1) When 1=2 < � < 1 and H ¼ Diagðx1; . . . ; xnÞ with xi > 0, show that

H�XH1�� � H1��XH� ¼ x1��i

x2��1
i � x2��1

j

xi � xj
x1��j

" #

 ðHX � XHÞ;

where ðx2��1
i � x2��1

j Þ=ðxi � xjÞ is understood as 2�� 1 if xi ¼ xj.
(2) When 1=2 < � < 1 and xi > 0, apply (5.1.6) to prove that ½ðx2��1

i � x2��1
j Þ=ðxi � xjÞ� is positive semidefinite.

(3) Use Proposition 5.1.4 (2), the 2� 2 matrix trick, and continuity to prove (5.3.2).

Proposition 5.3.3. The inequalities

1

1� 2�

Z 1��

�

HtXK1�t dt





 







 







 



 � 1

2
jjjH�XK1�� þ H1��XK�jjj

�
1

2�

Z �

0

ðHtXK1�t þ H1�tXKtÞ dt




 







 







 



 ð5:3:3Þ

hold for any � 2 ð0; 1=2Þ and for any unitarily invariant norm. Moreover, each of the above three terms is
monotonically decreasing in � 2 ð0; 1=2Þ.

Proof. For 0 < � < 1=2 define L� and ~LL� in M by

L�ðx; yÞ ¼
1

1� 2�

Z 1��

�

Atðx; yÞ dt; ~LL�ðx; yÞ ¼
1

�

Z �

0

Atðx; yÞ dt

so that the first and third terms of (5.3.3) are jjjL�ðH;KÞXjjj and jjj ~LL�ðH;KÞXjjj, respectively. The decreasingness of the
second term of (5.3.3) was seen in Proposition 5.3.1, from which the first inequality is easy:

jjjL�ðH;KÞXjjj �
1

1� 2�

Z 1��

�

jjjAtðH;KÞXjjj dt � jjjA�ðH;KÞXjjj:

The second inequality follows from the positive definiteness of the function

A�ðe2t; 1Þ
~LL�ðe2t; 1Þ

¼
�ðe2�t þ e2ð1��ÞtÞR �
0
ðe2ut þ e2ð1�uÞtÞ du

¼
2�tðe2�t þ e2ð1��ÞtÞ

ðe2t � 1Þ � ðe2ð1��Þt � e2�tÞ

¼
2�t coshðð1� 2�ÞtÞ

sinh t � sinhðð1� 2�ÞtÞ
¼

�t

sinhð�tÞ
�
coshðð1� 2�ÞtÞ
coshðð1� �ÞtÞ

:
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Next, when 0 < � < 
 < 1=2, we have

L
ðe2t; 1Þ
L�ðe2t; 1Þ

¼
1� 2�

1� 2

�
e2ð1�
Þt � e2
t

e2ð1��Þt � e2�t
¼

1� 2�

1� 2

�
sinhðð1� 2
ÞtÞ
sinhðð1� 2�ÞtÞ

:

Since it is positive definite, the first term in (5.3.3) is decreasing in � 2 ð0; 1=2Þ. We compute

~LL
ðe2t; 1Þ
~LL�ðe2t; 1Þ

¼
�



�
ðe2t � 1Þ � ðe2ð1�
Þt � e2
tÞ
ðe2t � 1Þ � ðe2ð1��Þt � e2�tÞ

¼
�



�
sinhð
tÞ coshðð1� 
ÞtÞ
sinhð�tÞ coshðð1� �ÞtÞ

and

sinhð
tÞ coshðð1� 
ÞtÞ
sinhð�tÞ coshðð1� �ÞtÞ

� 1

¼
sinhð
tÞ coshð�t þ ð1� �� 
ÞtÞ � sinhð�tÞ coshð
t þ ð1� �� 
ÞtÞ

sinhð�tÞ coshðð1� �ÞtÞ

¼
fsinhð
tÞ coshð�tÞ � coshð
tÞ sinhð�tÞg coshðð1� �� 
ÞtÞ

sinhð�tÞ coshðð1� �Þt

¼
sinhðð
� �ÞtÞ

sinhð�tÞ
�
coshðð1� �� 
ÞtÞ
coshðð1� �ÞtÞ

:

Thus, ~LL
ðe2t; 1Þ= ~LL�ðe2t; 1Þ is positive definite for 0 < � < 
 < 2�, and the decreasingness of the third term in
� 2 ð0; 1=2Þ is seen as in the proof of Theorem 5.2.1. �

We further take the limits of (5.3.3) as �& 0 or �% 1=2 to have

jjjH1=2XK1=2jjj �
1

1� 2�

Z 1��

�

HtXK1�t dt





 







 







 



 � Z 1

0

HtXK1�t dt





 







 







 




�

1

2�

Z �

0

ðHtXK1�t þ H1�tXKtÞ dt




 







 







 



 � 1

2
jjjHX þ XKjjj:

After the relations G � L � A and G � A� � A for 0 � � � 1 are known, it is natural to question what is the relation
between the logarithmic mean L and the Heinz-type means A�. This was settled by Drissi [31] as follows.

Theorem 5.3.4. If 0 � � � 1, then A� � L holds if and only if 1=4 � � � 3=4.

Proof. Set 
 :¼ 2�� 1 and define

f
ðtÞ :¼
A�ðe2t; 1Þ
Lðe2t; 1Þ

¼
t coshð
tÞ
sinh t

:

Let us determine the range of 
 for which f
 is positive definite. Since f
 is not bounded if j
j � 1, it suffices to
consider the case j
j < 1. Then by (5.1.6) we have

sinhð
tÞ
sinh t

¼
Z 1

�1
eits

sinð

Þ
2ðcoshð
sÞ þ cosð

ÞÞ

ds: ð5:3:4Þ

Compute the derivative

d

d


sinð

Þ
coshð
sÞ þ cosð

Þ

¼

ðcosð

Þ coshð
sÞ þ 1Þ
ðcoshð
sÞ þ cosð

ÞÞ2

:

Hence the Lebesgue convergence theorem can be used to differentiate the right-hand side of (5.3.4) so that

t coshð
tÞ
sinh t

¼
Z 1

�1
eits


ðcosð

Þ coshð
sÞ þ 1Þ
2ðcoshð
sÞ þ cosð

ÞÞ2

ds:

This implies that f
 is positive definite if and only if cosð

Þ � 0 or j
j � 1=2, equivalently 1=4 � � � 3=4. �

On the other hand, the range of � for which A� � L holds was also determined in [31], as stated in the following
exercise. Thus we have a one-parameter family of examples showing the difference between � and �.

Exercise 5.3.5. Verify that A� � L holds if and only if 1
2
ð1� 1ffiffi

3
p Þ � � � 1

2
ð1þ 1ffiffi

3
p Þ.

We next consider the means B�ðx; yÞ ¼ ððx� þ y�Þ=2Þ1=� for � 2 ½�1;1�. Here, B1 ¼ A is the arithmetic mean and
B�1 ¼ H is the harmonic mean, and B� for the special values � ¼ 0;�1 are understood as
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B0ðx; yÞ ¼ Gðx; yÞ ¼
ffiffiffiffiffi
xy

p �
¼ lim

�!0
B�ðx; yÞ

�
;

B1ðx; yÞ ¼ maxfx; yg
�
¼ lim

�!1
B�ðx; yÞ

�
;

B�1ðx; yÞ ¼ minfx; yg
�
¼ lim

�!�1
B�ðx; yÞ

�
:

It is clear that Bð�Þ
� ¼ B�� for any � 2 ½�1;1�. From the concavity of t� (t > 0) for 0 < � < 1 one readily checks

that B�ðx; yÞ is monotonically increasing in � 2 ½�1;1�. When � ¼ 1=n (n ¼ 1; 2; . . .), B1=n has the binomial
expansion

B1=nðH;KÞX ¼
1

2n

Xn
k¼0

n

k

� �
Hk=nXKðn�kÞ=n; ð5:3:5Þ

so we call B�’s binomial means.
Although the family B� was studied in [39, 40], the basic monotonicity conjecture B� � B
 for �1 � � < 
 � 1

was unsettled there except some special cases. But, in [53] Kosaki finally solved the problem by proving a much
stronger result that the ratio

B�ðe2t; 1Þ
B
ðe2t; 1Þ

¼
ðcosh�tÞ1=�

ðcosh 
tÞ1=


is infinitely divisible, i.e., ððcosh�tÞ1=�=ðcosh 
tÞ1=
Þr is positive definite for each r > 0 if � < 
. (The infinite
divisibility of M�ðe2t; 1Þ=M
ðe2t; 1Þ for � < 
 was also proved in [53].) Thus, we state

Theorem 5.3.6. If �1 � � < 
 � 1, then B� � B
 and hence

jjjB�ðH;KÞXjjj � jjjB
ðH;KÞXjjj

for any unitarily invariant norm jjj � jjj.

Since B0 ¼ G and B1 ¼ A, Theorem 5.3.6 together with (5.3.5) implies the next corollary except the convergence
of 2�njjj

Pn
k¼0

n
k

� �
Hk=nXKðn�kÞ=njjj to jjjH1=2XK1=2jjj.

Corollary 5.3.7. For every positive integer n, the inequalities

jjjH1=2XK1=2jjj �
1

2n

Xn
k¼0

n

k

� �
Hk=nXKðn�kÞ=n






































 � 1

2
jjjHX þ XKjjj

hold for any unitarily invariant norm. Furthermore,

1

2n

Xn
k¼0

n

k

� �
Hk=nXKðn�kÞ=n






































 decreases to jjjH1=2XK1=2jjj as n ! 1:

Exercise 5.3.8. Prove the convergence stated in the last of Corollary 5.3.7.

For n ¼ 1; 2; . . ., both means Mðnþ1Þ=n and B1=n have similar forms as convex combinations of xk=nyðn�kÞ=n,
k ¼ 0; 1; . . . ; n. In fact, the next proposition asserts that B1=n � Mðnþ1Þ=n holds true.

Proposition 5.3.9. For every positive integer n and unitarily invariant norm,

1

2n

Xn
k¼0

n

k

� �
Hk=nXKðn�kÞ=n






































 � 1

nþ 1

Xn
k¼0

Hk=nXKðn�kÞ=n






































:

Proof. We compute

B1=nðe2t; 1Þ
Mðnþ1Þ=nðe2t; 1Þ

�
nþ 1

2n
¼ ðnþ 1Þ

coshnð t
n
Þ sinhð t

n
Þ

sinhðnþ1
n

tÞ
�

nþ 1

2n

¼ ðnþ 1Þ
ðe

t
n þ e�

t
nÞnðe

t
n � e�

t
nÞ � ðe

nþ1
n

t � e�
nþ1
n

tÞ
2nþ1 sinhðnþ1

n
tÞ

: ð5:3:6Þ

The numerator in the latter expression is equal to
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Xn
k¼0

n

k

� �
e
n�2k
n

tðe
t
n � e�

t
nÞ � ðe

nþ1
n

t � e�
nþ1
n

tÞ

¼
Xn
k¼0

n

k

� �
e
nþ1�2k

n
t �

Xnþ1

k¼1

n

k � 1

� �
e
nþ1�2k

n
t � ðe

nþ1
n

t � e�
nþ1
n

tÞ

¼
Xn
k¼1

n

k

� �
�

n

k � 1

� �� �
e
nþ1�2k

n
t

¼
X½nþ1
2

�

k¼1

n

k

� �
�

n

k � 1

� �� �
ðe

nþ1�2k
n

t � e�
nþ1�2k

n
tÞ

¼ 2
X½nþ1
2

�

k¼1

n

k

� �
�

n

k � 1

� �� �
sinh

nþ 1� 2k

n
t

� �
:

Now it is clear that (5.3.6) is positive definite and so is B1=nðe2t; 1Þ=Mðnþ1Þ=nðe2t; 1Þ. �

Example 5.3.10. Here we note that L � B1=3 fails while L � B1=3. Looking at the Taylor expansions

Lðet; 1Þ ¼
X1
n¼0

tn

ðnþ 1Þ!
and B�ðet; 1Þ ¼ 1þ

t

2
þ

1þ �
8

t2 þ � � � ;

we notice that L � B� does not hold when 1=6 > ð1þ �Þ=8, i.e., � < 1=3. But L � B1=3 is valid, which was shown
in [61]. But here is another short proof. Indeed, it suffices to show that Lðet; 1Þ � B1=3ðet; 1Þ for all t � 0. This can be
directly checked because

B1=3ðet; 1Þ ¼
1

8
ðet þ 3e2t=3 þ 3et=3 þ 1Þ ¼ 1þ

X1
n¼1

1

8n!
1þ

2n

3n�1
þ

1

3n�1

� �
tn;

1

ðnþ 1Þ!
�

1

8n!
1þ

2n

3n�1
þ

1

3n�1

� �
for 1 � n � 6;

and 1=ðnþ 1Þ! � 1=8n! is clear for n � 7. Hence we have L � B� when (and only when) � � 1=3. However, the
function

Lðe2t; 1Þ
B1=3ðe2t; 1Þ

¼
sinh t

t cosh3ð t
3
Þ

is not positive definite. This was confirmed by a numerical computation in [39] but a theoretical proof for this
non-positive definiteness was also obtained by Kosaki [54, Remark 3].

On the other hand, we observe

Lðe2t; 1Þ
B1=2ðe2t; 1Þ

¼
sinh t

t cosh2ð t
2
Þ
¼

2 sinhð t
2
Þ

t coshð t
2
Þ
¼ 2

Z 1=2

0

coshðutÞ
coshð t

2
Þ
du;

and it is positive definite. Hence L � B1=2 is valid, which together with Proposition 5.3.9 for n ¼ 2 implies thatZ 1

0

HtXK1�t dt





 







 







 



 � 1

4
jjjHX þ XK þ 2H

1
2XK

1
2 jjj �

1

3
jjjHX þ XK þ H

1
2XK

1
2 jjj:

Exercise 5.3.11. We say that M 2 M is operator monotone if Mðx; 1Þ is an operator monotone functions on ð0;1Þ
in the sense of Definition 2.1.3. Show the following facts:
(1) M� is operator monotone when (and only when) �1 � � � 2,
(2) A� is operator monotone for any 0 � � � 1,
(3) B� is operator monotone when (and only when) �1 � � � 1.

5.4 Integral expressions for solutions to Lyapunov type matrix equations

Actual computations so far in this chapter have direct relevance to integral expressions for solutions to certain
matrix equations (typically the Lyapunov equation). In this section we collect some integral formulas in this
connection.

First, for given matrices H;K;X with H;K > 0, we consider the following algebraic equations in Y :

Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 229



1

n

Xn�1

k¼0

Hk=ðn�1ÞYKðn�1�kÞ=ðn�1Þ ¼ X; ð5:4:1Þ

1

m

Xm
k¼1

Hk=ðmþ1ÞYKðmþ1�kÞ=ðmþ1Þ ¼ X: ð5:4:2Þ

The limit case of these equations is Z 1

0

HtYK1�t dt ¼ X: ð5:4:3Þ

Proposition 5.4.1. Assume that H;K > 0. Then the above equations (5.4.1) for n � 2, (5.4.2) for m � 2, and (5.4.3)
have unique solutions Y ¼ Yn, Y ¼ ~YYm, and Y ¼ Y1 respectively, and furthermore they are expressed as

Yn ¼
Z 1

�1
HisH�1=2XK�1=2K�is

ðn� 1Þ sinð

n
Þ

coshð
 2ðn�1Þ
n

sÞ þ cosð

n
Þ
ds; ð5:4:4Þ

~YYm ¼
Z 1

�1
HisH�1=2XK�1=2K�is

ðmþ 1Þ sinð

m
Þ

coshð
 2ðmþ1Þ
m

sÞ þ cosð

m
Þ
ds;

Y1 ¼
Z 1

�1
HisH�1=2XK�1=2K�is 


2 cosh2ð
sÞ
ds: ð5:4:5Þ

Here, the inequalities jjjYnjjj � jjjY1jjj � jjj ~YYmjjj hold for any unitarily invariant norm, and jjjYnjjj increases to
jjjY1jjj as n ! 1 while jjj ~YYmjjj decreases to jjjY1jjj as m ! 1.

Proof. Since the equations (5.4.1)–(5.4.3) are

Mn=ðn�1ÞðH;KÞY ¼ X; Mm=ðmþ1ÞðH;KÞY ¼ X; LðH;KÞY ¼ X;

they have unique solutions respectively given as

Yn ¼ Mð�Þ
n=ðn�1ÞðH

�1;K�1ÞX ¼ M�1=ðn�1ÞðH�1;K�1ÞX;
~YYm ¼ Mð�Þ

m=ðmþ1ÞðH
�1;K�1ÞX ¼ M1=ðmþ1ÞðH�1;K�1ÞX;

Y1 ¼ Lð�ÞðH�1;K�1ÞX ¼ M0ðH�1;K�1ÞX:

Noting that

M�ðet; 1Þ
Gðet; 1Þ

¼
Gðet; 1Þ

M1��ðet; 1Þ
for � < 1=2;

we obtain, thanks to (5.2.7), the integral expressions of Yn and ~YYm by Theorem 5.1.3. That of Y1 is obtained
by (5.1.8) since

M0ðet; 1Þ
Gðet; 1Þ

¼
t

2 sinhð t
2
Þ
:

The remaining assertions on norm inequalities are immediate from Theorem 5.2.1. �

Secondly, for � 2 R with � 6¼ 1 we set f ðxÞ :¼ xð��1Þ=�, x > 0. Notice that

M�ðx; yÞ�1 ¼
�

�� 1
�
x��1 � y��1

x� � y�
¼

�

�� 1
f ½1�ðx�; y�Þ x; y > 0:

Hence, for H > 0 it follows from (5.1.3) and (2.3.9) that

M�ðH;HÞ�1X ¼
�

�� 1
Dð f ðH�ÞÞðXÞ ð5:4:6Þ

for all X. For 1 < � <1, since 0 < ð�� 1Þ=� < 1, f ðxÞ ¼ xð��1Þ=� has the integral expression

f ðxÞ ¼
sinð
 ��1

�
Þ




Z 1

0

xt�1=�

zþ t
dt ¼ aþ

sinð
 ��1
�
Þ




Z 1

0

t

t2 þ 1
�

1

xþ t

� �
tð��1Þ=� dt

with

a ¼
sinð
 ��1

� Þ



Z 1

0

1

t
�

t

t2 þ 1

� �
tð��1Þ=� dt:

Therefore, we obtain
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f ðH� þ uXÞ ¼ aI þ
sinð
 ��1

� Þ



Z 1

0

t

t2 þ 1
I � ðH� þ tI þ uXÞ�1

� �
tð��1Þ=� dt

for juj small enough. Since

d

du
ðH� þ tI þ uXÞ�1






u¼0

¼ �ðH� þ tIÞ�1XðH� þ tIÞ�1;

from the above integral formula we have

Dð f ðH�ÞÞðXÞ ¼
sinð
 ��1

�
Þ




Z 1

0

ðH� þ tIÞ�1XðH� þ tIÞ�1tð��1Þ=� dt:

Thanks to (5.4.6) this computation with the multiple constant �=ð�� 1Þ gives the unique solution to the equation
M�ðH;HÞY ¼ X. Thus, the usual 2� 2 matrix trick shows

Proposition 5.4.2. If 1 < � <1 and H;K > 0, then the unique solution to the equation M�ðH;KÞY ¼ X is
expressed as

Y ¼
� sinð
 ��1

�
Þ


ð�� 1Þ

Z 1

0

ðH� þ tIÞ�1XðK� þ tIÞ�1tð��1Þ=� dt:

In particular, as an alternative form of the solution (5.4.4) to the equation (5.4.1) given in Proposition 5.4.1 we have

Yn ¼
n sinð
=nÞ




Z 1

0

ðHn=ðn�1Þ þ tIÞ�1XðKn=ðn�1Þ þ tIÞ�1t1=n dt: ð5:4:7Þ

Also, set gðxÞ :¼ log x, x > 0, so that

Lðx; yÞ�1 ¼ g½1�ðx; yÞ; x; y > 0:

Since

LðH;HÞ�1X ¼ DðgðHÞÞðXÞ

and

gðxÞ ¼
Z 1

0

1

1þ t
�

1

xþ t

� �
dt;

it follows as Proposition 5.4.2 that the solution (5.4.5) to the equation (5.4.3) also admits another integral expression

Y1 ¼
Z 1

0

ðH þ tIÞ�1XðK þ tIÞ�1 dt; ð5:4:8Þ

and it is the limit of (5.4.7) as n ! 1.
Finally, let M 2 M be an operator monotone mean (as defined in Exercise 5.3.11), so by Theorem 2.7.11, Mðx; 1Þ

admits the representation

Mðx; 1Þ ¼ aþ bxþ
Z 1

0

x

xþ t
dmðtÞ; x � 0;

where a; b � 0 and m is a positive measure on ð0;1Þ such that
R1
0
ð1þ tÞ�1 dmðtÞ < þ1. But note that the symmetry

Mðx; 1Þ ¼ xMðx�1; 1Þ forces a ¼ b and dmðtÞ ¼ t dmðt�1Þ. Hence we have the integral expression

Mðx; yÞ ¼ aðxþ yÞ þ
Z 1

0

xy

xþ ty
dmðtÞ; x; y � 0;

where a and m satisfy 2aþ
R1
0
ð1þ tÞ�1 dmðtÞ ¼ 1. By noticing that

xy

xþ ty
¼
Z 1

0

e�sxxye�sty ds ¼
Z 1

0

e�stx�1

e�sy�1

ds; x; y; � > 0;

we observe that

MðH;KÞX ¼ aðHX þ XKÞ þ
Z 1

0

Z 1

0

e�sHHXKe�stK ds dmðtÞ

¼ aðHX þ XKÞ þ
Z 1

0

Z 1

0

e�stH�1

Xe�sK�1

ds dmðtÞ

for all matrices H;K;X with H;K > 0. Assume that the measure m has the density ’ðtÞ. We set  ðs; tÞ ¼ s�1’ðt=sÞ,
s; t > 0, so that  ðs; tÞ ¼  ðt; sÞ. In this case we have
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MðH;KÞX ¼ aðHX þ XKÞ þ
Z 1

0

Z 1

0

e�sHHXKe�tK ðs; tÞ ds dt

¼ aðHX þ XKÞ þ
Z 1

0

Z 1

0

e�sH�1

Xe�tK�1

 ðs; tÞ ds dt: ð5:4:9Þ

Since the harmonic mean M�1 ¼ H is the case where a ¼ 0 and m ¼ 2�1, we have

HðH;KÞX ¼ 2

Z 1

0

e�sHHXKe�sK ds ¼ 2

Z 1

0

e�sH�1

Xe�sK�1

ds:

By this together with (5.4.4) and (5.4.7) for n ¼ 2, the unique solution to the famous Lyapunov equation HY þ YK ¼ X

with H;K > 0 has the three different integral expressions as follows:

Y ¼
Z 1

0

e�tHXe�tK dt

¼
Z 1

�1
HitH�1=2XK�1=2K�it 1

2 coshð
tÞ
dt

¼
1




Z 1

0

ðH2 þ tIÞ�1XðK2 þ tIÞ�1t1=2 dt�
¼

2




Z 1

0

ðH2 þ t2IÞ�1XðK2 þ t2IÞ�1t2 dt

�
:

As further examples of the integral expression of the form (5.4.9) we have

Proposition 5.4.3. For every H;K > 0 and X,

LðH;KÞX ¼
Z 1

0

Z 1

0

e�sHHXKe�tK sþ t

stððlog t
s
Þ2 þ 
2Þ

ds dt

¼
Z 1

0

Z 1

0

e�sH�1

Xe�tK�1 sþ t

stððlog t
s
Þ2 þ 
2Þ

ds dt;

M0ðH;KÞX ¼
Z 1

0

Z 1

0

e�sHHXKe�tK ds dt

sþ t
¼
Z 1

0

Z 1

0

e�sH�1

Xe�tK�1 ds dt

sþ t
:

Proof. Since

Lðx; 1Þ ¼
Z 1

0

x� d� ¼
Z 1

0

sinð
�Þ



Z 1

0

xt��1

xþ t
dt

� �
d�

¼
Z 1

0

x

xþ t

Z 1

0

sinð
�Þ

t1��

d�

� �
dt ¼

Z 1

0

x

xþ t

t þ 1

tððlog tÞ2 þ 
2Þ

� �
dt;

the integral expressions in (5.4.9) for L are given with a ¼ 0 and

 ðs; tÞ ¼
sþ t

stððlog t
s
Þ2 þ 
2Þ

:

On the other hand, since

M0ðx; 1Þ ¼
log x

1� x�1
¼

x

x� 1

Z 1

0

1

1þ t
�

1

xþ t

� �
dt ¼

Z 1

0

x

ðxþ tÞð1þ tÞ
dt;

the expressions in (5.4.9) for M0 are given with a ¼ 0 and  ðs; tÞ ¼ ðsþ tÞ�1. �

The second expression of the above proposition implies that the solution Y1 to the equation (5.4.3) admits, besides
(5.4.5) and (5.4.8), one more integral expression

Y1 ¼
Z 1

0

Z 1

0

e�sHXe�tK ds dt

sþ t
:

Appendix

A.1 Converse to Taylor’s theorem

In this section let X and Y be general Banach spaces and f be a map from an open subset U of X into Y. Then f is
said to be Fréchet differentiable at a point a 2 U if there exists a Df ðaÞ 2 BðX;YÞ such that
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k f ðaþ xÞ � f ðaÞ � Df ðaÞxk
kxk

�! 0 as x 2 X, kxk ! 0:

The higher degree Fréchet differentiability of f is also inductively defined as stated in Section 2.3. For m 2 N, f is said
to be Cm on U if f is m times Fréchet differentiable and Dm f : U ! BðXm;YÞ is norm-continuous. The next lemma,
called converse to Taylor’s theorem, provides a useful technique to prove the Cm of f . For the proof see [1, pp. 6–9].

Lemma A.1.1. Let X;Y be Banach spaces, and let an open convex set U 
 X and a map f : U ! Y be given.
Moreover, let m � 0 and �k : U ! BsðXk;YÞ, k ¼ 0; 1; . . . ;m, be given, where �0 : U ! Y and for k � 1, BsðXk;YÞ
denotes the set of symmetric (under permutation of arguments) bounded k-multilinear maps from Xk to Y. For every
a 2 U and x 2 X such that aþ x 2 U, define Rða; xÞ 2 Y by

f ðaþ xÞ ¼
Xm
k¼0

1

k!
�kðaÞðxðkÞÞ þ Rða; xÞ;

where xðkÞ denotes the k times x; . . . ; x. Assume:
(a) for each k ¼ 0; 1; . . . ;m, �k is norm-continuous,
(b) kRða; xÞk=kxkm ! 0 as ða; xÞ 2 U�X, ða; xÞ ! ðb; 0Þ for each b 2 U.

Then f is Cm on U and Dk f ¼ �k for all k ¼ 0; 1; . . . ;m.

A.2 Regularization of functions

Choose and fix a smooth (i.e., C1) function ’ on R such that ’ is supported on ½�1; 1�, i.e., ’ðxÞ ¼ 0 outside ½�1; 1�,
’ðxÞ � 0 and ’ðxÞ ¼ ’ð�xÞ for all x 2 R, and

R 1
�1
’ðxÞ dx ¼ 1. Let f be a real measurable function on an open interval

ða; bÞ assumed to be locally integrable in the sense that
R d
c
jf ðxÞj dx < þ1 for any closed interval ½c; d� inside ða; bÞ.

For each small " > 0 we define a function f" on ðaþ "; b� "Þ by

f"ðxÞ :¼
1

"

Z xþ"

x�"
’

x� t

"

� �
f ðtÞ dt ¼

Z 1

�1

’ðtÞ f ðx� "tÞ dt; x 2 ðaþ "; b� "Þ; ðA:2:1Þ

which we call the regularization of f of order ". In fact, we have:

Lemma A.2.1.
(1) f" is C

1 on ðaþ "; b� "Þ for every " > 0.
(2) If f is continuous at x0 2 ða; bÞ, then f"ðx0Þ converges as "& 0 to f ðx0Þ.
(3) If f is continuous on ða; bÞ, then f" converges as "& 0 to f uniformly on any closed interval inside ða; bÞ.
(4) If f is absolutely continuous on any closed interval inside ða; bÞ, then ð f 0Þ" ¼ f 0", i.e., the regularization ð f 0Þ"

of f 0 is the derivative of f", and moreover f 0"ðxÞ converges as "& 0 to f 0ðxÞ almost everywhere on ða; bÞ.

Proof. The proofs of (1)–(3) are easy and may be left to exercises.
(4) Recall that f is absolutely continuous on ½c; d� if and only if f is differentiable almost everywhere on ½c; d�

with integrable derivative f 0. In this case, f ðxÞ ¼ f ðcÞ þ
R x
c
f 0ðtÞ dt for all x 2 ½c; d�. Since

d

dt
’

x� t

"

� �
f ðtÞ

� �
¼ �

1

"
’0

x� t

"

� �
f ðtÞ þ ’

x� t

"

� �
f 0ðtÞ

for almost everywhere t 2 ½c; d�, we have

ð f 0Þ"ðxÞ ¼
1

"

Z xþ"

x�"
’

x� t

"

� �
f 0ðtÞ dt ¼

1

"2

Z xþ"

x�"
’0

x� t

"

� �
f ðtÞ dt

¼
1

"

d

dx

Z xþ"

x�"
’

x� t

"

� �
f ðtÞ dt ¼ f 0"ðxÞ ðA:2:2Þ

for every x 2 ½cþ "; d � "�. Since ½c; d� is an arbitrary closed interval inside ða; bÞ, ð f 0Þ" ¼ f 0" on ðaþ "; b� "Þ.
For the latter assertion, it suffices to prove that f 0"ðxÞ converges as "& 0 to f 0ðxÞ at any differentiable point x 2 ða; bÞ

for f . If x is such a point, then

f ðtÞ ¼ f ðxÞ þ f 0ðxÞðt � xÞ þ �ðtÞ;

where �ðtÞ ¼ oðjx� tjÞ. Then, by (A.2.2),

f 0"ðxÞ ¼
1

"2

Z xþ"

x�"
’0

x� t

"

� �
f ðtÞ dt

¼
f 0ðxÞ
"2

Z xþ"

x�"
’0

x� t

"

� �
ðt � xÞ dt þ

1

"2

Z xþ"

x�"
’0

x� t

"

� �
�ðtÞ dt:

The first term of the last expression is

Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 233



� f 0ðxÞ
Z 1

�1

’0ðtÞt dt ¼ f 0ðxÞ:

The second term is dominated by

1

"

Z xþ"

x�"
’0

x� t

"

� �



 



 dt � sup
jt�xj<"

j�ðtÞj
"

¼
Z 1

�1

j’0ðtÞj dt � sup
jt�xj<"

j�ðtÞj
"

�! 0 as "& 0:

Hence f 0"ðxÞ ! f 0ðxÞ as "& 0. �

Exercise A.2.2. Show (1)–(3) of the above lemma.

A.3 C2 of 2-convex functions: Proof of Theorem 2.4.2

This section is devoted to the proof of Theorem 2.4.2 based on the original paper of Kraus [57] and also Ando’s
English translation. We begin with the following general criteria for C1 and C2 functions in terms of their second and
third divided differences, which will be useful in the proof below.

Lemma A.3.1. Let f be a real-valued function on ða; bÞ, and let a < c < d < b.
(i) If f ½2�ðx1; x2; x3Þ is uniformly bounded when x1 < x2 < x3 run over ½c; d�, then f is C1 on ðc; dÞ.
(ii) If f ½3�ðx1; x2; x3; x4Þ is uniformly bounded when x1 < x2 < x3 < x4 run over ½c; d�, then f is C2 on ðc; dÞ.

Proof. (i) Assume that

K :¼ supfjf ½2�ðx1; x2; x3Þj : c � x1 < x2 < x3 � dg < þ1:

Let � 2 ðc; dÞ and �; �0 2 ðc� �; d � �Þ with �; �0 6¼ 0 and � 6¼ �0. Then

f ð�þ �Þ � f ð�Þ
�

�
f ð�þ �0Þ � f ð�Þ

�0





 



 ¼ jf ½2�ð�þ �; �; �þ �0Þð�� �0Þj � Kj�� �0j:

This implies that

f 0ð�Þ ¼ lim
�!0

f ð�þ �Þ � f ð�Þ
�

exists. Moreover, for every � < � in ðc; dÞ, since

f ½2�ð�; x; �Þ ¼
f ðxÞ� f ð�Þ

x�� � f ðxÞ� f ð�Þ
x��

�� �

for every x 2 ða; bÞ with �; x; � distinct, we have

lim
x!�

f ½2�ð�; x; �Þ ¼
f 0ð�Þ � f ð�Þ� f ð�Þ

���

�� �
; lim

y!�
f ½2�ð�; y; �Þ ¼

f ð�Þ� f ð�Þ
��� � f 0ð�Þ
�� �

:

Therefore,

f 0ð�Þ � f 0ð�Þ
�� �





 



 ¼ lim
x!�; y!�

jf ½2�ð�; x; �Þ þ f ½2�ð�; y; �Þj � 2K

so that jf 0ð�Þ � f 0ð�Þj � 2Kj�� �j for all �; � 2 ðc; dÞ, implying the C1 of f on ðc; dÞ.
(ii) Assume that

K :¼ supfjf ½3�ðx1; x2; x3; x4Þj : c � x1 < x2 < x3 < x4 � dg < þ1:

For any choices of d0 2 ðc; dÞ and � 2 ðd0; dÞ, apply (i) to the function f ½1�ðx; �Þ ¼ ð f ðxÞ � f ð�ÞÞ=ðx� �Þ to see that f is
C1 on ðc; d0Þ. Since d0 2 ðc; dÞ is arbitrary, f is C1 on ðc; dÞ. Hence for each � 2 ðc; dÞ, one can define the function g� on
ða; bÞ by

g�ðxÞ :¼
f ½1�ðx; �Þ if x 2 ða; bÞ, x 6¼ �,

f 0ð�Þ if x ¼ �.

�
For every x1; x2; x3 2 ða; bÞ with x1; x2; x3; � distinct, notice

g½2�� ðx1; x2; x3Þ ¼ f ½3�ðx1; x2; x3; �Þ;

g½2�� ðx1; x2; �Þ ¼ lim
x!�

f ½3�ðx1; x2; x; �Þ:

Therefore,

supfjg½2�� ðx1; x2; x3Þj : c � x1 < x2 < x3 � dg � K
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so that g� is C
1 on ðc; dÞ by (i). We now define

hð�Þ :¼ g0�ð�Þ ¼ lim
x!�

f ½1�ðx; �Þ � f 0ð�Þ
x� �

; � 2 ðc; dÞ:

Note that

hð�Þ ¼ lim
x!�

lim
y!�

f ½1�ðx; �Þ � f ½1�ðy; �Þ
x� y

¼ lim
x!�

lim
y!�

f ½2�ðx; y; �Þ: ðA:3:1Þ

Moreover, for every � < � in ðc; dÞ, we notice

jf ½2�ðx; y; �Þ � f ½2�ðx0; y0; �Þj
� jf ½2�ðx; y; �Þ � f ½2�ðx0; y; �Þj þ jf ½2�ðx0; y; �Þ � f ½2�ðx0; y0; �Þj þ jf ½2�ðx0; y0; �Þ � f ½2�ðx0; y0; �Þj
� Kjx� x0j þ Kjy� y0j þ Kj�� �j: ðA:3:2Þ

Letting y ! �, y0 ! � and then x ! �, x0 ! �, we have

jhð�Þ � hð�Þj � 3Kj�� �j; �; � 2 ðc; dÞ

so that h is continuous on ðc; dÞ. Letting

rð�; �Þ :¼
f ½1�ð�þ �; �Þ � f 0ð�Þ

�
� hð�Þ

for � 2 ðc; dÞ and � 2 ðc� �; d � �Þ, � 6¼ 0, one can write

f ð�þ �Þ ¼ f ð�Þ þ f 0ð�Þ�þ hð�Þ�2 þ rð�; �Þ�2:

Notice that

rð�; �Þ ¼ lim
x0!�

f ½1�ð�þ �; �Þ � f ½1�ðx0; �Þ
�þ �� x0

� hð�Þ
� �

¼ lim
x0!�

ff ½2�ðx0; �þ �; �Þ � hð�Þg

¼ lim
x!�

lim
y!�

lim
x0!�

ff ½2�ðx0; �þ �; �Þ � f ½2�ðx; y; �Þg

thanks to (A.3.1) and that

jf ½2�ðx0; �þ �; �Þ � f ½2�ðx; y; �Þj � Kjx0 � xj þ Kj�þ �� yj

as in (A.3.2). Hence jrð�; �Þj � K� for all � 2 ðc; dÞ and all � 2 ðc� �; d � �Þ, � 6¼ 0. This implies (see Lemma A.1.1)
that f is C2 on ðc; dÞ with f 00ð�Þ ¼ 2hð�Þ. �

Throughout the rest of this section, assume that f is a conditionally 2-convex function on ða; bÞ as stated in
Theorem 2.4.2.

Lemma A.3.2. Let �1 < �1 < � < �2 < �2 be given in ða; bÞ with constraint

ð�1 � �Þð�2 � �Þ þ ð�2 � �Þð�1 � �Þ � ð�1 � �Þð�2 � �Þ � 0: ðA:3:3Þ

Then

det
f ½2�ð�1; �; �1Þ f ½2�ð�1; �; �2Þ
f ½2�ð�1; �; �2Þ f ½2�ð�2; �; �2Þ

" #
ð�1 � �1Þð�2 � �2Þ

þ f ½2�ð�1; �; �2Þ f ½2�ð�1; �; �2Þð�1 � �Þð�2 � �Þ � 0; ðA:3:4Þ

or equivalently,

f ½2�ð�1; �; �1Þ f ½2�ð�2; �; �2Þð�1 � �1Þð�2 � �2Þ
þ f ½2�ð�1; �; �2Þ f ½2�ð�1; �; �2Þfð�1 � �Þð�2 � �Þ þ ð�2 � �Þð�1 � �Þ � ð�1 � �Þð�2 � �Þg � 0: ðA:3:5Þ

Proof. First it is immediate to verify the equivalence between (A.3.4) and (A.3.5).
Step 1. We notice that it is enough to prove the lemma in the situation where � ¼ 0 2 ða; bÞ and f ð�1Þ ¼ f ð�2Þ ¼ 0. In

fact, define the function gðxÞ :¼ f ðxþ �Þ þ �xþ 
 on ða� �; b� �Þ, where �; 
 2 R can be determined so that we have
gð�1 � �Þ ¼ gð�2 � �Þ ¼ 0. Since g is conditionally 2-convex on ða� �; b� �Þ and f ½2�ðx; �; yÞ ¼ g½2�ðx� �; 0; y� �Þ for
all x; y 2 ða; bÞ with x; �; y distinct, one can reduce the proof of the lemma to the stated situation. Thus, in the rest of the
proof, we assume that
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�1 < �1 < 0 < �2 < �2 in ða; bÞ; ðA:3:6Þ
f ð�1Þ ¼ f ð�2Þ ¼ 0 ðA:3:7Þ

with constraint

�1�2 þ �2�1 � �1�2 � 0: ðA:3:8Þ

Step 2. We show that there exist a1; a2; b1; b2 2 R and � 2 ð0; 1Þ such that

a21 þ a22 ¼ b21 þ b22 ¼ 1; ðA:3:9Þ

�1 0

0 �2

� �
¼ ��1

a21 a1a2

a1a2 a22

" #
þ ð1� �Þ�2

b21 b1b2

b1b2 b22

" #
: ðA:3:10Þ

In fact, (A.3.10) means that

��1a
2
1 þ ð1� �Þ�2b21 ¼ �1; ðA:3:11Þ

��1a
2
2 þ ð1� �Þ�2b22 ¼ �2; ðA:3:12Þ

��1a1a2 þ ð1� �Þ�2b1b2 ¼ 0: ðA:3:13Þ

It follows from (A.3.9), (A.3.11) and (A.3.12) that ��1 þ ð1� �Þ�2 ¼ �1 þ �2 and hence

� ¼
�2 � �1 � �2
�2 � �1

; ðA:3:14Þ

which is in ð0; 1Þ thanks to (A.3.6). From (A.3.9) (A.3.13) and (A.3.11) we have

�2�21a
2
1ð1� a21Þ ¼ ð1� �Þ2�22b

2
1ð1� b21Þ

and

�21 � 2��1�1a
2
1 þ �

2�21a
4
1 ¼ ð1� �Þ2�22b

4
1

so that

��1ð2�1 � ��1Þa21 þ ð1� �Þ2�22b
2
1 ¼ �21:

Solving this and (A.3.11) as a pair of linear equations for a21 and a22, and applying (A.3.14), we have

a21 ¼
�1ð�1�1 þ �2�2 � �1�2Þ
�1ð�2 � �1Þð�2 � �1 � �2Þ

; ðA:3:15Þ

b21 ¼
��1ð�1�2 þ �2�1 � �1�2Þ
�2ð�2 � �1Þð�1 þ �2 � �1Þ

: ðA:3:16Þ

Hence, by (A.3.9),

a22 ¼
�2ð�1�2 þ �2�1 � �1�2Þ

��1ð�2 � �1Þð�2 � �1 � �2Þ
; ðA:3:17Þ

b22 ¼
�2ð�1�1 þ �2�2 � �1�2Þ
�2ð�2 � �1Þð�1 þ �2 � �1Þ

: ðA:3:18Þ

By assumptions (A.3.6) and (A.3.8), the right-hand sides of (A.3.15)–(A.3.18) are all nonnegative. So one can fix
a1; a2; b1; b2 satisfying (A.3.15)–(A.3.18) with positive sign, for which (A.3.11)–(A.3.13) are really satisfied so that
(A.3.9) and (A.3.10) hold.

Step 3. Put

A :¼ �1
a21 a1a2

a1a2 a22

" #
¼

a1 a2

a2 �a1

� �
�1 0

0 0

� �
a1 a2

a2 �a1

� �
;

B :¼ �2
b21 b1b2

b1b2 b22

" #
¼

b1 b2

b2 �b1

� �
�2 0

0 0

� �
b1 b2

b2 �b1

� �
;

where
a1 a2
a2 �a1

� �
and

b1 b2
b2 �b1

� �
are unitaries. Then A � 0 � B and (A.3.10) means that

�1 0

0 �2

� �
¼ �Aþ ð1� �ÞB:

Hence the conditional 2-convexity of f implies, thanks to (A.3.7), that
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f ð�1Þ 0

0 f ð�2Þ

� �
� � f ðAÞ þ ð1� �Þ f ðBÞ

¼ �
a1 a2

a2 �a1

� �
0 0

0 f ð0Þ

� �
a1 a2

a2 �a1

� �
þ ð1� �Þ

b1 b2

b2 �b1

� �
0 0

0 f ð0Þ

� �
b1 b2

b2 �b1

� �
¼ f ð0Þ

�a22 þ ð1� �Þb22 �f�a1a2 þ ð1� �Þb1b2g
�f�a1a2 þ ð1� �Þb1b2g �a21 þ ð1� �Þb22

" #
:

By taking the determinant of the difference of the right-hand and the left-hand sides, we have 
11
22 � 
212 � 0, where


11 :¼ f ð0Þf�a22 þ ð1� �Þb22g � f ð�1Þ;

22 :¼ f ð0Þf�a21 þ ð1� �Þb21g � f ð�2Þ;

12 :¼ f ð0Þf�a1a2 þ ð1� �Þb1b2g:

Direct computations using (A.3.9), (A.3.14), (A.3.15) and (A.3.17) yield


11�1�2ð�2 � �1Þ ¼ f ð0Þ�2ð�1�2 � �1�1 � �2�1Þ � f ð�1Þ�1�2ð�2 � �1Þ;

22�1�2ð�2 � �1Þ ¼ f ð0Þ�1ð�1�2 þ �2�2 � �1�2Þ � f ð�2Þ�1�2ð�2 � �1Þ:

Also, use (A.3.13)–(A.3.15) and (A.3.17) to obtain


212�
2
1�

2
2ð�2 � �1Þ

2 ¼ f ð0Þ2�1�2ð�1�2 � �1�1 � �2�2Þð�1�2 þ �2�1 � �1�2Þ:

Therefore,

0 � ð
11
22 � 
212Þ�
2
1�

2
2ð�2 � �1Þ

2

¼ ff ð0Þ�2ð�1�2 � �1�1 � �2�1Þ � f ð�1Þ�1�2ð�2 � �1Þg
� ff ð0Þ�1ð�1�2 þ �2�2 � �1�2Þ � f ð�2Þ�1�2ð�2 � �1Þg

� f ð0Þ2�1�2ð�1�2 � �1�1 � �2�2Þð�1�2 þ �2�1 � �1�2Þ
¼ f ð0Þ2�1�2�1�2ð�2 � �1Þ2 � f ð0Þ f ð�1Þ�1�2�1ð�2 � �1Þð�1�2 þ �2�2 � �1�2Þ

� f ð0Þ f ð�2Þ�1�2�2ð�2 � �1Þð�1�2 � �1�1 � �2�1Þ þ f ð�1Þ f ð�2Þ�21�
2
2ð�2 � �1Þ

2:

Since �1�2ð�2 � �1Þ < 0, we have

f ð0Þ2�1�2ð�2 � �1Þ � f ð0Þ f ð�1Þ�1ð�1�2 þ �2�2 � �1�2Þ
� f ð0Þ f ð�2Þ�2ð�1�2 � �1�1 � �2�1Þ þ f ð�1Þ f ð�2Þ�1�2ð�2 � �1Þ � 0: ðA:3:19Þ

Step 4. What we have to prove is (A.3.5) with � ¼ 0, i.e.,

f ½2�ð�1; 0; �1Þ f ½2�ð�2; 0; �2Þð�1 � �1Þð�2 � �2Þ þ f ½2�ð�1; 0; �2Þ f ½2�ð�1; 0; �2Þð�1�2 þ �2�1 � �1�2Þ � 0:

By (A.3.7) this means that
�f ð0Þ
�1

�
f ð�1Þ � f ð0Þ

�1

� �
�f ð0Þ
�2

�
f ð�2Þ � f ð0Þ

�2

� �
þ

� f ð0Þ
�1

� � f ð0Þ
�2

�1 � �2
�

f ð�1Þ� f ð0Þ
�1

� f ð�2Þ� f ð0Þ
�2

�1 � �2
ð�1�2 þ �2�1 � �1�2Þ � 0;

which is rewritten as

1

�1�2�1�2ð�2 � �1Þ
ff ð0Þ2�1�2ð�2 � �1Þ � f ð0Þf ð�1Þ�1ð�1�2 þ �2�2 � �1�2Þ

� f ð0Þf ð�2Þ�2ð�1�2 � �1�1 � �2�1Þ þ f ð�1Þf ð�2Þ�1�2ð�2 � �1Þg � 0:

Since �1�2�1�2ð�2 � �1Þ > 0, this is nothing but (A.3.19). �

Lemma A.3.3. If f ½2�ð�1; �2; �3Þ ¼ 0 for some distinct �1; �2; �3 in ða; bÞ, then f is linear on ða; bÞ.

Proof. First, note that f ½2�ðx; y; zÞ � 0 for all distinct x; y; z in ða; bÞ since f is convex in the usual sense. Assume that
f ½2�ð�1; �1; �Þ ¼ 0 for some �1 < �1 < � in ða; bÞ. Then f is linear on ½�1; �� and so f ½2�ð�1; �1; �Þ ¼ 0 for all �1 2 ð�1; �Þ.
For any �2; �2 with � < �2 < �2, the left-hand side of (A.3.3) is positive if �1 is sufficiently close to �, since it is positive
when �1 ¼ �. Since (A.3.5) holds for such �1 2 ð�1; �Þ by Lemma A.3.1, we have

f ½2�ð�1; �; �2Þ f ½2�ð�1; �; �2Þ � 0

so that f ½2�ð�1; �; �2Þ ¼ 0 or f ½2�ð�1; �; �2Þ ¼ 0. When f ½2�ð�1; �; �2Þ ¼ 0, f is linear on ½�1; �2� and hence f is linear on
½�1; �2�. This is the case also when f ½2�ð�1; �; �2Þ ¼ 0 and so f is linear on ½�1; �2�. Since �2 < �2 can be arbitrarily close
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to b, it follows that f is linear on ½�1; bÞ. From f ½2�ð�; �2; �2Þ ¼ 0 where � < �2 < �2, it can be similarly shown that f is
linear on ða; �2�. Thus f is linear on the whole ða; bÞ. �

From now on, we assume that f ½2�ðx; y; zÞ > 0 for all distinct x; y; z in ða; bÞ, i.e., f is strictly convex on ða:bÞ.

Lemma A.3.4. f is C1 on ða; bÞ.

Proof. By Lemma A.3.1 (i) it suffices to prove that, for any �0 2 ða; bÞ, there exist �01; �
0
2 such that �01 < �0 < �02 and

f ½2�ð�1; �; �2Þ is uniformly bounded when �1 < � < �2 run over ½�01; �02�. First choose �1; �2 with a < �1 < �0 < �2 < b.
Since the left-hand side of (A.3.3) is ð�0 � �1Þð�2 � �0Þ > 0 when �1 ¼ �2 ¼ � ¼ �0, one can choose �01; �

0
2 such that

�1 < �01 < �0 < �
0
2 < �2 and

ð�1 � �Þð�2 � �Þ þ ð�2 � �Þð�1 � �Þ � ð�1 � �Þð�2 � �Þ � C ðA:3:20Þ

for any choice of �1 � � � �2 in ½�01; �02�, where C > 0 is a constant. Then it follows from (A.3.5) that for any
�1 < � < �2 in ½�01; �02�,

0 < f ½2�ð�1; �; �2Þ �
f ½2�ð�1; �; �1Þ f ½2�ð�2; �; �2Þ

f ½2�ð�1; �; �2Þ

�
ð�1 � �1Þð�2 � �2Þ

ð�1 � �Þð�2 � �Þ þ ð�2 � �Þð�1 � �Þ � ð�1 � �Þð�2 � �Þ
ðA:3:21Þ

�
ff ½1�ð�1; �Þ � f ½1�ð�1; �Þgff ½1�ð�; �2Þ � f ½1�ð�; �2Þg

f ½2�ð�1; �; �2ÞC
:

Since f is strictly convex in the usual sense, it is obvious that f ½1�ð�1; �01Þ < f ½1�ð�1; �Þ < f ½1�ð�02; �2Þ and f ½1�ð�1; �01Þ <
f ½1�ð�; �2Þ < f ½1�ð�; �2Þ. Furthermore, f ½2�ð�1; �; �2Þ attains the minimum value � when � runs over ½�01; �02�, which is
positive. Therefore,

supff ½2�ð�1; �; �2Þ : �01 � �1 < � < �2 � �02g

�
ff ½1�ð�02; �2Þ � f ½1�ð�1; �Þgff ½1�ð�; �2Þ � f ½1�ð�1; �01Þg

�C
< þ1: �

Lemma A.3.5. f is C2 on ða; bÞ.

Proof. Since the C1 of f has been shown in Lemma A.3.4, we can extend the second divided difference f ½2� to
ðx; y; zÞ 2 ða; bÞ3, in which two of the variables coincide but the third is different from them, as follows:

f ½2�ð�; �; �Þ :¼ lim
x!�

f ½2�ðx; �; �Þ ¼
f 0ð�Þ � f ð�Þ� f ð�Þ

���

�� �
:

Let ½�1; �2� be any closed interval included in ða; bÞ. For any � < �2 in ð�1; �2Þ, the left-hand side of (A.3.3) is positive if
�1 2 ð�1; �Þ is sufficiently close to �, since it is positive when �1 ¼ �. Since (A.3.21) holds for all such �1 < �, letting
�1 % � in (A.3.21) we have

f ½2�ð�; �; �2Þ �
f ½2�ð�1; �; �Þ f ½2�ð�; �2; �2Þ

f ½2�ð�1; �; �2Þ

so that

f ½2�ð�; �; �2Þ � f ½2�ð�1; �; �Þ � f ½2�ð�1; �; �Þ
f ½2�ð�2; �; �2Þ � f ½2�ð�1; �; �2Þ

f ½2�ð�1; �; �2Þ
:

Dividing this by �2 � �1 > 0 yields

f ½3�ð�1; �; �; �2Þ � f ½2�ð�1; �; �Þ
f ½3�ð�1; �; �2; �2Þ
f ½2�ð�1; �; �2Þ

ðA:3:22Þ

whenever �1 < � < �2 < �2. Next, for any �1 < � in ð�1; �2Þ, the left-hand side of (A.3.3) is positive if �2 2 ð�; �2Þ is
sufficiently close to �. Letting �2 & � in (A.3.21) we have

f ½2�ð�1; �; �Þ �
f ½2�ð�1; �; �1Þ f ½2�ð�2; �; �Þ

f ½2�ð�1; �; �2Þ

so that

f ½2�ð�1; �; �Þ � f ½2�ð�; �; �2Þ � f ½2�ð�; �; �2Þ
f ½2�ð�1; �; �1Þ � f ½2�ð�1; �; �2Þ

f ½2�ð�1; �; �2Þ
:

Dividing this by �1 � �2 < 0 yields
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f ½3�ð�1; �; �; �2Þ � f ½2�ð�; �; �2Þ
f ½3�ð�1; �; �1; �2Þ
f ½2�ð�1; �; �2Þ

ðA:3:23Þ

whenever �1 < �1 < � < �2.
For each �0 2 ða; bÞ, the proof of Lemma A.3.4 implies that there exist �001 ; �

00
2 such that �001 < �0 < �

00
1 and

supff ½2�ðx; �; yÞ : �001 � x < � < y � �002g < þ1 ðA:3:24Þ

(i.e., �001 ; �
00
2 are �

0
1; �

0
2 in the proof of Lemma A.3.4). Choose �01; �

0
2 with �

00
1 < �01 < �0 < �

0
2 < �

00
2 . Apply (A.3.22) to show

that f ½3�ð�1; �; �; �2Þ is bounded from above when �1 < � < �2 run over ½�01; �02�. Fix �2 :¼ �002 . Since ð�1; �Þ 7!
f ½2�ð�1; �; �2Þ is continuous on ½�01; �02�

2, the minimum value is attained at some ð�01; �0Þ 2 ½�01; �02�
2. Since f is strictly

convex, f ½2�ð�01; �0; �2Þ > 0 whether �01 ¼ �0 or �01 6¼ �0. Note that

f ½3�ð�1; �; �2; �2Þ ¼
f ½2�ð�1; �; �2Þ � f ½2�ð�; �2; �2Þ

�1 � �2
:

Since j�1 � �2j � �002 � �02 > 0, it follows from (A.3.24) that f ½3�ð�1; �; �2; �2Þ is bounded from above. Moreover, since
f ½2�ð�1; �; �Þ ¼ limy!� f

½2�ð�1; �; yÞ, f ½2�ð�1; �; �Þ is also bounded from above by (A.3.24). Hence the required
boundedness from above of f ½3�ð�1; �; �; �2Þ is proved.

On the other hand, apply (A.3.23) to show that f ½3�ð�1; �; �; �2Þ is bounded from below when �1 < � < �2 run over
½�01; �02�. Fix �1 :¼ �001 . In the same way as above, f ½2�ð�1; �; �2Þ attains the positive minimum value, f ½3�ð�1; �; �1; �2Þ is
bounded from below, and f ½2�ð�; �; �2Þ > 0 is bounded from above. Hence the required bounded from below is proved.
We thus conclude that

K :¼ supfjf ½3�ð�1; �; �; �2Þj : �01 � �1 < � < �2 � �02g < þ1: ðA:3:25Þ

Since f is C1 on ða; bÞ, one can compute

d

d�
f ½2�ð�1; �; �2Þ ¼

d

d�

f ð�Þ�f ð�1Þ
���1 � f ð�Þ� f ð�2Þ

���2
�1 � �2

( )

¼
1

�1 � �2

f 0ð�Þ � f ð�Þ�f ð�1Þ
���1

�� �1
�

f 0ð�Þ � f ð�Þ� f ð�2Þ
���2

�� �2

( )

¼
f ½2�ð�; �; �1Þ � f ½2�ð�; �; �2Þ

�1 � �2
¼ f ½3�ð�1; �; �; �2Þ:

Hence (A.3.25) is rephrased as

d

d�
f ½2�ð�1; �; �2Þ





 



 � K

for all �1 < � < �2 in ½�01; �02�. For any �1 < �1 < �2 < �2 in ½�01; �02�, we have

f ½3�ð�1; �1; �2; �2Þ ¼
f ½2�ð�1; �2; �2Þ � f ½2�ð�1; �1; �2Þ

�2 � �1
¼

1

�2 � �1

Z �2

�1

d

d�
f ½2�ð�1; �; �2Þ d�

so that

jf ½3�ð�1; �1; �2; �2Þj �
1

�2 � �1

Z �2

�1

d

d�
f ½2�ð�1; �; �2Þ





 



 d� � K:

Hence Lemma A.3.1 (ii) implies that f is C2 on ð�01; �02Þ. �

Lemma A.3.5 together with Lemma A.3.3 proves Theorem 2.4.2.

Remark A.3.6. Theorem 2.4.2 tells that if f is a non-linear 2-convex function on ða; bÞ, then it is a strictly
convex C2 function there. Then f ½2�ðx; y; zÞ > 0 for all x; y; z 2 ða; bÞ unless x; y; z are all identical. If f is a non-linear
3-convex function on ða; bÞ, then Corollary 2.4.6 shows that f ½1�ð�; � Þ is a non-constant 2-monotone function for
every � 2 ða; bÞ. Hence Theorem 2.4.1 implies that d

dx
f ½1�ð�; xÞ ¼ f ½2�ð�; x; xÞ > 0 for all �; x 2 ða; bÞ and so f 00ðxÞ > 0

for all x 2 ða; bÞ. We do not know whether there is a non-linear 2-convex function f on ða; bÞ with f 00ðxÞ ¼ 0 for
some x 2 ða; bÞ.

A.4 Proof of Nevanlinna’s theorem, Theorem 2.6.2

To prove Theorem 2.6.2, we utilize the Poisson integral representation for analytic and also harmonic functions in
the unit disk D :¼ f� 2 C : j�j < 1g. We begin with the following lemma.
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Lemma A.4.1. If f is an analytic function in a domain containing the closed unit disk D :¼ f� 2 C : j�j � 1g,
then

f ð�Þ ¼
1

2


Z 2


0

f ðeitÞ
1� j�j2

jeit � �j2
dt; � 2 D:

Proof. For every � 2 D, the Cauchy integral formula implies that

f ð�Þ ¼
1

2
i

Z
jzj¼1

f ðzÞ
z� �

dz ¼
1

2


Z 2


0

f ðeitÞeit

eit � �
dt: ðA:4:1Þ

On the other hand, if � 2 D n f0g and so j1=�j > 1, then the Cauchy integral theorem implies that

0 ¼
1

2
i

Z
jzj¼1

f ðzÞ
z� ð1=�Þ

dz ¼
1

2


Z 2


0

f ðeitÞeit

eit � ð1=�Þ
dt ¼

1

2


Z 2


0

f ðeitÞ�
� � e�it

dt: ðA:4:2Þ

The above last integral is zero also when � ¼ 0. By (A.4.1) and (A.4.2) we have

f ð�Þ ¼
1

2


Z 2


0

f ðeitÞ
eit

eit � �
�

�

� � e�it

� �
dt ¼

1

2


Z 2


0

f ðeitÞ
1� j�j2

jeit � �j2
dt: �

The kernel function in the above integral representation is the so-called Poisson kernel that is rewritten as

1� j�j2

jeit � �j2
¼

1� r2

1� 2r cosðt � �Þ þ r2
; t 2 ½0; 2
�; ðA:4:3Þ

for each � ¼ rei� with 0 � r < 1.
A real-valued function ’ on a simply connected domain D is a harmonic function if and only if it is the real part

of an analytic function f in D (see [27, p. 202]). Moreover, it is well known that such an analytic function f in D is
unique up to a pure imaginary additive constant.

Theorem A.4.2. If ’ is a nonnegative harmonic function on D, then there exists a positive finite Borel measure � on
½0; 2
� such that

’ðrei�Þ ¼
Z 2


0

1� r2

1� 2r cosðt � �Þ þ r2
d�ðtÞ; rei� 2 D:

Proof. There exists an analytic function f in D such that ’ð�Þ ¼ Re f ð�Þ, � 2 D. For each � 2 ð0; 1Þ, since f ð��Þ is
analytic in j�j < 1=�, Lemma A.4.1 implies that

f ð��Þ ¼
1

2


Z 2


0

f ð�eitÞ
1� r2

1� 2r cosðt � �Þ þ r2
dt

so that

’ð��Þ ¼
1

2


Z 2


0

’ð�eitÞ
1� r2

1� 2r cosðt � �Þ þ r2
dt

for all � ¼ rei� 2 D. Define a positive Borel measure �� on ½0; 2
� by d��ðtÞ :¼ ð1=2
Þ’ð�eitÞ dt. ThenZ 2


0

d��ðtÞ ¼
1

2


Z 2


0

’ð�eitÞ dt ¼ ’ð0Þ:

We now consider f�� : � 2 ð0; 1Þg as a subset of the set � of positive linear functionals on Cð½0; 2
�Þ with norm
’ð0Þ, where Cð½0; 2
�Þ is the Banach space of complex functions on ½0; 2
� with sup-norm. Since the set � is compact
and metrizable in the weak* topology, one can choose a sequence �n 2 ð0; 1Þ with �n % 1 such that ��n converges in
the weak* topology to some � 2 � regarded as a positive finite Borel measure on ½0; 2
�. For every � ¼ rei� 2 D we
then have

’ð�Þ ¼ lim
n!1

’ð�n�Þ ¼ lim
n!1

Z 2


0

1� r2

1� 2r cosðt � �Þ þ r2
d�nðtÞ

¼
Z 2


0

1� r2

1� 2r cosðt � �Þ þ r2
d�ðtÞ: �

The Poisson integral representation in Theorem A.4.2 as well as in the next theorem is sometimes called the Helglotz
theorem.
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Theorem A.4.3. If f is an analytic function in D with nonnegative real part, then there exists a positive finite Borel
measure � on ½0; 2
� such that

f ð�Þ ¼
Z 2


0

eit þ �
eit � �

d�ðtÞ þ i Im f ð0Þ; � 2 D: ðA:4:4Þ

Proof. Let � be the positive finite measure on ½0; 2
� taken in Theorem A.4.2 for ’ ¼ Re f . We write gð�Þ for the first
term (the integral term) of the right-hand side of (A.4.4). For each � 2 D, since

gð� þ��Þ � gð�Þ
��

¼
Z 2


0

2eit�

ðeit � �Þðeit � � ���Þ
d�ðtÞ

and

eit�

ðeit � �Þðeit � � ���Þ





 



 � j�j
ð1� j�jÞð1� j�j � j��jÞ

�
2j�j

ð1� j�jÞ2

for all t 2 ½0; 2
� and for all �� 2 C with j��j < ð1� j�jÞ=2, it follows from the Lebesgue dominated convergence
theorem that

lim
��!0

gð� þ��Þ � gð�Þ
��

¼
Z 2


0

2eit�

ðeit � �Þ2
d�ðtÞ:

Hence g is analytic in D. Since

Re
eit þ �
eit � �

� �
¼

1� j�j2

jeit � �j2

is the Poisson kernel in (A.4.3), we have Re f ð�Þ ¼ Re gð�Þ so that f ð�Þ ¼ gð�Þ þ ib, � 2 D, for some b 2 R. Letting
� ¼ 0 gives b ¼ Im f ð0Þ thanks to gð0Þ 2 R. Hence the desired expression is obtained. �

Now we turn to the proof of Nevanlinna’s theorem (Theorem 2.6.2). Assume that f is a non-constant Pick function,
i.e., an analytic function in Cþ such that f ðCþÞ 
 C

þ. The proof is to rephrase Theorem A.4.3 by transforming f in Cþ

to an analytic function in D by the Cayley transform that is the fractional linear transform given by

�ðzÞ :¼
z� i

zþ i
:

Exercise A.4.4. Show that the Cayley transform �ðzÞ maps C
þ bijectively to D with the inverse zð�Þ ¼

ið1þ �Þ=ð1� �Þ, and that �ðzÞ maps the real line ð�1;1Þ bijectively to the unit circle feit : 0 < t < 2
g but 1.

From this exercise, it follows that �i f ðzð�ÞÞ is an analytic function in D with nonnegative real part. Hence
Theorem A.4.3 implies that there exists a positive finite measure � on ½0; 2
� such that

�i f ðzð�ÞÞ ¼
Z 2


0

eit þ �
eit � �

d�ðtÞ þ i Imð�i f ðzð0ÞÞÞ

¼
Z 2


0

eit þ �
eit � �

d�ðtÞ � i Re f ðiÞ; � 2 D:

With � :¼ Re f ðiÞ 2 R and 
 :¼ �ðf0; 2
gÞ � 0, the above integral expression is rewritten as

f ðzð�ÞÞ ¼ �þ 
i
1þ �
1� �

þ
Z
ð0;2
Þ

i
eit þ �
eit � �

d�ðtÞ; � 2 D: ðA:4:5Þ

Let � be the positive finite Borel measure on R transformed from �jð0;2
Þ via the map t 2 ð0; 2
Þ 7!� ¼ zðeitÞ 2
ð�1;1Þ or eit ¼ �ð�Þ. Substituting �ðzÞ for � and �ð�Þ for eit in (A.4.5) we have

f ðzÞ ¼ �þ 
zþ
Z 1

�1
i
�ð�Þ þ �ðzÞ
�ð�Þ � �ðzÞ

d�ð�Þ; z 2 C
þ:

Since

i
�ð�Þ þ �ðzÞ
�ð�Þ � �ðzÞ

¼ i

��i
�þi

þ z�i
zþi

��i
�þi

� z�i
zþi

¼
1þ �z
� � z

;

we arrive at

f ðzÞ ¼ �þ 
zþ
Z 1

�1

1þ �z
� � z

d�ð�Þ; z 2 C
þ:
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A.5 Proofs of Fourier transforms for hyperbolic functions

We prove the formulas (5.1.6)–(5.1.8) of Fourier transforms for certain ratios of hyperbolic functions, which play
crucial roles in Chapter 5. The proofs below are based on the residue theorem in complex function theory. A similar
computation for (5.1.6) is found in [31].

Proof of (5.1.6). We may assume that 0 < a < b and t > 0. In fact, the case t < 0 holds by symmetry and the case
t ¼ 0 by continuity from the case t 6¼ 0. Define a complex function

f ðzÞ :¼
eitz

coshð

b
zÞ þ cosð
a

b
Þ
;

which is holomorphic in C except the points z where the denominator vanishes. It is clear that those exceptional points
are poles of f ðzÞ. The equation coshð


b
zÞ þ cosð
a

b
Þ ¼ 0 means that

e
2

b
z þ 2 cos


a

b

� �
e


b
z þ 1 ¼ 0;

which is solved as

e


b
z ¼ � cos


a

b

� �
� i sin


a

b

� �
¼ �e�i


a
b

so that e


b
ðz�iaÞ ¼ �1. Therefore, the poles of f ðzÞ are

z�n :¼ iðð2n� 1Þb� aÞ; zþn :¼ iðð2n� 1Þbþ aÞ; n 2 Z:

The residues of f ðzÞ at z�n are computed as

Resðz�n ; f Þ ¼
eitz

�
n

d
dz
coshð


b
zÞjz¼z

�
n

¼
e�tðð2n�1Þb�aÞ

2

b
ðe


b
iðð2n�1Þb�aÞ � e�



b
iðð2n�1Þb�aÞÞ

¼
e�ate�ð2n�1Þbt

2

b
ð�e�i


a
b þ e�i


a
b Þ

¼
b


i
�
�e�ate�ð2n�1Þbt

sinð
a
b
Þ

:

Now, for R > 0 we take the contour

�R :

z ¼ x; �R � x � R,

z ¼ Rþ iy; 0 � y � R,

z ¼ xþ iR; R � x � �R,

z ¼ �Rþ iy; R � y � 0.

8>>><>>>:
When ð2n� 1Þb� a < R < ð2n� 1Þbþ a, the residue theorem implies thatZ

�R

f ðzÞ dz ¼ 2
i
Xn
k¼1

Resðz�k ; f Þ þ
Xn�1

k¼1

Resðzþk ; f Þ

( )
so that Z R

�R

f ðxÞ dxþ
Z R

0

f ðRþ iyÞi dy�
Z R

�R

f ðxþ iRÞ dx�
Z R

0

f ð�Rþ iyÞi dy

¼
2b

sinð
a
b
Þ

eat
Xn
k¼1

e�ð2k�1Þbt � e�at
Xn�1

k¼1

e�ð2k�1Þbt

( )
: ðA:5:1Þ

Since

jf ð�Rþ iyÞj ¼
e�ty

jcoshð
R
b
Þ cosð


b
yÞ � i sinhð
R

b
Þ sinð


b
yÞ þ cosð
a

b
Þj

�
e�tyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh2ð
R
b
Þ cos2ð


b
yÞ þ sinh2ð
R

b
Þ sin2ð


b
yÞ

q
� 1

�
e�ty

sinhð
R
b
Þ � 1

;

we have
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Z R

0

jf ð�Rþ iyÞj dy �
1

tðsinhð
R
b
Þ � 1Þ

�! 0 as R ! 1: ðA:5:2Þ

Moreover, for the particular choice R ¼ ð2n� 1Þb we have

jf ðxþ iRÞj ¼
e�tR

jcoshð

b
xÞ cosð
R

b
Þ þ i sinhð


b
xÞ sinð
R

b
Þ þ cosð
a

b
Þj

¼
e�tR

j�coshð

b
xÞ þ cosð
a

b
Þj
�

e�tR

1� cosð
a
b
Þ

so that Z R

�R

jf ðxþ iRÞj dx �
2Re�tR

1� cosð
a
b
Þ
�! 0 as R ¼ ð2n� 1Þb ! 1: ðA:5:3Þ

Hence, letting R ¼ ð2n� 1Þb ! 1 in (A.5.1) and using (A.5.2) and (A.5.3), we obtainZ 1

�1
f ðxÞ dx ¼ 2b

eat � e�at

sinð
a
b
Þ

X1
k¼1

e�ð2k�1Þbt

¼
2b

sinð
a
b
Þ
�
eat � e�at

ebt � e�bt
¼

2b

sinð
a
b
Þ
�
sinhðatÞ
sinhðbtÞ

;

which becomes (5.1.6). �

Proof of (5.1.7). As in the proof of (5.1.6) we may assume that 0 < a < b and t > 0. Define

gðzÞ :¼
eitz coshð 


2b
zÞ

coshð

b
zÞ þ cosð
a

b
Þ
¼ f ðzÞ cosh




2b
z

� �
;

which is holomorphic in C except the poles z�n , n 2 Z, as above. The residues of gðzÞ at z�n are computed as

Resðz�n ; gÞ ¼ Resðz�n ; f Þ cosh



2b
z�n

� �
¼

b


i
�
�e�ate�ð2n�1Þbt cosð
ðn� 1

2
Þ � 
a

2b
Þ

sinð
a
b
Þ

¼
b


i
�
�e�ate�ð2n�1Þbtð�ð�1Þn�1 sinð
a

2b
ÞÞ

sinð
a
b
Þ

¼
b

2
i
�
ð�1Þn�1e�ate�ð2n�1Þbt

cosð
a
2b
Þ

:

For the same contour �R as above with R 2 ðð2n� 1Þb� a; ð2n� 1Þbþ aÞ, the residue theorem implies thatZ R

�R

gðxÞ dxþ
Z R

0

gðRþ iyÞi dy�
Z R

�R

gðxþ iRÞ dx�
Z R

0

gð�Rþ iyÞi dy

¼
b

cosð
a
2b
Þ

eat
Xn
k¼1

ð�1Þk�1e�ð2k�1Þbt þ e�at
Xn�1

k¼1

ð�1Þk�1e�ð2k�1Þbt

( )
: ðA:5:4Þ

Since

jgð�Rþ iyÞj ¼ f ð�Rþ iyÞ cosh



2b
ð�Rþ iyÞ

� �



 



 � 2e�ty coshð
R
2b
Þ

sinhð
R
b
Þ � 1

;

we have Z R

0

jgð�Rþ iyÞj dy �
2 coshð
R

2b
Þ

tðsinhð
R
b
Þ � 1Þ

�! 0 as R ! 1: ðA:5:5Þ

Moreover, for the particular choice R ¼ ð2n� 1Þb we have

jgðxþ iRÞj ¼ f ðxþ iRÞ cosh



2b
ðxþ iRÞ

� �



 



 ¼ e�tR sinhð 

2b
xÞ

coshð

b
xÞ � cosð
a

b
Þ
� Ce�tR

for all x 2 R with some constant C > 0, and henceZ R

�R

jgðxþ iRÞj dx � 2CRe�tR �! 0 as R ¼ ð2n� 1Þb ! 1: ðA:5:6Þ

Combining (A.5.4)–(A.5.6) implies that
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Z 1

�1
gðxÞ dx ¼ b

eat þ e�at

cosð
a
2b
Þ

X1
k¼1

ð�1Þn�1e�ð2k�1Þbt

¼
b

cosð
a
2b
Þ
�
eat þ e�at

ebt þ e�bt
¼

b

cosð
a
2b
Þ
�
coshðatÞ
coshðbtÞ

;

which is nothing but (5.1.7). �

Proof of (5.1.8). Considering the inverse Fourier transform of (5.1.8) and exchanging �t with t, we may prove that

1

2


Z 1

�1
eist

t

sinhð t
2
Þ
dt ¼




cosh2ð
sÞ
: ðA:5:7Þ

Define

hðzÞ :¼
zeisz

sinhð z
2
Þ
; where hð0Þ ¼ 2:

The poles of hðzÞ are i2n
, n 2 Z. The residue of hðzÞ at i2n
 is

Resði2n
; hÞ ¼
i2n
e�2n
s

d
dz
sinhð z

2
Þjz¼i2n


¼ ið�1Þn4n
e�2n
s:

For the same contour �R as above with R ¼ ð2nþ 1Þ
, the residue theorem implies thatZ R

�R

hðxÞ dxþ
Z R

0

hðRþ iyÞi dy�
Z R

�R

hðxþ iRÞ dx�
Z R

0

hð�Rþ iyÞi dy

¼ 2
i
Xn
k¼1

ið�1Þk4k
e�2k
s ¼ 4

Xn
k¼1

ð�1Þk�12k
e�2k
s:

As in the proofs of (5.1.6) and (5.1.7), it is easy to verify that all the integrals but the first in the above left-hand side
converge to 0 as R ¼ ð2nþ 1Þ
! 1. Hence we obtainZ 1

�1
hðxÞ dx ¼ 4


X1
k¼1

ð�1Þk�12k
e�2k
s ¼ 4

d

ds

X1
k¼1

ð�1Þke�2nk
s

( )

¼ 4

d

ds

�e�
s

e
s þ e�
s

� �
¼

2
2

cosh2ð
sÞ
;

which is nothing but (A.5.7). �
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Hölder inequality, 205
Hadamard product, 151
Hansen and Pedersen, 168, 177
harmonic function, 240
harmonic mean, 193
Heinz, 226
Heinz-type means, 226
Helglotz theorem, 240
Hermitian, 143
Hermitian inner product, 140
Hilbert space, 140

direct sum, 151
tensor product, 150

Hilbert–Schmidt inner product, 148
Hilbert–Schmidt norm, 148, 205
Horn, 187, 203
Horn conjecture, 203

inequality
Golden–Thompson, 216
Golden–Thompson trace, 216
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