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Preface

These lecture notes are largely based on my course at Graduate School of Information Sciences of Tohoku University
during April-July of 2009. The aim of my lectures was to explain several important topics on matrix analysis from the
point of view of functional analysis. These notes are also suitable for an introduction to functional analysis though the
arguments are mostly restricted to the finite-dimensional situation.

The main topics covered in these notes are matrix/operator monotone and convex functions (the so-called Lowner
and Kraus theory), operator means (the so-called Kubo—Ando theory), majorization for eigen/singular values of
matrices and its applications to matrix norm inequalities, and means of matrices and related norm inequalities. These
have been chosen from my knowledge and interest while there are many other important topics on the subject.

I have tried to make expositions as transparent as possible and also as self-contained as possible. To do so, some
technical stuffs rather apart from matrix analysis are compiled in Appendices. The proof of the theorem of Kraus is also
deferred into Appendices since it seems too much to include in the main body. A number of exercises are put in these
lecture notes, which are supplements of my expositions as proofs omitted, examples, and further remarks. Concerning
References I should mention that their list and citations are not so complete.

At the moment I am collaborating with D. Petz in writing a more comprehensive textbook on matrix analysis, hoping
that some parts of these notes will be incorporated into the forthcoming book.

I express my gratitude to Professors T. Ando and H. Kosaki. Ando sent me his English translation of the German
paper by Kraus, without which I could not understand the characterization of matrix convex functions due to Kraus.
Kosaki gave me comments on Chapter 5, which were helpful to update the content of the chapter. I am thankful to
Professor N. Obata, Editor-in-Chief of Interdisciplinary Information Sciences, who suggested me to submit these
lecture notes as GSIS selected lectures, a newly launched section of the journal. Finally, this work was partially
supported by Grant-in-Aid for Scientific Research (C)21540208.

1. Basics on Matrices

1.1 Basic definitions

For each n € N, M,, = M,,(C) denotes the space of all n x n complex matrices, which is an n>-dimensional complex
vector space with the linear operations

AA = [/la,;,-], A+ B = [a,-j + b,]]
forA = [a,:,-];szl,B = [bij]l’.fizl € M, and for 4 € C. Fori,j =1,...,n let E;; be the n x n matrix of (i, j)-entry equal to

one and all other entries equal to zero. Then Ej, 1 < i,j < n, are called matrix units and form a basis of M, as

n
—_— .. n —_— .e Py
A =laglio, = E a;Ej;.
ij=1
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The product AB of A = [a,-j]jszl and B = [b;]]._, is defined by

n
ij=
n
n 1 P
AB = [Cij]i.jzl with Cij 1= E aikbkj-
k=1

Moreover, the adjoint matrix A* of A is defined as the conjugate transpose of A, i.e.,

A=A = (@] where A := [a] Al = [aji]zjzl.

n
i,

n
ij=1 =

Then M, becomes a x-algebra:

(AB)C = A(BC), (A+B)C =AC+BC, AB+C)=AB+AC,

A+ B)* = A* + B*, (1A = 1A%, (A" =A, (AB)" = B*A*.

The identity of M, is the n x n identity matrix I (= I,,) that is the diagonal matrix of all diagonals equal to one. The
most significant feature of matrices is noncommutativity: AB # BA. For example,

0O 1770 O 1 0 0 0[O0 1 0 0
0 ofl1 o] [0 of 1 ojlo o] [0 1]
The vector space C" of all n-dimensional vectors of complex numbers is a complex Hilbert space with the Hermitian
inner product

3 m
n —
(r,y) ==Y En; for x=|: |, y=
i=1
&n N
A matrix A € M, acts on C" as a linear operator defined by
m &1
n
=1
M €n

In fact, A(x+y) = Ax+ Ay and A(1x) = AAx for all x,y € C" and A € C. The product AB corresponds to the
composition of linear operators: (AB)x = A(Bx), x € C". The adjoint A* is determined via inner product: (Ax,y) =
(x,A*y), x,y € C". The identity matrix corresponds to the identity operator: Ix = x, x € C".

1.2 Finite-dimensional Hilbert space

Let # be an abstract n-dimensional complex Hilbert space with inner product (-, -), i.e., for every x,y,z € # and
1eC,

x,x) >0, xXx)=0<x=0,
{ (Ae,y) = Axy), @+ =x2+ 00, 5y =),
so that (x,y) is linear in y, i.e.,
(x, iy1 + ay2) = A {x, 1) + A2 (x, y2)
while conjugate-linear in x, i.e.,
(lix) + x2,y) = A1 (x1,y) + {2, y).

(This is the physics convention; in mathematics, (x,y) is linear in x and conjugate-linear in y.) The norm of x € # is
defined by

lxll = {x,x) /2.
Then we have the Schwarz inequality
[e, )1 =< llxll DIyl x,yeH (1.2.1)
and || - || indeed satisfies the properties of norm, i.e., for every x,y € # and 1 € C,

IxIl =0, [x|=0+=x=0,
(1.2.2)

Axl = Al llxll, x4yl < llxll + Iyl

Exercise 1.2.1. Show the Schwarz inequality (1.2.1) and that the equality |{x, y)| = ||x|| |||l occurs if and only if x,y
are linearly dependent. Also, show the properties (1.2.2) of norm.
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Two vectors x,y € H is said to be orthogonal, denoted by x L y, if (x,y) = 0. A basis {ey,...,e,} of # is said to be

orthonormal if (e;, e;) = §;; fori,j = 1,...,n. Such a basis is obtained by applying the Gram—Schmidt procedure to any
linear basis. That is, for a linear basis {vy,...,v,} of #, we define
1
ey .= —Vq,
loell
1 .
e = wy  with  wy := vy — (e, v1)ey,
lwal
1 .
3= w3 with w3 1= v3 — (e1, v3)e1 — (e2,v3)e,
lwsll

1 .
e, = ——w, with w,:=v,— <€1, Un>el - <en—l, vn>en—l'
llwl
Exercise 1.2.2. Show that {e},...,e,} constructed via the Gram—Schmidt procedure above is an orthonormal basis
of J¢.
Now, fix an orthonormal basis {ej,...,e,} of #. Then each x € # is written as a unique linear combination of
{e1,...,e,} as

n

X = Z(ei,x)e,-.
i=1
This is called the Fourier expansion of x, and (e;,x), 1 <i <n, are called the coordinates of x with respect to
{eq,...,e,}. Since
n

(x,y) = Z (enx)leny),  xyeH, (1.2.3)

i=1

it follows that # is isomorphic to C" as Hilbert spaces via x € # > ({e;,x))"_, € C".
Let f : #£ — C be a linear functional on F#. Set A; := f(e;) for 1 < i < n. Then for every x € ¥,

n

fo) = f<2<e,~,x>ei> = fenx)fle) =) dilei,x) = <Z A,-ei,x>.
i i=1

i=1 i=1 i=1
Hence, if we set x; := ) .| A;e;, then
f@) = (x,x),  xeH,

and such an x; € # is uniquely determined. (This is the Riesz representation theorem in the finite-dimensional case.)
When M is a subspace of J#, the orthogonal complement M+ of M is the subspace of # defined by

ML= {xe H: (x,y) =0 forall y e M}.

Choose an orthonormal basis {ey, ..., e;} of M where m = dim M. One can enlarge {ey, ..., e;} to an orthonormal basis
{el,...,ems€mt1,...,€,} of FH. Then {e;+1,...,e,} is an orthonormal basis of ML so that F has the orthogonal
decomposition

H =MD M,

that is, for every x € # there exist unique xo € M and x; € ML such that x = xp + x;.
Let B(#) denote the set of all linear operators on J¢, which is a vector space with usual linear operations.
The product AB of A, B € B(#) is defined as the composition. The adjoint A* of A € B(#) is defined as

(x,Ay) = (A*x,y), x,y € H. (1.2.4)

In fact, for each x € #, we have a linear functional y € # > (x,Ay) € C so that by the Riesz representation theorem,
there exists a unique A*x € # for which (1.2.4) holds. Then it is easy to see that x —>A*x is a linear operator on #,
i.e., A* € B(¥).

Exercise 1.2.3. Show that B(#) becomes a *-algebra with the operations introduced above.
For each A € B(Jf) we associate an n x n matrix [a;] given by
a; = (e;,Aej), 1<i,j<n, (1.2.5)

that is,
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n
Ae; = E a;e;, 1<i<n.
i=1

When x =), &e; and y = Ax = ), n;e;, we have

n n n
ni = (e Ax) = <e,-, ZsjAe_j> = glenAe) =Y ayE,  1<i<n,
j=1 j=1 j=1

so that the equation y = Ax is rewritten in terms of the coordinates of x and y as

m apy -t A &

Mn (27 N %-n

Proposition 1.2.4. Let ® be the map sending A € B(H) to [a;;] € M, defined by (1.2.5). Then ® is a x-isomorphism
between B(H) and M, that is, ® is a linear map from B(#) onto M, such that ®(AB) = ®(A)D(B) and P(A*) =
®(A)* for all A,B € B(J).

Proof. Let ®(A) = [a;;] and ®(B) = [b;]. Since

(AB)e; = A(Bej) = A (Z bkjek) =
k=1 k

= Xn:bkj(i aikei) = Zn:< ” aikbkj> e,
k=1 i=1 k

i=1 =1

bijek
1

n

we have
D(AB) = |:i aikbkj:| = [a;] [b;] = PA)P(B).
k=1 ij=1
Since
(ei,A%ej) = (A*ej,e;) = (e, Ae;) = @y,
we have

DAY) = [@l} ;=) = [az]" = SA)".
The linearity of @ is easy to check, so we omit the details. Finally, for every [c;] € M, define
Cx = Z(Z cijsj)e[ for x= Zé,-ei € H.
i=1 \j=1 i=1
Then it is immediate to see that C € B(#) and ®(C) = [¢;;] so that ® is surjective. ([l

Thus, B(J) can be identified with M, as *-algebras when J# is n-dimensional. In particular, B(C") = M,,.

More generally, let B(#, K) denote the set of all linear operators between two finite-dimensional Hilbert spaces
F and K of possibly different dimensions. For each A € B(#, JKX) one can define the adjoint A* € B(JK, #) similarly to
(1.2.4):

(U, Ax) 5 = (A*u, x) g, xeH, uec XK.
Fix orthonormal bases {ey,...,e,} of # and {fi,..., fi,} of K, and associate with A an m x n matrix [a;] by
aj = (fnAej)x, 1=<i=m, 1<j<mn,
that is, Ae; = > i a;ifi, 1 <i <n. Then Ax =) n;f; for x = 27:1 &e; is rewritten in the matrix form:

N ayp -+ Qi &

Nm aml ot En

Let M, , denote the set of all m x n complex matrices. Then B(#, X) can be identified with M, , as complex vector
spaces when dim # = n and dim K = m. In particular, B(C",C") = M, .
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1.3 Basic notions of operators and matrices

Let I (= I) denote the identity operator on a finite-dimensional Hilbert space #. For A € B(#), the kernel and the
range of A are

kerA := {x € # : Ax = 0}, ranA = {Ax : x € H},
respectively, which are subspaces of Jf. The dimension formula familiar in linear algebra is
dim #¢ = dim(ker A) 4+ dim(ran A). (1.3.1)

We say that A € M, is invertible if there is an B € B(#) such that AB = BA = I. In this case, such a B € B(¥) is
unique and we write B = A~!, called the inverse of A. It is seen from (1.3.1) that A € B(#) is invertible if and only if
kerA = {0} (i.e., A is injective), that is also equivalent to ranA = # (i.e., A is surjective).

Lemma 1.3.1. (1) For every A € B(#) and every x,y € H,

1
(»,Ax) = Z{<X+y,A(X+y)) — (x=y,AKx—y)
4+ ilx + iy, A(x + iy)) — i(x — iy, A(x — iy))}. (1.3.2)

(This identity is called the polarization identity.)
2) If A € B(#) and (x,Ax) =0 for all x € ¥, then A = 0.

Proof. (1) is obtained by a direct computation, and (2) immediately follows from (1). [l

An operator A € B(#) is said to be normal if A*A = AA*, and self-adjoint or Hermitian if A = A*. If (x,Ax) > 0 for
all x € H, then A is said to be positive semidefinite or simply positive, and we write A > 0. Moreover, if (x,Ax) > 0 for
all x € # with x # 0, then A is positive definite or strictly positive, and we write A > 0. The sets of all self-adjoint
operators and of all positive semidefinite operators in B(J) are denoted by B(H#)™ and B(#)%, respectively. If
A,B e B(#H)** and B— A > 0, i.e., (x,Ax) < (x, Bx) for all x € #, then we write A < B.

Proposition 1.3.2.
(1) A € B(#) is normal if and only if ||Ax|| = ||A*x|| for all x € F.
(2) A € B(#) is self-adjoint if and only if (x,Ax) € R for all x € H.
(3) A < B is a partial order relation on B(F)*.
4) IfA,B € B(#)* and A < B then C*AC < C*BC for all C € B(¥).

Proof. (1) follows from Lemma 1.3.1(2) since
(x, (A*A — AA")x) = (Ax,Ax) — (A*x, A*x) = |Ax]® — A%,

(2) is also seen from the same lemma since

{x, (A — A")x) = (x,Ax) — (Ax,x) = (x,Ax) — (x,Ax).
(3) For A,B € B(#)*,if A < Band A > B then (x,(A — B)x) = 0 and so A = B. Other properties for a partial order
are immediate.
(4) Under the assumption of (4), (x, C*ACx) = (Cx,ACx) < (Cx, BCx) = (x, C*BCx) for all x € #. 0

An operator U € B(#) is called a unitary ift U*U = UU* = I, i.e., U* is the inverse of U.

Proposition 1.3.3. For U € B(H) the following are equivalent:
(i) U is a unitary;
(ii) (Ux, Uy) = {x,y) for all x,y € F;

(i) ||Ux|| = ||1x|| for all x € #.

Proof. If U is a unitary then (Ux, Uy) = (x, U*Uy) = (x,y). Hence (i) = (ii). (ii) = (iii) is obvious. If (iii) is satisfied,
then (x,(U*U — I)x) = ||Ux||> — ||x||* = 0 for all x € #. By Lemma 1.3.1(2), U*U = I. In particular, U is injective
and so invertible. Hence U* = U~! and (iii) = (i). ([l

Clearly, the set of all normal operators on # includes the set of all unitaries on # and also B(#)** (D B(#)™).

Another important notion of operators is that of orthogonal projections. Let M be a subspace of #. For each x € #
take the orthogonal decomposition x = xy + x; with xg € M and x| € ML, and define P yx := xo. Then it is immediate
to see that P is a linear operator on J with ran P = M. The operator P, is called the orthogonal projection from #
onto M.

Proposition 1.3.4. P € B(H) is the orthogonal projection onto a subspace of ¥ if and only if P* = P = P>.
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Proof. For a subspace M of #, P2, = P is clear. For every x,y € M take the orthogonal decompositions x = xo + x|
and y = yo + y; with xo,y0 € M and x1,y; € M. Then

(x, Pay) = {xo + x1,¥0) = (x0,¥0) = {X0,¥0 +y1) = (Pux,y),

implying that P, = P%,. Conversely, assume that P* = P = P? and set M := ran P. For every x write x = xo + x; with
Xo € M and x; € M*. Since xo = Pz for some z € ¥, Pxg = P2z = Pz = x,. Moreover, (y, Px1) = (Py,x1) = 0 for all
y € # so that Px; = 0. Hence Px = Pxop + Px; = xo = P X, implying that P = P . O

Next, let #¢ and K be two finite-dimensional Hilbert spaces. For each A € B(#, K) we have A* € B(K, #) as
defined in the preceding section, and so A*A € B(#) and AA* € B(K). If ||Ax|| < ||x|| for all x € F, then A is called a
contraction. Moreover, A is called an isometry if ||Ax|| = ||x|| for all x € F.

Exercise 1.3.5. Let A € B(#, K). Prove the following assertions:
(1) The following conditions are equivalent: (i) A is a contraction, (ii) A*A < Iz, and (iii) AA* < Ix.
(2) A is an isometry if and only if A*A = Ig. In this case, AA* is the orthogonal projection from J onto ranA.
Finally, note that all the materials in this section can be, in particular, applied to matrices in M,, = B(C") and in
M., = B(C",C™). We write M* and M}t for the sets of all n x n Hermitian matrices and of all n x n positive

semidefinite matrices. An important fact in linear algebra is that A € M, is invertible if and only if detA # 0, i.e., A has
the non-zero determinant. All n x n unitary matrices form a group, the so-called unitary group of order n.

Exercise 1.3.6. Let U € M, and uy,...,u, be n column vectors of U, i.e., U = [uju, --- u,]. Prove that U is a
unitary matrix if and only if {uy,...,u,} is an orthonormal basis of C".

1.4 Spectral decomposition and polar decomposition

Let #¢ be an n-dimensional Hilbert space. For A € B(#) and A € C, we say that A is an eigenvalue of A if there is a
non-zero vector v € J such that Av = Av, i.e., v € ker(A — AI). Such a vector v is called an eigenvector of A
for the eigenvalue A. Recall that A € C is an eigenvalue of A if and only if A — Al is not invertible, which is
equivalent to det(1/ — A) = 0. Here, note that detB of B € B(#) can be defined by regarding B as an n x n matrix
under some orthonormal basis of # (see Section 1.2). In fact, the definition of det B is independent of the choice of an
orthonormal basis of #. Since det(1] — A) is a polynomial of degree n, A has exactly n eigenvalues with counting
multiplicities.

Theorem 1.4.1. Assume that A € B(¥) is normal, i.e., A*A = AA*. Then there exist A1,...,1, € Cand uy,...,u, €
H such that {uy,...,u,} is an orthonormal basis of # and Au; = Au; foralli =1,...,n (i.e., each A; is an eigenvalue
of A and u; is the corresponding eigenvector).

Proof. Let us prove this by induction on n = dim #. The case n =1 trivially holds. Suppose the assertion for
dimension n — 1. Assume that dim # = n and A € B(#) is normal. Choose a root 4; of det(1l — A) = 0. As explained
before the theorem, A, is an eigenvalue of A so that there is an eigenvector u; with Au; = A;u;. One may assume that u,
is a unit vector, i.e., ||u;]| = 1. Since A is normal, we have

A—1D*A -1 =@A"—4DA -4

=A*A — LA — LAY + A1

=AA* — 1A — LAF + A0

=(A - DA - D),
that is, A — A4/ is also normal. Therefore, by Proposition 1.3.2 (1),

1A* — 4 Duy || = 1A — A D*ug|| = (A — 4 Duy || =0
so that A*u; = Ayu;. Let #, := {u;}*, the orthogonal complement of {u;}. If x € #, then
(Ax,ur) = (x,A*uy) = (x, Qjuy) = A (x,up) =0,

(A*x,up) = (x,Auy) = (x, i) = 4 (x,u;) =0

so that Ax,A*x € #¢;. Hence we have A C #; and A*F; C H;. So one can define A; := A|y, € B(#;). Then
A} = A*|4,, which implies that A; is also normal. Since dim #; = n — 1, the induction hypothesis can be applied to

obtain Ay,...,4, € C and uo,...,u, € #,; such that {u,,...,u,} is an orthonormal basis of #; and A u; = A;u; for all
i=2,...,n. Then {u,us,...,u,} is an orthonormal basis of # and Au; = A;u; forall i = 1,2, ..., n. Thus the assertion
holds for dimension n as well. (]

Here, let us introduce a convenient notation. For any u, v € J define

() (vDx == (v, x)u,  x e H.
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Then we have |u)(v| € B(#), whose range is the one-dimensional subspace Cu generated by u if u, v # 0 (otherwise,
|u)(v] = 0). The physics symbol |u)(v| is often written as u ® v and called the Schatten form in mathematics.
In particular, |u)(u| for a unit vector u is the orthogonal projection onto Cu.

Exercise 1.4.2. Show the following properties:

(lu) (D" = ) (ul,  (u)(iD(u2) (Va2]) = (1, u2)|ur) (val,
A(lu)(v]) = |Au)(v], (Ju){vDA = |u){A*v| for all A € B(J?).

The conclusion of the above theorem is put together into the form

A= Ailug) i, (1.4.1)
i=1
that is called the Schmidt decomposition of A. Now, let «y, ..., a,, be the distinct eigenvalues of A from A, ...,4,. The
set {aq,...,q,} is often called the spectrum of A and denoted by o(A). Define
Pii= Y fuuwl, 1<j<m.
i:di=a;

Then P; is the orthogonal projection onto the eigenspace ker(A — o;l) for 1 < j < m and

m n
D= fuiuwl =1.
j=1 i=1

Thus, {P,...,P,} is a partition of unity or a spectral measure, and we have
m
A= Zafpf’ (1.4.2)
J=1

which is called the spectral decomposition of A. Note that the normality is indeed necessary for A € M, to have the
Schmidt decomposition (1.4.1) or the spectral decomposition (1.4.2). Also, note that the spectral decomposition of A is
uniquely determined while the Schmidt decomposition of A is not unique if some eigenvalue of A is not simple.

Corollary 1.4.3. Let A € B(#) be normal and o(A) be the spectrum of A. Then the following hold:
(1) A is self-adjoint if and only if o(A) C R.
2) A =0 if and only if o(A) C [0, c0).
(3) A > 0ifand only if a(A) C (0, 00).
(4) A is a unitary if and only if c(A) C T :={¢ceC: |¢| =1}
(5) A is an orthogonal projection if and only if o(A) C {0, 1}.

Proof. With the spectral decomposition (1.4.2) we have
m m M
A= "@P;, AA=)|gPP, A=) P
j=1 j=1 j=1

Then A* — A = Z}":](a_j —oj)P; =0 if and only if ay,...,a, € R or 6(A) C R. The arguments for other properties
are similar. 0

Let f be a complex-valued function on D C C. When A € B(#) is normal with o(A) C D, one can define
f(A) € B(J¢) by

FA) =" FQ) )il =) fl)P; (14.3)
i=1 j=1

via the decompositions (1.4.1) and (1.4.2). The correspondence f +> f(A) so defined for functions f whose domain
contains the eigenvalues of A is called the functional calculus of A. In particular, when f is a function on an interval J
in R, f(A) is defined for any A € B(#)* whose eigenvalues are contained in J. When f(¢) = ¢* with k € N, it is
obvious that f(A) = A* (the k-fold product of A). When f(¢) = 1, f(A) = I. Hence, for any polynomial p(¢), p(A)
coincides with the usual definition by substitution of A for ¢.

Example 1.4.4.
(1) Consider f,(¢) := max{t,0} and f_(¢) := max{—t,0} for r € R. For each A € B(#)*" define A, := f.(A) and
A_ := f_(A). Since fi (1), f—(1) =0, fL(t) — f—(t) =t and f(¢)f_(¢t) = 0, we have
A, A >0, A=A, —A_, AA_=0.

These A and A_ are called the positive part and the negative part of A, respectively, and A = A, + A_ is called
the Jordan decomposition of A.
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(2) For any A > 0 and for any positive p > 0, define A” := f,(A) > 0 for the function f,(f) :=, t > 0. This A” is
called the pth (fractional) power of A > 0. In particular, when p = 1/2, A'/? is called the square-root of A > 0.
Here, it is worth noting that, unlike the nonnegative number case, A” > B” does not generally follow from
A > B > 0and p > 0. For example, whenA > B > 0, A2 > B2 i always valid while A% > B2 is not, as will be
studied in Chapter 2.

(3) For each A € B(J#), note that A*A > 0 since (A*Ax,x) = ||Ax||?> > 0 for all x € H. So, define |A| := (A*A)"/? that
is called the absolute value of A. More generally, for each A € B(#, K), since A*A € B(#) and AA* € B(.K) are
positive semidefinite, one can define the absolute values |A| := (A*A)!/? € B(#) and |A*| := (AA*)"/? € B(X).

Corollary 1.4.5. For each A € B(J#), A > 0 if and only if A = B*B for some B € B(¥), and A > 0 if and only if
A = B*B for some invertible B € B(¥).

Proof. If A = B*B then (Ax,x) = ||Bx||> >0 and hence A > 0. Conversely, if A > 0 then with the square root
B :=A'? in Example 1.4.4(2), we have B > 0 and A = B> = B*B. The latter assertion is seen since B € B(J) is
invertible if and only if B*B > 0. O

Theorem 1.4.1 is rephrased as the diagonalization theorem for normal matrices in the following way.

Theorem 1.4.6. For every normal matrix A € M, there exist Ay,...,A, € C and a unitary matrix U € M, such that
A = UDiag(4y,...,4,)U", (1.4.4)
where Diag(dy,...,A4,) stands for the diagonal matrix of diagonals A,,...,A,. Furthermore, A1,...,A, are uniquely

determined (up to permutations) as the eigenvalues of A with counting multiplicities.

Proof. By Theorem 1.4.1 there exist Ay,...,4, € C and uy,...,u, € C" such that {uy,...,u,} is an orthonormal basis
of C" and Au; = Au; for 1 < i < n. Define U := [uj uy - - - u,] that is a unitary thanks to Exercise 1.3.6. We then have

AU = [Au Auy - - - Auy] = [Aiuy Luy - - Auuy]
= [ujup --- u,] Diag(d;, A2, ..., 4,) = UDiag(4;,2,...,4,)
so that (1.4.4) is obtained. In this case, since
det(4l — A) = det(Diag(d — A;,..., A =) =UA — A1) - (1 — A,
it follows that Ay,..., 4, are the roots of det(1] — A) = 0, or the eigenvalues of A with multiplicities. [l

The formula (1.4.4) of diagonalization is rewritten as

%
u

A= - ]| 2| =D A,
i=1

*
un

that is the Schmidt decomposition (1.4.1). In fact, uv* is nothing but |u)(v| in the case where # = C".
The following decomposition theorem is quite useful in operator/matrix analysis, which is the operator analog of the
polar representation ¢ = |¢|e” for ¢ € C.

Theorem 1.4.7. For every A € B(#) there exists a unitary U € B(#) such that

A =U|A| (1.4.5)
Proof. Notice that
A lx]| = (x, |A]Px) % = (x, A*Ax)'/? = || Ax]|, x e H. (1.4.6)
Set K := {|A|x : x € #} and L := {Ax : x € H}, which are subspaces of #. We define U; : KX — L by
Uy(|Alx) := Ax, x € H. (1.4.7)

The well-definedness of U, is guaranteed by (1.4.6). In fact, if |A|x = |Aly then |[Ax —Ay| = |A(x —y)| =
I |A](x — )|l = 0 so that Ax = Ay. Moreover, it is immediate to see that Uy is linear. Hence by (1.4.6), Uj is a linear
isometry from JK onto o£. This implies also that dim KX = dim £ and so dim X+ = dim £*. Hence one can choose
orthogonal bases {uj,...,u} of X+ and {v,..., v} of L*. Define U; : X+ — L+ by Uju; = vj for 1 < j < k and
extending it by linearity. Then U, is a linear isometry from K onto L. Since K @ K+ = L ® L1 = H#, one can
define a linear isometry U on # by

U(xg 4+ x1) = Upxg + Uix;  for xp € K, xi e Xt
Then by Proposition 1.3.3, U is a unitary. By the definition (1.4.7) we have A = U|A]|. [l
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The expression (1.4.5) is called the polar decomposition of A. Note that a unitary U is not unique unless A is
invertible. If A is invertible, then so is |A| and U is given by U = A|A|~!. In this case, we directly check that
U= ATAAAIT = ATHAPAT =1

Exercise 1.4.8. Let A € B(#, K) with finite-dimensional Hilbert spaces # and K. Show that there exist partial
isometries V € B(#, K) and W € B(#, K) such that

A=VI|A| = |ATW,
where V € B(#, K) is called a partial isometry if V*V € B(#) is an orthogonal projection (or equivalently, if
VV* € B(X) is an orthogonal projection).

It may be conceptually natural to consider normal, self-adjoint, and positive semidefinite operators/matrices as
noncommutative counterparts of complex, real, and nonnegative numbers, respectively, and also unitary operators/
matrices as complex numbers of modulus one. In this way, the noncommutative analysis is considered as the analysis
over operators/matrices in place of real/complex numbers.

1.5 Norms and trace

The operator norm of A € B(#) is defined by
Al := sup{||Ax|| : x € F, |Ix]| < 1}

- {”n |||| 6%’”&0}
= sup{|(v.AY)| : x.y € 6, . Iyll < 1}. (1.5.1)

This || - || on B(#) indeed has the properties of norm, i.e., for every A, B € B(#) and 1 € C,
{ Al =0, Al =0+ A=0,

(1.5.2)
|AA] = [A]|IAll, 1A+ Bl < Al + Bl

Exercise 1.5.1. Prove that the three expressions in (1.5.1) are equal. Also show the properties (1.5.2) and
IAB|| < [A]l Bl

Significant properties of the operator norm are:

Proposition 1.5.2. For every A € B(#),
1A = ALl A*All = A]*.

Proof. Since |(x,A*y)| = |{A*y,x)| = |(y,Ax)|, the first identity follows from the last expression of (1.5.1). For the
second identity, [|[A*A|l < ||A*|| |IA]l = ||A||> by the first. Moreover, by the Schwarz inequality (1.2.1), we have

IAX]1* = |{x, A*Ax)| < [|A*Ax] ||x]| < [|A*A]l [lx]?
so that [|Ax|| < |A*A||'/?|lx||, implying that JA]| < [|A*A||'/?. Hence ||A[|> < |A*A]. U
When {ey,...,e,} is an orthonormal basis of #, the trace TrA of A € B(J) is defined as

n

TrA := Z(e,-,Ae;).

i=1
The definition is independent of the choice of an orthonormal basis, as we will see shortly. Obviously, Tr is a linear
functional on M, which is positive and faithful, i.e., for any A > 0, TrA > 0 and TrA = 0 only if A = 0. In fact, the
faithfulness is shown since TrA = Y1, [[A"/?¢;]|* = 0 implies that A"/ = 0 and so A = 0. A principal property of the
trace is

TrAB = TrBA for all A, B € B(#).
In fact, thanks to (1.2.3),

TrAB = Zn:(ei,ABe,-) = Z (A%e;, Be;) ZZ (ej,A*e;)(e;j, Be;)
i=1

i=1 i=1 j=
n n n

=Y lenBrejlenAe) = Y (e;, BAej) = TrBA.
j=1 i=1 j=1

Now, let {f1, ..., f,} be another orthonormal basis of /. Then we have a unitary U defined by Ue; = f;, 1 <i <n, so
that
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D (i Af) = (Ue,AUe;) = Tr UAU = TrAUU* = TrA,

i=1 i=1

which says that the definition of TrA is actually independent of the choice of an orthonormal basis.
When A € M,, = B(C"), the trace of A is nothing but the sum of the principal diagonal entries of A:

TrA =ay;; +an+---+a,, for A= [aij]l’-f_jzl.

Proposition 1.5.3. For every A € B(#), TrA is the sum of the eigenvalues of A with counting multiplicities.

Proof. Taking the matrix representation with respect to an orthonormal basis, we may prove the result when A is an
n X n matrix. Let A;,..., 4, be the eigenvalues of A with multiplicities. Then

det(t] —A) = (@ — )t —A)---(t — Ay). (1.5.3)

From the usual definition of determinant we notice that the /"' term in the left-hand side of (1.5.3) appears only from
the product (t — ay)(t — ax) - - - (t — a,,). Hence the coefficient of =1 in the left-hand side is —TrA. On the other
hand, that in the right-hand side of (1.5.3) is —(4; + A2 + - - - + 4,,) so that the assertion follows. O

By use of the trace, define the Hilbert—Schmidt inner product on B(#) by
(A, B)ys := TrA*B, A, B € B(#).
It is immediately verified that (-, -)yg is an inner product on B(#). The norm on B(#) induced by (-, -)yg is
IAllgs = (A, A)fg = (TrA*A)'2, A e B(H),

which is called the Hilbert—Schmidt norm of A.
For every linear functional v : B(#) — C, by the Riesz representation theorem, there exists a unique Dy € B(H)
such that

Y(X) = (D}, X)us = Tr Dy X, X € B(#).
The operator D, is sometimes called the Radon—Nikodym derivative of 4 with respect to Tr. A linear functional ¥ on

B(J) is said to be positive if ¥(X) > 0 for all X € B(#)", and called a state if v is positive and /() = 1. The set of all
states on B(J#) is a convex set, whose extreme points are called pure states.

Exercise 1.5.4. Let w be a linear functional on B(J#f). Prove:
(1) o is a state if and only if D, > 0 and Tr D,, = 1. Such an operator on # is called a density operator.
(2) wis apure state if and only if there is a unit vector u € # such that w(X) = (u, Xu) for X € B(#) (or equivalently,
D, = |u)(ul).
(3) For each X € B(#), X € B(#)" if and only if w(X) > 0 for all states w on B(#).

In the case B(#) = M,,, since

(A, Byys = Y_agby, A =layl, B= b,
ij=1

. . .o, . . . 2 .
we notice that (-, -)yg is actually the Hermitian inner product when M, is regarded as C" . Hence, (M, (-, -)ys) is an
n2-dimensional Hilbert space and the matrix units Ej;, 1 <1i,j < n, form a canonical orthonormal basis.

Exercise 1.5.5. Prove the following inequalities for A € M,:

max{”al”, LI ] ”an”}
, , < Al = lAllus»
maX{”Cl] ”9 R ] ”an”}
where ay, ..., a, are the column vectors and a,...,a, are the row vectors of A, i.e., A=[a; -+ a,] =[d| --- a].

Exercise 1.5.6.
(1) Show that the following hold for all A, X € B(#):

A% las = IAllws,  1AXNIgs < AN I1XIluss  1XAllas < AN X [ 5s-
(2) For each A € B(F) define L, Ry : B(#) — B(#) by the left and the right multiplications:
Ly X (= AX, RAX (= XA, X € B(#),

which are obviously linear operators on (B(#), (-, -)ys)- Prove:
(a) The operator norms of L, and R, are equal to ||A|], i.e., |[Lall = ||Rall = l|A]l.
(b) (La)" = La- and (R4)" = Ry-.
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(c) If AeB(#)" then Ly >0 and R, >0, ie., (LaX, X)ys = 0 and (R4X,X)us = 0 for all X € B(H),
and vice versa.

(3) When A = [“”

a . . . .
a a12:| € My, find the matrix representations of L4 and R4 on M, with respect to the basis
21 an

aq 0

{E11,E12, Ey, Exp} of M. When A = [
0 aj

], find what those are.

The spectral radius of A € B(#) is defined as
r(A) := max{|1]| : 1 € o(A)}.
Also, the numerical range of A € B(#) is
W(A) := {{(x,Ax) : x € H, ||x| = 1},
and the numerical radius of A is

w(A) := max{|(x,Ax)| : x € H, ||x] = 1}.

Proposition 1.5.7.
(1) For any A,B € B(#), 0(AB) = o(BA) and hence r(AB) = r(BA).
(2) The numerical radius w(-) is a norm on B(F).
(3) For every A € B(#),

r(A) < wA) < |A]l < 2w(A).
4) If A € B(#) is normal, then r(A) = w(A) = ||A].

Proof. (1) It is enough to show that det(1/ — AB) = det(1] — BA) for A,B € M,,. Assume first that A is invertible.
We then have

det(1] — AB) = det(A~ (1] — AB)A) = det(1] — BA)
and hence o0(AB) = o(BA). When A is not invertible, choose a sequence {g;} in C\ o(A) with & — 0, and set
Ay := A — g l. Then
det(1l — AB) = k]im det(Al — AxB) = k]im det(Al — BA;) = det(Al — BA).
— 00 — 00

(2) It is obvious that w(A) > 0 and w(A) =0 implies A =0 by Lemma 1.3.1(2). For every A,B € B(#) and
x € H#, ||x|]| = 1, we have

|(x, (A + B)x)| < [(x, Ax)| + |{x, Bx)| < w(A) + w(B)

and hence w(A + B) < w(A) + w(B).

(3) For each A € 6(A) choose a unit vector v € F such that Av = Av. Then |[1] = |[(v,Av)| < w(A). Hence the first
inequality holds. The second inequality follows from the Schwarz inequality. The last inequality will be proved after
the proof of (4).

(4) Since r(A) < w(A) < ||A|| was proved in (3), it suffices to show that ||A|| < r(A) for normal A. By the Schmidt

decomposition (1.4.1) we have
n n 1/2
D A, x| = (Z |ﬂ,~<u,-,x>|2>
i=1 i=1

; 1/2
< <1n<1a<§l I/lil> (; |<ui,x>|2> = r(A) lIxll,

[|Ax[| =

which implies that ||A|| < r(A).
Finally, let us prove that ||A]| < 2w(A). For any A € B(#) let

1 1
B:=—-(A+A), C:=—(A—-A".
2( +A%) 2i( )

Then B, C € B(#)* and A = B + iC (called the Descartes decomposition of A). Hence by (4), we have
Al < Bl + [IC]| = w(B) + w(C).
Since w(A) = w(A*) as immediately seen, w(B) < w(A) and w(C) < w(A) by (2). Therefore, ||A|| < 2w(A). U

0 1i|. Since A has only zero eigenvalues, 7(A) = 0. Compute w(A) and ||A]|.

Exercise 1.5.8. Let A = |:0 0
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Note that the spectral radius r(-) is not a norm on M. For example, r(A + A*) = 1 but r(A) = r(A*) = 0 for A in the
above exercise.

1.6 Tensor product and Schur product

To introduce tensor products of operators/matrices, we start with tensor product for Hilbert spaces. Let # and X be
finite-dimensional Hilbert spaces with dim # = n and dim J = m. The tensor product vector space H & K is
abstractly defined as the quotient vector space of the free vector space over {x @ u : x € #, u € X} by the subspace
spanned by

E+Qu—xQu—yQu, xQU+v)—xQu—yQu,
AX)Qu—AxQ®u), x® (Au) —A(x Q u)

for all x,y € #, u,v € K and A € C. Fix orthonormal bases {ej,...,e,} and {fi,..., f;,,} of # and K, respectively.
Then {e; ®fj: 1 <i <n, 1 <j<mjis alinear basis of # ® K. So # ® K may be more conveniently introduced as
the vector space over {¢; ®fj : 1 <i <n, 1 <j < m}. We next introduce an inner product on # ® K by

)4 q p 4
<Zxk Rk, Y N ® Uz> =)D e ) (s vi) (1.6.1)
k=1 =1 k=1 I=1

for xi,y; € # and u, v; € K. The well-definedness of (1.6.1) is seen by the universality of the tensor product as
follows: Let ¥ be the vector space of all conjugate-linear functionals on # & K. For each x € # and u € X, since
(y,v) € #H x K +—{x,y){u,v) is bilinear, we have a unique linear functional ¢(x,u) on H & K such that
ox, u)(y @ v) = (x,y){(u,v), y € #H, v € K. It is easy to see that (x,u) € H x K > @(x,u) € F is a bilinear map, so
we have a unique linear map F : # ® K — F such that F(x ® u) = ¢(x,u), x € #, u € K. Then the form (1.6.1) is
written as (£,n) = F(O)(n) for (= Y7 xx ®up and n = Y7, v ® vy, s0 (1.6.1) is well-defined. Any { € H ® X is
written as ¢ = ) ', x; ® f; with x; € H. Since

m

(€0 =" (x) i fid =D Il
Jk=1 j=1

(¢,¢) = 0 implies that x; = 0 for all j and so z = 0. The other properties of inner product for (1.6.1) are easy to see.
Thus # ® JK becomes an nm-dimensional Hilbert space, called the fensor product Hilbert space of # and KX, and it is
clear that {¢; ® f;: 1 <i <n, 1 <j<m} is an orthonormal basis. (Note that the completion procedure is further
necessary to define the tensor product of infinite-dimensional Hilbert spaces but the completeness is automatic in the
finite-dimensional case.)

For each A € B(#) and B € B(XK), a linear operator A ® B, called the tensor product of A and B, on # ® K is
defined by

)4 )4
A® B)(Zxk ® uk) =Y Ax, ® Buy

=1 k=1
for x; € # and u; € K, where the well-definedness is seen similarly to that of (1.6.1) above.
Now, consider # = C" and KX = C" with {ey,...,e,} and {f,..., f,,} being the standard bases, respectively. Then
C" ® C" is identified with C" by arranging the basis

{el ®f1’~--,el ®fma62 ®f1,~--,€2 ®fm, ------ s €n ®f1a--~9en ®fm}

For A = [a;] e M, (= B(C") and B = [by] € M,, (= B(C™)), the matrix representation of A ® B with respect to the
above basis is written in the block-matrix form as

auB apB - a;,B
ayB apB --- a),B

A®B=| | (1.6.2)
anlB aHZB e annB

since {(e; ® fi, (A ® B)(¢; ® f1)) = a;iby. This form of A ® B is often called the Kronecker product of A and B.

Proposition 1.6.1. Let A,A|,A, € B(#), B,B,B; € B(K) and ay,a; € C. Then
(1) (@A) +a2A2) @B =0a1(A1 @ B)+ a2(A2 ® B), A® (1B + a2B2) = 21(A @ B) + a2(A ® By).
(2) (A1 ®B)(A2®By) =A1A; ® B1By, (A® B)* =A* ® B*.
(3) If A,B are invertible, then so is A ® B and (A B '=A"1@B L
@4 IfA>0and B> 0, then AQ B > 0.

Proof. The proofs of (1)—(3) are left for exercises. To show (4), let A > 0 and B > 0. With the square-roots A!/2 > 0
and B2 > 0, we have
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AQB=A"2) @B =A@ B2 = A" @B A2 @B >0
by (2) and Corollary 1.4.5. ]
Exercise 1.6.2. Show (1)-(3) of the above proposition.

The Schur product or the Hadamard product A o B of two n x n matrices A and B is defined by the entrywise
product as

AoB:= [a,'jb,;]-] for A= [a,:,-]:fj:], B = [bij]n

n
ij=1 ij=1+

It is obvious that

AoB=BoA, (AoB*=A*0B*, (MA+uB)oC=AA0C)+ uBoC)
for all A,B,C € M, and 4, u € C. An important property of this product is the following Schur product theorem.
Theorem 1.6.3. IfA,B € M then Ao B € M.

Proof. Let A,B € M and represent the tensor product A ® B by an n? x n> matrix as in (1.6.2) with respect to the
basis {e1 ®e1,...,e1 Qen,ea®e1,...,60R¢€,, ...... ,en®er,...,e,®e,}. Then Ao B is realized as a principal
submatrix of A ® B corresponding to a sub-basis {e; ®ej,er ®er,...,e,Re,}. We have AQB>0 by
Proposition 1.6.1(4). It is clear that a principal submatrix of a positive semidefinite matrix is also positive
semidefinite. Hence A o B > 0 follows. O

Exercise 1.6.4. Prove the following:
(1) If A,B e M then Ao B € M.
2) If Ay >A, >0and B; > B, > 0in M, then Ay o B > A, 0o B,.
(3) If A>0and B> 0in M, then Ao B > 0.

1.7 Positive maps and completely positive maps

Let # and K be finite-dimensional Hilbert spaces, and let ® : B(#) — B(.K) be a linear map. The map & is said to
be positive if ®(A) € B(X)* for all A € B(#)", and ® is said to be unital if ®(Iy) = Ix.

Exercise 1.7.1. Show that if ® is positive, then ®(A*) = ®(A)* for all A € B(#); in particular, ®(A) € B(JK)™ for all
A € B(F)™.

The method using 2 x 2-block matrices will be useful in later discussions, so let us first prepare some basics on 2 x 2
block matrices. For two (finite-dimensional) Hilbert spaces #; and #f, consider the direct sum Hilbert space

Hy @ FHy = {x1 D x2:x1 € Hy, x2 € Ho}
equipped with the inner product
(X1 @ x2,y1 @ y2) 1= (x1,31) + (x2,¥2), X1,y1 € Hy, x2,y2 € Ha.
A general A € B(#, ® J») is represented as a 2 x 2 block matrix
A— |:A11 Alz]
Ay An

with Ay, € B(#,), Ap € B(H>, H1), Ay € B(H, #H>) and Ay € B(H5), which acts on H; @ H, in the matrix

form
il [An An|[x] _ [Anx +Apx
[yz} B |:A21 Azz“ixz} B [Azm +A22x2}
forx; ® x; € #H; @ H; and y; @ y, = A(x; @ x,). Then the product and the adjoint in B(F#| @ #,) are computed in the

conventional way for matrices. In particular, when #; = #, = #, one can identify J & J with the tensor product
Hilbert space C* ® # and then B(# & #) = B(C*> ® J#) with

Ay Anp

Vo ® B0 = H:Az Ay
1

} DAy € B(J(’)}.

The next lemma will be of some use.

Lemma 1.7.2. If C € B(#), then |: I c

! 1] > 0 if and only if | C] < 1.

Proof. This is seen as
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I C X I Cl[x
|: i|20<=><|: ],[ “: i|>20 for all x,y €
c* 1 y cr I ]ly

< (x,x) +2Re(x,Cy) + (y,y) > 0 forall x,y € #

(x,x) + (v, )
=[x, Cy)| < —
= |C| <1. O

for all x,y € #

When @ is positive and unital, Kadison’s inequality
DAY < D(A%)

holds for every A € B(#)™. The following is an extension of Kadison’s inequality due to Choi [26]. The proof below is
from Bhatia [14, Sect. 2.3] (also [7, Sect. 4]).

Theorem 1.7.3. If ® is positive and unital, then
DA)*P(A) < D(A™A)
for every normal A € B(H).

Proof. Let A =73 """, a;P; be the spectral decomposition. Then A* =3 @P; and A*A =}, laj|*P;. Under the
identification B(C? ® X) = M, ® B(X), since I = &(I) = Z_/ ®(P;), we can write

d(A*A) <I><A>*} | o DP) @ d(P)) Sl @
[ d(A) I J;[ a;®(P)  D(P) } ,;[ o 1 )

2
|

Since |: ?i| € M and ®(P;) € B(X)" by positivity of ®, it follows that

|:<I>(A*A) d)(A)*} 0
d(A) I -

qj

%
Hence it suffices to show that |:€, C}

j| > 0 if and only if C*C < B. To prove this, we may assume by continuity that

B is invertible. Then [Ié CI‘ :| > ( is equivalent to

B~Y2 0B C*I[B™'* 0 1 B~12¢C*
= > ()
|: 0 1:||:C I:||: 0 1:| cB~'/? 1 -

By Lemma 1.7.2 this is also equivalent to |CB~'/?| < 1, that is, B~'/>C*CB~'/> < I or C*C < B. O
The following is also due to Choi [26] with proof from [7, 14].
Theorem 1.7.4. If ® is positive and unital, then
oA~ = (4™
for every invertible A € B(J)™.
Proof. Since A > §I for some 6 > 0, we have ®(A) > §®(I) = &I so that ®(A) is invertible too. Let A = ij:l a;P;

be the spectral decomposition with «; > 0. Then A~" = """ | o' P; and hence
dAH I Nt
4 11 SE e
I oewl S| 1 g

. a1 S
since ]1 > (. Multiplying

o from both sides of the above gives
J

I 0
0 &)
DA D)
> 0.
oA)"? I
By the argument in the proof of Theorem 1.7.3 we have ®(4)~' < &A™!). O

Theorem 1.7.5. If ® is positive and unital, then ||®| = 1, where
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| X
@ :=sup ———.
x#0 [IX]|

Proof. Since ®(I) =1, ||®P|| > 1. We need to show that || ®(A)|| < 1 for all A € B(#) with ||A|| < 1. For any unitary
U € B(#), by Theorem 1.7.3 we have

DU PU) < dUU)=dU)=1
so that || ®(U)|| < 1. For every A € B(#) with ||A|| < 1, take the polar decomposition A = U|A| with a unitary U and

the spectral decomposition |A| = } " | @;P;. Since 0 < ; < 1, & = cos 6 with 0 < §; < /2. Define V, 1=}, i P;

and V=) e~ P;. Then V; and V, are unitaries and |A| = (V; + V»)/2 so that A = (UV, + UV,)/2. Hence
2TV + |PUVL)| <1

2 — b
as required. (I

A =

Proposition 1.7.6. If ® is positive, then ||®| = || DU)].
Proof. For each ¢ > 0 define a linear map ®, : B(#) — B(XK) by
D, (A) = PA) + e(TrA)l x, A € B(#).
Then @, is positive and ®.(]) is invertible. So, further define a linear map V¥, : B(#) — B(XK) by
V. (A) i= D)2 (A)D ()2, A€ B(H),
which is positive and unital. By Theorem 1.7.5, ||W,|| = 1. Hence, if ||A|| < 1 then
1A = 19D 2L (A)P(D' 2] < 19D = [|P:(DII.
Letting & \, 0 gives || ®(A)|| < ||®()|. Therefore, |®| = || D). O
Let @ : B(#) — B(X) and ® : B(#) — B(X) be two linear maps. Then the tensor product map
®® P : B(H) ® B(H) = B(H ® H) — B(X) ® B(X) = B(K @ K)
is defined by setting
(®®PARA) = DA)® PA), AecB(H), AcBH),

and by extending it by linearity. Here it might be expected that if both ® and & are positive then so is ® @ ®.
However, it is not true in general. This inconvenience tells us that the notion of positivity for linear maps is not very
suitable in the noncommutative setting for matrices (operators). This is the reason why we need a stronger notion of
positivity instead of simple positivity.

For each n € N the map ® is said to be n-positive if id, @ © : M, ® B(H#) is positive, where id, denotes the identity
map on M,. In a slightly more concrete notation with block matrices, ® is n-positive if and only if

QA1) - P(A)
: ) : >0 in M, ® B(X)
PAn) - P(Awm)
whenever
A e A

: ¢ | =0 inM, ®B(H).
Ay o A
Clearly, 1-positivity means the usual positivity, and n-positivity implies m-positivity with m < n. Furthermore, ® is
said to be completely positive (often abbreviated as CP) if it is n-positive for every n € N. Since
D@ P = (idpx) ® PNP ® idp g,

it is obvious that ® ® ® is positive (indeed, completely positive) if both ® and @ are completely positive. Thus, the
complete positivity is a satisfactory notion for linear maps between noncommutative x-algebras. For example, in
quantum physics and quantum probability, a system is usually given by the x-algebra B(#) over a Hilbert space #, and
the composite system of the two B(#) and B(H) is described by the tensor product B(#) ® B(H#), so the positivity of
the tensor product of linear maps is essential.
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Proposition 1.7.7. If ® is 2-positive and unital, then it is a Schwarz map in the sense that
DAY D(A) < DP(A*A), A € B(#).

A*A  A¥

Proof. For every A € B(#), since |: A I

] > 0 in M, ® B(#), we have

PA*A) DA
> 0.
D(A) 1 -
As in the proof of Theorem 1.7.3, this implies that ®(A)*®(A) < O(A*A). ([l

In this way, we have the following implications for unital linear maps:

CP = ... = 3-positivity = 2-positivity = Schwarz map = positivity.

Example 1.7.8. Let ® be the transpose map on M,,, n > 2, i.e,,
PA)=A" = laji]; for A = [a;];.

Then it is obvious that ® is a positive and unital linear map. But it is not a Schwarz map. Indeed, assume that ® is a
Schwarz map. Then (A")*A’ < (A*AY, i.e., AA" < A'A for all A € M,,. Replacing A with A we must have AA* < A*A.
But of course, this does not hold in general. In particular, the transpose map on M, is positive but not 2-positive.

There are nice characterizations and representations for completely positive maps, which are summarized in the next
theorem without proofs. For the details see [14, Chapter 2] and [66, §11.7] for example.

Theorem 1.7.9. Let ® : B(#) — B(K) be a linear map with n = dim # and m = dim K. Then the following
conditions are equivalent:

(i) @ is completely positive.

(ii) For the matrix units Ej, 1 <1i,j < n, of B(#),

OER) - D(EL)
: ) : >0 in M, ® B(X).
CD(Enl) e q)(Enn)

(iii) There are operators V; : H — K, 1 <i <r, such that
OA) =) VAV,  AeBH)
i=1

where r can be chosen at most nm.
@iv) For any Ay,...,A; € B(#) and By,...,B; € B(X) with any k € N,

k
> B;®(A7A)B; = 0
ij=1
holds.
(v) There are a Hilbert space K, a representation (or s-homomorphism) m : B(¥) — B(X), and an operator
V: K — K such that

dA) = V'r(A)V, A € B(#),
where dim X can be chosen at most n*m.

The above characterization (ii) is due to Choi, and the block matrix there is often called the Choi matrix. The
representation in (iii) is called the Kraus representation. The representation in (v) is famous as the Stinespring
representation. These representations are quite useful to treat completely positive maps.

When @ is the transpose map on M, the Choi matrix of @ is

0 0 0

S o =

010
1 00
0 0 0 1
which is not positive semidefinite since the determinant is —1. This re-proves the last statement in Remark 1.7.8.
From (ii) we see that if & is n-positive where n = dim #, then it is completely positive. This can be slightly

generalized in such a way that @ is k-positive with k := min{dim #, dim K}, then it is completely positive. If a positive
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linear map @ has the range included in a commutative *-subalgebra (in particular, ® is a positive linear functional),
then it is completely positive. More generally, we may consider a linear map & : A — B, where A C B(J) and
B C B(K) are x-subalgebras, and the positivity and complete positivity are similarly defined for ®. If A or B is
commutative and @ is positive, then @ is completely positive. A typical example of completely positive maps is a
conditional expectation, i.e., a positive linear map E from a x-algebra 4 (C B(J)) onto a unital (i.e., Ig = I4)
#-subalgebra B of + such that E(B|AB;) = B|E(A)B; for all A € A and By,B, € 8B.

Exercise 1.7.10. Show the following statements.
(1) The linear maps

Try : B(#) @ B(K) — B(#), Trg : B(#)Q B(K) — B(K)
are uniquely determined by
Tryx(A® B) = (TrB)A, Trx(A ® B) = (TrA)B, A € B(#), B € B(X).
These Trx and Trg are called the partial traces.
(2) (dim X)~ ' Trx and (dim #)~ ! Try are conditional expectations from B(#) ® B(JKX) onto the sx-subalgebras
B(#) = B(#) ® Ix and B(K) = I3 & B(K), respectively.

(3) Trx and Try are completely positive. (This follows from (2) and a general result mentioned above, however
prove this directly.)

2. Operator Monotone and Operator Convex Functions

2.1 Definitions of operator monotonicity and convexity

Throughout this chapter, let # be a finite-dimensional Hilbert space. The following is the famous Lowner—Heinz
inequality, which provides essential examples of operator monotone functions.

Theorem 2.1.1. For every A,B € B(¥#)', A > B implies AP > BP for all p € [0, 1] with the convention AV =1
Proof. The following proof is due to Pedersen. Assume first that A > B > 0, and set

A:={peR:A? > B},
Since A?, B? are continuous in p, A is a closed set. Clearly, 0,1 € A. Hence, to prove that A D [0, 1], it suffices to

show that if p,ge A then (p+¢g)/2 € A. So, assume that A? > B? and A? > BY. Then APIZBPA—PI2 <
A~PI2APA=P/2 = [ 50 that by Proposition 1.5.2

|BY2AR|E = (BPPATI Y (BYPATI )| = ATPRBPATIR < 1.
Hence ||BP?A=P/?|| <1 and similarly ||B¥?A~%/?|| < 1. Therefore, using (3), (1) and (4) of Proposition 1.5.7
we have
1> ||(BP/ZA*p/Z)*(BqﬂA*q/Z)|| — ||A*p/23(p+q)/2A*q/2”
> r(A—P/ZB(p+q)/2A—lI/2) — r(A(q—P)/4A—(l’+q)/4B(P+q)/2A—tl/2)
— r(Af(p+q)/4B(p+q)/2Afq/ZA(qu)/‘*) — r(Af(p+q)/4B(p+q)/2Af(p+q)/4)
— ”A—(p+q)/4B(p+q)/2A—(p+q)/4 I.
This implies that [ > A=(P+O/4BP+D/2A=(P+0)/4 and so APFTD/2 > BP+D/2 je. (p+ q)/2 € A. Hence the assertion
follows when A, B are invertible.

When A > B >0, for any ¢ > 0 we have A+ ¢l > B+ ¢l > 0 so that (A + &l)? > (B + el)? for all p € [0, 1].
Letting ¢ N\ 0 gives the assertion. (]

The inequality in the above theorem does not hold when p > 1, as the next example shows.

. 132 0 12 172 .. .
Example 2.1.2. Consider A := |: 0 3/4:| and B := |:1/2 12| Then A > B > 0 is immediately checked.

Since B is an orthogonal projection, for each p > 0 we have B = B and

(3/2)" —1/2 ~1/2 }

AP — BP = [
~1/2 34" —1/2

3\” 2P 4 4P
det(A"—BP):<§> <3P— er )

Compute




156 HIAI

If A? > B? then we must have det(A” — B?) > 0 so that (27 + 47)/2 < 37, which is not satisfied when p > 1.
Hence A? > B?” does not hold for any p > 1.

Definition 2.1.3. Let J be an interval (whichever closed or open) of R and f be a real-valued function on J.
(1) It is said that f is matrix monotone of degree n or n-monotone if, for every A, B € M with o(A),o(B) C J,

A >B implies f(A) > f(B).

If f is n-monotone for every n € N (or the above property holds for every A, B € B(#) with arbitrary #)), then f
is said to be operator monotone.
(2) It is said that f is matrix convex of degree n or n-convex if

fQAA+ (1 —)B) < Af(A)+ (1 — 1)f(B), 1€(0,1), (2.1.1)

for all A, B € M” with o(A), o(B) C J. Note that when f is a continuous function on J, the mid-point convexity,
ie., f((A+ B)/2) < (f(A) + f(B))/2 for all A, B as above is enough for f to be n-convex. If f is n-convex for
every n € N (or the above convexity property holds for every A, B € B(#) with arbitrary #), then f is said to be
operator convex. Also, f is said to be n-concave or operator concave if —f is n-convex or operator convex,
respectively.

Exercise 2.1.4. (1) Show that the square function #*> on R is operator convex, i.e.,
A+B\* A+ B
+ < + for all A, B € M.
2 2
(2) For A,B € M)” and & > 0, check that

(A + ¢B)® + (A — ¢B)? B <(A +¢eB)+ (A —¢B)
2 2

To show that 2 on [0, 00) is not operator convex, find an example of A > 0 and B > 0 such that AB> + BAB + B?A # 0.

3
> = ¢*(AB? + BAB + B?A).

2.2 Divided differences

In this and the next sections we prepare a certain differentiation technique, which will play a key role in Section 2.4.

Let f be a real-valued function on an open interval (a, b), where —oo < a < b < oo. Let x|, x,, ... be distinct points
in (a,b). We have an important notion of divided differences defined as follows:
S — f(x2)
O = fo), M, x) = ———=
X] — X2
and recursively for n = 2,3,...,
f[n_l](xlax27 LR ’x‘l) - f[n_ll(x2’x3’ R ’xn+1)
f[”](xl,xz, e Xy 1) = ' .
X1 — Xn41

We call f1!1, f121 and f1"! the first, the second, and the nth divided differences, respectively, of f. By induction on 7 it is
easy to see that

n+1
S, ) =) Jow) . 22.1)
= I

<jznt1,jk Ok = X))

This expression shows that F X0, Xg1) S symmetric in the arguments xi,xz,...,X,+], i.., invariant under
permutations of the arguments.

Exercise 2.2.1. Verify the expression (2.2.1).
Exercise 2.2.2. When f(x) = x* with k € N, verify that

n Ll Ly nv
f[ ](xl’x27~-~,xn+l)= § xllx;"'xnxnil'
1102 seslny 120
li+h++l1=k—n

(Hence, f =1 and f"'=0ifn > k.)
Lemma 2.2.3. Let A1, 4,,... be distinct points in (a,b), and define polynomials
k
pox) =1, pe(x):= l_[(x —4A;) fork=>1.
=1

J
Then
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1 ifn=k

[n]
pr(A, Ay, ., 1)={
k " 0 otherwise.

Proof. Let k > 0 be arbitrarily fixed. By induction on 7 it is easy to see that
P s A1+ Ag) =0 if L <m<m+n<k.
Hence p,E”](/ll, ...y App1) = 0 for all n < k. By (2.2.1) we have

DPi(Ags1)

[k]
P A, i) = = =
T (et — )

This implies that

PR A ) — P A, k) _

09
A1 — A2

p][(k+1](/l] DI /lk-‘rz) ==

and recursively p,E”](/ll, ey dpyr1) =0 for all n > k. O

The divided differences of f can be defined without restriction of the x;’s being distinct when f is sufficiently many
times differentiable, as the next lemma shows.

Lemma 2.2.4. Let n € N and assume that f is C" on (a,b). Then

(1) The nth divided difference fU"\(x1,x2,...,%.41) is extended to a symmetric continuous function on the whole
(a, b)nJrl'
(2) For every A1,42...,4,4+1 € (a, b) there exists a point € in the smallest interval containing the A;’s such that
TAKG)
f[n](/ll,...,/ln.H): ) .
n!
In particular,
o
f["](x,x,...,x):f '( ), x € (a,b).
n!
Proof. First we prove (2) when A;,..., A,y are distinct. From the symmetry of f"! we may assume that A; <

Ay < -+ < Apy1. With the polynomials pg, 0 < k < n, given in Lemma 2.2.3, we consider the C" function

n

hx) o= f@) = > M@ A D@, x € (ab).
k=0
By Lemma 2.2.3 we have

n

R ) = 0 Ae) = D A )P A )
k=0

= " A) = A A) =0
for all m =0,1,...,n. Thanks to the expression (2.2.1) this implies that h(1;) =0 for all k =1,...,n+ 1. Hence

Rolle’s theorem implies that there are &;,...,&, suchthat 4} <& <A <& < - <A, <&, < A,y and K (&) =0
for all k = 1,...,n. Repeating this argument yields a £ € (1, A,41) such that A (£) = 0. Since

RPE) = f2E) — ", )l
we have

ARG

A ) =
n:

Secondly we prove (1) by induction on 7. The initial case n = 0 trivially holds since the statement is just the C' of
F9x;) = f(x1). Let us prove the statement for # under the assumption of that for n — 1, where n > 1. Assume now that
f is C" on (a, b), so by the induction hypothesis, f"~"(xy,...,x,) is a symmetric continuous function on (a, b)". We
have to extend f[”](xl, ..., Xu41) originally defined for distinct xy,...,x,+1 in (a, b) to the whole (a, b)”“. For each
X155 Xnt1) € (a, b)"*! choose a sequence {(x(lk), . ,xfﬁl)} in (a, )" such that x(lk), - ,xﬁlk}rl are distinct and xj(-k) —
xjas k — oo forall j=1,...,n+4 1. Assume that x; # x; for some i,j € {1,...,n+ 1}. Since xgk) #* xj(-k) for all k, we
have
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WM%.%>
G BB ) =
= xﬁk) _x](k)
PG X X %) = U X X )
X — Xj
as k — oo. Hence one can define
S0, )
= lim A6

. f[nill(xl’-~~7xj—l,xj+ls~~-’xn) — N, X1 Xty e X 1)

X,'—Xj

(2.2.2)

@® Lk}r] )} and also of the choice of (i, j) with x; # x;. Moreover, for
any sequence x(k) (k) converging to (xj,...,x,+1) with x(k) x(k) not necessarily distinct, it is seen from
Yy seq Xnt1 gimg + n+1 y

(2.2.2) and the cont1nu1ty of fIn=11 that

k ~(k
S0 ) = lim f[”](x” LERD.

independently of the choice of the sequence {(x)

Hence f"I(xy,...,x,+1) is continuous on (a,b)""' \ A, where A := {(x,x,...,x) : x € (a,b)}.
(k)

Next assume that x; = = X,4+1 = x. Then x; — Xxas k — oo for all j. By (1) for distinct 4;’s proved above,
for each k there is a $<k) in the smallest interval containing x(k) ... ,xglk_:l such that
(n) (£(k)
Fonb, oy L STET)
9 n+ - ' 9
n!
Since £X — x and f is C", it follows that
(n)
k k S )
f["](x(l o E,Jil) o as k — o0.
Hence one can define
(1)
. k k AS)]
fx, .. x) = kli)rglof["](x(] Lo = =

For any sequence {x*} with x*¥ — x, we have

(1) ( (k) (n)

f[n](x(k) x(k)) _ ) f (x) f[n](
ey 0
Let {(&",...,z% ol lie any sequence in (a, b)"“k\ A cogvergmg to (x, . x).kFromkthe continuity of fI"~11, for each k
one can choose P, .. n+l) such that x\,... xﬁ,)rl are dlstmct |x,(- ) —)Zj(. | <1/k for 1<j<n+1 and
A, ) — f[”](”(k) &M )| < 1/k. We then have
(1)
. Sk k k k J7(x)
lim IG5 ) = lim 6Pl = pr

by (1) for distinct A;’s again. Hence fU(xy,...,x,41) is continuous at (x,...,x). Thus the statement of (1) for n is
proved.

Finally we prove (2) for general A;’s. Choose a sequence {(/l(k) .. /l(k) +)} in (a, by**! convergmg to (A1, ..., dut1)
with distinct /l A% +i1- For each k there is a €Y in the smallest interval containing /ll /l(k] such that
f[”](/l(k) /115]2 ) f(”)(s(k))/n‘ Let £ be a limit point of {£%}. Then it is clear that £ is in the smallest interval

containing /ll, ..., Ayy1. By taking the limit thanks to (1) proved above, we have f"(1y,...,4,41) = f®#)/n!. O

2.3 Fréchet derivatives of matrix functional calculus

Let f be a real-valued function on (a, b), and we denote by M(a, b) the set of all A € M* with o(A) C (a,b), i.e.,
al <A < bl. It is clear that M’(a, b) is an open subset of the real Banach space M’ w1th the Hilbert—Schmidt
norm | - |lgs- In this section we discuss the differentiability property of the matrix functional calculus
A e MY(a,b) — f(A) € M*. Let us first introduce the notion of Fréchet differentiability. The matrix functional
calculus A > f(A) is said to be Fréchet differentiable at Ay € M(a, b) if there exists a Df(Ag) € B(M*, M), the
space of linear maps from M into itself, such that
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/(Ao + X) — f(Ao) — Df(Ap)(X)lus
X 1lns

Then Df(Ap) is called the Fréchet derivative of the matrix function f(A) at Ap. This notion is inductively extended to
the general higher degree. To do this, we denote by B((M")", M*) the set of all m-multilinear maps from (M*)" :=
M? x - -+ x MY (m times) to M, and introduce the norm of ® € B((M")", M) as

O(Xy,..., X ]

ey s D U & eM;f\{O}}. 2.3.1)
1X1llas - - - 1 Xm s

Now assume that m € N with m > 2 and the (m — 1)th Fréchet derivative D"~ ! f(A) exists for all A € M}*(a,b) in a
neighborhood of Ay € M (a, b). We say that f(A) is m times Fréchet differentiable at Ay if D" 1f(A) is one more
Fréchet differentiable at A, i.e., there exists a D" f(Ag) € B(M;“,B((M;“)’””,Mff)) = B((MZ*)™, M?) such that

D" Ay + X) — D™ L f(Ay) — D" f(Ap)(X
I flAy +X) - f(Ao) FADXI — 0 as [Xllus — O for X € M,
HS

with respect the norm (2.3.1) of B((Mfl“)m_',Mfl“). Then D™ f(Ay) is called the mth Fréchet derivative of f(A) at Ay.
Note that the norms of M;" and B((M")", M[)) are irrelevant to the definition of Fréchet derivatives since the norms on
a finite-dimensional vector space are all equivalent; we used the Hilbert—Schmidt norm just for convenience sake.

The following theorem is essentially due to Daleckii and Krein [28], where the higher derivatives of the function
t — f(A + tX) were obtained for self-adjoint operators in an infinite-dimensional Hilbert space while the derivatives
treated in [28] are Gateaux derivatives weaker than Fréchet derivatives. Our proof below is an extension of that in [13]
for the case m = 1. The proof is based on a useful criterion of the existence of the mth Fréchet derivative via Taylor’s
theorem, which is mentioned in Appendix A.l.

— 0 as ||X]lgs — O for X € MY,

||| == sup{

Theorem 2.3.1. Let m € N and assume that f is C" on (a,b). Then the following hold true:
(1) f(A) is m times Fréchet differentiable at every A € M(a, b).
(2) If A= UDiag(Ay,...,A,)U" is the diagonalization of A € M (a,b), then the mth Fréchet derivative D" f(A) is
given as

Dmf(A)(Xl,...,Xm>=U[ DD A€ T PR PR )

kiyekm—1=1

n
X Y (U Xy Vit (U Xo) Wi, - U Xty Ukt (U Xy U )kmu‘] U
= ij=1
forall Xy,...,Xn € MY, where S,, is the permutations on {1,...,m}.

(3) The map A —D"f(A) is a norm-continuous map from M/ (a, b) to B((ML")", MJ*).
(4) The Taylor formula holds: for every A € M, (a, b),

71
FA+X) = @) + ) D AKX, ... X) + (X s as [ Xllus — 0 for X € LY.
k=1 """

(5) For every A € MY(a,b) and every X,,..., Xy € MY,
A

d
Dmf(A)(Xl,-‘-,Xm)z f(A"‘thl +"'+thm)
Oty - - - Oty t

==ty =0

Proof. The proof is by induction on m. To perform an induction procedure, one can take the initial case m = 0. The
statements (1)—(5) for the case m = 0 reduce to the obvious fact that if f is continuous on (a,b) then the map
A € MY(a,b) — f(A) € MJ" is norm-continuous. In fact, the induction argument below can work also when m = 1,
under the above interpretation for the initial case.

Let m > 1 and assume that, for » =0, 1,...,m — 1, the statements (1)—(5) hold for the order r if f is C" on (a, b).
Upon this assumption let us prove (1)-(5) for m if f is C™ on (a, b). The proof is divided into several steps. In the
following let A € M(a, b) with the diagonalization A = UDiag(4,...,4,)U* and X|,...,X,, € M\".

Step 1. When f(x) = x*, it is easily verified by a direct computation that D™ f(A) exists and

D"f(AXi,. ... Xn) = > D AKX A" XA - A Ky A (2.3.2)
lo,l15esly >0 OES),
lo+h+-+ly=k—m

(in particular, this is zero if m > k). The above expression is further written as
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ki

loly sy >0 oS, Lkise.s kn_1=1
lo+h+-+ln=k—m

n
< (U*X oty Ui, (U Xy Dt + (U Xotmety Ui, ot (U* X U)k,,l_,,} -
i,j=1
n

ki seoskim—1=1 lo 1l >0
T+l fy=k—m

X Y (U Xy V)i (U Xoy Uity + (U Xom1y U, i

m—1
oeSy,

(U*Xa(m) U )km—lj U*

=U|: D (¢TI TR TR 1)
ks km—1=1

X Y (U Xo(y D (U Xo) Uit -+ (U X1y Ui,y (U™ Xy U)kml,,} U

0ESy, ij=1

HIAI

by Exercise 2.2.2. Hence it follows that D™ f(A) exists and the expression in (2) is valid for all polynomials f.

Let us extend this for all C™ functions f on (a, b) by a continuity argument.

Step 2. Let f be C™ on (a, b) and denote the right-hand side of the expression in (2) by D" f(A)(X1, ..

., X,); then

D"f(A) is a symmetric (under permutation of arguments) m-multilinear map from (MZ*)" to M2 since fU"! is

symmetric and

Z U Xo) Uity (U*Xo2) Uik, * + - (U*Xom—1y U, i

m—1
o€eSy,

= Y WU Xety Ui, (U Xey Ut s+ (U Koty Wiy (U Xty U

o€eS,,

for Xi,...,X,, € M. By Lemma 2.2.4 (2) we have

(U*Xom U, _,j

(m)
1) = max VG

LT P P |
"™y Ay ey Ak Inax —

m—12

for all i,kq,...,kyu_1,j, where X(A) denotes the smallest interval containing the eigenvalues of A. Therefore,

[D"(A)Xi, .-, Xl

@l [ ¢
a2

ij=1 fon1=1 0€S,

2312
(U Xy D i, (U Xo) Wik, * =+ (U Xom-1) D, st (U Xy U)kmlj|> }

24172
| & -
smaxc S0 L 2D D e lasIXow s - X s

=1 et =1 €S,y
< max_|[f"™ @) 0" 1 Xom s 1Xo@ s« 1 Xown s
xeX(A)

This implies that the norm of £"f(A) on (M;’)" is bounded as
71 < " ()
|D" AN <" max |17 ).
Step 3. For each A € M)/(a, b) and each X € M we write

m—1

~ 1
R, X0 = fa+20 = 3 - DA ®),
k=0 """

~ 1
Ri(AX) := R(A,X) — — D" FANX™),

(2.3.3)

where X® denotes k times X,...,X and ; D*f(A)(X®) for k =0 means f(A). Here, the existence of D*f(A) for

1 <k <m-—1and for A € M}'(a,b) is guafanteed by the induction hypothesis. We show that
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”Rf(B’X)”HS sa sa
————— —> 0 as (B,X) € M(a,b) x MY, (B,X) — (A,0),
1 X1l is
that is, for every A € M’(a, b) and every ¢ > 0, there exists a § > 0 such that
IRF(A+Y,X)|lus < ellXlls
for all X,Y € M* with || X||gs, |Yllgs < 8. To prove this, choose a 8y > 0 such that
ap := min (A) — 28y > a, bo := max X(A) + 26y < b.

Let X,Y e M¥ with || X|lgs, |Y]lgs < 8o. Since X+ Y| < |IX+ Y|gs < 289, it is clear that XA+ Y +X) C
[ao, bo] C (a,b). Since f is C™ on (a, b), one can choose a sequence {f;} of polynomials such that fl.(“ — fPasi— oo
uniformly on [ag, bo] for all k =0, 1,...,m. For each Z € MY define a real-valued function

¢i(t) == (Z, fi(A+ Y + tX))ys, t€[0,1].
Then the ¢;’s are C™ on [0, 1] and
(1) = (Z, DA + Y + X)XD)) s,

¢ (1) = (Z.D"f(A+Y + X)X ")ys = (Z, D"filA + ¥ + X)X ") s,
since D"f; = O"f; for polynomials f; as shown in Step 1. By Taylor’s theorem applied to ¢; — ¢;, there exists a
6o € (0, 1) such that

m—1 (Ak)o _ (.k)() (m)e _ (<m)9
o) — gyt = S AL QO 9T~ T

— k! m!
that is,
(Z.Ry(A+Y.X) — Ry(A+ Y, X))ys = % (Z, D"(f; — [)A + Y + 0X)(X™))gs.
Since
(Z, D"(fi — FYA+ Y + 0X)X™))ys| < Sup. 1D"(fi — /YA +Y +6X)| - XI5 1 Z s
we have

IR,(A + Y. X) — Ry(A + Y. X)|lys < HS[L(I)IL [D"(fi = A +Y + X)) - I X]Is- (2.3.4)
<Y,

For any &€ > 0 choose an iy € N such that

sup {f"(0) = "0 = 5 forall i.j = io,
nm

t€[ag.bo]

sup 1£"(0) — f70) < —.

relao.bol - 3
Since X(A + Y + 6X) C [ag, by] for all 6 € [0, 1], it follows from (2.3.3) that
sup [|D"(fi — fHA+Y +0X)| < for all i,j > iy, (2.3.5)
0e[0,1]

D" (fiy = NA+ D < 5. (2.3.6)

W[l m W[l m

By using (2) for 1 <k <m — 1 (the induction hypothesis) and Lemma 2.2.4 (2), we notice that
ID*(fi — A+ X)) |jgs — 0 asi— o0, 1l<k<m—1
aswell as i(A+Y+X)—> fA+Y+X)and ,(A+Y) —> f(A+7Y) as i — oo. Therefore,
IR;(A+Y,X) —Ri(A+Y,X)|ys — 0 as i — oo.
So, letting i — oo and j = iy in (2.3.4) and by applying (2.3.5) we obtain
IR/(A + Y, X) = Ry, (A+ Y, X)llys < § X Is- (23.7)

Again by Taylor’s theorem applied to ¢;,, there exists a 6; € (0, 1) such that
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m—1 (k)o (m)@
sy = 52O | 9

k! m!

s

k=0
that is,

~ 1
(Z. R, A+ Y. X)hys = —(Z. D" fiy(A+ ¥ + 01 X)(X™)) ys-
Therefore,

1

—Z D" fi(A+ Y + 00X ™) — D" fi,(4+ V)X s |

< sup 1D" fiy(A+ Y + 6X) — D" fiy(A+ V)| - [ X[} 1 Z lus
€[0,

HZ, R, (A+ Y, X))ys| =

for every Z € M)* and hence

IR, (A + Y, X)llus < gsﬁ)pl] D" fi(A + Y + 0X) — D" fi, (A + VI - IX s
€[V,

For a polynomial f;; it is rather easy to see (left to Exercise 2.3.2 below) that the map D" f;, = D" f;, from M’ into
B((M*)™, M}*) is norm-continuous. Hence there exists a § € (0, §y), independently of ¥ with || Y|lyg < 8o, such that

" €
sup || in(A-i-Y—i-QX)—JDmﬁO(A—i-Y)H < -
0e[0,1] 3

whenever X € M7 satisfies || X||ys < 8. So we have
e
IR (A+Y,X)llpgs < 3 1X1s- (2.3.8)

Combining (2.3.6)—(2.3.8) implies that
IRFA + Y, X)llns < IR(A +Y,X) — Ef A+Y, Ollus + IR;,(A+ Y, X lus
+ 1D fiy (A + )X™) — D" f(A + V)(X™)lys
< 3 1 X1lis + 3 1 X1ls + 3 Xl = el Xllfs

whenever X, Y € M satisfy || X||gs, |Y]lgs < & (< o), as required.

Step 4. Next, we show that the map A — D" f(A) from M) (a,b) into B((M")", M) is norm-continuous. Let
A € MY(a, b) and &, be as in Step 3, and choose a sequence {f;} of polynomials as above. Then for any & > 0 one can
choose an iy € N such that (2.3.6) holds for all ¥ € M/ with ||Y|ys < 8p. Moreover, by Exercise 2.3.2 below, there
exists a &; € (0,8¢) such that [|D"fi,(A+Y)—D"f,, (Al <e&/3 for all ¥ € M;" with ||Y|lys < ;. Therefore, if
1Yllys < 81 then

ID"f(A+Y)— D" fAl
= 1D"(f = fi) A+ DI + 1D"fiy (A + ) = D" fi, DIl + |1 D"(fi, — NHAI

e, e ¢
=3 + 3 + 3= g,

which yields the continuity of A D" f(A).

Step 5. We finally present the proofs of the statements (1)—(5) for m.

(1) By Steps 3 and 4 we can apply a general criterion in Lemma A.1.1 of Appendix A.l to see that D™ f(A) exists
and D" f(A) = D" f(A) for every A € M, (a, b).

(2) follows since D" f(A) = D" f(A).

(3) is contained in Step 4.

(4) is contained in Step 3; just let ¥ = O there.

(5) Since Fréchet differentiability implies Gataux (or directional) differentiability, one can differentiate
SA+HX + -+ 1,X) as

———— A+ X+ + 1 X

8;1...8[”['](( 141 )l‘|="-=tm=0

:7D A+tX +"'+tm— Xm— Xm
P 1( 1X 1Xim=1)Xm)|

= . =D"fAX1,. .., Xn). -

1= =ty-1=0
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Theorem 2.3.1 in the case m = 1 says that if f is C' on (a,b), then f(A) is Fréchet differentiable at every
A € M¥(a, b) and the Fréchet derivative Df(A) at A is written as

Df(A)X) = U([f”'ui, uPI -y o (U*XU)) U, (2.3.9)

where A = UDiag(4y, ..., 4,)U* is the diagonalization and o denotes the Schur product (see Section 1.6). In particular,
when A = Diag(4,,...,4,) is in M (a, b),

DfAYX) = [N, )T, 0 X.

The assertion for the case m =2 says that if f is C?> on (a,b), then the second Fréchet derivative D?f(A) at
A = Diag(4y,...,4,) € M(a, b) is written as

D*f(AXX,Y) = [Z FP QA )X Vi + Y,-kxk,)}

k=1 ij=1

Exercise 2.3.2. Let m € N and f be a polynomial. By using the expression (2.3.2), show that the map A — D" f(A)
from ML)" into B((MY)™, M) is norm-continuous with respect to the norms ||A|lys and [|®]| of ® € B(M)*)™, M}*) in
(2.3.1).

Note that the Taylor formula (4) follows if the map A — f(A) is C™ (i.e., (1) and (3) hold). But in our proof of
Theorem 2.3.1, we first proved a stronger form of (4) as well as (3), and (1) was obtained from those two.

2.4 Characterizations of n-monotone and n-convex functions
The next theorem is due to Lowner [62] and the proof below is also based on the exposition in [30].

Theorem 2.4.1. Assume that f is a 2-monotone function on (a, b). Then f is C' on (a, b), and moreover f' > 0 and f'
is convex on (a,b) unless f is a constant.

Proof. The proof of the theorem is divided into several steps. Assume that f is 2-monotone on (a,b) and is not a
constant. Let £, < n; < & < n; be arbitrary in (a, b).

Step 1. Let A := |:$O1 ; i| We show that there exist o, o, > 0 such that B := A + Q has the eigenvalues 1y, 1, if
2
we set Q 1= “ V@102 . In fact, since
A X102 (2%

det(A — B) = 2> — (&1 + & + a1 + a)d + 6162 + §100 + Sran,
the required condition is

{51 +& +oap+ay =11 +n,
§1&52 + &r1o + S = .

This can be explicitly solved as

_ M — &) — &) o — & — D)2 — &)
& —§& ' : & — &

o]

s

which are positive numbers.
Step 2. We prove that

[1] [1]
et|:f GEuLn) f (51#72)j|>0‘ 2.4.1)

&, ) &)

Choose o), > 0 as in Step 1. Since Q > 0 so that A < B, we have f(A) < f(B). There is a unitary U = [Z” lei|
21 Up

such that B = UBU* with B := [78 r? :| Note that UB — AU = QU. Since
2

UE—AU:[

(m —&Dun (2 — 51)“121|
(m —&Juzr (2 — &Juxw

and
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oU - [Olwn + Joroouy  aup + \/muzz}
Jaroouy + iy Joanin + o) '
it follows that
{ (m — &Dun = aquny + Jogoouar, (2 — EDu = aqup + Jajaaun, (2.4.2)
(m — &)uzi = Joraqun + aauar, (2 — E)uxn = Jaraaun + aaud).

On the other hand,
Uf(B) — f(AU

:U[f(m) 0 }_[f(sn 0 }U
o faml Lo re

(f) = fEDun - (f(n2) — fE))uin
[(f(’?l) = fEDuar (f(n2) — f(&2))uz ]

B |:f[1]($1, nVar(Vaquy + Joguz)  fUNE, n) e (Veaqun + \/Ol_zuzz):|
LM )R + a1, m) (s + @)

thanks to (2.4.2). Hence
det(Uf(B) — f(A)U)
SUEL ) fMEL )
= det
SUE, ) P&, )
Thanks to (2.4.2) again we have

:|«/061(¥2(\/0—61_M11 + Voo )(arun + /aau).

n—& m—E&
Yo (Jarun+/ou) S (YR +y/@un)
L n—& m—&
1 1

—& —&
= det ml ] ml l j|«/a1(¥2(«/0611411 + Jorur) (o + Jarun).

Lm—& m—&

det U = det

[ Vo (Vorun+y/au) e (Jenunt/onun) j|

Noting that

1 1
Y= det|: 711;51 7)2;51 :| >0,
m—& m—&

[1] [1]
det[f Enm) MEL )

we have

= det(Uf(B) — f(A)U) - y(det U)~"
&) f[]](gz,nz)]
= ydet(Uf(B) — f(A)U)det U*
= ydet(UfBU* — f(A))
= ydet(f(B) — f(A4)) = 0.
Step 3. We show that f is absolutely continuous on any closed subinterval of (a, b). To prove this, it suffices to show

that f is Lipschitz continuous on any closed interval [c,d] C (a, b). Fix &, € (a,c) and 1, € (d, b). For every n; < &, in
[c,d], it follows from (2.4.1) that

fn2) = fE) f(&2) — f(m) - F) = f&) fn) — f(&2) - (f(m2) — (&)
n2 — &1 S—-m T m—§& m—& ~(—&)m—d’

since f(&1) < f(m) < f(&) < f(n2). We may assume that f(1,) — f(&;) > 0; otherwise, f is obviously a constant on
[€1,12] D [c,d]. We then have the Lipschitz condition

f&) — fOn) < M(& —m), n,& € le,dl, m < &,
where M := (2 — &)(f(12) — f(£1)/(c — &2 — ).
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Step 4. We prove that

(2.4.3)
FRELE D) PIELE 0L, m)

In fact, the above determinant is equal to

FMEL ) FEL 71, 12)
det| e, - lem) O E )

&—§& &—§&
= ! det|:f[l](§lﬂ71) f[z](ffl,m,flz):|
L-& | ME&.n) ME.m.m)

[1] SUEL) =M E L)
1 fHEL &) pa—

- & —§& . &, 0 Y E2) =M Em)
2,11 po—

_ 1 det MELn)  MEL )
& —&Dm2—n) &, n)  fME,n)

[1] 2]
det[ TR GR D EGRIR D }zo.

>0

thanks to (2.4.1).
Step 5. Assume that f is smooth (or at least C?) on (a, b). We then prove that

[ %

'@ Pw
2! 31

:| >0 forall x € (a,b), (2.4.4)

and moreover, f'(x) > 0 and f®(x) > 0 for all x € (a,b). In fact, (2.4.4) immediately follows from (2.4.3) by letting
&,n; — x, j =1,2. Also, letting n; — &; in (2.4.1) yields

[ G NGRS
det
FE, &) f(&)

If f/(&) =0 for some & € (a,b), then we must have fIU(&,&) =0 so that f(&) = f(&) for all & € (a,b),
contradicting the assumption that f is not a constant on (a, b). Hence f'(x) > 0 for all x € (a,b) and so fP(x) >0
for all x € (a, b) thanks to (2.4.4).

Step 6. To finish the proof of the theorem, let us employ the regularization technique described in Appendix A.2. For
any € > 0 small enough, let f; be the regularization of f defined in (A.2.1). If A,B € M}(a + ¢,b — ¢) and A < B, then

] >0 forall &,& € (a,b).

1

1
£ = f GO (A — el df < /
-1

o) f(B — etl)dt = f.(B).
1

Hence f; is 2-monotone on (a + €, b — ¢), so it follows from Step 5 that f] is nonnegative and convex on (a + &, b — ¢).
Lemma A.2.1(4) and Step 3 imply that f/(x) converges as ¢ \( 0 to f'(x) almost everywhere on any closed interval
[c,d] C (a,b). Choose § > 0 with 26 < min{c — a,b — d}. For any ¢ € (0,4] and x,y € [c,d], since a+ & < ¢c— § and
d+ 68§ < b— e, we have

fO—file =8 _f@—f0) _fd+8) - fid)
8 - x—y - )
thanks to the convexity of f] on (a + &,b — ¢). Hence

@) — DI = Kelx =y, xyeled],

K, = max{

Here, changing ¢,d and § arbitrarily small, we may assume that f;(x) converges as £ \ 0 to f'(x) at the four points
¢ — 6, c,d,and d + 8. Then it follows that K := sup{K_ : ¢ € (0, 8]} < +o0. Hence {f, : ¢ € (0, 8]} is equicontinuous on
[c,d]. From this we see that f, uniformly converges as ¢ \ 0 to a continuous function g on [c, d] so that f'(x) = g(x)
almost everywhere on [c,d]. But in this case, we obtain

where

fi(c) — filc = 8)
)

i

fid+9) —f;(d)H
5 .

£ = F() + / sd,  xeledl,
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which implies that f'(x) = g(x) = lim. o f/(x) for all x € [c,d]. Hence f is C! and f’ is nonnegative and convex on
(a, b). From the argument in Step 5 it also follows that f” > 0 on (a, b) if f is not a constant. [

The next theorem concerned with 2-convex functions is due to Kraus [57], whose proof is based on the essentially
same idea as that of the preceding proof but much more involved according to the stronger conclusion of C2. We prefer
to transfer the proof into Appendix A.3.

Theorem 2.4.2. Assume that f is a 2-convex function on (a,b). Then f is C* on (a,b), and moreover f?\(x,y,z) > 0
for all distinct x,y,z in (a,b) unless f is linear on (a,b).

In fact, the theorem holds under a weaker assumption that f is conditionally 2-convex on (a,b) in the sense that
f(A=DA+2aB) < (1 —)f(A) + Af(B) for all 1 € (0,1) and for all A,B € M" with o(A),o(B) C (a, b) such that
A <B.

In the rest of this section we present the characterizations of n-monotone functions (due to Lowner [62]) and
of n-convex functions (due to Kraus [57]) in terms of divided difference matrices. Key roles in our proofs are played by
the formulas in Theorem 2.3.1 (2) for the first and the second Fréchet derivatives of matrix functional calculus.

Theorem 2.4.3. Letn € Nwithn > 2 and let f be a real-valued function on (a, b). Then the following are equivalent:
(i) f is n-monotone on (a,b);
(i) f is C' on (a,b) and [f[l](/li,/lj)]l’-f

=1 = 0 for every choice of 1 < --- < A, from (a,b).

Proof. (i) = (ii). Since f is at least 2-monotone, the C' of f was proved in Theorem 2.4.1. For every choice of
A <--- < A, from (a,b) and for any &,...,§, € C, define A := Diag(4,,...,4,) and X := [géj];f_i:] (> 0). Since
A+eX e M%(a,b) and A+ eX > A for all ¢ > 0 small enough, we have f(A + ¢X) > f(A) for such an & > 0.
Since f is C! on (a,b) as mentioned above, we can apply the formula in Theorem 2.3.1(2) for m = 1 to obtain

A AEET = [0 1o X = D)0 = lim AT ZIW -

which implies that sz:l f[”(/ll-,/lj)géj > 0. Hence we have [f[”(/l,-,/lj)] > 0.
(ii) = (i). For each A, B € M(a, b) with A < B, define A, := (1 — 1)A 4 tB for ¢ € [0, 1]. Note that A, € M"(a, b)
and A, < A, for all ¢,¢ € [0, 1] with ¢ < ¢. For every ¢ € [0, 1] we have

d
=140 = DFANB = 4) = U(LF A Yy 0 UT(B = AU) U

thanks to Theorem 2.3.1(2) for m = 1, where we take the diagonalization A, = UDiag(4,,...,4,)U* (of course,
depending on 7). Hence (ii) and the Schur product theorem (Theorem 1.6.3) imply that % f(Ay) =0 for all ¢t € [0,1]
so that

Laq
F(B) — f(A) = / & )iz 0. 0
o at

Theorem 2.4.4. Letn € Nwithn > 2 and let f be a real-valued function on (a, b). Then the following are equivalent:
(i) f is n-convex on (a,b);
(ii) f is conditionally n-convex on (a,b), i.e., (2.1.1) holds for every A, B € M)*(a, b) such that A < B;

(i) fis C? on (a,b) and [f[z](/ll,/l,v,/lj)]zjzl > 0 for any choice of Ay, ...,4, from (a,Db).

Proof. (i) = (ii) is obvious.

(i) = (iii). Since (ii) implies the same condition for n = 2, the C?> of f was given in Theorem 2.4.2 while the
proof is in Appendix A.3. For any Ai,...,4, € (a,b) and &i,...,&, € C, define A := Diag(4;,...,4,) and X :=
[asj];{j:l. There is a § > 0 such that A + X € M(a, b) for all ¢ € (=4, ). For every s,t € (—6,8) with s < ¢, since
A+ tX) — (A + sX) = (t — 5)X is positive semidefinite and of rank 1, (ii) implies that

s+tX) =f<(A+sX)—2i—(A+tX)) Sf(A—i—sX)—zi—f(A—i-tX)

f(A + 9
which implies that e (—§,8) —w(f(A + X)) is a convex function for each state @ on M),. Thanks to
Theorem 2.3.1(5) for m = 2 we have
d2
WD FANX X)) = = o(fA+1X)| =0
dr? =0

so that D?f(A)(X,X) > 0 by Exercise 1.5.4(3). By Theorem 2.3.1(2) for m = 2 this means that

n

[Z A, ak,ﬂ_,)askfs,} >0,
k=1

i,j=1
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that is,

Z me(/lis/lk,/lj)§|§:k|2$jafj >0, Cthen G e C

ij=1 k=1

Replacing ¢; by ¢;/&; under the assumption that &; # O for all i, we have

D A IELEG 20 i € C.

ij=1 k=1

Letting £ = 1 and & — O for k > 1 gives
Zf[Z](/lla/lla/lj)Zé‘j 20, gl’”-?é‘n eC.

ij=1
(iii)) = (@i). Let A,B e M) (a,b). Define A, :=(1—-1A+1tB for te€[0,1] and X :=B—A. By (iii) and
Theorem 2.3.1(2) for m = 2 we have

fmu,-,zk,z,oszf)ka*xvm} U
ij=1

d? “
A f@n = D*f(ANX,X) = U[z
k=1

where A, = UDiag(4,,...,4,)U* is the diagonalizatim} of A, (depending on ). It follows from (iii) that
[f[z](/li,/lk,/lj)];szl >0 for all k= 1,...,n. Therefore, %f(A,) > 0 for all ¢ € [0,1]. Hence for every state @ on

M,, t € [0, 1] —w(f(A,)) is a convex function so that
o(f(A) < (1 = DHo(f(Ag)) + tw(f(A1)) = (1 — 1)f(A) + tf(B)),
implying that f(A,) < (1 — )f(A) + ¢tf(B) for 0 <t < 1 by Exercise 1.5.4(3). O

Remark 2.4.5. It is worth emphasizing that the n-convexity of a function f on (a, b) was originally defined in [57]
in the conditional sense (as stated in Theorem 2.4.2), and its equivalence with the unconditional sense
(Definition 2.1.3(2)) was shown in [57]. However, the definition in all the literatures later on is given in the
unconditional sense. It is also seen from the above proof that when the C? of f is known, the conditional 2-convexity
can be reduced to that under the condition that A < B and B — A is of rank 1.

Combining Theorems 2.4.3 and 2.4.4 we have:

Corollary 2.4.6. Let f be a real-valued function on (a,b) and n > 2. If f is n-convex, then fl(A,.) is (n — 1)-
monotone for every A € (a,b). If fN(A, ) is n-monotone for every A € (a,b), then f is n-convex. Hence, f is operator
convex if and only if f is C' on (a,b) and f1(A,-) is operator monotone for every A € (a,b). (The last result will be
improved in Corollary 2.7.8.)

Proof. If f is n-convex, then Theorem 2.4.4 implies that f is C* and [fP/(A1,4;,4)]} ., =0 for every
A1,..., A, € (a,b). Hence fM(A;,-) is (n — 1)-monotone by Theorem 2.4.3. Conversely, assume that f11(4,.) is
n-monotone for every A € (a,b). Since fI11(1,-) is C' for every A by Theorem 2.4.3, it follows that f itself is C'.
For any & > 0 small enough, let f; be the regularization of f defined in (A.2.1) of Appendix A.2. For every

A,x € (a+ ¢&,b— &) we notice that

_ 1 _ _ _
fg[l](/l,x) _ fe() f(X) _ f (1) fA —et)— f(x —er)
-1

A— (A —¢et)— (x—et)
= / oM — et x — et) dt.
-1

Note that the above expression is valid for the case 1 = x as well since f, = (f’), by Lemma A.2.1(4). If A > B in
M (a + €,b — ¢), then

1 1
@A) = / oOfNA —et, A — etl)dt > / o)A — et,B — ety dt = f1(1,B).
~1 ~1
Hence fg”(/l,-) is n-monotone on (a-+e&,b—¢) for every A €(a+¢e,b—¢e). Theorem 2.4.3 implies that
[fsm(/ll, A, /lj)]l’f,j:1 > 0 for every Ay,...,4, € (a+ &,b — €). Hence f, is n-convex on (a + &,b — €) by Theorem 2.4.4.
Since f(x) = limy\ o f:(x) for all x € (a, b), f is n-convex on (a, b). [l

Lowner’s original proof of Theorem 2.4.3 is rather algebraic. The idea of the above proofs of Theorems 2.4.3 and
2.4.4 using the Taylor formula is due to Daleckii, which was briefly but clearly explained in a survey paper of
Davis [29]. Theorem 2.4.3 is actually the first step of Lowner’s theorem, stated in the following without proof. The
proof is done by induction on »n and by taking account of the larger degree versions of the determinants (2.4.3) and
(2.4.4). Details are found in [30].
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Theorem 2.4.7. Let f be an n-monotone function on (a,b), where n > 2. Then f is C*"3 on (a,b) and f*3 is
convex on (a, b).

2.5 Hansen and Pedersen’s characterization

The aim of this section is to characterize operator convex and monotone functions based on Hansen and Pedersen’s
method in [35] using 2 x 2 block matrices. See the first part of Section 1.7 for the basics on 2 x 2 block matrices.
The following simple lemma is needed in the proof below.

Lemma 2.5.1. (1) Assume that A € B(#) is normal and U € B(¥) is a unitary. Then for every function f on o(A),
f(U*AU) = U*f(A)U.
(2) For every X € B(#) and every function f on o(X*X), Xf(X*X) = f(XX*)X.

Proof. (1) Take the spectral decomposition A = } " | o;P; as in (1.4.2). Since U*AU = 3 1", o;U*P;U is the spectral
decomposition of U*AU,

m

FU*AU) = Z fla)pU*P,U = U*f(A)U.
j=1

(2) Since o(X*X) = o(XX*) by Proposition 1.5.7 (1), f(XX*) is defined as well as f(X*X). Since X(X*X)* = (XX*)*X
for k € N, the assertion holds if f is a polynomial. Let f be an arbitrary function on o(X*X) = {«;, ..., ®,}. Define the
so-called Lagrange interpolation polynomial

p:=Y fay ] —2
=

9
1<i<m,i#j aj -

which is a polynomial such that p(a;) = f(e;) for 1 < j < m. Hence we have

XF(X*X) = Xp(X*X) = p(XX*)X = f(XX*)X. O

Theorem 2.5.2. Let 0 <a < oo and f be a real-valued function on [0,a). Then the following conditions are
equivalent, where J# is arbitrary and not fixed:
(1) f is operator convex and f(0) < 0;
(i1) f is operator convex on (0,a) and f(+0) < f(0) <0, where the existence of f(+0):=limxyo f(t) and
f(#0) < f(0) are automatic from the operator convexity of f on (0,a);
(iii) f(#)/t is operator monotone on (0,«) and f(+0) < f(0) < 0, where the existence of f(40) and f(+0) <0 are
automatic from the the operator monotonicity of f(t)/t on (0, 00);
iv) f(X*AX) < X*f(A)X for every A € B(#)** with o(A) C [0,a) and every X € B(J#) with || X|| < 1;
V) fX*AX + Y*BY) < X*f(A)X + Y*f(B)Y for every A,B € B(#)*® with o(A),o(B) C [0,«) and every X,Y €
B(#) with X*X + Y*Y <I;
(vi) f(PAP) < Pf(A)P for every A € B(F)* with o(A) C [0, «) and every orthogonal projection P € B(F).

Proof. (i) = (iv). For A, X as in (iv) define A, U,V € B(# & #) by

A |:A 0} X (I — XX*)1/2
Lo of (I — X*X)'2 —x* |

X —(I — Xx)'?

V:

Since X(I — X*X)'? = (I — XX*)'/X by Lemma 2.5.1 (2), U*U = [ é ‘1)] so that U is a unitary and similarly for V.
Compute
X*AX X*A(I — XX*)'/?
U*AU = B
(I = XX9H'2AX (I — XX5)'?AU — XX*)'/?
X*AX —X*A( — XX*)'/?
V*AV = .
—(I = XX9'2AX (I — XX")'?AU — XX*)!/?

Hence (i) together with Lemma 2.5.1 (1) implies that
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fX*AX) 0
0 F(U — XX9'2AU — XX*)'/?)

_([xax 0
=7/ 0 (I—XXH'2AU — xx*)1/?

U*AU + V*AV

T,
_ fWU"AU) + f(V*AV)
= 2
R L T

2 0 fO) 2 0 fO)u
e

2 0 0 2 0 0
[xrrax 0
B 0 (I — XXH)V2FAYT — XX9)V2 |

Comparing the (1, 1)-blocks gives f(X*AX) < X*f(A)X.
(iv) = (v). For A, B, X and Y as in (v) define

a8} el )

Since X*XZ[XXKYY 8]5[(’) ﬂ IX[ < 1. Also, A=A* and o(A) = o(A)Uo(B) C [0,). Since
* *
X*AX = |:XAX—5Y3Y 8i|,wehave

f(X*AX +Y*BY) 0
[ 0 SO

and hence f(X*AX 4+ Y*BY) < X*f(A)X + Y*f(B)Y.
(v) = (vi). Let X =P and Y =0 in (v).
(vi) = (i). For A, B € B(#)** with 0(A),o(B) C [0,«) and 0 < A < 1, define

o R L ) W T

X*f(AX + Y f(B)YY 0:|

}=f(X AX)st(A)X=[ . .

0 B J1=2a1 VAT 00

Then A = A* with o(A) C [0, ), U is a unitary and P is an orthogonal projection. Since
A+{A-1)B 0
PU*AUP = [ (O ) 0 }

(vi) implies that

[ FAA+(1 =B 0 } _ FPUAUP)
0 O
< Pf(U*AU)P = PU* f(A)UP
[/lf(A) + (1 =Df(B) 0}
0 0

so that f(1A 4+ (1 — 1)B) < Af(A)+ (1 — A)f(B) and f(0) < 0.

Thus, (i), (iv), (v), and (vi) are equivalent. In the rest we prove that (i), (ii), and (iii) are equivalent.

(i) = (ii). The operator convexity of f on (0, 00) is contained in (i), which of course implies the usual convexity
of f on (0, 00). The latter implies that the limit f(+0) exists and f(+0) < £(0).

(i) = (i). Define a function fj on [0, o) by fo(0) := f(4-0) and fo(?) := f(¢) for ¢ € (0, «). Then f; is continuous on
[0, @) since it is convex on (0, @) in the usual sense. Let A, B € B(#) with 6(A),a(B) C [0,a). When & > 0 is small so
that o(A + &l),0(B + ¢l) C [0, &), we have for every 4 € (0, 1)

JAA+eD+ A -DB+eh) = Af(A+el)+ (1 —D)f(B+eD.
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Letting ¢ N\ 0 yields
Jo(AA + (1 — DB) = Afo(A) + (1 — ) fo(B),

that is, fy is operator convex on [0, @). Now let A and P be as in (vi). Let Qg be the orthogonal projection onto the kernel
of A and Qy be that onto the kernel of PAP. Then Q; := I — Q is the orthogonal projection onto the range of A and

Q) :=1— Qy is that onto the range of PAP. One can write

f(PAP) = fy(PAP) + aQy,
Pf(A)P = P(fo(A) + aQo)P = Pfo(A)P + aPQuP,

where « := f(0) — f(40) > 0. From (i) = (vi) applied to fy we have f,(PAP) < Pfy(A)P. Furthermore, taking account
of the orthogonal decomposition C" = PC" @ (I — P)C", we have

f(PAP) = Pf(PAP)P + f(0)(I — P) < Pf(PAP)P
= Pfy(PAP)P + aPQyP < Pfy(A)P + aPQ,P.

So, to see that f satisfies (vi) (hence (i)), it suffices to prove that PQOyP < PQyP. One can choose a § > 0 such that
A > 80, and Q; > SPAP. Hence Q; > 8°PQ,P so that (I — Q;)PQ,P(I — Q) = 0, which implies that Q; P(I — Q;) =
0 so that PQ,P = Q,PQ,PQ; < Q, since PQ,P < I. Therefore, PQ,P > PQ,P or PQyP < PQ,P.

(iv) = (iii). Let A, B € B(#)** with A > B > 0. Letting X := A~"/?B'/? we have XX* = A~"/2BA~'/2 < [ and so
[IX]| < 1. Since B = X*AX, (iv) implies that

f(B) < X*f(A)X = B'?A'f(a)'/*B'

and hence A~ f(A) = A~'2f(A)A~/2 > B~1/2f(B)B~'/2 = B! f(B). This means that f(#)/t is operator monotone on
0, ).

(iii) = (ii). First we prove that if g is a continuous operator monotone function on [0, &), then 7g(¢) is operator convex
on [0, ). Let h(t) := tg(¢) for t € [0, @). To prove (vi) for i, we may assume that A > 0. In fact, one can take the limit of
the inequality in (vi) for A + e as & \ 0. Since A'/?PA'/? < A, we have g(A'/2?PA'/?) < g(A). Multiplying PA'/? form
the left and A'/2P for the right, we have

PAY2g(A2PAV)AV2P < PA?g(A)A'?P.

Since g(A'/?PA'/?)A'/2P = A'/2Pg(PAP) by Lemma 2.5.1 (2), we have h(PAP) < Ph(A)P, so h is operator convex on
[0, @).

Assume that f(7)/t is operator monotone on (0,«). By Theorem 2.4.1, f(#)/t is continuous on (0, ). For
each € > 0, f(t 4+ ¢)/(t + ¢) is a continuous and operator monotone function on [0, — ¢). By what we proved just
above, - f(t + ¢) is operator convex on [0, — ¢). Hence f is operator convex on (0, «) by letting & ~ 0. This implies
that (iii) = (ii). Moreover, the convexity of f together with the non-decreasingness of f(¢)/¢ implies that f(+40) exists

and f(4+0) <O. O

Theorem 2.5.3. Ifa = oo and f(t) < 0 for all t € [0, 00), then the conditions of Theorem 2.5.2 is also equivalent to
(vil) —f is operator monotone on [0, 00).

Proof. Assume that f < 0 on [0, 00). First we prove that (vii) is equivalent to that —f is operator monotone on (0, co)
and f(4+0) < f(0) (< 0). In fact, if (vii) holds, then it is immediate to see that f(4+0) exists and f(+0) < f(0).
Conversely, assume that —f is operator monotone on (0, co0) and f(40) < f(0). Define f, on [0, c0) as in the proof of
(ii) = (i) above, so —f; is operator monotone on [0,00). Let A > B > 0 in B(H#). Let Qy and Qy be the orthogonal
projections onto the kernels of A and B, respectively. Then

fA) = fod) +aQo,  f(B) = fo(B) + aQo,

where « := f(0) — f(+0) > 0. Since A > B > 0 yields Qp < Qo. With fy(A) < fo(B) this implies that f(A) < f(B).
Thus it suffices to prove the equivalence between (i) and (vii) for the function fy. Since f; is continuous on [0, c0) by
Theorem 2.4.1, we assume in the rest that f is continuous on [0, 00).

(vil) = (i). For A,X as in (iv) define A,U as in the proof of (i) = (iv) of Theorem 2.5.2, and set R :=

X'AX+el O

(I — XX*)'2A(U — XX*)'/? and S := X*A(I — XX*)'/?. Moreover, define B := [ 0 P

cir [ X*AX S x| el =S
UAU—|: g Ri|,B—UAU_|:_S,k ﬂI—R]and

] for e, 8 > 0. Since
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(ool [N =sdomml L)

= ¢ll§1> — 2Re(&, Sn) + Blnl* — (Rn,n)
> e||&)1> = 20ISIH &l Inll + (B — IRIDInI?
2 2
= («/EIISII - % IIUII) + (ﬂ— IRl — @)IIHII2
for & n € C", where Re z denotes the real part of z € C. Hence, for any ¢ > 0, we have B— U*AU > 0 if 8 > 0 is
sufficiently large. Then (vii) implies that
|:f(X*AX + el) 0

f@Aa 0 ]U
0 fB1

}=f(B)§f(UAU)=U[ 0 fO)

fA) O]UZ[X*f(A)X *}

<U*|:
- 0 0

* *

so that f(X*AX + el) < X*f(A)X. Letting ¢ \( 0 yields f(X*AX) < X*f(A)X. Hence (iv) is satisfied.
(i) = (vii). Assume that A > B > 0 in B(J¢). For each 1 € (0, 1), since 1A = AB+ (1 — DAl — )" YA — B),

fAA) < AfB) + (1 = Hf(A(1 = )~'(A = B)).

Since f(A(1 — 1)"'(A — B)) < 0 thanks to f < 0, we have f(1A) < Af(B). Letting 1 ' 1 yields f(A) < f(B), which
implies that —f is operator monotone. O

Corollary 2.54. If f is a function on [0, 00) such that f > 0, then f is operator monotone if and only if it is operator
concave.

Proof. This is the equivalence between (vii) and (i) above for —f. [l

Lemma 2.5.5. On (0,00), the function t~' is operator convex and —t~' is operator monotone. On (—o0,0), t~! is
operator concave and —t~" is operator monotone.

Proof. Since ((1 +1)/2)"! <1 +t71)/2 for t > 0, for every C > 0 in M, we have

I+C\ ' I1+4cC!
< .
2 - 2

For every A,B > 0 in M,,, apply the above inequality to C := A~!/2BA~!/2 to obtain
(A + B)—l <A1/2(1 + A1/2BA1/2)A1/2)—1

2 2
_ _ -1
_ (1A 1/2pA=1/2 PR
2
<A_1/21+(A—I/ZBA—]/2)—1 A_1/2 _A—l +B_l
- 2 2

Hence ! is operator convex on (0, 0c0).

Next, assume that A > B > 0 in M,,. Since B~'/2AB~'/2 > I, we have B'/2A~'B'/2 = (B~'2AB~'/2)"! <[ and
hence A~! < B~!. Hence —t ! is operator monotone on (0,00). The assertions on (—o00,0) immediately follow
from those on (0, c0) by taking account of the transformation A ——A. (]

Corollary 2.5.6. If f is a function on (0,00) such that f > 0, then (i) < (ii) < (iii)) = (iv) hold concerning the
following:
(1) f is operator monotone;
(1) t/f(¢) is operator monotone;
(iii) f is operator concave;
@iv) 1/f(t) is operator convex.

Proof. (i) = (ii). For any ¢ > 0, since f(t + ¢€) is operator monotone on [0, o) with —f(¢ 4+ ¢) < 0, Theorem 2.5.3
implies that — f(¢ + €)/t is operator monotone on (0, c0). So Lemma 2.5.5 implies that t/f(t + &) = —(—f(t + €)/t)~"
is operator monotone on (0, 00). Hence (ii) follows by letting & ~\ 0.

(i) = (i). For any & > 0, since (¢ + ¢)/f(t+ ¢) is operator monotone on [0,00) with —(t+¢&)/f(t+¢) <O,
Theorem 2.5.3 implies that —(¢ + ¢)/tf(t + &) is operator monotone on (0,00). So Lemma 2.5.5 implies that
tf(t + ¢)/(t + €) is operator monotone on (0, 0o0). Letting £ N\ 0 gives (i).

(i) < (iii). By Corollary 2.5.4 we see that
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(i) <= f(t + ¢) is operator monotone on [0, co) for any ¢ > 0
<= f(t + ¢) is operator concave on [0, co) for any € > 0
< (iii).

(iii) = (iv). Let g(¢) := 1/f(¢) and assume that A,B > 0 in M. Since (iii) implies that

f<A +B> > JA)+fB) ,
2 2

A+B A+B\! A) + f(B)\ !
()2 ()
- fA "+ B! _ g(A) + g(B)

- 2 2
Hence g is operator convex. (]

we have by Lemma 2.5.5

Note that (iv) = (iii) is not valid in Corollary 2.5.6. For instance, when 1 < p < 2, the functions #* is operator
convex on (0,00) (see Example 2.5.9 (4)) but =7 is not operator concave (even not concave in the usual sense) on
(0, 00).

The following modification of Theorem 2.5.2 is also useful because the domain of f is a general interval and the
condition f(0) < 0 in Theorem 2.5.2 is irrelevant.

Theorem 2.5.7. Let f be a real-valued function on an interval J. Then the following conditions are equivalent, where
finite-dimensional Hilbert spaces ¢, #;, K are arbitrary and not fixed:

(i) f is operator convex;

(ii) for every A € B(#)* with o(A) C J and every isometry X € B(K, ¥),

FX*AX) < X*f(A)X;
(iii) for every m € N, every A; € B(H))* with 6(Aj)) CJ, 1 < j < m, and every X; € B(X, #;), 1 < j < m, such that
2o XX = Iy,

f(Z XfA.fXj) = DX AX;

=1 =1

@iv) for every A, B € B(F#)*® with o(A),o(B) C J and every orthogonal projection P € B(F),
f(PAP +( — P)B(I — P)) < Pf(A)P+ (U — P)f(B)I — P).

Proof. (i) = (ii). Let A,X be as in (ii), and choose any B € B(K)** with o(B) C J. Since X*X = Ix and hence
(XX*)? = X(X*X)X = XX*, it follows that XX* € B(#) is an orthogonal projection. Define Q := Iy — XX* € B(¥#),
an orthogonal projection, and A, U,V € B(KX @ #) by

B 0 0 Xx* [
A:=|: i|, U::|: i|, V:=|: i|
0 A X 0 -X 0

(0X)"(0X) = X*0X = X*X — (X*X)* =0
so that OX = 0 and X*Q = 0. Hence,

We have

U*U:[X*X X*Q ]Z[I,K 0}

oX XX*+0Q 0 Iy

so that U is a unitary and similarly for V. Moreover, A € B(K & #)* and o(A) C J. Since
X*AX X*AQ ] . [ X*AX —X*AQ i|

QAX XBX* 4+ QAQ | —QAX XBX*+ QAQ ]

by (i) with Lemma 2.5.1 (1) we have

U*AU = [
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fX*AX) 0 U*AU + V*AV
[ 0 f(XBX*+QAQ)}: ( 2 )
_ J(U'AU) + f(V*AV)
- 2
le*[f(B) 0 ]U+1V*[f<8> 0 }V
2 0  fA) 2 0  fA)
_[Xf@Ax 0
B [ 0 Xf(BX'+ Qf(A)Q }

implying that f(X*AX) < X*f(A)X.
(ii) = (iii). Let A;, X; for 1 < j < mbe as in (iii). Define A € B(#, & --- & H,,) and X € B(K, H, ® - - - @ H,,) by

Ay 0 o 0
0 A --- 0
A= o | de, AN @B X)) =AX D DA, forx; € H;,
0 0 - A,
X1
X
X:=| |, ie, Xy=Xiy® - ®X,y foryeX.
X

Then A = A* and o(A) C J. Moreover, X is an isometry since X*X = ij=1 X]*X] = I x. Hence (ii) implies that
f<Z X}"AfX;) = f(X*AX) < X*f(A)X = Y X7 f(A)X;.
=1 =1

(iii)) = (iv) is obvious.
(iv) = (i). Let A, B € B(F#)** with o(A),o(B) C J, and let 0 < A < 1. Define A,U,P € B(# @ F#) in the same
way as in the proof of (vi) = (i) of Theorem 2.5.2. Since

AA+ (1 - )B 0
PU*AUP + (I — P)U'AU(I — P) = [ ]
0 (I-DA+AB
(iv) implies that
f(AA+ (1 —)B) 0
[ 0 £ —/1)A+/lB)}
<Pf(UAU)P + (I — P)f(U*AU)(I — P)
= PU* [f(A) 0 }UP +{ —P)U* [f(A) 0 }U([ -P)
0 f(B) 0 fB
_ [ﬁf(A)+(1—ﬂ)f(B) 0 }
0 (I —=Df(A)+ Af(B)

so that f(1A 4+ (1 —A)B) < Af(A) + (1 — D)f(B). ]

Exercise 2.5.8. When f is a real-valued function on J = [a, b], show that the conditions of Theorem 2.5.7 are also

equivalent to
(v) f is operator convex on (a,b), f(a+0) < f(a) and f(b—0) < f(b), where f(a+0):=limn~, f(t) and
fb—0) = lim, q, f(2).

The following are basic examples of operator monotone and operator convex functions.

Example 2.5.9.
(1) When o > 0, at + B is operator monotone on R.
(2) When c¢ ¢ («, B), (c — H7'is operator monotone on («, B).
(3) When 0 < p <1, #” is operator monotone and operator concave on [0, c0). Moreover,

{p € R : ¢’ is operator monotone on (0, co)} = [0, 1].

(4) When 1 < p <2, 7 is operator convex on [0, c0). Moreover,
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{p € R : t7 is operator convex on (0,00)} =[—1,0]U[1,2].

) f(@) :=(t— 1)/logt on [0, 00) is operator monotone, where f(0) = 0 and f(1) = 1.
(6) logt on (0, 00) is operator monotone and operator concave.
(7) tlogt on [0, 00) is operator convex, where 0log0 = 0.

Proof. (1) Obvious.

(2) Assume that A,B € M, 0(A),0(B) C (o, f)and A > B. If c <athen A —cl > B —cl > 0 and so (A — eh7! <
(B—cl)™ . Hence (cI —A) ' >(I—B)y".Ifc>Bthen 0 <cI —A <cI—Band so (cI —A)~" > (cI —B)~.

(3) The first assertion follows from Theorem 2.1.1 and Corollary 2.5.4. When p < 0, ¥ on (0, 00) is not monotone
increasing and so it is not operator monotone. When p > 1, t/t” = t'~” on (0, c0) is not operator monotone, and hence
by Corollary 2.5.6, ¥ is not operator monotone.

(4) When 1 <p <2, /t= P~ on (0,00) is operator monotone, and hence by Theorem 2.5.2, #” is operator
convex on [0, 00). Moreover, when —1 < p <0, t” = 1/t7? on (0, 00) is operator convex by Corollary 2.5.6. When
p > 0, since the operator convexity of # on (0, 00) is equivalent to that on [0, co) by continuity, Theorem 2.5.2 shows
that 7 on (0,00) is operator convex only if /t = 71 s operator monotone on (0,00). Hence, when p €
(0,1) U (2, 00), t? is not operator convex. That 7 is not operator convex when p < —1 is left for an exercise in Section
2.7 (Exercise 2.7.10).

(5) Notice that (1) = [, 1” dp for all > 0. This shows that f(A) = [ A?dp > [, B dp = f(B)if A > B > 0 in M.
Hence f is operator monotone on [0, 00).

(6) By (5), t/log(1 + t) is operator monotone on (0, co) and so log(1 + ¢) is operator monotone and operator concave
on (0, 00) by Corollary 2.5.6. Hence the result follows since log(e + 1) = log e + log(1 + £~ '¢) is operator monotone
and operator convex on (0, 0o) for every ¢ > 0.

(7) Since g(¢) := tlogt is continuous on [0,00) and g(#)/t = logt is operator monotone on (0, 00), g is operator
convex by Theorem 2.5.2. ([

The following is Furuta’s observation in [33], which provides a simple way to prove (6) and (7) above by only using
the operator monotonicity (or the Lowner—Heinz inequality) and the operator concavity of the function #7, ¢t > 0,
for 0 < p < 1. Assume that A > B > 0 in B(#). Since A? > BP for all p € (0, 1), we have

1 1
logA = lim — (A? —I) > lim — (B? — I) = log B.
PNO p O p
For every 4, p € (0,1) we have (14 4+ (1 — 1)B)? > AA? 4+ (1 — 1)B? so that

1 A 1—-2
Laara—vpyr—nzta—n+ e,
P p P
L jara—om—ara-nsyy <t a—any s opry,
1—p l—p l—p

Taking the limits of the above as p \( 0 and p / 1, respectively, we have
log(A1A + (1 — A)B) > AlogA + (1 — A)logB,
(AA+ (1 = )B)log(AA+ (1 — A)B) < AAlogA 4+ (1 — 1)BlogB.

2.6 Pick functions

Let C* denote the upper half-plane, i.e., C* := {z € C : Imz > 0}, where Im z is the imaginary part of z. A function
f:C" — Cis called a Pick function if f is analytic in C* and the range f(C%) is included in the closed half-plane
{z € C: Imz > 0}. The set of all Pick functions is denoted by #. From the open mapping theorem in complex function
theory (see [27,p. 99] for example) we note that if f € £ is not constant then the range f(C") is a domain (i.e., a
connected open subset) of C and so f(C*) ¢ C*. Obviously, £ is a convex cone, and if f, g € £ with g non-constant,
then f o g € £ as well. Typical examples of Pick functions are given in the following exercise.

Exercise 2.6.1. Verify the following:
(1) When 0 < p < 1, the function f(z) = z” := rPe’® (the principal branch of z”) for z = re” with r > 0 and
0<6f<misin L.
(2) f(z) = Logz :=logr + i@ (the principal branch of logz) for z = re® is in .
3) f(m=—1/zisin P.
(4) f(z) =tanz:=sinz/cosz is in P, where cosz := (e + ¢~%)/2 and sinz := (e — e™%)/2i.

The next Nevanlinna’s theorem provides the integral representation of Pick functions.

Theorem 2.6.2. A function f : C* — C is in & if and only if there exist an o € R, a B > 0 and a positive finite Borel
measure v on R such that
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144z
f@)=a+ Bz+ / ; dv(d), zeCt. (2.6.1)
—00 -
The integral representation (2.6.1) is also written as
fQ=a+p +/°O Lo A Y ct (2.62)
) = 4 _ R € R .6.
omeThET ] O\ a2s)" z

where p is a positive Borel measure on R given by du(1) := (1% + 1)dv(1) and so

o0 1
du(d) < 4+o0.
/w12+1

The proof of the “if” part is easy. Assume that f is defined on C* as in (2.6.1). For each z € C*, since

fz+ A — f2) A2 +1
Az _ﬂ+/R(/1—z)(/1—z—Az) ()

and
sup

it follows from the Lebesgue dominated convergence theorem that

Imz
1 eRR, |Az|<7 < 400,

Az) — A2+1
i EHAD=S@ _ AL
A—0 Az R —2)
Hence f is analytic in C*. Since
1+ A2+ 1) Im
Im<+z)=( +)2Z, zeCH,
-z |4 —z]

we have
A2 +1
Im f(z) = <ﬁ+ / 72 dv(ﬂ)) Imz >0
R —2]

for all z € C*. Therefore, we have f € #. The equivalence between the two representations (2.6.1) and (2.6.2) is
immediately seen from

S &
A—z A—z 22+1)
The “only if” is the significant part, whose proof based on the Poisson integral formula is exposed in
Appendix A.4.

Moreover, we note that , 8 and v in Theorem 2.6.2 are uniquely determined by f. In fact, letting z =i in (2.6.1)
we have o = Re f(i). Letting z = iy with y > 0 we have

A1 —y) +iy(A2+ 1)

fy) =a+ify+ / dv(d)
oo A2 43?2
so that

Im £(i © A2+1
y —o0 A%ty

By the Lebesgue dominated convergence theorem this yields

I .
B = tim S
y=oo Yy

Hence o and B are uniquely determined by f. By (2.6.2), for z = x + iy we have

, y
Im f(x+iy) = By + / _
R B T
Thus the uniqueness of w (hence v) is a consequence of the so-called Stieltjes inversion formula. For details omitted
here, see [30, pp. 24-26] and [13, pp. 139-141].
For any open interval (a,b), —oo < a < b < oo, we denote by $(a, b) the set of all Pick functions which admit an
analytic continuation across (a, b) by reflection into the lower half-plane C™ := {z € C : Imz < 0}. More precisely,

00

du), xeR, y>0. (2.6.3)
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P(a,b) is the set of all f € P with an analytic continuation (denoted by the same f) in (C\R)U (a,b) so that
f@) = f(z) for all z € C". Note that if f € P(a,b) then f(x) € R for all x € (a,b).
The next theorem is a specialization of Nevanlinna’s theorem to functions in #(a, b).

Theorem 2.6.3. A function f : Ct — C is in $(a,b) if and only if f is represented as in (2.6.1) witha € R, B> 0
and a positive finite Borel measure v on R\ (a, b).

Proof. Let f € P be represented as in (2.6.1) with ¢ € R, 8 > 0 and a positive finite Borel measure v on R. It suffices
to prove that f € P(a,b) if and only if v((a, bl = 0. First, assume that v((a, b)) = 0. The function f expressed by
(2.6.1) is analytic in C* U C~ so that f(Z) = f(z) for all z € C*. For every x € (a,b), since

{ A2 +1
up

A =x)(1—x—Ap)
the above proof of the “if” part of Theorem 2.6.2 by using the Lebesgue dominated convergence theorem can work for
z=x as well, and so f is differentiable (in the complex variable z) at z = x. Hence f € $£(a, b).
Conversely, assume that f € £(a, b). It follows from (2.6.3) that

~ : Im f(x + iy)

For any x € (a, b), since f(x) € R, we have
Imf()hLiy)_I Ja+iy) —f)  _ fx+iy) — f(x)
=Im = Re -
y y y

and so the monotone convergence theorem yields

1
A eR\(a,b), |Az] < Emin{x—a,b—x}} < 400,

—> Re f/(x) asy\ 0,

0 1
[ oy =R, xe@n

Hence, for any closed interval [c, d] included in (a, b), we have

lo.¢]

1

R := sup / ———— du(d) = sup Re f'(x) < +o0.
xele,d] J —o0 x—2) xele,d]

For each m € N let ¢ := ¢+ (k/m)(d — ¢) for k =0,1,...,m. Then

e, d)) = Zu([ck o) < Z /| =9 )

Ck—1 Ck) (Ck /1)2
=25

c % 1 (d—¢)*R
)/ ———du() < ——.
m

—00 (Ck - /l)
Letting m — oo gives u([c,d)) = 0. This implies that p((a, b)) = 0 and so v((a, b)) = 0. (I
Now let f € $(a,b). The above theorem says that f(x) on (a, b) admits the integral representation
14+ Ax
fx)=a+ Bx+ / dv(Q)
R\@b) A —X

1 A
=a+ Bx+ 22+ —m——— dv(), x € (a,b),
8 /R\(a,b)( )(A_x 42+1) ) (a.b)

where «, 8 and v are as in the theorem. For any n € N and A, B € M*(a, b), if A > B then (I — A)~! > (Al — B)™!
for all 2 € R\ (a,b) (see Example 2.5.9 (2)) and hence we have

Oll-i-/gB—{— /12+1 Al — B - 1) dv(a ——?B.
= /I\{\(ab)( )<( ) /12 l > ( ) ( )

Therefore, f is operator monotone on (a,b). In the next section we will prove Lowner’s theorem saying that the
converse is also true so that f is operator monotone on (a, b) if and only if f € P(a, b).
The following are examples of integral representations for typical Pick functions from Exercise 2.6.1.

Example 2.6.4. The principal branch Logz of the logarithm in Exercise 2.6.1(2) is in #(0,00). Its integral
representation in the form (2.6.2) is
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0 1 A
Logz:/ ———)da, zeCH.
o\l —z A2 +1

To show this, it suffices to verify the above expression for z = x € (0, 00), that is,

I /OO Ly Y € (0, 00)
ogx = - 5 X , 00),
e A N T

which is immediate by a direct computation.

Example 2.6.5. When 0 < p < 1, the principal branch of 7z in Example 2.6.1(1) is in $(0, co), whose integral
representation in the form (2.6.2) is

sinpmr (© 1 1
2 = cos P2 4 2P f _ PdA,  zeC*
2 T Jooo\d—z AZ+1
For this it suffices to verify that
pr  sinpmw [* 1 A
P — 4 — + AP da, € (0, 00), 2.6.4
TSy T, /0 < 1 +x 42+1) * € (0,00) 2.64)

which can be shown as in the following exercise.

Exercise 2.6.6. When 0 < p < 1, show (2.6.4) as follows:
(a) Consider the integration of the function
Zp—l rp—lei(p—l)e
14z T + ret?

that is analytic in the cut plane C \ [0, co0) except —1, along the contour

z=re?, 0 <0 < 27,

re (e <r <R, 06=+0),
Re® 0 <6 <2m),

re® (R>r>e 60=27—0),
g’ (2m>6>0),

where 0 <& <1 < R. Apply the residue theorem (see [27,p. 112]) and let ¢ \(0 and R /" co to show

that
00 tp_l T
/ dt = — . (2.6.5)

o 14+t sin pr
(b) For each x > 0, substitute A/x for ¢ in (2.6.5) to obtain
sin 0 xAP~1

=2 p”/ Ya, xe 00

T 0 A + x

(c) Since

x o 1 n A 1 1
A+x 2241 \A2+1 a+x)7
it follows that

sinpmr [ AP~! sinpr [ A 1
xP = da + — AP da, x € (0, 00).
T Jo A24+1 7 Jo \124+1 A+x

Substitute A2 for ¢ in (2.6.5) with p replaced by p/2 to obtain

00 /1[7—1 T
A = .
/0 A2 +1 2sin ¢

Hence (2.6.4) follows.

2.7 Lowner’s theorem

The main aim of this section is to prove the primary result in Lowner’s theory saying that an operator monotone
function on (a, b) belongs to P(a,b). Apart from Lowner’s original proof, three different proofs are known so far,
which are by Bendat and Sherman [12] based on the Hamburger moment problem, by Koranyi [51] (also found in [3])
based on the the spectral theorem of self-adjoint operators, and by Hansen and Pedersen [35] based on the Krein—
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Milman theorem. In all of them, the integral representation of operator monotone functions was obtained to prove
Lowner’s theorem. The proof below is based on [35].

Operator monotone (or operator convex) functions on an finite open interval (a, b) are transformed into those on a
symmetric interval (—1, 1) via the affine function x € (—1,1) > b%“x + b—er“. So it is essential to analyze operator
monotone (or operator convex) functions on (—1, 1). Theorem 2.4.1 says that every operator monotone function f on
(=1,1)is C' on (=1, 1) and f'(0) > O unless f is constant. Taking (f — £(0))/f'(0) we may assume that £(0) = 0 and
f/(0) = 1. So let X denote the set of all operator monotone functions on (—1, 1) such that f(0) = 0 and f'(0) = 1.

Lemma 2.7.1. Let f be an operator monotone function on (—1,1). Then
(1) Forevery a € [—1,1], (x + a)f(x) is operator convex on (—1,1).
(2) For every a € [—1,1], (1 + 9)f(x) is operator monotone on (—1,1).
() f is twice differentiable at 0 and
. fG) = f(O)x

lim 5 .

x—0 X

£
==

Proof. (1) For any ¢ € (0, 1), since f(x — 1 4 &) is operator monotone on [0, 2 — ¢), it follows from Theorem 2.5.2 that
xf(x — 1 4 &) is operator convex on [0,2 — ¢) and so (x + 1 — &)f(x) is operator convex on (—1+ ¢, 1). By letting
e\ 0, (x + 1)f(x) is operator convex on (—1, 1). Applying this to the operator monotone function —f(—x) implies that
—(x+ 1)f(—x) is operator convex on (—1,1). Hence so is (x — 1)f(x) by changing x to —x. Moreover, for every
o €[—1,1], since (x + @) f(x) = ”T"‘(x + Df(x) + l_T’J‘()c — 1)f(x), (x + o) f(x) is operator convex on (—1, 1).

(2) For every a € [—1,1], set g(x) := (x + )f(x). By (1) and Corollary 2.4.6, g!"1(0,x) = g(x)/x = (1 + 9)f(x) is
operator monotone on (—1, 1).

(3) Although Theorem 2.4.7 implies that f is actually C* on (—1,1), we give a proof that is tailor-made for the
situation of our exposition. By (2) and Theorem 2.4.1, (1 + %) f(x) as well as f(x) is C U on (-1, 1) so that the function
h on (—1, 1) defined by A(x) := f(x)/x for x # 0 and h(0) := f'(0) is C'. This implies that

J'x — f(x)

H(x) = 5 — H'(0) asx— 0.
x

Therefore,
f/@x = f@) + (03 + o(|xI?)
so that
F(x) = h(x) + K (0)x + o(|x]) = h(0) + 2K (0)x + o(|x]) as x — 0,
which shows that f is twice differentiable at 0 with f”(0) = 24’(0). Hence

IO _ oy — tim MO HO) W = SO .
2 x—0 X x—0 x2
Lemma 2.7.2. If f € X then
fO) < —— for0<x<1,
1—x
f0z o for -1 <x=0,
If"(0) < 2.
Proof. For every x € (—1,1), Theorem 2.4.3 implies that
e x) U, 0) _ [ f(x) f(X)/X} -0
e, 0) 10,0 f@x 1 T
and hence
2
@ < f'(x). 2.7.1)
x

By Lemma 2.7.1 (1),
d
2, O ED@ = 1)+ Df'(x)

is increasing on (—1, 1). Since f(0) £ f'(0) = +1, we have
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fO+x—-1Df(x)>—-1 for 0<x<1, (2.7.2)
fO+E+Df ) <1 for -1 <x <0, (2.7.3)

By (2.7.1) and (2.7.2) we have
_ 2
oo 12 A
X

If f(x) > ;=; for some x € (0, 1), then

fo+1>

(1-0f® x _ fo
X2 l—x X
so that f(x) < 1XTX’ a contradiction. Hence f(x) < 1XTX for all x € [0, 1). A similar argument using (2.7.1) and (2.7.3)
yields that f(x) > 1"? for all x € (—1,0].
Moreover, by Lemma 2.7.1 (3) and the two inequalities just proved,

(0 - 1
PO i =% i -1
2 onNO o x? N0 1 —x
and
(0 o -1
f()_li I © — lim =—
2 x/0 X NO1+x
so that |f"(0)] < 2. O

Lemma 2.7.3. The set K is convex and compact if it is considered as a subset of the topological vector space
consisting of real functions on (—1, 1) with the locally convex topology of pointwise convergence.

Proof. 1t is obvious that K is convex. Since {f(x) : f € K} is bounded for each x € (—1, 1) thanks to Lemma 2.7.2,
it follows that X is relatively compact. To prove that X is closed, let {f;} be a net in K converging to a function f on
(—1,1). Then it is clear that f is operator monotone on (—1,1) and f(0) = 0. By Lemma 2.7.1(2), (1 + i)f,»(x) is
operator monotone on (—1, 1) for every i. Since lim,_,o(1 + %) fi(x) = f/(0) = 1, we thus have

<1 - l)ﬁ(—x) <1< (1 + l)f,-(X), x e (0,1).
X X

Therefore,

1 1

l——Jf(=x)=1=<|1+-)f(), x € (0,1).

x X
Since f is C' on (=1, 1) by Theorem 2.4.1, the above inequalities yield f'(0) = 1. (I
Lemma 2.7.4. The extreme points of KX have the form

1/ 0
fx) = 1 —x/lx’ where A = J%

Proof. Let f be an extreme point of K. For each o € (—1, 1) define
o
gulx) = (1 —i—;)f(x)—oz, x e (—1,1).

By Lemma 2.7.1 (2), g, is operator monotone on (—1, 1). Notice
84(0) = f(0) + af'(0) —a =0

and

¢,(0) = lim A+ = _ 0y 4 g lim
x—0 X x—>0

— (0 1
S 2f( )x — 14 -af'(0)
X 2
by Lemma 2.7.1 (3). Since 1 + %a ”(0) > 0 by Lemma 2.7.2, the function
1+ Dfx) —«
ho(x) := ——F———
1+ 5af”(0)

is in XK. Since
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1 1, 1 L,
=1 (1 b iaf (O)>ha + (1 e <o>)h_a,

the extremality of f implies that f = h, so that
| o
(1 + Eaf (0)>f(x) = (1 + x)f(x) —a

for all « € (—1, 1). This immediately implies that f(x) = x/(1 — % 17 (0)x). O

Theorem 2.7.5. Let f be a non-constant operator monotone function on (—1,1), Then there exists a unique
probability Borel measure n on [—1, 1] such that

1
£ = £0) + F(0) / |

X
1—Ax

du(l),  xe(=1,1). (2.7.4)

Proof. Since f'(0) > 0 thanks to Theorem 2.4.1, it is enough to assume that f € K by considering (f — f(0))/f(0).
Let ¢ (x) := x/(1 — Ax) for A € [—1,1]. By Lemmas 2.7.3 and 2.7.4, the Krein—Milman theorem says that X is the
closed convex hull of {¢, : 4 € [—1, 1]}. Hence there exists a net {f;} in the convex hull of {¢; : 4 € [—1, 1]} such that
fi(x) = f(x) for all x € (—1, 1). Each f; is written as f;(x) = f_ll @(x) dui(A) with a probability measure p; on [—1, 1]
with finite support. Note that the set M;([—1, 1]) of probability Borel measures on [—1, 1] is compact in the weak*
topology when considered as a subset of the dual Banach space of C([—1, 1]). Taking a subnet we may assume that u;
converges in the weak* topology to some u € M{([—1,1]). For each x € (—1,1), since ¢,(x) is continuous in
A €[—1,1], we have

1 1
79 =tim 0 = lim [ 41 = [ i

To prove the uniqueness of the representing measure u, let uy, uy € M([—1,1]) be such that

1 1
f(x)=flm(x)dmu)=/1¢A(x)dmu), xe(=11).

Since ¢, (x) = Z,fio PR LT uniformly convergent in A € [—1, 1] for any x € (—1, 1) fixed, it follows that

00 1 00 1
Zxk“/ /lkdm(/l):Zxk“/ AKdur(1),  xe(=1,1).
k=0 -1 k=0 -1

Hence [, A% dui(2) = [, A*dus(2) for all k = 0,1,2,..., which implies that 1t; = p,. O

The integral representation of the above theorem is an example of Choquet’s theorem while we proved it in a direct
way. The uniqueness of the representing measure p shows that {¢, : 4 € [—1, 1]} is actually the set of extreme points
of K. Since the pointwise convergence topology on {¢, : 4 € [—1,1]} agrees with the usual topology on [—1, 1],
we see that J is a so-called Bauer simplex (see [67]).

Theorem 2.7.6. Let f be a non-linear operator convex function on (—1,1). Then there exists a unique probability
Borel measure u on [—1, 1] such that

, f//(O) 1 xz
f@) = fO0)+ f(O)x+ 2 / - dp(d), xe(—1,1).
11 —Ax

Proof. 1t is enough to assume that f(0) = f'(0) =0 by considering f(x) — f(0) — f'(0)x. By Corollary 2.4.6,

g(x) := f111(0,x) = f(x)/x is a non-constant operator monotone function on (—1, 1). Hence by Theorem 2.7.5 there
exists a probability Borel measure @ on [—1, 1] such that

1
2() = '(0) / ﬁ dpd),  xe(=1,1).
11 —4ax

Since g'(0) = f”(0)/2 is easily seen from Theorem 2.4.2, we have

B f//(O) 1 xz
fx) = Tf_l ———du(). xe (=L

Moreover, the uniqueness of u follows from that of the representing measure for g. (|

Finally, we establish the equivalence between the operator monotone functions on (a, b) and the Pick functions in
P(a,b) in the following way.
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Theorem 2.7.7. Let —00 <a < b <00 and f be a real-valued function on (a,b). Then f is operator monotone on
(a,b) if and only if f € P(a,b).

Proof. The “if” part was shown after Theorem 2.6.3 in the preceding section. To prove the “only if”, it is enough to
assume that (a, b) is a finite open interval. In fact, if the assertion holds in this case, then for every finite interval (c, d)
included in (a, b), f|.q) is operator monotone and so f € P(c,d). Hence f € P(a,b) follows by letting ¢~ a and
d /' b. Moreover, when (a, b) is a finite interval, f is transformed into an operator monotone function on (—1, 1) and
P(a, b) is transformed into P(—1, 1) via the affine function mentioned in the beginning of this section. So it suffices to
prove the “only if” part when (a,b) = (—1, 1). If f is a non-constant operator monotone function on (—1, 1), then by
using the integral representation (2.7.4) of Theorem 2.7.5 one can define an analytic continuation of f across (—1, 1) by

1
£ = FO) + £(0) / % g, zectuc.
-1 l bl /lZ

Since
tm (o) = 7 [ I,
_1 1 — Az
it follows that £ maps C* into itself. Hence f € (-1, 1). (I
Since

X _/l+x 1 A
l—Ax 1—ax 2241 22+41°

one can substitute #~! for A # 0 in the integral of (2.7.4) so that (2.7.4) is rewritten as

L
f(x)=f(0)—f(0)/_l FEENT dp(d) + f(0)u({0h)x
A+x 1

+ /(0) oo T T E du(a)
= o+ B+ £1(0) Lt 0w
R\-L1) U—x 14+u?
1 4+ ux
=o+ px+ / dv(u),
R\(-1,1) ¥ —X
where
o = f(0) — f(0) /1 e du(), B:=fO)u|o)), dvw) = 1O du(u™")
1 A2+1 ’ ’ ’ Tl ’

In this way, the integral representation (2.7.4) can be transformed into the form (2.6.1) of Nevanlinna’s theorem. This
may be an alternative proof of Theorem 2.7.7.
The next corollary improves the last statement of Corollary 2.4.6.

Corollary 2.7.8. Let —00 < a < b < o0 and f be a real-valued function on (a, b). Then the following conditions are
equivalent:
(1) f is operator convex;
(i) fis C' and fU(s,.) is operator monotone on (a,b) for every s € (a, b);
(iii) fM(s, ) is operator monotone on (a,b) for some s € (a,b) (with continuation of value at s).
Consequently, if g is a real-valued function on (a,b) and f(x) := (x — s)g(x) for any s € (a,b), then f is operator
convex on (a, b) if and only if g is operator monotone on (a, b).

Proof. By the same argument as in the proof of Theorem 2.7.7, we may assume that (a,b) = (—1,1). (ii)) = (iii) is
trivial. Although (i) = (ii) is included in Corollary 2.4.6, we prove it below based on the integral representation of
Theorem 2.7.6.

(i) = (ii). By Theorem 2.7.6, f admits a representation
2

dU(/l), X € (_19 1)9

1
f(x)=a+ﬁx+[11_ﬂx

where «, B € R and v is a positive finite Borel measure on [—1, 1]. For any s € (—1, 1) we write
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f(X) f(S) bl x s°
(1] —
foe = ﬂ+/ x—s<l—/lx 1—/ls>dv(/l)

. (I —As)x+s
=P+ fl (I =491 =4 D

:/3+/ x1+ “d(/l)
1

1_"13)/(1 — Ax) is operator monotone on (—1, 1) for every A € [—1, 1]. This is clear
when 4 = 0. When A # 0, we have
1 1 1

x+1j/1s=__+
1 —Ax /12(1—/13) Al —x’

which is operator monotone on (—1, 1) thanks to Example 2.5.9(2) and 1 //12(1 —As) > 0.
(iii) = (i). By Theorem 2.7.5, f!l(s,-) admits a representation

1
AU, x) = a+ / T @, xe(-LD),
-1 1—Ax

where o € R and v is a positive finite Borel measure on [—1, 1]. This implies that

U x(x — )
. dv(Q).

Sx) =f(S)+0t(x—S)+/

1 1=2
Hence it suffices to show that (x> — sx)/(1 — Ax) is operator convex on (—1, 1) for every A € [—1, 1]. This is clear when
A =0. When 1 # 0,

2x2—sx 1—Aas

=-1 As — 1 .
- Ax AR
From Example 2.5.9 (4) it is immediate to see that (1 — A7l s operator convex on (—1,1). Hence thanks to
1—As>0, (2 — sx)/(1 — Ax) is operator convex on (—1,1).

The latter statement is just a rewriting of the proved equivalence. O

Corollary 2.7.9. Any operator monotone function on the whole real line is a linear function f(x) = o + fx with
a € R and B > 0. Any operator convex function on the whole real line is a quadratic function f(x) = o + Bx + yx>
with a, B € R and y > 0.

Proof. Assume that f is operator monotone on (—o00,00). Since f € P(—oo,00) thanks to Theorem 2.7.7,
Theorem 2.6.3 implies that f(z) = o + Bz with « € R and 8> 0. Hence f(x) =« + Bx. Next assume that f is
operator convex on (—o00,00). By Corollary 2.4.6, (f(x) — f(0))/x is operator monotone on (—oo,00) and hence
(fx) — £(0))/x = B+ yx with B € R and y > 0. Therefore, f(x) = o + fx + yx*> with a = £(0). ([

Exercise 2.7.10. When p < —1, show that the function f on (0, c0) defined by f(x) := (x? — 1)/(x — 1), x # 1, and
f(1) := p cannot be analytically continued across (0, 00) to C* in such a way that f(C*) c C*. For this, take account
of the fact that for small r > 0 the argument of f(z) = (z” — 1)/(z — 1), z =re”, nearly behaves as —z”. By
Corollary 2.4.6 and Theorem 2.7.7, this proves that x” is not operator convex on (0, 00) when p < —1, settling the
remaining part of Example 2.5.9 (4).

Finally, we transform the integral expression (2.7.4) for operator monotone functions on (—1, 1) into the following
expression on [0, 00), which will play an important role in the next chapter.

Theorem 2.7.11. Let f be a continuous and nonnegative function on [0, 00). Then f is operator monotone if and only
if there exists a positive finite Borel measure m on [0, 0o] such that

t+ a1

where t(1 +1)/(t+ ) is 1 if A =0 and t if 1 = oo. In this case, the measure m is unique, and if a :== m({0}) and
b := m({o0}) then

F) = / D ), e 0,00,
[0,00]

(14 1)
() =a+ bt + / dm(1),  tel[0,00). (2.7.5)

(0,00) t+ A4

Also, a = f(0) and b = lim,_, «, f(2)/t.
Moreover, a continuous real-function function f on [0, 00) is operator monotone if and only if there exist a b > 0 and
a positive finite Borel measure m on (0,00) such that
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f(t):f(O)—i—bt-I—/ i+ 2)

dm(d), 1€ [0,00).
(0,00) t+ A4

Proof. The “if” part is immediately seen since, for every A € [0, 00),

t(1+/1)_1 /l_/l(l+/l)

r+Aa t+ 4

is operator monotone on [0, 00). Conversely, assume that f > 0 is continuous and operator monotone on [0, c0).
Transform f(¢) on (0, 00) to an operator monotone function g(x) := f(¥(x)) on (—1,1) by

1+x 2
1—x 1—x

Theorem 2.7.5 implies that there exists a probability Borel measure p on [—1, 1] such that

t=Y(x) =

X

g(x) = g(0) + ¢'(0) du(d),  xe(=LD.

=11 1 —Ax
Since g(—1) = lim,_, _149 g(x) = f(0) > 0, we notice that
/[—1,1] 14% dp(d) < +o0,
in particular u({—1}) = 0, and hence
dW-2-D=gO [ g,
111 (I =0+ 2)

Transforming this to the expression of f(f) by x = ¥~ !(¢) and A = ¥~!(¢) and introducing the measure m on (0, co] by

0
meo=jgoy ", where di(l):= % du(),
we have
. (1 +9)
£ — f(0) = fwm] S dn@. 1e10.00)

Adding the mass f(0)dp to m we have

3 (1+0)
@) = /[Om] o dmo. relooo).

The uniqueness of the measure m follows from that of x in Theorem 2.7.5, and the remaining assertions are easily
verified. Finally, the last assertion is immediately seen by applying the above case to f — f(0). (]

For example, from the integral expression

/] 1
logt=/ — — —)da,
o \I+4 r+24

the operator monotone function log(1 + #) on [0, c0) has the expression
<t
log(1+1 = / —dAa

B ) LA+ D

and the representing measure in Theorem 2.7.11 is xj
on [0, 00) has the expression

100) ﬁ dA. For 0 < p < 1 the operator monotone function #”

sin pr [ tAP~!
= P / dAa
T 0 t+/l

(see Exercise 2.6.6 (b)) and the representing measure is % . 11:; da.

2.8 Bhatia and Sano’s characterization of operator convex functions

Concerning matrix/operator convex functions, after showing Kraus’ characterization in terms of the second divided
difference matrices in Section 2.4, we present characterizations due to Hansen and Pedersen for operator convex
functions on (0, 00) in Section 2.5. In this section we present different characterizations for those functions in terms of
the first divided difference matrices, which were recently obtained by Bhatia and Sano [20]. We begin with



184 HIAI

&
Definition 2.8.1. We write C{ for the subspace (of codimension 1) of C" consisting of x= | : | € C" such that
&n
> & = 0. An n x n Hermitian matrix A is said to be conditionally positive definite (c.p.d. for short) if (x, Ax) > 0
for all x € Cj, and also conditionally negative definite (c.n.d. for short) if (x,Ax) <0 for all x € Ci. The n xn

matrix of all entries equal to 1 is denoted by J,,. Obviously, J,, is a positive semidefinite matrix (of rank 1), and x € C"
belongs to Cj if and only if J,x = 0.

Lemma 2.8.2. IfA= [a,;/]l'.szl e MY is c.p.d., then the (n — 1) x (n — 1) matrix whose (i, j)-entry is

Qjj — Qjn — Qnj + A, Lj=1,...,n—1,
is positive semidefinite.
él é:l
Proof. Write B := [a; — ain — ay + a,m];f];l]. For every x = : eC' ! let x:= : e Cy with &, :=
%. | Enfl
! &n

— > !'&. Then

(x, Bx) = Z(aij — Qip — dyj + ann)gé}-j

n—1 n—1 n—1 n—1 n—1 n—1 n—1
S g zama(z sj) S (2 a) 6+ am (z g) (2 sj>
ij=1 i=1 i=1 = i=1 i=1 j=1

J J=1
= Z a;Eig) = (%, A%) > 0
i,j=1

so that B is positive semidefinite. ([

The next theorem shows Bhatia and Sano’s characterizations in [20] for operator convex functions on (0, co) with
some improvements. A similar improvement was also obtained in [76] by a different method.

Theorem 2.8.3. Let f be a real C'-function on (0, 00), and g(t) := tf(t) for t € (0, 00). Then the following conditions
are equivalent:

(1) f is operator convex;

(i1) liminf, o f(£)/t > —00 and [f[l](ti,tj)];fj:l is c.nd. foralln e Nand all tq,...,t, € (0,00),

(iii) limsup, o g(7) > 0 and [gM(t;, tj)]?,j:1 is c.p.d. foralln e N and all t1,...,t, € (0, 00).
Proof. (i) = (ii). First, the condition liminf,_, o f(¢)/t > —o0 is trivially satisfied as long as f is a convex function on
(0,00). For any ¢ > 0 define

he(t) == f(t + &) — f(e) — f'(eNt, t=0,

which is operator convex and nonnegative on [0, 00) with £,(+0) = h.(0) = 0 and 4,(0) = 0. Then Theorem 2.5.2
implies that 4. (f)/t is operator monotone on (0, 00) with limq o A:(f)/t = h,(0) = 0. Hence by Theorem 2.7.11, the

function h.(¢)/t is represented as
he(t 1+
():ct—i—/ -+ )dm(/l),
t (0,000 I + A1

where ¢ > 0 and m is a positive finite measure on (0, co). Therefore, we have
21+ 2
fo(0) = f(t+£)=a+bt+ct2+/ Q dm(),
(0,00) I+ A
where a := f(e) and b := f'(e). Letting ¢, (¢) := */(t + A) for A1 € (0,00) and ¢ € [0, 00), one can write
s,y =b+cs+0+ s, (1 + ) dm(d), st €[0,00).
(0,00)

Since



Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 185

1 52 2 st+ A(s+1)
¢/[(S,t)= ( - >:
s—t\s+4 t+41 s+ D+ )
2
=1—/l4, s,t € [0, 00),
(s+DE+ 1)

we have, for every tq,...,t, € (0,00),

L@ )12y = bl + (DI, + J,D) + f (o = A°DaJuD)( + 1) dm(d),
(0,00)

where

1 1
D := Diag(ty,...,t,), D, := Dia, .
et ) A g<n+a m+a>

For every x € Cj, since J,x = 0 and D,J,D, > 0, we obtain
(e LM @ 1)) = — f A2(x, D3 J,Dax)(1 + 1) dm(2) < 0,
(0,00)

which shows that [f1!(#;,#)] is c.n.d. Since fI1(#;,4) = fIl(t; + ,1; + ¢) and & > 0 is arbitrary, (ii) holds.
(i) = (i). For any ¢ > 0, since

_ fte) —fe)
m——° =

KO . ()
and
limi ft+e) — f(e)
1trgg>1f% > —

thanks to the condition liminf,_, o f(#)/t > —00, one can see that
it —fe)
1€(0,00) t
So choose a y, € R smaller than the above infimum, and define
fe(0) == f(t +¢), he(r) == f(t + &) — f(&) — yet, 1 € [0, 00),
so that h.(¢) > 0 for all # € (0, 00). For every n € N and every t,...,t, € [0,00), since
(R )1 =y = L@ )1 =y — vedo = LG+ 6.8+ O 1y — vedus
it follows that [AlN(z;, 7]} is cnd. Letting #,,...,1,.1 > 0 and 7, = 0, we see by Lemma 2.8.2 that

—|:]’l£1](l,‘, ) — M — M + h;(0)1|

n—1

t; fi

i,j=1
is positive semidefinite. One can compute the above (i, j)-entry as follows:

he(t) — he(t))  he(t)  he(t) ,
P . ; + (&) —ve
2hy(t;) — 2h (1)
jrENTL 17%eNY /
= + £) —
=00 f(&) —ve
2 2
het) W@ " Rp b))
- 1 : f — tj : tj +f(8) Ye»

noting that A.(¢) > O for r > 0. Hence it follows that

n—1

t2 [1]
[<h <r>> “"’t")} — (f'(€) = Yo)DJy 1D

i,j=1

is positive semidefinite, where

t ty
D := Diag —l,...,— .
hs(tl) hs(tn)

Since f'(e) — y. > 0 by the choice of y,,
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t2 [1]
[(m) “’"f”]

is positive semidefinite. This implies by Theorem 2.4.3 that >/h.(f) is operator monotone on (0,00). Hence by
Corollary 2.5.6, h.(t)/t = /(2 /he()) is operator monotone on (0, co) again. Finally, since 4.(0) = 0, Theorem 2.5.2
implies that /. (f) is operator convex on [0, 00). Hence so is f(¢ + €) = h.(t) + f(€) + y.t. Since ¢ > 0 is arbitrary, f is
operator convex on (0, 00).

(i) = (iii). The condition limsup, ( g(#) > 0 is obvious since f(+0) > —oo as long as f is a convex function on
(0, 00). With the same h.(¢) as in the proof of (i) = (ii), we have

n—1

ij=1

Pl+2
g:(t) == tf(t+¢&) =at+ b +cr + / rad+4 dm(),
(0,00) t+ A4

where a, b, ¢ > 0, and m are as in the proof of (i) = (ii). Letting ¥, (¢) := t3/(t + A1), one can write

gl n=a+bs+n+c +si+2)+ [ Yend+0dn), s el0,00).
(0,00)
Since
3 3 ) )
KbEll](S,l)z 1 S _ t =SZ(S+t)—|-/l(s + st +1%)
s—t\s+4 t+4 (s+ )+ )
/13

=s+r—A4 s,t € [0, 00),

+ 4,
s+ D+ D)
we have, for every tq,...,t, € (0,00),

18 1))} 1, = aJy + b(DT, + J,D) + c(D*J, 4+ DJ,D + J,D)

+ / (DJ, + J,D — AJ, + 1>DJ,D)(1 + 1) dm(Q),
(0,00)

where D and D, are as in the proof of (i) = (ii). For every x € C, since J,x = 0, DJ,D > 0 and D,;J,D, > 0, we have
(. (81 1)1) = c{x, DI, D) + / 23, DA, Da0)(1 + ) dm(2) > 0
(0,00)
so that [gI(#;,7;)] is c.p.d. Since lim.\ o g:(r) = g() and lim,~ o g.(t) = g'(¢) for all € (0, 00), it follows that [g1(z;, ;)]
is c¢.p.d. and (iii) holds.
(iii) = (i). Thanks to the condition lim SUp~ o g(®) = 0, one can choose a sequence ¢; \, 0 such that g(e;) > 0 for all
k when limsup,.  g(#) > 0, or else limy—« g(ex) = 0 when limsup,. g g(#) = 0. Define
hi(t) := g(t + &) — g(ex) — g'(e)t, 1 €[0,00).
For every n € N and every ¢4,...,t, € [0,00), since
(A )Y =y = T8N+ ety + €017 2y — &/ (€) s
it follows that [h,[(”(ti, tj)]ﬁj:1 is c.p.d. Now let 71,...,%,_; > 0 and 7, = 0. Since /,(0) = 0, we see by Lemma 2.8.2 that
() he(t) !
[h}(ll(ti,tj . k( )_ k(j)}
i,j=1

i tj
is positive semidefinite. Since the above (i, j)-entry is equal to
i) he(t)
() — (@) (@) () . 7 I

=1b- ° tjs
i —1 t; L i —1

it follows that
n—1
O
|:<t2 t, 1)
ij=1
is positive semidefinite. Therefore, /(f)/t* is operator monotone on (0,c0). Furthermore, since limp o i (2)/t =
h,(0) = 0, Theorem 2.5.2 implies that A (r)/t is operator convex on (0, oo). Noting that

h(@) (C+ef(t+e) gl
= ; - — g (&),
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we see that

At = (r+ Sk)];(t e g(‘:k)

is operator convex on (0, 00). When g(e;) > O for all k, g(e;)/t is operator convex and so

(+ 81()];(1 + &) — A+ @

is operator convex on (0, 00). Since limy_, oo (¢ + &) f(t + &)/t = f(¢) for all + > 0, f is operator convex on (0, c0).
When limy_, » g(ex) = 0, limy_, o fx(¥) = f(#) for all £ > 0 so that f is operator convex on (0, c0) as well. O

Remark 2.8.4. The conditions limsup,_, ., f(f)/t > —oc in (ii) and lim SUp,~ o g(®) > 0 in (iii) are essential in
Theorem 2.8.3, as seen from the discussions below. When 1 < « < 2, the function #* is operator convex on (0, c0).
Hence Theorem 2.8.3 implies that [(**™)!M (5, )17 ,_, is c.p.d. and so [(—*T)M(&;, )17, is c.n.d. for all 7y,...,1, €
(0, 00). But —**! is not operator convex on (0, 00). Note that lim,_, ,o(—%!/f) = —c0.

Next, when —1 <« <0, the function 7* is operator convex on (0,00). Hence Theorem 2.8.3 implies that
(M, )]}, is c.n.d. and so (=M (z;, )]}y is c.p.d. forall 71,..., 1, € (0,00). But —#*~" is not operator convex
on (0, 00). Note that lims o #(—1*7") < —1.

The next corollary is Theorem 2.8.3 in a special situation.

Corollary 2.8.5. Let f be a real C'-function form (0, 00) into itself. Then the following conditions are equivalent:
(1) f is operator convex;
(i) all divided difference matrices of f are c.n.d., i.e., [f1(1;, ti)]j»szl iscnd. foralln e Nand allty,...,t, € (0,00),
(iii) all divided difference matrices of tf(t) are c.p.d.
Moreover, if the above conditions hold, then all divided difference matrices of t/f(t) and of f(t)/t* are c.n.d.

Proof. Since the additional conditions in (ii) and (iii) of Theorem 2.8.3 are trivially satisfied in this special situation,
Theorem 2.8.3 shows that (i)—(iii) are equivalent. When f is operator convex, then so are f/f(¢) and f(f)/t* by
Corollary 2.5.6. Hence the last assertion follows. ([

For instance, all divided difference matrices of the power function ¢ on (0, c0) are c.n.d. for —1 < r < 0, positive
semidefinite for 0 < r < 1, c.n.d. for 1 <r <2, and c.p.d. for 2 < r < 3. Since ¢ is not operator convex on (0, co) for
r > 2, Corollary 2.8.5 shows that ¢" for any » > 3 has a non-c.p.d. divided difference matrix and also a non-c.n.d. one.
See [20] for more properties of divided difference matrices of #".

Remark 2.8.6. As is easily verified by translation ¢ — ¢ + « and by reversing ¢ — —¢, Theorem 2.8.3 similarly holds
also when f is a function on (&, 00) or (—o0, B). In the latter case, the roles of c.n.d. and c.p.d. are exchanged. However,
the theorem is not true when f is a function on a finite interval (o, 8). For instance, according to Theorem 2.7.6, the
functions

2

g1 = , Where 4 € [—1,1], (2.8.1)

1— At

are operator convex on (—1, 1). The function g, has c.n.d. divided difference matrices for 1 € [—1,0) while g, does
c.p.d. divided difference matrices for A € (0, 1], as shown in [21]. But it was also shown in [21] that the function g, (¢)
has c.p.d. divided difference matrices for all 1 € [—1, 1] so that, for every operator convex function f on (—1, 1), the
function #f(¢) has c.p.d. divided difference matrices, which was indeed formerly proved by Horn [45] by a different
method. The proofs of these facts are left for the next exercise.

Exercise 2.8.7. Let g, 1 € [—1, 1], be the functions on [—1, 1] defined by (2.8.1). Prove the following:
(1) If 1,....1, € (=1, 1), then [¢)(5;,1)]},_, is c.n.d. for all A € [~1,0) and is c.p.d. for all A € (0, 1].
(2) If (1) := tga() and 1y, 1, € (=1, 1), then [A)(t;, 1))?,_, is c.p.d. for all A € [—1,1].

Exercise 2.8.8. For every m € N and every 14,...,t, € (0,00), show that

[N @ ) = — (@ [EHNET 5Dy, xe G

This implies that [(#™)(z;,1)]
(resp., c.p.d.).

7ioy is cpd. (resp., cnd) if and only if [N, 5], is cnd.
More recently in [44] we considered the following conditions for a C! function f on (0, 00) and for each fixed integer
n>1:
(1), f is matrix convex of order n on (0, c0);
(i), liminf,_ f(#)/t > —o0 and [f“](ti,tj)]l"fj:l is c.n.d. for all 74,...,1, € (0, 00);
(iii), limsup, og(#) > 0 and [g“](t,-,tj)]}”j=1 is c.p.d. for all 11, ...,t, € (0, 00), where g(¢) := tf(¢) for t € (0, 00).
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We further improved the above proof of Theorem 2.8.3 without use of integral representation of operator convex
functions and proved the implications

Dont1 = (i), (i)gp41 = (D, D1 = (D), (ii)yy 1 = (-

In this way, it turned out that the results in [20] (also [75]) are refined to those for each matrix order.

3. Operator Means

3.1 Operator means and parallel sum

This chapter is a brief survey on operator means. An axiomatic approach for operator means was investigated by
Kubo and Ando [58]. To introduce operator means in an axiomatic way, it is convenient to treat positive operators on a
fixed separable and infinite-dimensional Hilbert space instead of n x n positive matrices for all separate n. So,
throughout this chapter, we fix such an infinite-dimensional Hilbert space #, and let B(#) be the set of all bounded
linear operators on #. Let B(J)* denote the set of all self-adjoint A € B(#) and B(#)* the set of all positive
A € B(H#).

First, we review the functional calculus and the spectral decomposition for self-adjoint operators on #, which are the
infinite-dimensional extensions of those for matrices explained in Section 1.4. For A € B(#) let o(A) be the spectrum
of A, i.e., the set of A € C such that A1 — A is not invertible in B(J#), which is a non-empty compact subset of C with
o(A) Cc {1 € C: 2] < ||All}, IlA]l being the operator norm of A. Hence r(A) < ||A||, where r(A) := max{|d]|: 4 €
o(A)}, the spectral radius of A. Moreover, note that r(A) = lim,_, «, ||A"||'/" and that r(A) = ||A| if A is normal (i.e.,
A*A = AA¥). Let P denote the linear space of all polynomials with complex coefficients. For p(f) = ZkN:O oxt* in P we
put p(A) := Zszo o AF as usual. When A € B(#)** (hence o(A) C [—]lA]l, |A]l]), we have

o(p(A)) = p(a(A)) = {p(1) : 1 € a(A)}

and hence

[P = IPllow) = max{|p(d)] : 1 € a(A)}.

This means that p € P+ p(A) € B(H) is an isometry with respect to the norm | pll,4, on P and the operator norm.
This isometry can uniquely extend to C(c(A)), the Banach space of continuous complex functions on o(A) with sup-
norm, since P is dense in C(c(A)). This extended isometry is written as f € C(c(A)) — f(A) € B(#) and f(A) is called
the functional calculus of A by f. We have o(f(A)) = f(c(A)), the spectral mapping theorem. When A > 0 (i.e.,
A € B(#)%) and f(t) =" on [0, 00) with r > 0, we write A" for f(A). In particular, A% =1, the identity operator, by
convention.

For A,A, € B(#), n € N, it is said that A, converges to A in the strong operator topology (or simply A, — A
strongly) if ||[(A, — A)x|| — O for all x € #. Of course, the operator norm convergence ||A, — Al — 0 implies the
convergence in the strong operator topology. When # is finite dimensional, both convergences are equivalent.

Now let A € B(#)™. For each x,y € # define ¢,,(f) := (x, f(A)y), f € C(c(A)), which is a bounded linear
functional on C(a(A)). Hence by the Riesz—Markov theorem, there is a unique complex Borel measure (., on 0(A) such
that

(x, fA)y) = fdﬂx,w f € C(a(A)).

For each Borel subset S of (A), it follows that i, ,(S) is a sesqui-linear form on #, i.e., i1, ,(S) is conjugate-linear in x
and linear in y, which is bounded as |, ,(S)| < [lx|| [ly]l for all x,y € #. Hence by the Riesz representation theorem,
there is an E(S) € B(J¢) such that u,,(S) = (x, E(S)y) for all x,y € J. Since ¢, > 0 on C(0(A)), [y IS a positive

measure for any x € J, so E(S) € B(#)" for all Borel sets S C o(A). Here one can show that E(S) is an orthogonal
projection for every Borel set S and E(-) is o-additive in the sense that

0 N
E@S) =) E@S)= lim Y E(Sp)
k=1 k=1

in the strong operator topology if S, k € N, are mutually disjoint Borel subsets of o(A) with S = [ =, Sx. Moreover,
E(0(A)) =1 since 1y,(0(A)) = (x,y) for x,y € H. In this way, one obtains a spectral measure E(-) on o(A) such that

(x,Ay) = / tdpg,(t) = / td{x, E(t)y), X,y € H,
a(A) a(A)
that is,

A:/ tdE(®), (3.1.1)
a(A)
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which is called the spectral decomposition of A. One can also define a resolution of identity {E;}_o ;<00 DY
E, := E(c(A) N (—o00,t]), which is a non-increasing and right-continuous one-parameter family of orthogonal
projections with E; = 0 for t < —||A|| and E; = I for ¢t < ||A||. Then the representation (3.1.1) is also written as

llAl
A = / tdEt.
—lAll

When # is finite dimensional and «j, . .., a,, are different eigenvalues of A € B(#)™ with P; the orthogonal projection
onto the eigenspace ker(A — o;l) for 1 < j < m, the spectral decomposition of A reduces to (1.4.2) in Section 1.4.

Exercise 3.1.1. Let f be a continuous complex function on an interval [«, 8]. Let A, A, € B(#)*, and assume that
A, — A in the strong operator topology and that o(4,) C [«, 8] for all n € N. Show that o(A) C [«, B] and
f(A,) — f(A) in the strong operator topology.

After the above short review on functional calculus and spectral decomposition, we now introduce the notion of
operator means in the following:

Definition 3.1.2. A binary operation o : B(#)" x B(#)* — B(H#)" is called an operator connection if it satisfies
the following conditions (i)—(iii) for A, B, C,D € B(#)™:
(i) A <Cand B <D imply Ao B < Co D (joint monotonicity),
(i) C(AoB)C < (CAC)o (CBC) (transformer inequality),
(iii) A,,B, € B(#)", A, | A, and B, | B imply A, 0B, | Ao B (upper semicontinuity), where A, | A means that
A} > A, > ... and A, — A in the strong operator topology.
An operator connection o is called an operator mean if
(v) Iol=1.

In the rest of this chapter, we always assume that A, B, C, D are elements of B(J)".
Proposition 3.1.3. Assume that o is an operator connection. If C is invertible, then
C(Ao B)C = (CAC) 0 (CBC). (3.1.2)
For every o > 0,

a(AoB) = (a¢A)o (aB) (positive homogeneity). (3.1.3)

Proof. From property (ii) above,
C'{(CAC)o (CBO)YC™' <AoB
so that
(CAC)o (CBC) < C(Ao B)C.

This and (ii) imply (3.1.2). When o« > 0, letting C := «!/?I in (3.1.2) implies (3.1.3). When o = 0, let 0 < a,, \( 0.
Then (a,)o(a,l) | 000 by (iii) above while («,/)o (,]) =a,(Icl) | 0. Hence 0 =000, which is (3.1.3)

for @ = 0. |
Lemma 3.1.4. For invertible A,B € B(¥)" define A : B € B(¥#)" by

A:B:=A"'"4+BH. (3.1.4)
Then

(1) Let A,B,C,D € B(¥#)" be invertible. IfA<Cand B<D, thenA:B <C:D.
(2) Let A,B,A,,B, € B(H)" for n > 1. If A, B are invertible, A, | A and B, | B, then A, : B, | A : B.

(3) Let A,B,A,,B, € B(H)" for n> 1. If A,,B, are invertible for n>1, A, | A and B, | B, then the limit
lim, A, : B, in the strong operator topology exists, and the limit is independent of the choices of A,, B,.
Proof. (1) Since A<C and B<D, A~'>C7! and B"' > D! so that A=' + B~! > C' + D!, Hence (A~'+

B h'l<c'+DH "
(2) Assume that A, B are invertible, A, | A and B, | B. Then A,’1 < Az’1 <..., Bl’1 < BEI <..., A;l <Al and
B;l < B~!. Notice that

A=A = (6 A A - AT ) = (A A, — AT )
< 1A 'l 1Ay = DA™ x| — 0
for every x € . This implies that A;! 1 A~! (i.e., A, ! increasingly converges to A in the strong operator topology).

(In fact, this is also seen from Exercise 3.1.1.) Similarly B! 4+ B~!. Hence A;! + B;! 1+ A=! + B~!. An argument
similar to the above shows that A, : B, | A : B.
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(3) For general A,B € B(#)", let A,, B, be invertible with A, | A and B, | B. It follows from (1) that A : By >
A, 1 B, > ...and so lim, A, : B, in the strong operator topology exists. For any other invertible A/, B, with A, | A and
B, | B, since A, <A, +A,, —A and B, < B, + B,, — B for every n,m € N, we have by (1)

A,:B, <(A,+A,—A):(B,+ B, —B). (3.1.5)
Since A, +A,, —A | A), and B, + B,

", — B | B as n — oo, it follows from (2) that (A, +A), —A): (B, +B,, —B) |
Al : B, as n — oo. Passing to the limit of (3.1.5) as n — oo we have lim, A, : B, <A/, : B,,. Hence letting m — oo
gives lim, A, : B, <lim, A} : B,. By symmetry we have lim, A, : B, = lim, A : B,,. O

Thanks to Lemma 3.1.4 (3), one can extend (3.1.4) to general A, B € B(#)" as follows:
A:B:= li\r‘r(l)(A +el): (B+¢l) (in the strong operator topology). (3.1.6)
This A : B is called the parallel sum of A, B. The next variational expression of A : B is useful.
Lemma 3.1.5. For every x € ¥,
(x,(A : B)x) = inf{(y,Ay) + (z,Bz) : y,z € #, y+ 7= x}.

Proof. When A, B are invertible,
A:B={B'A+BA'}"'={A+B)—B}(A+B)'B=B—B(A+B)'B.
For every x,y € # we have
0 Ay) + (x =y, B(x — y)) — (x,(A: B)x)
= (x, Bx) + (y, (A + B)y) — 2Re(y, Bx) — {(x,(A : B)x)
= (x,B(A+ B)"'Bx) + (y,(A + B)y) — 2Re(y, Bx)
= [I(A +B)""Bx|* + (A + B)"?y||* — 2Re((A + B)"/?y, (A + B)'/*Bx)
0.

)
{

v

In particular, the above is equal to 0 if y = (A + B)~'Bx. Hence the assertion is shown when A, B are invertible. For
general A, B,

(x,(A: B)x) = in(f)(x, {(A+el): (B+ eD}x)
= inf inf((y. (4 + e1) + (v =3, B+ eD)x =)

= inf{(y. Ay) + {x — 3. B = y)}. U

Corollary 3.1.6. The parallel sum A : B is an operator connection and the following hold:
(1) For every S € B(¥#), S*(A : B)S < (S*AS) : (S*BS).
(2) A:B)+(C:D)<(A+C): (B+D).

Proof. Let us first show (1) and (2).
(1) When y 4+ z = x, Lemma 3.1.5 implies that

(x,S*(A : B)Sx) = (Sx, (A : B)Sx) < (Sy,ASy) + (Sz, BSz)
= (y,S*ASy) + (z,S*BSz).
Hence S*(A : B)S < (S*AS) : (S*BS) by Lemma 3.1.5 again.
(2) When y + z = x,
(x.{(A:B)+ (C: D)}x) < (y,Ay) + (z,Bz) + (y, Cy) + (z, Dz)
=, A+ C)y) + (z,(B+ D)z).

Hence (A:B)4+(C:D)<A+C):(B+ D).

Next, we show that A : B is an operator connection. (i) of Definition 3.1.2 is obvious from Lemma 3.1.4 (1) and
Definition (3.1.6). (ii) is contained in (1). To show (iii), let A, | A and B,, | B. Since A : B <A, : B, by (i), we have
A:B <lim,A,: B,.Forany ¢ > 0, since A, : B, < (A, + ¢l) : (B, + €l), Lemma 3.1.4 (2) implies that lim, A, : B, <
(A+¢€l): (B+e¢l). Hence lim,A, : B, <A :B so that A, : B, | A: B. (It is also easy to show (i) and (iii) from
Lemma 3.1.5.) U

3.2 Kubo and Ando’s theorem

The next fundamental theorem of Kubo and Ando says that there is a one-to-one correspondence between operator
connections and operator monotone functions on [0, c0).
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Theorem 3.2.1. For each operator connection o there exists a unique operator monotone function f > 0 on [0, 00)
such that

SOOI =10o(), t>0. (3.2.1)

Furthermore, the following properties are satisfied:
(1) The map o +— f is an affine order-isomorphism between the operator connections and the nonnegative operator
monotone functions on [0,00). Here, the order-isomorphism means that when o;+>f; for i=1,2,
Ao B <AoyB forall A,B € B(#)" if and only if fi(t) < fo(t) for all t > 0.
(2) If A is invertible, then

AoB=AV2fA12BATH)AL2, (3.2.2)
(3) o is an operator mean if and only if f(1) = 1. In this case, AcdA = A for all A.

Proof. Let o be an operator connection. First we show that if a projection P € B(#) commutes with A and B, then P
commutes A o B and

{(AP)o (BP)}P = (Ao B)P. (3.2.3)
Since PAP = AP < A and PBP = BP < B, it follows from (ii) and (i) of Definition 3.1.2 that
P(Ao B)P < (PAP)o (PBP) = (AP)o (BP) < Ao B. 3.2.4)

Hence {A o B — P(A o B)P}'/? exists so that
l{Ao B — P(Ao B)P}'/*P|> = P{Ac B — P(Ao B)P}P = 0.

Therefore, {Ac B — P(AUB)P}I/ 2P =0 and so (Ao B)P = P(Ao B)P. This implies that P commutes with Ao B.
Similarly, P commutes with (AP) o (BP) as well, and (3.2.3) follows from (3.2.4). Hence we see that there is a function
f >0 on [0,00) satisfying (3.2.1). The uniqueness of such function f is obvious, and it follows from (iii) of
Definition 3.1.2 that f is right-continuous for ¢ > 0. Since +~'f(£)] = (t"'I)o I for t > 0 thanks to (3.1.3), if follows
from (iii) of Definition 3.1.2 again that #~! (¢) is left-continuous for ¢ > 0 and so is f(f). Hence f is continuous on
[0, 00).

To show the operator monotonicity of f, let us prove that

f(A) =IoA. (3.2.5)

LetA = >"" a;P;, where o; > 0 and P; are projections with Y - | P; = I. Since each P; commute with A, using (3.2.3)
twice we have

m m

I0A = ;(lompi = ;{Pi o (AP))P; = ;{Pi o (P} P;

m m

=) {o@DPi=)_ f@)P; = f(A).
i=1 i=1

For general A € B(#)" choose a sequence {A,} in B(H#)" of the above form such that A, | A. By (iii) of
Definition 3.1.2 and Exercise 3.1.1 we have

[o0A = lim [oA, = lim f(A,) = f(A)
n— 00 n— oo

in the strong operator topology, and so (3.2.5) is shown. Hence, if A,B € B(#)* and A < B, then
f(A)=10A <IoB= f(B),

showing that f is operator monotone. In the rest we prove (1)-(3).

(1) It suffices to show that o — f is surjective onto the set of nonnegative operator monotone functions on [0, c0),
since the remaining assertions are obvious from (3.2.1) and (3.2.5). So let f > 0 be operator monotone on [0, c0). By
Theorem 2.7.11 we have a,b > 0 and a finite positive measure m on (0, co) so that

t(1+2)
t=a+bt+/
f® ooy 11

dm(Q).
Define a binary operation ¢ on B(#)" by

142
AoB = aA—l—bB—l—/ LAy - By am.
©Oo00) A

In fact, since
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(AA): B < AID : (181D = 1B
1A+ |B|
so that
1+4 IAI BT + A)
— QA :B| < —————— 2
A IAlIA + [1B]

it follows that 1% {(AA) : B} is uniformly bounded for A > 0. Hence A o B is well defined as an element of B(#)™.
Now it is easy to see from Corollary 3.1.6 that Ao B is an operator connection. For instance, we show (iii) of
Definition 3.1.2: if A, | A and B, | B, then (14,): B, | (1A): B for all 1 € (0,00) and so by the Lebesgue
convergence theorem we have

lim (x, (A, 0 B,)x) = lim [a(x, Apx) + b{x, B,x) + /
n— o0

n—o0 (0,00)

= a{x,Ax) + b{x, Bx) + / (x, {(1A) : B}x) dm(Qd)
(0,00)

(x, {(14,) : B,}x) dm(/l)}

= (x,(A o B)x).

Hence A, 0B, | Ao B. For this operator connection o, 1o (t) = f(t)I holds for all £ > 0 so that f is the operator
monotone function corresponding to o.
(2) When A is invertible, it follows from (3.1.2) and (3.2.5) that

Ao B =A"2(Ia A~ 2PBA"VHAV? = A2 F(A-12BA- V)AL,

(3) The first assertion is immediate to see. When f(1) = 1, it follows from (3.2.2) that Ao A = A for invertible A.
By continuity this holds for all A € B(#)™. ]

Let o be an operator connection and f be the operator monotone function on [0, co) corresponding to ¢ as described
in the above theorem. When A is invertible, Ao B is written as in (3.2.2). For general A,B € B(F)T, by (iii) of
Definition 3.1.2 one can define as

AoB= li\mOAE oB, = li\rnoAi/zf(A;I/ZBEA‘;I/Z)A;/2 (in the strong operator topology),

where A, := A + ¢l and B, := B + ¢l. We call f the representing function of o. For scalars s,t > 0 note that (s/) o (#])
is a scalar multiple of [ thanks to (3.1.3) and (3.2.1), so we write s o ¢ for this scalar. In fact, sot = sf(t/s) for s > 0.
The next proposition is seen from Theorem 2.7.11 and the proof of Theorem 3.2.1.

Proposition 3.2.2. For every operator connection o, there exists a unique positive finite Borel measure m on
[0, o0] such that

142

AoB =uaA+ bB + / 0 {(1A) : B} dm(Q), A,B € B(#)*, (3.2.6)
(0,00)

where a := m({0}) and b := m({oo}). The map o+ m is a bijective affine correspondence between the operator

connections and the positive finite Borel measures on [0, o0].

Due to the integral expression (3.2.6), one can derive properties of general operator connections by checking them
for only parallel sum. For instance, the following corollary is obvious from Corollary 3.1.6 and (3.2.6).

Corollary 3.2.3. For every operator connection o the following hold:
(1) For every S € B(#), S*(Ao B)S < (S*AS) o (S*BS) (transformer inequality) and equality holds if S is invertible.
(2) (AoB)+ (CoD) <(A+ C)o(B+ D) (concavity).

It is quite instructive to consider operator connections form the point of view of electrical circuits. An impedance of
an n-port resistive network is represented by an n x n positive matrix A. The equation v = Ax holds for n-dimensional
vectors of current x and voltage v, and the electrical power is given by (x, Ax). For two impedances A and B, their series
and parallel connections are given by the sum A + B and the parallel sum A : B, respectively. Lemma 3.1.4 means
Maxwell’s principle that current runs through a parallel connection so as to minimize the electrical power. A general
operator connection represent a formation of making a new impedance from two given impedances A, B. The integral
expression (3.2.6) shows that such a formation can be realized as a weighted series connection of (infinite) weighted
parallel connections. In this way, the theory of operator connections can be regarded as a mathematical theory of
electrical circuits. Indeed, the notion of parallel sum for positive operators was introduced from the viewpoint of
electrical circuits in [2].
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3.3 Examples and properties of operator means
The following are typical examples of operator means.

Example 3.3.1.
(1) Arithmetic mean: AV B := %(A + B), whose representing function is (1 + £)/2.
(2) Harmonic mean: A!B := 2(A : B), whose representing function is 2¢/(1 + 1).
(3) Geometric mean: A#B := lima oA/2(A71/2B,A71/?)!/2A1/2, whose representing function is #'/2. The notion of
geometric mean was first introduced in [69] and developed in [3, 58].
(4) For 0 <« <1 let #, denote the a-power mean, which is the operator mean corresponding to the operator
monotone function #*. Namely, for each A,B € B(#)" with A invertible, A #, B is defined by

A#y B := A2 (A7V2BAT1/2)2A 12,

Here we recall the convention B® = I for any B € B(#)*. Note that A#, B = A,A#, B =B, and A #1,B=A#B.
(5) The operator mean corresponding to the operator monotone function (+ — 1)/logt (see Example 2.5.9 (5)) is
called the logarithmic mean and denoted by A A B.

Among the operator means V, !, #, and A, the following orders hold:
Proposition 3.3.2. For every A,B € B(#)",
A!'B<A#B<AAB <AVB.

Proof. Thanks to Theorem 3.2.1 (1) it suffices to show that
2t t—1 14¢
TR IR (3.3.1)
1+t logt 2
But these can be shown by an elementary calculus, and so the details are left for an exercise. (]
Exercise 3.3.3. Show (3.3.1).

The following are the variational expressions for the geometric and the harmonic means in terms of 2 x 2 operator
matrices.

Proposition 3.3.4.

(1) A#B:max{XeB(J(’)*: [?( )Ig} zo}.

X X
X X|I
Proof. (1) When A, B are invertible, since
I A~12xp=1/2 A~12 0 A X7l A2 0
B-12xA-1/2 I | o B2 [X B} o B2

I A—l/ZXB—l/Z
71/2XA71/2 I
IA~Y2XB~1/2|| < 1, that is, B"'2XA"'XB~1/2 < or XA~'X < B. If X = A#B, then

XA—]X — A1/2(A—1/2BA—1/2)1/2A1/2A—1AI/Z(A—I/ZBA—1/2)1/2A1/2
:AI/Z(A—I/ZBA—I/Z)AI/Z — B.

Also, if XA™'X < B, then A™'/2XA~'XA~'/?2 < A='/2BA~'/? 5o that A~'/2XA~'/? < (A~'/2BA~'/?)!/2 implying that
X < A#B. Hence A#B is the largest X € B(#)" satisfying XA~'X < B.

v

) A!B:max{XeB(}f)+ : |:2A 0 i|

0 2B

. A X . .
we notice that |:X B:| > 0 if and only if [B

:| > 0. By Lemma 1.7.2 this is equivalent to

A #B,

—— R : &
For general A,B, let A, :=A+¢l and B,:=B+¢l for ¢ > 0. Since |:AE#B€ B,

] > (0, we have

[ A A#B

A X A X
. + £
A%B B ] > 0 by letting ¢ \( 0. If X € B(#)" and [X B] > 0, then |:

% Bs:| >0 so that X <A, #B;

and letting ¢ \ O gives X < A# B. Therefore, we obtain the conclusion.
(2) This expression is a reformulation of that in Lemma 3.1.5, whose proof is left for an exercise below. (]
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Exercise 3.3.5. Prove (2) of Proposition 3.3.4.

Proposition 3.3.6. Let o be an operator mean and a,b be as in Proposition 3.2.2. Then for every orthogonal
projections P, Q,

PoQ=aP—-PAQ)+b(Q—-—PAQ)+PAOQ,
where P A Q is the orthogonal projection onto ran P Nran Q.
Proof. For any A, B € B(J)", we notice by Lemma 3.1.5 that ker A U ker B C ker(A : B). Hence
fan (A : B) = (ker(A : B))* C (kerA Uker B)* =Ttan A Nfan B,

where ranA denotes the closure of ranA. Hence we have ran(AP) : Q) C ran(P A Q) for all 4 > 0. Since P A Q
commutes with AP, Q, using (3.2.3) twice we have

AP): Q={(AP): Q}(P N Q) = {(AP(P A Q)) : (Q(P NON}P A Q)
A
={APAQ):(PAONPAQ)={A]): }(PANQ) = 72 P AQ).
Therefore, Proposition 3.2.2 implies that

PaQ:aP—i—bQ—i—{f dm(/l)}(P/\Q)
(0,00)

=aP+bQ+ (1 —a—b)(PAQ)
=alP—PAQ)+Db(Q—-—PAQ)+PAQ. O

Corollary 3.3.7. For every orthogonal projections P, Q,
P!Q=P#Q=PAQ=PArQ.

Proof. When f is the representing function of an operator mean o, recall (Theorem 2.7.11) that a = f(0) and
b =1lim;_,  f(t)/t. We have a = b = 0 for !, #, and A. U

In the rest of this section we discuss certain operations on operator means in connection with the corresponding
operations on operator monotone functions.

Let o be an operator mean with the corresponding function f. Note that f > 0 on (0, 00). In fact, suppose that
f(a) =0 for some o > 0. Then f(#) =0 for all ¢ € [0, «], and the concavity of f implies that f = 0, contradicting
f(1) = 1. Hence Corollary 2.5.6 implies that ¢/ f(¢) is operator monotone on (0, co). Furthermore, it is easy to see that
f ¢ H s operator monotone on (0, c0). Hence ¢f(¢~') is also operator monotone on (0, 00) by Corollary 2.5.6 once
again. By fixing the value at 0 as the limit as # \ 0, the functions #/f(r), f(+~))"!, and #f(t~") are operator monotone
functions on [0, c0). Now the following definitions are meaningful.

Definition 3.3.8. Let o be an operator mean and f be the corresponding function.
(1) The operator mean with the representing function #f(+~') is called the transpose of o and denoted by o’
If 0 = ¢/, o is said to be symmetric.
(2) The operator mean with the representing function f(r~')~! is called the adjoint of o and denoted by o*.
(3) The operator mean with the representing function #/f(¢) is called the dual of o and denoted by o*.

The assertions in the following proposition are immediately verified from the above definitions.

Proposition 3.3.9. Let o be an operator mean and f be the corresponding function.
(1) Ao’ B = BJA.
(2) o is symmetric if and only if f(t) = tf(t™") for all t > 0.
(3) When A, B are invertible, Ac*B=(A"'oB~ 1)~
@) (o) =0, (6" =0, and (cH)* = 0.
5) ot =(0) = (0", o' = (69" = ()", and ¢* = (o) = (o1).

Exercise 3.3.10. Prove Proposition 3.3.9.
For operator connections (resp., operator means) oy, 0y, and o3, the operation defined by
(A,B) — (Ao B)o3 (Ao, B)

becomes an operator connection (resp., operator mean) again. If Ao} B < Ao, B holds for all A, B, then we write
o < 0r.

Proposition 3.3.11. If o is a symmetric operator mean, then | < o <V. That is, V is maximal and ! is minimal among
the symmetric operator means.
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Proof. Let f be the representing function of o. From Theorem 3.2.1 (1) it suffices to show that

Recall (see Theorem 2.4.1) that f is differentiable on (0, c0). Since f(r) = tf(r~!) for t > 0 by Proposition 3.3.9 (2), it
follows that f'(1) = f(1) — f/(1) = 1 — f'(1) and so f'(1) = 1/2. The concavity of f implies that f(¢) < (1 +1t)/2.
Since o* is also symmetric by Proposition 3.3.9(5), the same argument applied to f(t~')~! implies that f(¢) >
2t/(1 + 1). O

Furthermore, let o be an arbitrary operator mean with the corresponding function f, and let @ := f’(1). From the
concavity of f we have 0 <« <1 and

t
— < f(®) < (1l —a) + ot >0, 332
Taria Sf0=-a (3.32)
as in the proof of the above proposition. Hence A o B is between the weighted arithmetic mean (1 — ®)A + oB and the
weighted harmonic mean lim, o((1 — O{)A;1 + ocB;l)_l.

Proposition 3.3.12. For every operator mean o the following hold:
(1) (AoB)+ (BoA)<A+B.
(2) (AoB):(BoA)>A:B.
3) (AoB)#(Ao-B)=A#B.
4) (AocB)+(Ao+B) <A+B.
(5) (AoB): (Aot B)>A:B.

Proof. Since (A,B)+— % {(AocB)+ (BoA)} and (A,B)—~>2{(AoB):(BoA)} are symmetric operator means,
Proposition 3.3.11 implies that

%{(AUB)-F(BO’A) <AVB, 2((AoB):(BoA)}>A!B.

Hence (1) and (2) hold.
Let f be the representing function of ¢. The left-hand sides of (3)—(5) are operator connections, whose representing
functions are

¢ 1/2
(10;)#(10%):{]‘0)-—} =112,

[ i
(lat)+(lolt)=f(t)+J%= “}é(;)
Hence (3) holds. For (4) it suffices to show that
IJ}{I(;)Z <141, (3.3.3)

which is equivalent to {f(¢) — 1}{t — f(¢#)} > 0. This is seen because from (3.3.2) we have t < f(f) < 1if0 <t <1 and
1 < f(¢) <tif t > 1. For (5) it suffices to show that

1f (1) t

=z

t+f0? T 1+t
which is equivalent to (3.3.3). O

The following is a counterpart of Corollary 3.2.3 (2).
Proposition 3.3.13. For every operator connection o,

(AoB):(CoD)>(A:C)o(B: D).

Proof. Since the result is clear in the case o = 0, we assume that o # 0. Then we may assume that ¢ is an operator
mean. From upper semicontinuity, it is enough to show the result when A, B, C, D are invertible. Then the inequality in
question is written as

A'o*B' +C e DY = {A T+ CT e B + DT
This is seen from Corollary 3.2.3 (2). O
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4. Spectral Variation and Majorization

4.1 Majorization for vectors

Let us start with the majorization for real vectors, which was introduced by Hardy, Littlewood, and Pélya. For two

vectors a = (ay,...,a,) and b = (by,...,b,) in R", the weak majorization a <,, b means that
k k
dan < by, 1<k=n, 4.1.1)
i=1 i=1
where (a1}, . . ., apn) 18 the decreasing rearrangement of a, i.e., aj;) > - - - > ay,) are the components of a in decreasing

order. The majorization a < b means that a <,, b and the equality holds for k = n in (4.1.1). The characterizations of
majorization and weak majorization in the following propositions are fundamental.

Proposition 4.1.1. The following conditions for a,b € R" are equivalent:
(1) a<b;
() Y lai—rl <X |bj—rl| forall r € R;
(i) Y, fla) < Y iy f(by) for any convex function f on an interval containing all a;,b;;
(iv) a is a convex combination of coordinate permutations of b;
(v) a = Db for some doubly stochastic n X n matrix D, i.e., D = [d,j];szl with dij > 0, Zj';l dj=1for1 <i<n,
and Y i dy=1for1 <j<n.

Proof. (i) = (iv). We show that there exist a finite number of matrices Dy, ..., Dy of the form A7 4+ (1 — A)I1, where
0 <A <1 and Il is a permutation matrix interchanging two coordinates only, such that a = Dy - - - D;b. Then (iv)
follows because Dy - - - D| becomes a convex combination of permutation matrices. We may assume thata; > --- > a,
and by > --- > b,. Suppose a # b and choose the largest j such that a; < b;. Then there exists a k with k > j such that
ax > by. Choose the smallest such k. Let A := 1 — min{b; — a;, ax — bx}/(b; — by) and II; be the permutation matrix
interchanging the jth and kth coordinates. Then 0 < A; < 1 since b; > a] > a; > by. Define Dy := 441+ (1 — A1,
and bV := D;b. Now it is easy to check that a < b < b and b > ... > b(D. Moreover the jth or kth coordinates
of a and bV are equal. When a # bV, we can apply the above argument to a and bV, Repeating this finite times we
reach the conclusion.

(iv) = (v) is trivial from the fact that any convex combination of permutation matrices is doubly stochastic.

(v) = (ii). For every r € R we have

n

D lai—rl =

i=1

Zd,,(b -7

(i) = (i). Taking large r and small r in the inequality of (ii) we have > " a; = Y ', b;. Noting that |x| + x = 2x
for x € R, where x, = max{x, 0}, we have

dai—n, <> (bi—ry.  reR 4.1.2)
i=1 i=1

< Zd,,w Zlb —rl.

i,j=1 j=1

Now prove that (4.1.2) implies that a <,, b. When byg > r > byg1p, Yo ag < v, by follows since

n k k n k
Z(a,- —r)y > Z(a[i] —7r)y > Za[i] — kr, Z(bi —r)y = Zb[i] — kr.
i=1 i=1 i=1 i=1 i=1

(iv) = (iii). Suppose that a; = Zﬁ:’:l Akbr iy, 1 <@ < n, where A > 0, ZQ’ZI Ay = 1, and 7, are permutations on
{1,...,n}. Then the convexity of f implies that

Z flay) < Z Z A f (i) = Z £(by).

i=1 k=
(iii)) = (ii) is trivial since f(x) = |x — r| is convex. (Il

Note that (v) = (iv) is seen directly from the well-known theorem of Birkhoff [22] saying that any doubly stochastic
matrix is a convex combination of permutation matrices.

Exercise 4.1.2. Let A, denote the set of all probability vectors in R", ie., A, :={p=Pi1,...,pn) :pi >0,
>, pi = 1}. Prove that

(I/n,1/n,...,1/n) < p < (1,0,...,0),  pe A,

The Shannon entropy of p € A, is H(p) := — Y__, pilog p;. Show that H(q) < H(p) < logn for all p < ¢ in A, and
that, for p € A, H(p) = logn if and only if p = (1/n,...,1/n).
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Proposition 4.1.3. The following conditions (1)-(@iv) for a,b € R" are equivalent:
(1) a =<y by
(ii) there exists a ¢ € R" such that a < ¢ < b, where a < ¢ means that a; < c¢;, 1 <i <n;
(i) Yo (@ —nry <Y (bj—r), forall r e R;
(v) Y, fla) < DI, f(by) for any non-decreasing convex function f on an interval containing all a;,b;.
Moreover, if a,b > 0, then the above conditions are equivalent to the following:
(v) a = Sb for some doubly substochastic n x n matrix S, i.e., § = [s,'j]l’-fj=1 with s;; > 0, Z]”:] sj<lfor1<i<n,
and Y7 s; <1for1 <j<n.

Proof. (i) = (ii)). By induction on n. We may assume that a; >--->a, and b} >---> b, Let o:=
minlfkfn(Zf:l b; — Zf:l a;) and define @ := (a1 + o, as,...,a,). Then a < @ <, b and ZLI a; = Zle b; for some

l1<k<n When k=n, a<da~<b. When k <n, we have (ai,...,a) < (by,...,br) and (Gryi1,...,4,) <uw
(bg+1,--.,by). Hence the induction assumption implies that (Ggr1,...,a,) < (Ckt1s--->Cn) < (bs1,...,b,) for some
(Cka1s---5Cn) € R *. Then a < (@i,...,q Crtls--.,Cy) < b is immediate from d; > by > b1 > Cry1-

(il)) = (@v). Let a < ¢ < b. If f is non-decreasing and convex on an interval [¢, 8] containing a;, b;, then ¢; € [«, B]
and

Y fla) <Y flen <Y fby)
i=1 i=1 i=1

by Proposition 4.1.1.
(iv) = (iii) is trivial and (iii) = (i) was already shown in the proof (ii) = (i) of Proposition 4.1.1.
Now assume a, b > 0 and prove that (ii) < (v). If @ < ¢ < b, then we have, by Proposition 4.1.1, ¢ = Db for some

doubly stochastic matrix D and a; = «;c; for some 0 < «; < 1. So a = Diag(«y,...,«,)Db and Diag(ay,...,a,)D is a
doubly substochastic matrix. Conversely if a = Sb for a doubly substochastic matrix S, then a doubly stochastic matrix
D exists so that S < D entrywise, whose proof is left for the exercise below, and hence a < Db < b. O

Proposition 4.1.4. Let a,b € R".
(D) If a<b and f is a convex function on an interval containing all a;,b;, then f(a) <, f(b), where
fla) == (f(a),..., f(ay)).

(2) If a <y b and f is a non-decreasing convex function on an interval containing all a;, b;, then f(a) <, f(b).

Proof. (1) If f is a convex function, then so is (f(x) — r), for any r € R. Hence the result follows from (i) = (iii) of
Proposition 4.1.1 and (iii) = (i) of Proposition 4.1.3.

(2) If f is a non-decreasing convex function, then so is (f(x) — r), for any r € R. Hence the result follows from
(i) = (iv) and (iii) = (i) of Proposition 4.3. (Il

Exercise 4.1.5. For any doubly substochastic matrix § = [s;]};_,, show that there exists a doubly stochastic matrix
D = [dij];fj:l such that s; < dj forall i,j=1,...,n. '

Let a,b € R" and a,b > 0. We define the weak log-majorization a <iog b When

k k
Ham = Hbm, 1 <k=<n, (4.1.3)
i=1 i=1

and the log-majorization a <(og) b when a <,,(g) b and equality holds for k = n in (4.1.3). It is obvious that if @ and b
are strictly positive, then a <og) b (resp., @ <y(og) b) if and only if loga < logb (resp., loga <, logb), where
loga := (logay,...,logay,).

Proposition 4.1.6. Let a,b € R" with a,b >0, and assume that a <o) b. If f is a continuous non-decreasing
Sunction on [0, 00) such that f(e*) is convex, then f(a) <, f(b). In particular, a <yog) b implies a <y, b.

Proof. First assume that a,b € R" are strictly positive and a <yiog) b, s0 that loga <,, log b. Thanks to the assumption
on f, the function (f(e*) — r), is non-decreasing and convex for any r € R. Hence we have f(a) <, f(b) by (i) = (iv)
and (ili) = (i) of Proposition 4.1.3. When a,b >0 and a <o b, wWe can choose a™,b"™ >0 such that
a™ <y0g) D™, a"™ — a, and b™ — b. Since f(a™) <,, f(b'™) and f is continuous, we obtain f(a) <, f(b). [

4.2 Singular values of matrices

Let # is an n-dimensional Hilbert space and A € B(#). Let s(A) = (s;(A),...,s,(A)) denote the vector of the
singular values of A in decreasing order, i.e., s{(A) > --- > s5,(A) are the eigenvalues of |A| = (A*A)'/? with counting
multiplicities. When A is self-adjoint, the vector of the eigenvalues of A in decreasing order is denoted by
A(A) = (11(A), ..., 4,(A)). Of course, s(A) = A1(A) if A > 0.

For every A € M, combining the polar decomposition of A (Theorem 1.4.7) and the diagonalization of |[A|
(Theorem 1.4.6), one has the expression
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A = UDiag(s1(A), .. ., sa(A)V 4.2.1)

with unitary matrices U,V € M, which is called the singular value decomposition of A.
The basic properties of s(A) are summarized as follows:

Proposition 4.2.1. Let A,B,X,Y € B(#) and k,m € {1,...,n}.
(1) s1(A) = ||A|l, the operator norm of A.
2) sp(@A) = |a|sk(A) for a € C.
(3) s(A) = sK(A™).

(4) Mini-max expression:

sk(A) = inf{||A(I — P)|| : P is a projection, rank P = k — 1}, 4.2.2)
where || X|| is the operator norm of X and rank X := dim(ran X) for X € B(#). If A > 0 then
si(A) = inf{ max (x,Ax) : M is a subspace of F#, dim M =k — 1}. 4.2.3)
xeM, |x]=1

Furthermore, the inf in (4.2.2) and (4.2.3) can be replaced by min.
(5) Approximation number expression:

sp(A) = inf{||A — X|| : X € B(#), rankX < k}. 4.2.4)
(6) If 0 < A < B then si(A) < si(B).
(7) sk (XAY) < [IXIIY sk (A).
®) Sigm—1(A+B) < sk (A) +su(B) if k+m—1 <n.
9 Sktm-1(AB) < sp(A)sw(B) if k+m—1 <n.
(10) [sk(A) — s(B)| < ||1A — B
(11) sk (f(A) = f(sk(A) if A > 0 and f is a non-decreasing function on [0, 00) with f(0) > 0.
Proof. Let A = U|A| be the polar decomposition of A (Theorem 1.4.7) and we write the Schmidt decomposition
of |A]| as

Al =) si(A)lui) (ui]
i=1
(see (1.4.1)), where U is a unitary and {uy,...,u,} is an orthonormal basis of .

(1) follows since s1(A) = || |A| || = |A|l. (2) is clear from |e¢A| = || |A|. Also, (3) immediately follows since the
Schmidt decomposition of |A*| is given as

|A*| = UIAIU" = Zsi(A)|Uui)(U”i|-
i=1

(4) Let o, be the right-hand side of (4.2.2). For 1 < k < n define Py := Zf:l |u;) (u;|, which is a projection of rank k.
We have

D silA) ) (i)

i=k

ap < |AU = Pr_y)|| = = 5i(A).

Conversely, for any ¢ > 0 choose a projection P with rank P = k — 1 such that |A(I — P)|| < ax + ¢. Then there exists
ay e J with ||y|| = 1 such that P,y =y but Py = 0. Since y = Zle (u;, y)u;, we have

ar+¢& > [|AIL = Pyl = [l |Alyll =

k
> i, y)si(Au;
i=1

X 1/2
= {Z |<ul~,y>|2s,-(A)2} > si(A).
i=1

Hence s4(A) = a4 and the inf in (4.2.2) is attained by P = Py_;.
When A > 0, we have

sk(A) = s (AY%)? = min{||A'/*(I — P)||* : P is a projection, rank P = k — 1}.

Since [|A"2(I — P)||* = max,_ ., (x,Ax) with M := ran P, the latter expression follows.

(5) Let By be the right-hand side of (4.2.4). Let X := AP, where P;_; is as in the above proof of (4). Then we have
rank X <rank P,_; = k — 1 so that f; < ||A( — Pi—1)|| = sk(A). Conversely, assume that X € B(#) has rank < k.
Since rank X = rank |X| = rank X* by Theorem 1.4.7, the projection P onto ran X* has rank < k. Then X(/ — P) =0
and by (4.2.2) we have
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si(A) < AU = P)|| = (A =X)UT = Pl = |A =X,

implying that s;(A) < .

(6) is an immediate consequence of (4.2.3). It is immediate from (4.2.2) that s;(XA) < || X||sx(A). Also sx(AY) =
sk(Y*A*™) < ||Y||sx(A) by (3). Hence (7) holds.

Next we show (8)—(10). By (4.2.4), for every € > 0, there exist X, Y € B(#) with rank X < k, rank Y < m such that
lA—X]|| <si(A)+e¢eand ||B—Y]| < s,(B)+ e. Since rank (X + Y) <rankX +rankY < k+ m — 1, we have

Sktm-1(A+B) < (A + B) = (X + V)|l < sk(A) + sm(B) + 2,
implying (8). For Z := XB + (A — X)Y we have
rankZ <rankX +rankY <k +m—1,
IAB —Z|| = [[(A — X)(B — V)| < (sk(A) + &)(sm(B) + ).
These imply (9). Letting m = 1 and replacing B by B — A in (8) we have
sk(B) < sk(A) + 1B — Al

which shows (10).

(11) When A > 0 has the Schmidt decomposition A = Y, s;(A)|u;)(u;], we have f(A) =Y ", f(si(A)|u;) (uy].
Since f(s1(A)) > - -+ = f(5,(4)) = 0, st (f(A)) = f(sk(A)) follows. U

The following exercise is the extension of the above (4.2.3) and (6) to self-adjoint A, B € B(H).

Exercise 4.2.2. When A € B(#) is self-adjoint, prove the mini-max expression
A(A) = min{ max (x,Ax) : M is a subspace of F#, dim M =k — 1}
xeML, |lxl|=1

for 1 < k < n. Hence, if A, B € B(#) are self-adjoint and A < B, then A4(A) < 4(B) for 1 <k <n.

Exercise 4.2.3. When A € B(#) is self-adjoint, prove the expression
k

Z/l,-(A) = max{TrAP : P is a projection, rank P = k}, 1<k<n.
i=1

Exercise 4.2.4. Let G(#) denote the set of all states on B(#). For each w € G(#) let D, € B(#) be the density
operator for w (see Exercise 1.5.4). For w, ¢ € G(#) we write w < ¢ if A(D,) < A(D,). Prove
€))] %Tr (the tracial state) < w < p for all w € G(H), where p is any pure state.
(2) w < ¢ if and only if w belongs to the convex hull of {p(U - U*) : U € B(#) is a unitary}. In this case, it is often
said that w is more mixed than ¢.

4.3 The Lidskii-Wielandt and the Gelfand-Naimark theorems

The following majorization results are the celebrated Lidskii—Wielandt theorem for the eigenvalues of Hermitian
matrices as well as for the singular values of general matrices. The first complete proof was obtained by Wielandt [79],
where Wielandt’s mini-max representation was proved by induction. The proof is contained in [5] and [13]; in fact, [13]
contains two more different proofs of the Lidskii—~Wielandt theorem, one of which was given in [41] (also found in
[37]). All of those proofs are rather involved but a surprisingly elementary and short proof was finally obtained by Li
and Mathias [60] as will be given below.

Theorem 4.3.1. For every Hermitian n X n matrices A and B,
A(A) — A(B) < A(A — B),
or equivalently

(Ai(A) + u—it1(B)) < A(A + B).

Proof. What we need to prove is that for any choice of 1 < i} < iy < --- < iy <n we have
k k
Y {4A) = 4B} < Y 4(A - B). 43.1)
=1 =1

Choose the Schmidt decomposition of A — B as
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A—B= ) A(A—B)u)ul

n
i=1

with an orthonormal basis {uy,...,u,} of C". We may assume without loss of generality that 2,(A — B) = 0. In fact,
we may replace B by B + A;(A — B)I, which reduces both sides of (4.3.1) by kA (A — B). In this situation, the Jordan
decomposition A — B = (A — B), — (A — B)_ is given as

k
(A—B), =Y MA=Blu)uwl, (A=B)_=— Y AA—B)u)ul.
i=1

i=k+1
SinceA=B+(A—-B), —(A—B)_ <B4+ (A —B),, it follows from Exercise 4.2.2 that

Ai(A) < (B + (A —B),), l<i<n
Since B < B+ (A — B),, we also have

A(B) < 4(B+ (A —B),), 1<i<n.
Hence

k k
{1,(A) — 4;(B)} < Z{/lij(B + (A = B);) — 4;(B)}

J=1

J
< D {U(B+(A—-B),) - L(B))
i=1
=Tr(B+ (A—B),)—TrB (by Proposition 1.5.3)
k
=TrA—B), = Y A(A—B),

J=1

proving (4.3.1). Moreover, > i {4;(A) — 4:(B)} = Tr(A — B) = >_;_,; (A — B).
Replacing B by —B in (4.3.1) gives the latter expression since A;(B) = —A4,_;+1(—B) for 1 <i <n. U

Theorem 4.3.2. For every n X n matrices A and B,
[s(A) — s(B)| <y (A — B),
that is,

k k
D Isi(A) = s;(B) < ) 5i(A—B)
j=1 j=1

for any choice of 1 <ij <ip <--- <y <n

Proof. For every A,B € M, define A,B € M, by

|:0 A*i| |:0 B*:|
A= s B .= .
A 0 B 0

Al 0
0 |A%|

A*A 0

SmceAA:[ 0 AA*

:| and hence |A| = |: ], it follows from Proposition 4.2.1 (3) that

s(A) = (51(A), 51(A), 52(A), $2(A), . . ., 51(A), 52(A)).

[o S 5=

we have 4;(A) = 4;(—A) = —Ay,—;11(A) for 1 < i < 2n. Hence one can write

/l(A) = (/11’“ o An, = A, .., _/ll)a

On the other hand, since

where 1; > --- > 1, > 0. Since
s(A) = A(A]) = (A, A, Ao, Ao, o Ay ),
we have A; = 5;(A) for 1 <i < n and hence
AA) = (51(A), . .., 54(A), —s,(A), ..., —51(A)).

Similarly,
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/l(B) = (SI(B)7 LR Sn(B)’ _SH(B)7 cees TS (B))7
AA—-B)=(s1A—B),...,s,(A—B),—s,(A—B),...,—s1(A — B)).

Theorem 4.3.1 implies that
A(A) — A(B) < A(A —B).

Now we note that the components of 1(A) — A(B) are

[s1(A) = s1(B)], ..., Isp(A) — 5,(B)|, —|s1(A) — s1(B)|, ..., —[s,(A) — s.(B)|.
Therefore, for any choice of 1 <i; < iy < --- < iy <n with 1 <k < n, we have
k k k
> lsiA) — s (B < > A —B)= ) s(A - B). O
=1 =1 =1

The following results due to Ky Fan are consequences of the above theorems, which are weaker versions of the
Lidskii—Wielandt theorem.

Corollary 4.3.3.
(1) For every n x n Hermitian matrices A and B,

AA+ B) < A(A) + A(B).

(2) For every n x n matrices A and B,
S(A + B) <., s(A) + s(B).

Proof. (1) Apply Theorem 4.3.1 to A + B and B. Then

k k
Y {UA+B) = LB} < D A(A)
i=1 i=1
so that
k

k
D AA+B) <Y {AA) + L(B)).
i=1

i=1

Moreover, Y i, (A + B) = Tr(A+ B) = Y | {i(A) + 4(B)}.
(2) Similarly, by Theorem 4.3.2,

k k
D IsiA+B) = si(B)| < ) si(A)
i=1 i=1
so that

k k
D siA+B) <Y {si(A) + si(B)). O
i=1 i=1

Another important majorization for singular values of matrices is the Gelfand—Naimark theorem as follows.
Theorem 4.3.4. For every n X n matrices A and B,

(5i(A)sn—i+1(B)) <(0g) S(AB), 4.3.2)

or equivalently
k k
[ [s:@B) < [ [tsiA)s; (B} (4.3.3)
j=1 j=1

for any choice of 1 <ij <ip <---<ix <n

Proof. First assume that A and B are invertible. Let A = UDiag(sy,...,s,)V be the singular value decomposition
(see (4.2.1)) with the singular values s; > --- >, > 0 of A and unitaries U, V. Write D := Diag(sy,...,s,). Then
S(AB) = s(UDVB) = s(DVB) and s(B) = s(VB), so we may replace A, B by D, VB, respectively. Hence we may assume
that A = D = Diag(sy, ..., s,). Moreover, to prove (4.3.3), it suffices to assume that s, = 1. In fact, when A is replaced
by s;'A, both sides of (4.3.3) are multiplied by same s;*. Define A := Diag(sy,...,s, 1,...,1); then A> > A% and
A? > I. We notice that, for every i = 1,...,n,
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si(AB) = s;,(B*A*B)"/?) = 5,(B*A*B)'/*> (by Proposition 4.2.1 (11))
< 5{(B*A*B)"/?  (by Proposition 4.2.1 (6))

= 5i(AB)
and
si(AB) = si(B*A’B)'? > 5i(B*B)'/* = 5,(B).
Therefore, for any choice of 1 <i; < --- < iy <n, we have

K si(AB) s;(AB) "~ s5(AB) det|AB|
[] <[] < =
Si/(B) j=1 Si,-(B) i=1 si(B) det |B|

v/ det(B*A2B)  detA - |det B| detA ﬁ W
= = = d¢ = S s
/det(B*B) |det B| P

proving (4.3.3). By replacing A and B by AB and B~', respectively, (4.3.3) is rephrased as
k k

[ [s:@ < [ [tsiaBys;; B~

J=1 J=1

j=1

Since s;(B™") = s,_i;1(B)"! for 1 <i < n as readily verified, the above inequality means that
k

k
{5i(A)su—i11(B)} < [ [ 55(AB).
=1

Jj=1

J

Hence (4.3.3) implies (4.3.2) and vice versa (as long as A, B are invertible).

For general A, B € M, choose a sequence of complex numbers o; € C\ (6(A) U a(B)) such that o; — 0. Since
Aj:=A—oo and B;:= B — oyl are invertible, (4.3.2) and (4.3.3) hold for those. By Proposition 4.2.2(10),
si(A) — s;(A), si(B)) — s;(B) and s;(A;B;) — s;(AB) as | - oo for 1 <i <n. Hence (4.3.2) and (4.3.3) hold for
general A, B. O

An immediate corollary of this theorem is the majorization result due to Horn.
Corollary 4.3.5. For every matrices A and B,
S(AB) <(og S(A)s(B),
where s(A)s(B) = (s;(A)s;(B)).
Proof. A special case of (4.3.3) is

k k
[ [saB) < [ JisiA)s:(B)}
i=1 i=1
for every k = 1,...,n. Moreover,
[ [ 5(AB) = det |AB| = det |A| - det |B| = [ [{si(A)si(B)}. O
i=1

i=1

Exercise 4.3.6. Show that another formula equivalent to (4.3.2) and (4.3.3) is
k k
[ [tses1-i)s, B} < [ [ 5:,(AB)
j=1 j=1
for any choice of 1 <ij < --- < i} <m.

The most comprehensive literature on majorization theory for vectors and matrices is Marshall and Olkin’s
monograph [63]. Ando’s two survey articles [5, 6] are the best sources on majorizations for the eigenvalues and the
singular values of matrices. The contents of this chapter are mostly based on [37].

We end this section with a brief remark on the famous Horn conjecture that was affirmatively solved just before
2000. The conjecture is related to three real vectors a = (ay,...,a,), b = (by,...,b,), and ¢ = (cy, ..., cy,). If there are
two n x n Hermitian matrices A and B such that a = A(A), b = A(B), and ¢ = A(A + B), that is, a,b,c are the
eigenvalues of A, B,A + B, then the three vectors obey many inequalities of the type

ch < Zai—f—ij

keK iel jeJ
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for certain triples (1, J, K) of subsets of {1,...,n}, including those coming from the Lidskii—Wielandt theorem, together

with the obvious equality
n n n
Yo=Y a+dn
i=1 i=1 i=1

Horn [47] proposed the procedure how to produce such triples (Z, J, K) and conjectured that all the inequalities obtained
in that way is sufficient to characterize a,b,c that are the eigenvalues of Hermitian matrices A, B,A + B. This
long-standing Horn conjecture was solved by two papers put together, one by Klyachko [49] and the other by Knuston
and Tao [50]. More information on this interesting conjecture is found in Fulton [32] and Bhatia [15].

4.4 Symmetric norms

A norm ® on R" is said to be symmetric if ® satisfies

D(ay, ay,...,a,) = Ple1ax1), £2072), - - - » Enlrin)) “4.4.1)
for every (aj,...,a,) € R" and for any permutation w on {l,...,n} and & = 1. This condition is equivalently
written as

®(a) = O(a},a;,....a})
for a = (ay,...,a,) € R", where (a},...,a}) is the decreasing rearrangement of (|a;|, ..., |a,|). A symmetric norm is

often called a symmetric gauge function. Typical examples of symmetric gauge functions on R" are the {,-norms @,
1 < p < oo, that are defined by

Qo lalMHP if 1 < p < oo,

max |a;| if p = oo.

1<i<n

®,(a) = 4.4.2)

Lemma 4.4.1. Let ® be a symmetric norm on R”.
(1) Ifa=(a), b= (b)) € R" and |a;| < |bi| for 1 <i < n, then P(a) < D(b).
(2) Under the normalization ®(1,0,...,0) =1,

n
max |a;| < ®(@) < Y lail,  a=(a)€R",
i=1

l<i<n
that is, O (resp., 1) is the least (resp., greatest) symmetric gauge function.
Proof. (1) In view of (4.4.1) we may show that
S(aay, as,...,a,) < ®(aj,az,...,a,) for0<a <1.
This is seen as follows:

DP(aay,ay, ..., a,)
<1+a l—« 1+« l—« 1+« l—« )
:(I) an

2 a + 2 (_al)’ 2 an + 2 as, ..., 2 ap 2

1+« —o
< T@(al,az,...,an)—i—T@(—al,az,...,a,,) = ®(ay,a,...,a,).

(2) Since (4.4.1) and (1) imply that
lai| = ®(a;,0,...,0) < P(a),

the first inequality holds. The second follows since

CI>(a)§ZH:CID(a,-,O,...,O)zzn:|a,-|. (]
i=1 i=1

Lemma 44.2. Ifa=(a;), b= (b)) € R" and (|ail,...,|as]) <w (|b1],...,|bnl), then ®(a) < O(b).
Proof. By Proposition 4.1.3 there exists a ¢ € R" such that
(atl,....lap)) = ¢ < (|b1l, ..., |bal).

Proposition 4.1.1 says that ¢ is a convex combination of coordinate permutations of (|by],..., |b,|). Lemma 4.4.1 (1)
and (4.4.1) imply that ®(a) < P(c) < P(D). O
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Let # be an n-dimensional Hilbert space. A norm ||| - ||| on B(#) is said to be unitarily invariant if

HIUAVII| = [l|Alll

for all A € B(#) and all unitaries U,V € B(#f). A unitarily invariant norm on B(J) is also called a symmetric norm.
The following fundamental theorem is due to von Neumann [77].

Theorem 4.4.3. There is a bijective correspondence between symmetric gauge functions ® on R" and unitarily

invariant norms ||| - ||| on B(#) determined by the formula
Al = P(s(A)), A € B(H). (4.4.3)
Proof. Assume that ® is a symmetric gauge function on R". Define |||- ||| on B(J) by the formula (4.4.3).

Let A, B € B(#). Since s(A + B) <, s(A) + s(B) by Corollary 4.3.3 (2), it follows from Lemma 4.4.2 that
[lIA + B|| = ®(s(A + B)) < P(s(A) + s(B)) = P(s(A)) + P(s(B)) = [[|Alll + l[IBII].
Also it is clear that ||]A]|| = O if and only if s(A) = 0 or A = 0. For « € C we have by Proposition 4.2.1 (2)
I[leAlll = P(la|s(A)) = | [[|A][l.

Hence ||| - ||| is @ norm on B(#f), which is unitarily invariant since s(UAV) = s(A) for all unitaries U, V.
Conversely, assume that ||| - ||| is a unitarily invariant norm on B(#). Choose an orthonormal basis {ej, ..., e,} of #
and define @ : R" — R by
n
> aileieil
i=1

Then it is immediate to see that ® is a norm on R". For any permutation 7 on {1,...,n} and &; = %1, one can define
unitaries U,V on # by Ueni; = ¢ie; and Veri) = e;, 1 <i < n, so that

U(Z i) |€xi)) (€xci) |> Vil = ‘
i=1

D eiaxple el ||| = Ple1ax), 2282 - - - Entlan)-

i=1
Hence & is a symmetric gauge function. For any A € B(#) let A = U|A| be the polar decomposition of A and
|A| = Y " si(A)|u;) (u;] be the Schmidt decomposition of |A| with an orthonormal basis {uj, ..., u,}. We have a unitary
V defined by Ve; = v;, 1 <i < n. Since

A=UA| = UV<Z si<A)|ei><ei|> Ve,
i=1

> siAlei el H =
i=1

and so (4.4.3) holds. Therefore, the assertion is obtained. [l

®O(a) := ‘ , a = (a;) € R".

n

> )| Ueni) (Ve

i=1

O(a) =

we have

D(s(A)) = = [[IAlll,

i=1

UV<Z si<A>|ei><e,-|> v

The next proposition summarizes properties of unitarily invariant (or symmetric) norms on B(#f).

Proposition 4.4.4. Let ||| - ||| be a unitarily invariant norm on B(#) corresponding to a symmetric gauge function
® onR", and A,B,X,Y € B(¥). Then
(D AL = [HA*[]I.

) [IXAY(I < IXI Y1 AT

(3) If s(A) < s(B) (in particular, if |A| < |B|), then [||Alll < [[|BIII.

(4) Under the normalization ®(1,0,...,0) =1 (or |||P||| = 1 for a projection of rank one), ||A|| < |||Alll < ||All4,
that is, || - || (resp., || - ||;) is the least (resp., greatest) unitarily invariant norm.

Proof. By the definition (4.4.3), (1) follows from Proposition 4.2.1 (3). By Proposition 4.2.1 (7) and Lemma 4.4.1 (1)
we have (2) as

I[IXAY[]| = P(s(XAY)) < @UIX| 1Y lIs(A) = IXI 1Y [IIA]]l-
Moreover, (3) and (4) follow from Lemmas 4.4.2 and 4.4.1 (2), respectively. O

For instance, for 1 < p < oo, we have the unitarily invariant norm || - ||, on B(#) corresponding to the £,-norm ®,
in (4.4.2), that is, for A € B(F),
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(L s = (TrjAI)!? if 1< p < oo,

s1(A) = [|A]l if p =o0.

The norm || - ||, is called the Schatten p-norm. In particular, [|A||; = Tr|A| is the frace-norm of A, ||A|l, = (TrA*A)'/?
is the Hilbert—Schmidt norm ||A|gs introduced in Section 1.5, and ||A|l,, = ||A|| is the operator norm of A. Even

for 0 < p < 1, we may define ||A||, by the same expression as above for 1 < p < oo while || - ||, is not a norm but a
quasi-norm for 0 < p < 1.

Al == ®p(s(A)) = {

llp

Exercise 4.4.5. For any A € B(#) with the polar decomposition A = U|A| and for any u € #, prove that
(u, |Alu) + (u, U|A|U"u)

u,Au)| <
|(u, Au)| >
By summing this for u = uy,...,u, forming an orthonormal basis, show that
ITrAl < [IAl;.
Another important class of unitarily invariant norm is the Ky Fan norm || - |, defined by

k
Allg =D _si4)  fork=1,...,n.
i=1
Obviously, || - [|;y is the operator norm and || - ||, is the trace-norm. In the next proposition we give two variational
expressions for the Ky Fan norms, which are sometimes quite useful since the Ky Fan norms are essential in
majorization and norm inequalities for matrices. The right-hand side of the second expression is known as the
K-functional in the real interpolation theory.

Proposition 4.4.6. For any A € B(#) and for any k =1,...,n,
(D) [|Allx = max{||AP]||; : P is a projection, rank P = k},
) Allgy = min{[[X]l; + k[ Y]| : A =X+ Y}

Proof. (1) For any projection P of rank k, we have

n k k
IAPIl; =) " siAP) = ) si(AP) < ) 5i(A)
i=1 i=1 i=1

by Proposition 4.2.1 (4) and (7). For the converse, take the polar decomposition A = U|A| with a unitary U and the
spectral decomposition |A| = Y ", s;(A)P; with mutually orthogonal projections P; of rank 1. Let P := Zle P;. Then
k k
APy = [IUIAIPIl, = si(A)P;
i=1
(2) For any decomposition A = X + Y, since s;(A) < s;(X) + ||y|| by Proposition 4.1.6 (10), we have
k
Al = ZS;-OO + kYN < 11Xy + &Y.
i=1

Conversely, with the same notations as in the proof of (1), define

= si(A) = Al .

1 i=1

k
X:=U Z{si(A) — s (AP,
p

n

k
Y. =U sk(A)ZP; + Z si(A)P; ¢ .

i=1 i=k+1

Then X + Y = A and
k

X1 = si(A) — ks(A), (1Yl = se(A).

i=1
Hence [ X[, + kY] = Y1, si(A). O
The following is a modification of the above expression in (1):
lAllxy = max{|Tr(UAP)| : U a unitary, P a projection, rank P = k}.
Here we show the Hélder inequality for matrices to illustrate the usefulness of the majorization technique.
Proposition 4.4.7. Let 0 < p,p1,pr <ooand 1/p =1/p1 + 1/ps. Then
IABIl, < [IAll, IIBll,,,  A,B € B(H).
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Proof. Assume that 0 < p;, p» < 00, because the result is obvious by Proposition 4.2.1 (7) when p; = 0o or p, = co.
Since Corollary 4.3.5 implies that

(5i(AB)") <(10g) (5i(A)"s5i(B)"),
it follows from Proposition 4.1.6 that
(si(AB)?) <u (5i(A)’si(B)").

Since (p1/p)~' + (p2/p)~' = 1, the usual Holder inequality for vectors shows that

n 1/p n 1/p
1B, = IZs,(AB)P} < {Zs,-(A)Ps,(B)P}
i=1 i=1
n Upi ¢, 1/p2
< {Zsim)m} {Zs,-(B)"Z} < Al IBll,. 0
i=1 i=1

Exercise 4.4.8. Let0 < p,p;,p» <oocand 1/p =1/p; + 1/p,. Prove the Holder inequality for vectors (used in the
proof of Proposition 4.4.7):

&, (ab) < @y, (@)D, (D), a,beR",
where ab = (a;b;) for a = (b;), b = (b;) € R".

Exercise 4.4.9. This is a generalization of the Holder inequality. Let ® be a symmetric gauge function on R" with
the corresponding unitarily invariant norm ||| - ||| on B(F).
(1) Assume that 1 < p < oo and 1/p + 1/g = 1. Show that

D(arby, ..., aby) < ®(arl?, ..., la, )P Db 1%, ..., by D, a,b e R".
(2) For every 1 < p < oo define
P ay,...,a,) = D(la1|”, ..., la. )P, aeR"

Show that ® is a symmetric gauge function and the corresponding unitarily invariant norm is ||| | - |7]|'/7.
(3) Let p,q be as in (1). Show that

IABII| < IHAIPIYPNBINYY,  A,B € B(H).

(Note that when ||| - ||| = || - ||, with 1 < r < o0, the above becomes |AB||, < ||Al|,|| B, the Holder inequality
given in Proposition 4.4.7.)

Corresponding to each symmetric gauge function ®, define @' : R" — R by

@'(b) :=sup Y abi:a=(a) €R", D)< 1{,  b=(h)eR" (4.4.4)
i=1

12

Exercise 4.4.10. Prove that &’ defined by (4.4.4) is again a symmetric gauge function on R". Moreover, prove that
®” := (®') is equal to P.

The symmetric gauge function @’ is said to be dual to ®. For example, when 1 < p < oo and 1/p+ 1/g =1, the
£p,-norm @, is dual to the £,-norm &,.
The following is another generalized Holder inequality, which can be shown as Proposition 4.4.7.

Lemma 4.4.11. Let ®, ®| and ©, be symmetric gauge functions with the corresponding unitarily invariant norms
HE- ML -1y and (1] - [ll2 on B(3), respectively. If

D(ab) < P 1(a)D,(b), a,beR",
then
HIABI[| < [lIIAllI1[IBlll2,  A,B € B(#).
In particular, if ||| - ||| is the unitarily invariant norm corresponding to ® dual to ®, then

IABIl, < [IANIBII,  A,B € B(3).

Proof. By Corollary 4.3.5, Proposition 4.1.6, and Lemma 4.4.2, we have
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D(s(AB)) < P(s(A)s(B)) < D1(s(A)Pa(s(B)) < [|All1111IBll12,
showing the first assertion. For the second part, note by definition of @’ that ®;(ab) < ®(a)®'(b) for a,b € R". [O

Theorem 4.4.12. Let ® and &' be dual symmetric gauge functions on R" with the corresponding norms ||| - ||| and
Il - 1II" on B(#), respectively. Then ||| -||| and ||| - ||| are dual with respect to the duality (A,B) > TrAB for
A, B € B(H#), that is,

IIBIlI" = sup{|TrAB| : A € B(H), |l|Alll < 1}, B € B(#). (4.4.5)

Proof. First note that any linear functional on B(J#) is represented as A € B(#) +— TrAB for some B € B(H#).
We write |||B]||° for the right-hand side of (4.4.5). By Exercise 4.4.5 and Lemma 4.4.11 we have

ITrAB| < |ABI|, < IlIAIIIBII

so that [||B|||” < |||B|||" for all B € B(#). On the other hand, let B = V|B| be the polar decomposition and
IB| = Y1, si(B)|v;){(v;| be the Schmidt decomposition of |B|. For any a = (a;) € R" with ®(a) <1, let A :=
O~ ailvi) (vi)V*. Then s(A) = s i, a;lvi) (vil) = (a}, ..., a}), the decreasing rearrangement of (|ai|, ..., |a,|), and
hence |||A]]| = ®(s(A)) = P(a) < 1. Moreover,

TrAB = Tr<2n:a lui)( )(Zs,(B)h} Vi )

i=1

= Tr(Za,s (B)|v;) (vil ) Za 5;(B)

so that

n
> aisiB) < [TrAB| < l|AIIlI1BIII° < [lIBIII°.

i=1
This implies that |[|B]|' = ®'(s(B)) < |||BI||°. O

As special cases we have || - ||;7 =|-ll,whenl<p<ocoand 1/p+1/g=1.
The close relation between the (log-)majorization and the unitarily invariant norm inequalities is summarized in the

following proposition.
Proposition 4.4.13. Consider the following conditions for A,B € B(#). Then
() &= (i) = (iil) & ({v) &= (v) < (vi).

(i) S(A) <wiop) SB);

an) FGADIHE < HHLFABDI| for every unitarily invariant norm ||| - ||| and every continuous non-decreasing function f
on [0,00) such that f(0) > 0 and f(e*) is convex;

(iii) s(A) <y s(B);

(iv) lAll@ < Bl for every k =1,...,n,

™) AN < IBIl| for every unitarily invariant norm ||| - |||,

i) IIFAADIT < IFABDII| for every unitarily invariant norm ||| - ||| and every non-decreasing convex function f
on [0, 00) such that f(0) > 0.

Proof. (i) = (ii). Let f be as in (ii). By Propositions 4.1.6 and 4.2.1 (11) we have

s(fAD) = f(s(A)) <w f(s(B)) = s(f(IB])). (4.4.6)
This implies by Proposition 4.4.4 (3) that |||f(JADII| < ||If(|B])|]| for any unitarily invariant norm.
(i) = (). Take ||| - [l = - |, the Ky Fan norms, and f(x) = log(l + e 1x) for ¢ > 0. Then f satisfies the

condition in (ii). Since
si(f(1A]) = f(5i(A)) = log(e + 5i(A)) — loge,
the inequality [|f(IA])ll@ < [£(IB])llg means that
fl[(e +5i(A)) = ﬁ(s + 5i(B)).

Letting ¢ N\, 0 gives ]_[f-‘:1 si(A) < ]_[f:l si(B) and hence (i) follows.
(iii) > (iv) is trivial by definition of || - ||, and (vi) = (v) = (iv) is clear. Finally assume (iii) and let f be as in (vi).
Proposition 4.1.3 yields (4.4.6) again, so that (vi) follows. Hence (iii) = (vi) holds. O
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By Theorems 4.3.1, 4.3.2 and Proposition 4.4.13 we have:

Corollary 4.4.14.
(1) For every A,B € M and every unitarily invariant norm ||| - |||,

|[IDiag(11(A) — 4(B), ..., 4(A) — L(B)II| = [||A — Bll|.

In particular,
n 1/p
{Z | 4i(A) — /li(B)I”} <lA-Bl, 1<p<oo,
i=1
1mjclx [4;(A) — 4:(B)| < ||A —B|| (Weyl’s inequality).

(2) For every A,B € M, and every unitarily invariant norm ||| - |||,
[1/Diag(s1(A) — s1(B), . .., sx(A) — su(B)II| < [[|A — B||.

In particular,

n 1/p
{Z |5i(A) — si(B)V’} <[|A=Bl, 1=<p<oo,

i=1

max |s;(4) — si(B)| < ||A — BI|.

Exercise 4.4.15. For every A, B € M and every unitarily invariant norm [|| - |||, show that

1A — Bl|| < [|[Diag(41(A) — Ax(B), 12(A) — Ap—1(B), ..., 2n(A) — Li(B))]I].

We close the section with an exercise containing examples of norms on M, that are not unitarily invariant but yet
very important.

Exercise 4.4.16.
(1) The numerical radius w(-) is a norm on B(#) as shown in Proposition 1.5.7 (2). Show that w(-) is not unitarily
invariant but invariant under unitary conjugation, i.e., wW(UAU*) = w(A) for all A, U € B(J) with U unitary.
(2) For each A € M, let ||A||g denote the norm of A as the Schur multiplication operator, i.e.,

) lAoX]
lAllg :=supi ———: X e M,, X # 0},
X1
where A o X is the Schur product (see Section 1.6). Show that || - || is a norm on M, that is even not invariant

under unitary conjugation. (It is sometimes quite difficult to compute the exact value of ||Alls. See
Proposition 5.1.4 for a particular result.)

4.5 Majorizations for sums and differences of positive semidefinite matrices

In the first half of this section, we prove the subadditivity (resp., superadditivity) inequality for f(A + B) and
f(A)+ f(B) when f is a nonnegative concave (resp., convex) function on [0,00) and A,B € M, are positive
semidefinite. These inequalities are natural matricial counterparts of elementary inequalities f(a + b) < f(a) + f(b)
(resp., f(a + b) = f(a) + f(b)) for such a function f and scalars a,b > 0. When f is a nonnegative concave function on
[0, 00), the famous Rotfel’d inequality is

Tr f(A + B) < Tr{f(A) + f(B)}
for all A,B € M;’ Below, following [9, 25, 75] let us extend this trace inequality as follows:
IIf A+ Bl < [I1f(A) + fBI] (4.5.1)
for all A,B € M:{ and for any unitarily invariant norm ||| - |||, or equivalently (see Proposition 4.4.13),
A(f(A+ B)) <w A(f(A) + f(B)).

We begin with the subadditivity inequality due to Ando and Zhan [9] in the case where f is an operator concave
function. The proof was substantially simplified by Uchiyama [75] as presented below.

Theorem 4.5.1. Let f be a nonnegative continuous function on [0,00). If f is operator monotone (or operator
concave, see Corollary 2.5.4) on [0,00), then (4.5.1) holds for all A,B € M and for any unitarily invariant
norm ||| - |l.
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The main ingredient of the proof is to show the following lemma.

Lemma 4.5.2. Let g be a nonnegative continuous function on [0,00). If g is non-increasing and xg(x) is
non-decreasing, then

A((A 4 B)g(A + B)) <y, A(AY%g(A + B)AY? + BY/2g(A + B)B'/?)
forall A,B € M:

Proof. Let A(A+ B) = (4,...,4,) be the eigenvalue vector arranged in decreasing order and u,...,u, be the
corresponding eigenvectors forming an orthonormal basis of C". For 1 < k < n let P; be the orthogonal projection
onto the subspace spanned by uj, ..., u;. Since xg(x) is non-decreasing, it follows that

A((A+ B)g(A + B)) = (Li1g(A1), . . ., 1ng(An)).
Hence, what we need to prove is
Tr(A + B)g(A + B)P, < Tr{A'?g(A + B)A'? + B'?>g(A + B)B'/*} P,

since the left-hand side is equal to Zf;l A;g(4;) and the right-hand side is less than or equal to
Sk Ai(A2g(A + B)A'/2 + B'/2g(A 4+ B)B'/?). The above inequality immediately follows by summing the following
two:
Trg(A + B)'?Ag(A + B)'/>P, < TrA'%g(A + B)A'?Py, (4.5.2)
Tr g(A + B)'/>Bg(A + B)"/*P, < TrB'?4(A + B)B'/*P. (4.5.3)

To prove (4.5.2), we write Py, H := g(A + B) and A2 as
P, — Ix O e H 0 A2 An Ap
0 0f 0 Hy[| A, Axn
in the form of 2 x 2 block matrices corresponding to the orthogonal decomposition C" = X @ K+ with X := P,C".
Then
1/2 42 17172 1/2 * prl/2
Pkg(A+B)l/2Ag(A+B)l/2Pk: [Hl AllHl +H] A12A12H1 0},
0 0
A HiA 4+ ApHAY, 0:|

PAY2g(A 4+ B)AY?P, = [ .
0 0
Since g is non-increasing, we notice that
Hy < g(Ap)l g, Hy > g(Ai)l 1.
Therefore, we have
TrH\?A A% H? = Tr AL, HiAp < g(W) TrA% A = g(4x) TrApA%, < TrApH,A%,
so that
Tr(H|*A2 H|"> + H|*A,A%H)?) < Te(A L H Ay + A HbAT),
which shows (4.5.2). (4.5.3) is similarly shown. [l

Proof of Theorem 4.5.1. By continuity we may assume that A, B € M are invertible. Let g(x) := f(x)/x; then g
satisfies the assumptions of Lemma 4.5.2. Hence the lemma implies that

IfA+ Bl < [IIAV2A + B)'2f(A + B)(A + B)'/?A1?
+BX (A +B)"'2f(A + B)A + B)"/2B|\. (4.54)
Since C := A'/2(A + B)"'/? is a contraction, Theorem 2.5.2 implies that
A2A +B) V(A + BYA + B)?A? = Cf(A + B)C* < f(C(A + B)C*) = f(A),
and similarly
B'*(A+B)"'?f(A+ B)(A + B)"'?B'? < f(B).
Therefore, the right-hand side of (4.5.4) is less than or equal to |||f(A) + f(B)|||. [l

The following superadditivity inequality obtained in [9] is an immediate corollary of Theorem 4.5.1. The particular
case where g(x) = x", i.e., |||(A + B)"||| > |||A™ + B™||| for any m € N was shown by Bhatia and Kittaneh [18].

Corollary 4.5.3. Let g:[0,00) — [0,00) be an increasing bijective function whose inverse function is operator
monotone. Then
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lllg(A + BlI| = llg(A) + gB)]l| (4.5.5)
forall A,B € M: and ||| - ||| as in Theorem 4.5.1.
Proof. Let f be the inverse function of g. For every A,B € Mt, Theorem 4.5.1 implies that

F(A(A+ B)) <w A(f(A) + f(B)).
Now, replace A and B by g(A) and g(B), respectively. Then we have

f(A(g(A) + g(B))) <w A(A+ B).
Since f is concave and hence g is convex (and increasing), we have by Proposition 4.1.4 (2)

A(g(A) + g(B)) <w g(A(A + B)) = A(g(A + B)),

which means by Proposition 4.4.13 that |||g(4) + g(B)||| < |||g(A + B)|||. |

The above corollary can be extended to the next theorem due to Kosem [56], which is the first main result of this
section. The simpler proof below is from [25].

Theorem 4.5.4. Let g:[0,00) — [0,00) be a continuous convex function with g(0) = 0. Then (4.5.5) holds for
all A,B and ||| - ||| as above.

Proof. First, note that a convex function g > 0 on [0,00) with g(0) = 0 is non-decreasing. Let I" denote the set
of all nonnegative functions g on [0, c0) for which the conclusion of the theorem holds. It is obvious that I" is closed
under pointwise convergence and multiplication by nonnegative scalars. When f,g € I', for the Ky Fan norms
I llgy, 1 <k <n, and for A,B € M, we have

I+ &)A + Bl = IIf(A+ Bl + 118(A + Bl
= [IF(A) + fB)l ) + 18(A) + gB)ll )
> I(f + A + (f + Bl

where the above equality is guaranteed by the non-decreasingness of f,g and the latter inequality is the triangle
inequality. Hence f + g € I" by Proposition 4.4.13 so that I" is a convex cone. Notice that any convex function g > 0
on [0, 00) with g(0) = 0 is the pointwise limit of an increasing sequence of functions of the form Z}”:l C1Ya/(x) with
ci,a; > 0, where y, is the angle functions at a > 0 given as y,(x) := max{x — a,0}. Hence it suffices to show that
v, € I for all a > 0. To do this, for a,r > 0 we define

ha () ::%{ (x—a)2+r+x—\/a2+r}, x>0,

which is an increasing bijective function on [0, c0) and whose inverse is
r/2 N Jat+r+a
X — .
2+ fr—a 2

Since (4.5.6) is operator monotone on [0, c0), we have h,, € I" by Corollary 4.5.3. Therefore, y, € T since h,, — v,
as r \( 0. O

(4.5.6)

Exercise 4.5.5. Show that the function /,, defined in the above proof is increasing and bijective on [0, c0) and that
its inverse function is (4.5.6).

The next subadditivity inequality extending Theorem 4.5.1 was proved by Bourin and Uchiyama [25], which is the
second main result.

Theorem 4.5.6. Let f:[0,00) — [0,00) be a continuous concave function. Then (4.5.1) holds for all A,B
and ||| - ||| as above.

Proof. Let A; and u;, 1 <i <mn, be taken as in the proof of Lemma 4.5.2, and P;, 1 <k <n, be also as there.

We may prove that
k k

D) <D A +fB),  1<k<n
i=1

i=1
To do this, it suffices to show that
Tr f(A + B)P;, < Tr{f(A) + f(B)}Px. 4.5.7)

Indeed, since f is necessarily non-decreasing, the left-hand side of (4.5.7) is Zf;l f(A;) and the right-hand side is less
than or equal to Zf;l Ai(f(A) + f(B)) (see Exercise 4.2.3). Here, note by Exercise 4.5.7 that f is the pointwise limit of
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a sequence of functions of the form o + Bx — g(x) where @ > 0, 8 > 0, and g > 0 is a continuous convex function on
[0, 00) with g(0) = 0. Hence, to prove (4.5.7), it suffices to show that

Trg(A + B)P; > Tr{g(A) + g(B)} P«
for any continuous convex function g > 0 on [0, co) with g(0) = 0. In fact, this is seen as follows:
Trg(A + B)P, = ||g(A + Bl = 11g(A) + 8By = Tr{g(A) + g(B)} Py,

where the above equality is due to the non-decreasingness of g and the first inequality follows from
Theorem 4.5.4. ([l

Exercise 4.5.7. Show that a continuous concave function f > 0 on [0, 00) is the pointwise limit of a sequence of
functions of the form o + fBx — Z;":l ¢1Vq(x) with « > 0 and B,c;,a; > 0, where y, is as given in the proof of
Theorem 4.5.4.

Exercise 4.5.8. By slightly modifying the above proofs, extend Theorems 4.5.4 and 4.5.6 to any finite number of

matrices Ay,...,A, € M:[. For instance, the subadditivity inequality of Theorem 4.5.4 is extended as
A+ -+ AN < IfAD + -+ + fADI
if f satisfies the same assumptions as in Theorem 4.5.4. To do this, first extend Lemma 4.5.2 to Ay, ..., A,.

Remark 4.5.9. The subadditivity inequality of Theorem 4.5.4 was further extended by Bourin [24] in such a way that
if f is a nonnegative continuous concave function on [0, c0) then

A+ BDIN < [11FAD + fABDII]

for all normal matrices A, B € M, and for any unitarily invariant norm ||| - |||. In particular,

HFAZDIT = [ILFAAD + fABDI
when Z = A + iB is the Descartes decomposition of Z.

In the second half of the section, we prove the inequality between norms of f(|JA — B|) and f(A) — f(B) (or the weak
majorization for their singular values) when f is a nonnegative operator monotone function on [0, c0) and A, B € MF.
This was proved by Ando [4] long before Ando and Zhan [9] for f(A) 4+ f(B) and f(A + B) presented in the first half.

Theorem 4.5.10. Let f be a nonnegative continuous function on [0,00). If f is operator monotone on [0, 00), then

IfA) = fBII < llIf(JA = BDIII
for all A,B € M and for any unitarily invariant norm ||| - |||, or equivalently,

s(f(A) — f(B)) <w s(f(IA — BI)). (4.5.8)

When f(x) = x? with 0 < 6 < 1, the weak majorization (4.5.8) was formerly proved by Birman, Koplienko and
Solomyak [23], which gives the generalized Powers—Stgrmer inequality

IA® = B,/ < 1A — Bllf,
for all A,B € M; if 0 <0 < 1and @ < p < oo. The case where & = 1/2 and p = 1 is known as the Powers—Stgrmer

inequality [68].
We first prepare simple facts to prove the theorem.

Lemma 4.5.11. For self-adjoint X,Y € M, let X =X, — X_and Y = Y, — Y_ be the Jordan decompositions.
(D) If X <Y then s;(Xy) < si(Yy) for all i.
Q) If s(X1) <y s(Yy) and s(X_) <y, s(Y_), then s(X) <y, s(Y).

Proof. (1) Let Q be the support projection of X, . Since
Xy =0XQ0 = 0YQ = 07,0,

we have 5;(X;) < 5;:(QY, Q) < s;(Y,) by Proposition 4.2.1 (7).
(2) It is rather easy to see that s(X) is the decreasing rearrangement of the combination of s(X,) and s(X_).
Hence for each k € N we can choose 0 < m < k so that

k m k—m
D oS0 =D silX) + ) siXo).
i=1 i=1 i=1

Hence
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k m k

k—m
D oS0 <) s+ Y sV < Y s,
i=1

i=1 i=1 i=1

as desired. O

Proof of Theorem 4.5.10. First assume that A> B >0 and let C:=A — B > 0. In view of Proposition 4.4.13,
it suffices to prove that

I/ (B+C) — Bl < IS (Ollws l1<k=<n 4.5.9)
For each 1 € (0, 00) let
_ A
x+1 x4+1°

hi(x) =

which is increasing on [0, co) with /,(0) = 0. According to the integral representation (2.7.5) for f with a,b > 0 and a
positive finite measure m on (0, 00), we have

5i(f(C)) = f(si(C))
s (C)(1+ 1)

—a+bs; SR T
@t S(C)+/<0,oo) s5i(C)+ A e

—at bs(C) 4+ / (1 + Dsia (C)) dm(2),
(0,00)

so that
I/ Ollgy = bICH @y + /(000>(1 + DI (Ol gy dm(A). (4.5.10)
On the other hand, since
fB+C)=al+bB+C)+ /(0 )(l + Dha(B + C)dm(A)
,00
as well as the analogous expression for f(B), we have
fB+C)— f(B)=>bC+ [o )(1 + D{hi(B+ C) — hy(B)} dm(A),
00
so that
1B+ C) = fB)lla < bIIClw + f«) C><>)(1 + Dlha(B + C) — ha(B) | ) dm(A). (4.5.11)
By (4.5.10) and (4.5.11) it suffices for (4.5.9) to show that
172(B 4 C) = ha(B)ll gy < 1ha(O)ll ) 1€(0,00), 1 =k =n.

As hy(x) = hi(x/A), it is enough to show this inequality for the case 1 = 1 since we may replace B and C by 1~'B and
A7'C, respectively. Thus, what remains to prove is the following:

IB+D~" _(B+C+I)71||(k) < ||I_(C+I)7l||(k), 1<k<n. (4.5.12)
Since
B+D'=B+C+D ' =B+DP@B+DPCB+DTHB+D
and ||(B+I)""?|| < 1, we obtain
s(B+D =B+ C+D) < si(B+D72CB+D71?)
=h(si(B+D~2CB+1)""?)
< h(s(C) = s;0 —(C+ D"

by repeated use of Proposition 4.2.1 (7). Therefore, (4.5.12) is proved.
Next, let us prove the assertion in the general case A,B > 0. Since 0 <A < B+ (A — B),, it follows that

fA) - fB) = f(B+ (A —-B),)— f(B),
which implies by Lemma 4.5.11 (1) that
1A = FB)1llgy = If(B+(A—=B)y) — fB)llg):
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Applying (4.5.9) to B+ (A — B), and B, we have
If(B+(A—=B);)— fB)llw = II/(A—=B))llw-

Therefore,

s((f(A) = f(B)1) <w s(f((A = B))). (4.5.13)
Exchanging the role of A, B gives

s((f(A) — f(B)-) <uw s(f((A — B).)). (4.5.14)
Here, we may assume that f(0) = O since f can be replaced by f — f(0). Then it is immediate to see that

J(A=B))f(A=B)-)=0, f((A—B);)+ f((A—B)_)=f(A—B).
Hence s(f(A) — f(B)) <y s(f(JA — B|)) follows from (4.5.13) and (4.5.14) thanks to Lemma 4.5.11 (2). U
The following is an immediate corollary of Theorem 4.5.10, whose proof is similar to that of Corollary 4.5.3.

Corollary 4.5.12. Let g:[0,00) — [0,00) be an increasing bijective function whose inverse function is operator
monotone. Then

l11g(A) — gBIII = [llglA — BDIII
for all A,B and ||| - ||| as above.

In [11], Audenaert and Aujla pointed out that Theorem 4.5.10 is not true in the case where f : [0, 00) — [0,00) is a
general continuous concave function and that Corollary 4.5.12 is not true in the case where g : [0,00) — [0,00) is a
general continuous convex function.

4.6 Majorizations of Golden—Thompson type and complementary Golden—-Thompson type

We begin with providing a machinery of antisymmetric tensors, which is quite useful in deriving log-majorization
results. Let # be an n-dimensional Hilbert space as before. For each k € N let #®* denote the k-fold tensor product of
#, which is the n*-dimensional Hilbert space with respect to the inner product defined by

k
X1 ® - @X 1 ® - ®yk) i= H(xi,yi)-
i=1

For xi,...,x; € # define x; A --- Ax; € H® by

1
XA AXg = 7 Zﬂ:(sgn Xr(1) ® * + * & Xn(h)s (4.6.1)
where 7 runs over all permutations on {1,...,k} and sgn = 1 accordingly as 7 is even or odd. The subspace of FH®*

spanned by {x; A --- Axg 1 x; € H} is called the k-fold antisymmetric tensor product of # and denoted by H#"*.

Lemma 4.6.1.

(D) Xi A AXG A AX A AXg ==X A AX A AXp N AN Xy, Where x; and x; are interchanged for
any two distinct i, j. Hence xiy A --- Ax = 0 if x; = x;j for some distinct 1, j.

Q) XIA - AXBYIA AW = det[<xi,yj)]ﬁj:1-

B) xt A Axx £ 0 if and only if {x1,...,x:} is linearly independent.

(4) The linear extension of the map x| ® - - - @ xi > %xl A - -+ A Xy is the projection of HBK onto FO-.

(5) If{e,...,en} is an orthonormal basis of ¥, then {e;, A--- Ne;, : 1 <i} <. < iy < n}is an orthonormal basis
of #". Hence dim #"* = (}) for 1 <k < n and H"* = {0} for k > n.

Proof. (1) is obvious by definition (4.6.1). (2) is readily seen as
k

1
(KE A ARyt A A = 57 > (sgnm)(sgn T)H<xn(i),yr(i>)
©mw,reSk i=1
1 k
=4 Z (sgnnr’l)l—[(xmfl(,-),yi)
©m,TteSk i=1
k
=Y (sgnm) [ [, yi) = detl{xi )15y
weS i=1
and (3) follows from (2) since {xi,...,x;} is linearly independent if and only if det[(xi,xj)]ff =1 # 0.

Let P be the linear operator in question in (4). Repeated use of (1) yields that
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1
PP ® - ®x) = e Z(sgn T)X(1) A == A Xk

1
= W E (sgnn)2x1 A A X
° T

1
=—Xx A AX =P ® - ® xp).

N

Moreover,

| k
(P1 ® -+ @x1),y1 ® - @ yk) = HZ(Sgn”)u<Xﬂ(z‘),)’i>

1 k
= ) Z(sgn n’l) H(xi,y,r](,-))
4 i=1

=X ® QX P(y1 ® - ® ).

Hence (4) follows. For the last (5), it is clear that {e; A---Ae;, 11 <i] <--- < i <n} spans J°*. The ortho-
normality of this set is immediately seen from (2). U

For each A € B(#) and k € N, the k-fold tensor product A®k ¢ B(#®K) is given as
A ® - @ 1) = A @ -+ ® Ax.
Since #¢" is invariant for A®, the antisymmetric tensor power A" of A can be defined as A™* = A®¥| ,.; in fact,
AN A AX) = Axp A A Axg (4.6.2)

In matrix theory A" is usually called the kth compound of A. By Lemma 4.6.1 note that #*" = C and the scalar
A is equal to

A = (et Ao N, AN (er Ao Aey)) = detl{er, Aej)] o, = detA,

where {eq,...,e,} is an orthonormal basis of #.

Assume that # = C" and A € B(C") = M, and take the orthonormal basis {e;, A---Ae;, 11 <ij <--- < iy <n}
of #" = (C")"* where {ey,...,e,} is the standard basis of C". Then A"* is represented as the (}) x (}) matrix whose
entries are

ik
((AVARERIA e,Ak,AAk(ejl N Nepy)) = det[(e,,,Ae,m)],m | = detA(j i ),
1’ AR k

seenslk

where A(}i ,,,,, 7o) is the submatrix of A consisting of rows i; < --- < i and columns j; < --- < ji. This is indeed the
usual definition of the kth compound of A in matrix theory.
The following are elementary properties of antisymmetric tensor powers.

Lemma 4.6.2. Let X,X;,Y,A € B(#) and 1 <k <n.
(1) (X*)/\k (X/\k)*
(2) (XY™ = (XMY(Y"K) (sometimes called the Binet—Cauchy theorem, see [63]).
(3) If I1X; — X|l = 0, then | X} = X"| — 0.
4) IfA>0, then A >0 and (APY* = (AP for all p > 0.
(5) [X|M = XK.

Proof. (1) and (2) are the restrictions of the corresponding formulas (X*)® = (X®%)* and (XY)®* = (X®)(Y®*) to
H. For (3) it suffices to show the corresponding convergences for A®¥, which are readily verified. If A > 0 then
AN = (A2))*((AY2)™) > 0 by (1) and (2). When p is rational, the second assertion of (4) is immediate from (2).
Then (3) implies the assertion for general p > 0. Finally (5) follows from (1), (2), and (4). ([

The following lemma supplies an important technique in the majorization theory for matrices.

Lemma 4.6.3. For every A € B(#) and every k =1,...,n,

k
[ [si4) = s1a™) (= 14,
i=1

Proof. By Lemma 4.6.2 (5) we may assume that A > 0. Then there exists an orthonormal basis {uy, ..., u,} of # such
that Au; = s;(A)u; for all i. Thanks to (4.6.2) we have
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k
k
Ay, A Ay = T ] siA) puiy A A,
i=1
and so {u; A---Au; 1 <ij <---<ipy<n} is a complete set of eigenvectors of A Hence the assertion
follows. [l

Before going into the main part of this section, let us prove the Weyl majorization theorem, showing the usefulness of
the antisymmetric tensor technique.

Theorem 4.6.4. Let A € B(#) and A,(A), ..., A,(A) be the eigenvalues of A arranged as |1,(A)| > --- > |4,(A)| with
counting algebraic multiplicities. Then

(@A), 1A <wiog) S(A),

that is,

k k
[T <[]s, 1<k<n
i=1 i=1

Proof. If A is an eigenvalue of A with algebraic multiplicity m, then there exists a set {yj,...,y,} of independent
vectors such that

Ay; — Ay; € span{yy,...,yi-1}, 1<j<m.
Hence one can choose independent vectors xi,...,x, such that Ax; = A;(A)x; + z; with z; € span{xy,...,x;_;} for
1 <i < n. Then it is readily checked that

k
AAk(XI /\-..AX,,):Axl/\..-/\Axkz :n/li(A)}xl/\"'Axn
i=1

and x; A -+ - Ax, # 0, implying that ]_[f.‘:l Ai(A) is an eigenvalue of A", Hence Lemma 4.6.3 yields that

k
[Ja@

i=1

k
< 1AM =] [siA). O

i=1

The first main result of this section is the following log-majorization due to Araki [10] (also shown in [78]).
Theorem 4.6.5. For every A,B € B(¥#)™,
S(A2BAY™)) <yiog) S(AT2BTAT), r>1, (4.6.3)
or equivalently
S(AP/2BPAPIHIPY < og) S(APBIAYDG) 0 < p<q. (4.6.4)
Proof. We can pass to the limit from A + ¢l and B + ¢l as ¢ \ 0 by Proposition 4.2.1 (10). So we may assume that A
and B are invertible. First let us show that
I(A'2BAYY || < |A2BTA™?|, > 1. (4.6.5)
To do so, it suffices to show that A”/2B"A"/? <[ implies AVZBA? < equivalently B” < A™" implies B < AL
But this is just the Lowner—-Heinz inequality. For every k = 1,...,n, since Lemma 4.6.2 shows that
(AV2BAV2Y YN = ((AN)172(BAeyANK) 12y
(AT2BTATIPY N — (AN (gAY (ANKyT2
it follows from (4.6.5) with A™*, B¢ instead of A, B that
ICAYZBAYY | < 1[4 B A .
This means thanks to Lemma 4.6.3 that
: si((A'2BAY?Yy < ﬁsi(A’/zB’A’/z).
i=1 i=1

Hence (4.6.3) is proved. If we replace A, B by A”, B? and take r = ¢/p, then
s((AP/ZBPAIJ/Z)q/P) <u(log) S(Aq/2Bqu/2),
which implies (4.6.4) by Proposition 4.2.1 (11). O
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Theorem 4.6.5 and Proposition 4.4.13 yield:

Corollary 4.6.6. Let A,B € B(¥)" and ||| - ||| be any unitarily invariant norm. If f is a continuous non-decreasing
Sfunction on [0, 00) such that f(0) > 0 and f(e") is convex, then
NFCABAYII < IIFAPBA)IL, - r= 1

In particular,
IIA2BA2Y ||| < NIAPB'A?l,  r> 1

The following convergence lemma is a kind of the Lie-Trotter formula. Its usual form is
lim (M/NKNW = HHK
N—oo

for self-adjoint operators H, K € B(#f). Concerning the Lie—Trotter formula, the real difficulty appears when H, K are

unbounded operators in an infinite-dimensional Hilbert space (see [48] for example), while the finite-dimensional case

is easy to show.

Lemma 4.6.7. For every self-adjoint H,K € B(#),

lim(erH/ZerKerH/Z)l/r — eH+K.
r—0

Proof. Since (e™/2e™Ke™M/2)r = (¢=H/2g=rKe=rH/2)=1/" \we may consider only the case r \, 0. For 0 < r < 1 let
A(r) := eM2e™K /2 and B(r) := ¢"#K and 1/r = m + s with m = m(r) € N and s = s(r) € [0, 1). Since
AW < lle™ 2™ | fle™ 2] < e IHIED
and the same inequality holds for || B(r)|, we have
1A = A" < IADIIAGY = 11| < RN AGY — 1) — 0

and similarly ||etX — B()™|| — 0 as r \( 0. Hence it suffices to prove that [|A(r)" — B(r)"|| — 0 as r \ 0.
Since

X1 (rH\ & K &1 (rH N
A(r)=zk!<2> . ;k,<2> =1+ r(H + K) + o(r)

k=0 k=0
as well as B(r) = I + r(H + K) + o(r), we have

JA()™ — B(r)™ || < ml|A(r) — B(r)||(max{[|A()], | B}
= ! A(F) — B(r)||eMIHIKI s 0,
,
as required. )

The next corollary is the Golden—Thompson inequality strengthened to the form of log-majorization.

Corollary 4.6.8. For every self-adjoint H,K € B(F#),

S(eH+K) <u)(log) S((erH/2erKerH/2)1/r), r> 0.
Hence, for every unitarily invariant norm ||| - |||,
H+K H/2 1K rH/2\1
KN < (11 2e e ), >0,

and the above right-hand side decreases to |||e"X||| as r \\ 0. In particular,

e < [11ef/2eXe 2] < |1 X ). (4.6.6)

Proof. The log-majorization follows by letting p N\ 0 in (4.6.4) thanks to the above lemma. The second assertion
follows from the first and Proposition 4.4.13. Thanks to Proposition 4.2.1 (3) and Theorem 4.6.5 the second inequality
of (4.6.6) is seen as

H K K H H 2K H~\1/2 H/2 K H/2
e e 111 = 111 1eXe [ 1] = I11(ee* ™) /2] = |12 /7). O

The specialization of (4.6.6) to the trace-norm || - ||; is the celebrated Golden—Thompson trace inequality
Tref™X < TrefleX

established independently in [34,72,73]. It was shown in [71] that Tref’*X < Tr(ef!/"eX/")" for every n e N.
The extension (4.6.6) was given in [59,74]. Also (4.6.6) for the operator norm is known as Segal’s inequality
(see [70,p. 260]).
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In the rest of this section we study log-majorizations and norm inequalities involving power operator means A #, B
for A,B € B(#)", where 0 < o < 1 (see Example 3.3.1 (4)). The log-majorization in the next theorem is due to Ando
and Hiai [8], which is considered as complementary to Theorem 4.6.5.

Theorem 4.6.9. For every A,B € B(¥#)™",

S(A" #4 B") <u(og) S(A#4 B)"), r>1, 4.6.7)

or equivalently
(AP #, BN'P) <uqog) s(AT#, BNV, p=g>0. (4.6.8)
Proof. First assume that both A and B are invertible. For every k = 1,...,n, it is easily verified from Lemma 4.6.2 that

(Ar #a Br)/\k — (A/\k)r #a (BAk)r,
(A#ty B))™ = (A #e BM))
So it suffices to show that
A" #, B'|| < (A#,BY,  r=>1, (4.6.9)

because (4.6.7) follows from Lemma 4.6.3 by taking A"*, B"* instead of A, B in (4.6.9). To show (4.6.9), we may prove
that A#, B <[ implies A"#,B" <I1. When 1l <r <2,letus write r =2 —eg with0 <e < 1. Let C = A"Y2BA12,
Suppose that A#, B < 1. Then C* < A~! and

A<C™, (4.6.10)
so that thanks to 0 < e <1
Al=f < cd=9), (4.6.11)
Now we have
AT#,B" = A'3{ATITEB . B¢ . BAT 15yl S
_ A1—%{A—%CA1/2(A—1/2C—1A—1/2)sA1/2CA—%}¢XA1—§
=AV2HA " %, [CA#, CTHCAY?
< ACT#, [C(C #. CTHCPAY
by using (4.6.10), (4.6.11), and the joint monotonicity of power means (see Definition 3.1.2 (i)). Since
CU= 4, [C(C*#. C7NC] = ¢~ == [c(c~* =9 Cc™%)C]* = €7,
we have
A"#,B" <AV2CAV? = A#,B <.

Therefore (4.6.7) is proved when 1 <r <2. When r > 2, write » = 2™s with m € N and 1 < s < 2. Repeating the
above argument we have

S(A” #, B") <u(iog) S(AY S #y BY )

<w(log) S(As #ot Bs)Z’”
<w(log) S(A #a B)r

For general A,B € B(#)" let A, :== A + ¢l and B, := B + ¢l for ¢ > 0. Since
AT#,B" =limA #, B and (A#,B) = lim(A, #, B.)",
e\0 &\0

we have (4.6.7) by the above case and Proposition 4.2.1 (10). Finally, (4.6.8) readily follows from (4.6.7) as in the last

part of the proof of Theorem 4.6.5. (]
By Theorem 4.6.9 and Proposition 4.4.13 we have:
Corollary 4.6.10. Let A,B € B(#)" and | - || be any unitarily invariant norm. If f is a continuous non-decreasing
Sfunction on [0, 00) such that f(0) > 0 and f(e") is convex, then
(A" #e BOII < I f(A#e B, r>1

In particular,
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IA" #o B[l < [[(A#a B)'ll, r>1

The next exercise is a variant of the Lie—Trotter formula. The proof is a modification of that of Lemma 4.6.7.
Exercise 4.6.11. For every self-adjoint H, K € B(#),
}gl(l)(erH#aerK)l/r — - +eK
By Theorem 4.6.9, Exercise 4.6.11 and Proposition 4.4.13, the Golden—Thompson type log-majorization in
Corollary 4.6.8 is complemented as follows:
Corollary 4.6.12. For every self-adjoint H,K € B(¥),
s((e"M#,e™)!") <uqiog) s(e! "), k> 0.
Hence, for every unitarily invariant norm ||| - |||,
1™ #ae™)TI] < [lle =Y, r >0,
and the above left-hand side increases to |||e!'~PHTK||| as r \ 0.
Specializing to trace inequality we have
Tr(e™#,e™)/" < Trell-0H+K r>0,

which was first proved in [42]. The following logarithmic trace inequalities are also known for every A, B € B(#)" and
every r > 0:

1 /2 AT r/2 1 r/2prAr/2
—TrAlogB""“A’B""* < TrA(logA +logB) < —TrAlogA"”“B"A"'~,
r r

1

—TrAlog(A" #B")* < TrA(log A + log B).

,

See [8,42] for details on these logarithmic trace inequalities.

5. Means for Matrices and Their Norm Inequalities

5.1 Means for matrices and their comparison

For matrices H, K, X with H,K > 0, the norm inequality

1
I1H2XK2]]] < 2 IIHX + XK (5.1.1)
for any unitarily invariant norm ||| - ||| was established by Bhatia and Davis [16] and is known as the matrix arithmetic-
geometric inequality. To prove this, the case where H = K and H is diagonal (with eigenvalues A4,..., 4,) is essential

due to the 2 x 2 matrix trick (see the discussion after Proposition 5.1.4 below) and the unitary invariance. Then it is

plain to see that
2/ 1
H'72XxH'? = | Y21 | o [ = (HX + XH) ),
A+ 4 2

where o means the Schur (or Hadamard) product (see Section 1.6). As shown in [45, 64], the above equality is quite
useful to prove (5.1.1), and a crucial point here is the positive semidefiniteness of the multiplier matrix
[ZM/(/L + 4;)]. The usefulness of this approach was further exemplified in [19, 80] for example. On the other
hand, in [52] (see also [38]) Kosaki observed that

dt

00
H'?XK'? = / H"(HX + XK)K ™" ————
oo 2 cosh(rrt)

which immediately implies (5.1.1) since the density function here is positive with total mass 1/2. The positive
semidefiniteness of multiplier matrices in the former approach and the positivity of density functions in the latter are
related via the Bochner theorem in Fourier analysis as one can easily imagine, and a systematic study of means for
matrices (also for Hilbert space operators) was made in [39] (also [40]) by unifying the two approaches. For further
developments in this directions see [55]. The present chapter is a survey on means for matrices mostly based on [39].

In this section we first introduce a certain class of binary means (for positive scalars) in an axiomatic fashion and
then obtain a general norm comparison result for the corresponding matrix means, which will play a fundamental role
in the rest.

Let M(x,y) be a positive real function on (0, c0) x (0,00), and the continuity is always assumed. A symmetric
homogeneous mean is such an M satisfying
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(1) M(x,y) =M(y,x),
(2) M(ax,ay) = aM(x,y) for all @ > 0,
(3) M(x,y) is non-decreasing in x and y,
(4) min{x,y} < M(x,y) < max{x, y}.
We denote by 9 the set of all such symmetric homogeneous means (for positive scalars). We set f(x) = M(x, 1), and
then M(x,y) = yf(x/y) by homogeneity and f is a continuous function on (0, c0) satisfying
@ f)=xfxh,
(b) f is non-decreasing,
(¢) f(1)=1 and f(x) <x for x > 1.
Conversely, when such an f is given, M defined by M(x,y) = yf(x/y) belongs to 9. Indeed, (1) follows from (a) and
(2) is clear by definition. The properties (a) and (b) imply (3), and (a)—(c) altogether imply (4).
Thanks to the non-decreasingness one can automatically extend the domain of M € 91 to [0, 00) X [0, co) as follows:

M(Q,y) = )l(l\rr(l)M(x, y), M(x,0)= }%M(x,y),

M(0,0) = limM(0,y) = lim M(x, 0).
(0.0) = lim M(0.y) = lim M(x. 0)

For M € 9 and H,K € M} = B(C")" we consider the mean of the left multiplication Ly by H and the right
multiplication Rx by K associated with M. Since Ly and Rk are commuting positive linear operators on the Hilbert
space (M, (-, -)ys) (see Exercise 1.5.6(2)), one can define a positive linear operator M(Ly, Rg) on M, via functional
calculus, which will be denoted simply by M(H, K). More explicitly, if H =) »_, A;P; is the spectral decomposition
with the eigenvalues A4, ..., 4, and corresponding orthogonal projections Py,..., P, of rank 1 and if K = ZJ’?:] w;Q; is
similarly taken, then M(H, K) is given by

M(H,K)X := XH:M(/li,/Lj)PiXQj, X e M,. (5.1.2)
ij=1
This means that with the diagonalization
H = UDiag(4,,...,4,)U*, K = VDiag(uy,...,u,)V*

via unitary matrices U, V, we have

M(H,K)X = U([M(A;, j1))];j o (U*XV)V*, (5.1.3)
where [M(4;, i1;)];; is the matrix with the (i, j)-entry M(4;, ;) and o is the Schur product.
Exercise 5.1.1. Show the expression (5.1.3) from definition (5.1.2).
Exercise 5.1.2. Let M € 91 and define

M(f)(x,y) = M(xil,yfl)fl, x,y > 0.

Show that M) € 9t and that, for each H,K > 0 in M,,, MO (H~',K~") is the inverse of M(H,K) as operators
on M,. Hence M(H,K)X =Y is equivalent to MO(H", K~ )Y = X.

Positive operators on M, defined as above (i.e., via the left and right multiplications) were treated in [43, 65] to study
certain Riemannian metrics on matrix spaces. In fact, arbitrary nonnegative real functions on [0, c0) x [0, 00) works in
the above definition, but the restriction of M to 91 is convenient for our exposition on means for matrices.

When X = [ (the identity matrix), the matrix M(H, K)I can be regarded as a certain mean of H, K > 0, but it is not
necessarily positive semidefinite and is different from operator means in the sense of Chapter 3. For instance, for the
geometric mean M(x,y) = ./xy we have M(H,K)I = H'/?K'/? while the geometric operator mean for H,K > 0 is
given by H'/2(H~'2KH~"/?)!/2H'/2. We will adopt the convention H® = I for any H > 0, and write H* (s € R) only
for H > 0. So H* (s € R) are well-defined and form a continuous one-parameter group of unitary matrices.

Theorem 5.1.3. For M,N € 9 the following conditions are equivalent:
(1) there exists a symmetric probability measure v on R such that
lo¢]
MH,K)X = / HS(N(H, K)X)K ™" dv(s) (5.1.4)
—0Q
for all matrices H,K,X of any size with H,K > 0;
(G1) [[IMH,K)X||| < |IIN(H, K)X||| for all matrices H,K, X of any size with H, K > 0 and for any unitarily invariant

norm ||| - ||;
(i) ||MH,H)X| < IN(H,H)X|| for all matrices H,X of any size with H > 0;
(iv) the matrix [M(x;, x;)/N(xi, x))]1<i j<n IS positive semidefinite for any x,...,x, > 0 with any n € N;

(v) the function M(e',1)/N(e', 1) is positive definite on R, where the positive definiteness of a real continuous
function ¢ on R means that [¢p(t; — t))]1<; j<n is positive semidefinite for any ty,...,t, € R with any n € N.



220 HIAI

In the above, the measure v in (i) is the representing one for M(e',1)/N(e',1) in the Bochner theorem Ii.e.,
M(e', 1)/N(', 1) = [ e™ du(s).
Proof. (i) = (ii). The inequality in (ii) is obvious from (i) if H, K > 0. For general H, K > 0 we may take the limit of
the inequality for H + eI, K + ¢l as ¢ \( 0.

(i) = (iii) is trivial.

(iii) = (iv). Let xy, ..., x, > 0 and a;; := M(x;,x;)/N(x;, x;). Then A := [a;] is a Hermitian matrix with the diagonals
a;; = 1. Applying condition (iii) to H = Diag(xy, ..., x,) and using (5.1.3), we have ||A o X|| < || X]|| for all X € M. Itis
immediate to see that

<X,AOY>HS = (A OX, Y)HS’ X,YEM,,. (515)

Since the operator norm || - || and the trace norm || - ||; are dual norms of each other with respect to (-,-)ys
(see Theorem 4.4.12), we have

(X, A0 Y)ysl < Ao XY, < IXI 11}y

so that [Ao Y|, < ||Y]|; for all Y € M],. We specialize Y to the matrix with all entries equal to 1. Then we obtain
JAll; <nduetoAoY =A and |Y|, = n. Let «y,...,a, be the real eigenvalues of A (whose nonnegativity is to be
shown), and we notice

n n

Dol = Al <n=TrA=) a,

i=1 i=1

where n = Tr A follows from a; = 1. This forces all the ¢;’s to be nonnegative.
(iv) = (v) is immediate from

M(e",1) M(e", e)
N(ei =i, 1) |~ | N(eti, 1)
(v) = (i). Due to the Bochner theorem there exists a probability measure v on R such that M(e', 1)/N(e', 1) =
© e du(s) for t € R. Since M(e',1)/N(e',1) = M(e~',1)/N(e™", 1), it is clear that v is a symmetric measure.
I y
For H,K > 0, with the notations in (5.1.2) we compute

M(H,K)X =y M(, u)PeXQ
k=1

:| for t;,...,t, € R.

n
= Y uM(E T 1)PXQ,
k=1

— Z LN (elogtog 1)(/00 (lk) | dV(S)>PkXQ1

k=1 M

oo n P is
-/ Z(") N 1)PLX0; d(s)

—00 ki=1 M
= / H(N(H, K)X)K ™" du(s),
implying (i). o (]

In the following proposition, we present more established results in the background of the above theorem.
For A € M,, we define the Schur multiplication operator Ss on the Hilbert space M, by

SA(X) :=AoX, X e M,

and let Sl .,y denote the norm of the Schur multiplication by A with respect to a norm ||| - ||| on M, i.e.,
15,1 ) Sup|||A<>X|||
Al = ——
(IR xz0 |IIXI]l

In particular, we write [|Sall(00.00) for the norm of the Schur multiplication with respect to the operator norm || - ||.

Proposition 5.1.4. Let A € M, and ||| - ||| be an arbitrary unitarily invariant norm. Then
M WSallqniem = 15alloo,00)
(2) If A = [ay] is positive semidefinite, then ||Sallq. 1) = MaxXi<i<a Gii-

Proof. (1) Set y := [|S|l(00,00)- Notice as (5.1.5) that

(X,AoY)ys = (Ao X, Y)ys, X,Y e M,

where A := [a;];; for A = [a;];;. Then, as in the proof of (iii) = (iv) of Theorem 5.1.3, we have
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ISallgp g1,y = max{{X,A o Yys| : IX]| < 1, [[Y]l; = 1}
= max{|(A o X, Vsl [X] < 1, [¥ll; < 1) = IS5] oo
Moreover, notice that A —A is an isometry with respect to |- || (indeed, it is so with respect to any unitarily
invariant norm), so ||A o X|| = ||A o X|| = ||A o X||. Hence ISallggip = ISzl (oo,00) = v- Forany k = 1,...,n and any

decomposition X =Y +Z sothat AocX =A oY + Ao Z, it follows from Proposition 4.4.6 (2) that
Ao Xllg < lAo Yl +kllAoZl < y(IY]ly +KIZI).

By Proposition 4.4.6 (2) again we have [|A o X||4) < y[|X||¢) for 1 < k < n. Thanks to Proposition 4.4.13 this implies
that [||A o X||| < y[|IX[]| for any unitarily invariant norm ||| - [|I, so [Sallqynimn < -

(2) Assume that A > 0. Since S4 : M,, - M, is a positive map by the Schur product theorem (Theorem 1.6.3),
Proposition 1.7.6 shows that

184 o0y = ISA(DI| = [IDiag(an ... )|l = max ay.
Hence it follows from (1) that [|Sa ll.rip < MaxXi<i<n @i On the other hand, for the matrix units E; we have
ai|l1Eilll = [NSaEI < NSallqy. i HE:l
so that a; < ”SA”(”H”,HHH) for 1 < i <n. |
Together with the famous 2 x 2 matrix trick the above fact (1) is used to show that (iii) implies (ii) in Theorem 5.1.3.
In fact, for any xy,...,x, > 0, (iii) implies thanks to the above (1) that
S [M(x,-,xp] =S [M(x,-»,v)] =1
N T N6 1l (00,00)
which shows that |||M(H, H)X||| < |||IN(H,H)X]|| for all H,X € M,, with H > 0. For H,K,X € M,, with H,K >0

0 MH,K)X

consider H := [H 0 ], X .= |:O Xi| instead of H, X. Since M(I:I,ﬁ))z = |:O 0

0 K 0 0 ],we have

IMH, K)XII| = [IMEH, DX||| < INH, E)X]|| = [|INH, K)X]|I.

Also, the above (2) together with the 2 x 2 trick shows that (iv) implies (ii) in Theorem 5.1.3.

For M,N € I we write M < N if M, N satisfy the equivalent conditions in Theorem 5.1.3. It is a partial order in 91
and preserved under taking the pointwise limit: If M,,, N,, € 9t converge pointwise to M, N € 9 respectively, then one
has M < N whenever M,, < N, for all n. Also, note that M < N is equivalent to N < M), Of course, M < N implies
the simple order M < N, i.e., M(x,y) < N(x,y) for all x,y > 0. Actually M < N is strictly stronger than M < N as will
be seen in examples in Sections 5.2 and 5.3. On the other hand, the next exercise shows that the simple order M < N is
related to an estimate in the Hilbert—Schmidt norm || - ||yg, Which may reveal why inequalities for this norm are easy to
hold and sometimes very easy to show.

Exercise 5.1.5. Let M,N be general nonnegative real functions on [0, 00) X [0, 00). Then prove that the following
conditions are equivalent:

1) (IMH,K)X|gs < IN(H, K)X||ys for all matrices H,K,X with H,K > 0O;

(il) M(x,y) < N(x,y) for all x,y > 0.

A kernel function M : (0, 00) x (0,00) — (0,00) is called a positive definite kernel if [M(x;,x))]1<; j<, iS positive
semidefinite for any xy,...,x, > 0 with any n. If M, N € 91 satisfies M < N and N is a positive definite kernel, then so
is M. This is an immediate consequence of Theorem 5.1.3 (iv) and the Schur product theorem. The next proposition
says that the geometric mean G is the largest in the order < among means in 91 that are positive definite kernels.

Proposition 5.1.6. The following conditions are equivalent for M € 9N
(i) M(H,H)X > 0 for every H,X € B(#) with H,X > 0O;
(i1) M is a positive definite kernel;
(iii)) M < G.
If this is the case, then |||M(H,K)X||| < VTHI K] - 1|X||| for all H,K,X with H,K >0 and for any unitarily
invariant norm.

Proof. (i) = (ii). Let X be the matrix with all entries equal to 1, and set H = Diag(xy,...,x,) with x1,...,x, > 0.
Then M(H, H)X = [M(x;, xj)]1<; j<n- Hence (i) implies the positive semidefiniteness of [M(x;, x;)].
(i) < (iii). For any x,...,x, > 0 notice that
M(x;, x;)
G(xi9xj)

n

:| = Diag(xl_l/z, .. ,x;l/z)[M(xi,xj)]Diag(xl_l/z, cox?
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and

M(x;, x;)
. 1/2 i» . 1/2
[M(x,»,xj)] — Dlag(xl/ o ’x:11/2 |:G(Xi,x;):|Dlag(xl/ - ,x’11/2)’
which show that [M(x;, x;)] = 0 if and only if [M(x;, x;)/G(x;,x;)] = 0. Hence (ii) < (iii) holds.
(iii)) = (1). Assume (iii), so we have the measure v representing the ratio M(e*,1)/G(e*,1). Then, for H > 0
Theorem 5.1.3 implies that

M(H, H)X = / HE(H'?XH"Y*)H™" dv(s),
—0o0

which is positive semidefinite if so is X. Hence (i) holds for all H,X >0 by continuity. Furthermore, by

Proposition 4.4.4 (2) we have

WIMCH, K)XII| < [IIH2XK2() < VIHT K] - 11X
for any unitarily invariant norm. (]

When H is a matrix with eigenvalues xy,...,x, > 0, M(H, H) is essentially equal to the Schur multiplication by
[M(x;, x;)]1<i j<n (up to unitary conjugation, see (5.1.3)). So one may consider the property (i) above as a generalization
of the Schur product theorem. For M € 9, as in the proof of (ii) < (iii) above, we see also that 1/M is a positive
definite kernel if and only if G < M.

According to Theorem 5.1.3, to obtain a norm inequality between matrix means it is crucial to show the positive
definiteness of the related function on R. Among important classes of such functions are the following ratios of
hyperbolic functions:

sinh(at) cosh(ar)
: ) , 0<a<b.
sinh(br) cosh(br)

Indeed, it is well known that these have the following inverse Fourier transforms:

sinh(ar) / i sin(%)

ds, (5.1.6)

sinh(br) - oo ¢ 2b(cosh(F s) + cos(%))
cosh(ar) _ /00 i cos(3;) cosh(3; s) 5.17)
cosh(br) o b(cosh(3 5) + cos(%"))
The function ¢/ sinh(%) is also positive definite with the inverse Fourier transform
! OO its T
— = e ————ds. (5.1.8)
sinh(3) oo cosh”(7s)

The proofs of the formulas (5.1.6)—(5.1.8) of Fourier transforms are given in Appendix A.5 for the convenience of the
reader.

5.2 Norm inequalities for A-L-G interpolating means

We will apply the general result in the previous section to several typical examples of symmetric homogeneous
means, and this method proves quite useful to obtain various norm inequalities refining the matrix arithmetic-geometric
mean inequality. Throughout this section and next, let H, K, X be matrices with H,K > 0.

For « € R and x,y > 0 we set

oa—1 x* —y*

. if ,
My(x,y) := a  xel—ye-l X7
x if x=y.
In particular, we have
xX+y . .
My(x,y)=A(x,y) == 5 (arithmetic mean),
X —
Mi(x,y)= L(x,y) := 7y (: lim M, (x, y)) (logarithmic mean),
logx — logy a—1
Mipp(x,y) = Gx,y) = /xy (geometric mean),
logx —logy .
Mo(x,y) = —————~ (= lim M, (x, Y)),
y =X a—0
M_(x,y)=H(x,y) == ——— (harmonic mean).
x4yl
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Moreover, we may set
Mo(x,y) = max{x, y} (: lim M,(x, y)),
a—> 00

M_oo(x,y) := min{x, y} (= Jim Mo (x, y)).

Thus, {Ms}_s<a<co 1S @ One-parameter family of means in 901, which we call A-L-G interpolating means due to the
above interpolation of the means A, L, and G. For any x,y > 0 fixed, M,(x,y) is continuous in « € [—00, c0] and
M, (x,y) < Mp(x,y) if —oco <a <p<oo. Note that M;_, =M, ie., Mj_o(x,y) = Mu(x"',y™")~" for any

o °

a € [—oo,00]. The next theorem says that if o < B then the order M, < Mg actually holds true more strongly
than M, < M.

Theorem 5.2.1. If —oo <« < B < o0, then My < Mg and hence
1Mo (H, K)X||| < |[|IMg(H, K)X]||

for any unitarily invariant norm ||| - |||

Proof. Since M|_, = M(([) (in particular, M1, = G = G(’)), we may restrict ourselves to the case 1/2 <o < 8 < 0.
When 1/2 <o < 8 < o0, we have
My(e¥,1)  (a— DB (€ — )P —1)
My, 1) a(f—1) (eXe=Dr — )2 — 1)
_ (O[ _ 1)/8 (eat _ efat)(e(ﬂfl)t _ ef(ﬁfl)t)
- a(f—1) (e(a—l)z _ e—(a—l)t)(eﬂt _ e—ﬁz)
_ (¢ — 1)B sinh(ar) sinh((B — 1)7)
o a(B — 1) sinh((o — 1)t)sinh(Br)

with the conventions
-1 1 inh((8 — )t
_a—z— fora =1 and w:t for g =1.
sinh((w — 1)) ¢ B—1
If1/2 <a < B <1, then
My(e¥, 1) _ (I —a)B sinh(ar) sinh((1 — B)1)
Mpg(e?, 1) " a(l — B) sinh(Bt) sinh((1 — a)r)
is positive definite thanks to (5.1.6) (and (5.1.8) for B = 1). Hence M, < Mg by Theorem 5.1.3. On the other hand,
when | < o < 8 < co we notice that

sinh(at) sinh((8 — 1))
sinh((@ — 1)f) sinh(Bt)
sinh(( — 1)t 4 #) sinh((8 — 1)f) — sinh((o — 1)) sinh((8 — 1)t + 1)
- sinh((@ — 1)7) sinh(81)
sinh t{cosh((e — 1)¢) sinh((8 — 1)¢) — sinh((a — 1)7) cosh((8 — 1)1)}
- sinh((« — 1)7) sinh(Br)
sinhz  sinh((8 — a)r)
~ sinh(Br) sinh((@ — p)
fl<a<pB<20—1 (hence 0 < f—oa <a—1), then the above expression shows that M, (%, 1)/Mﬁ(62’, 1) is

positive definite and hence M, < Mpg. In the general case (1 < a < 8 < 00), we may choose 0 =g < o] < -+ <
a, = P satisfying o < 2041 — 1 (1 <k < m) to conclude M, < Mg. Finally, the result when 1 =a < 8 < 00 or
1 < o < B = oo can be obtained from the above case by taking the limit as « — 1 or 8 — ooc. (]

The means M,, are of particular interest when « = n/(n — 1) (n = 2,3,...) and when e = m/(m+ 1) (im=1,2...).
Since

(n—1) _ (n—1) n—1
1 X/ (=) /o= Zxk/(n =10/,
n XD _ i n =

| /ot _ ymfne)
Mm/(m+l)(x9y) = Z

M1y, y) =

- Zxk/(m+1)y(m+l—k)/(m+l)’
k=1

y~Vm+1) _ x=1/(m+1) T m —

we have
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n—1

1

M1y (H, K)X = - ZHk/<"—‘>x1<<"—'—k>/<”—1> (n=2.3,..), (5.2.1)
=0
1 m

Moy (H, K)X = — ZHk/(m“)XK('”“’k)/("’H) (m=1,2,...). (5.2.2)

k=1

On the other hand, since L(x,y) = fol x'y'=" dt, we have
1
L(H,K)X = / H'XK'" dr. (5.2.3)
0

Both (5.2.1) and (5.2.2) being considered as Riemann sums for the integral (5.2.3), it is straightforward to see
that

1 n—1
/ H'XK'"'dt = lim 1ZH"/(”’”XK(”’I’W(”’”
0 k=0

n—oon

L
= lim _ZHk/(m+l)XK(m+l—k)/(m+l).
m—00 m =

As a direct consequence of Theorem 5.2.1 we have the next result. Indeed, this was shown in [38] for Hilbert space
operators.

Corollary 5.2.2. The inequalities

m 1
- m | o
1 o k/(n—1 —1-k)/(n—1 1
< - ZH/(H XK ® (=D ||| < —|||HX + XK]||
Tl -2

hold for each integers m > 1 and n > 2 and for any unitarily invariant norm. Furthermore,

1 m 1

— ZHk/(mH)XK(mH_k)/('"H) increases to ’ / H'XK'™" dt H as m — oo
M=t 0

and

1 n—1 1

- ZHk/(”_l)XK("_l_k)/(”_]) decreases to ' / H'XK'™" dt ' as n — oo.
n — 0

=0

When —oo < o < 8 < 0o, Theorems 5.1.3 and 5.2.1 say that M,(e’, 1)/Mg(¢', 1) is the Fourier transform of some
symmetric probability measure v, g on R and the integral expression

My(H,K)X = / ~ H*(Mg(H, K)X)K ™" dvy 4(s) (5.2.4)

holds for every H, K > 0 and X. Typical examples are
Corollary 5.2.3. Assume that H,K > 0. For 1/2 < a < 00,
sin(7r "‘T’l)
(a — 1)(cosh(%” s) + cos(r “a;l))

lo¢)
H'?xK'/? = / H*(M,(H,K)X)K™* ds. (5.2.5)
—00

Forl <o < oo,

1
/ H'XK'™" dt
0

> 1s —is o
= / H*(M,(H, K)X)K e l)log( (5.2.6)

—0Q

cosh(%” s) — cos(za—”)
= ds.
cosh(Zs) — 1

Proof. For 1/2 < a < oo the formula (5.1.6) shows that
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Ge,1) o V-1 o« sinh(%1 1)
My(e', 1) a—1 e'—1  a—1 sinhr)

_ its

> sin(r &=1)
- ¢ < ds.
/—00 (@ — 1)(cosh(3F ) + cos(r “51)

(5.2.7)

When 1 < o <2, we compute

L', 1) o« (e — (@D —1) 20 sinh(3) sinh("‘T_l 1)
Mye', 1) a—1 f(e* — 1) Ta—1 t sinh( 1)
2 / = sinh($) cosh(ur)
T a—1J sinh( 1)
o /Tl sinh(( + w)r) + sinh((} — w)r) p
Ta—1), sinh(% 1) "

e I sin(rr H2x)
= / du f e 2 T
a—1J oo cosh(%F s) + cos( —=)
sin(r %)
o 12uy |45
cosh(ZF s) + cos(r —=)
1 s = sin(rr 1121
= e ds 2 < 14+2u du
a—1J_ —al cosh(ZF s) + cos(mw —=)

o S _COS(%Z) 1
= —/ e ds/ ——————dx
2(a — 1) J_o 1 cosh(Fs) + x

o s cosh(Z s) — cos(%%)
=— / e log s a
2o — 1) J_ o cosh(Zrs) — 1

ds.

Here, we have used (5.1.6) and the Fubini theorem in the above fifth and sixth equalities. When 2 < o < o0,
we can modify the above computation and arrive at the same integral. Hence (5.2.5) and (5.2.6) follow from
Theorem 5.1.3. [l

Note that the density function in (5.2.5) is bounded and continuous while that in (5.2.6) has a singularity at s = 0.
Moreover, from the proof of Theorem 5.2.1, it is easy to see that when 1 < o < 8 < oo the representing measure v, g
in (5.2.4) has an atom with the mass (¢« — 1)B/a(B8 — 1) at s =0 as well as a continuous part represented as the
convolution of a finite number of density functions similar to that in (5.2.5).

Example 5.2.4. This is an example due to T. Ando and D. Petz, showing the difference between the two orders < and
<. Let AH := (A + H)/2, i.e., the average of the arithmetic and the harmonic means, and let us compare it with the
geometric mean G. Consider the function
£ = G(e*, 1) . 2
" AH(e*,1)  cosht+ (coshr)™'"
It is clear that f(r) < 1 for all t € R, so G < AH. However, G < AH fails to hold. The following reasoning is due to
H. Kosaki. Suppose that 1/(cosh? + (cosh#)™!) is positive definite; then its product with 1/cosh ¢
1 . 2
cosh’t+1  cosh(2f) + 3

is also positive definite. But [19, Theorem 5.1] (also [14, 5.6.6]) says that the above function is not positive definite. It is
worth noting that a more general fact was obtained in [55, Theorem 7.10].

5.3 Norm inequalities for Heinz-type means and binomial means
In this section we deal with the following classes of means in 9
1
Ae(6,3) = A1 y) 1= S (5T 421709 for0<a <1,

xa+ya
2

1/a
) for —o0 < a < 0.

Ba(xs y) = (
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Notice that {Aq}p<y<; 1s a family of means in 9 interpolating the arithmetic mean Ay = A and the geometric mean
Ay, = G. For matrices H,K > 0 and X we have

1
A (H,K)X = 3 (H*XK'™ + H'™*XK*%).

For 0 < o < B < 1/2 we have
Ap(e', 1) P 40P cosh((5 — B)1)
Aule!, 1) e +e0=9"  cosh((} — ay)’

which is positive definite by (5.1.7). This implies
Proposition 5.3.1. The inequality
IHXK'™ + H'"“XK*||| < |||HX + XK||| (5.3.1)

holds for any 0 <a <1 and for any unitarily invariant norm, and moreover |||H*XK'™® + H'=“XK%||| is
monotonically decreasing in o € [0, 1/2].

The following “difference” version is also known:
[||H*XK'™® — H'™*XK*||| < [2a — 1] - |||HX — XK]]|. (5.3.2)

The inequalities (5.3.1) and (5.3.2) for the operator norm were formerly shown by Heinz [36], so we call A,’s
Heinz-type means. Those inequalities for unitarily invariant norms were given in [16, 17]. See [52] for the proof based
on the Poisson integral formula and [19] (also [64]) for the above lines of proof based on the Schur multiplier (as in the
next exercise). Furthermore, the asymmetric H*XK'~® can be treated (though it does not fit the setting described in
Section 5.1) as discussed in [39,52], and a further development on the subject is found in [55, Chapter 4].

Exercise 5.3.2. Prove (5.3.2) in the following way:
(1) When 1/2 < @ < 1 and H = Diag(xy,...,x,) with x; > 0, show that

xZafl _ x'Zafl
HXH'™ — H'™*XH® = | x] ™ ——L— x| o (HX — XH),
Xi — Xj
where (x%‘)"1 — xf""l)/(xi — x;) is understood as 2« — 1 if x; = x;.

(2) When 1/2 <& < 1 and x; > 0, apply (5.1.6) to prove that [(x}*~" — x*~")/(x; — x;)] is positive semidefinite.
(3) Use Proposition 5.1.4(2), the 2 x 2 matrix trick, and continuity to prove (5.3.2).

Proposition 5.3.3. The inequalities

l—a

1
H'XK'™" dt

1 — 2«

1
=3 [||H*XK'=® + H'~*XK“|||

o

(5.3.3)

3
/ (H'XK'™" + H'"'XK") dt
0

1

<

2«

hold for any o € (0,1/2) and for any unitarily invariant norm. Moreover, each of the above three terms is
monotonically decreasing in o € (0,1/2).

Proof. For 0 < « < 1/2 define L, and L, in 9 by

Lot(x’ )’) =

11—« 5 1 o
/ AGey)d,  Lo(xy) =~ f A, y)dt
1 -2« o o Jo

so that the first and third terms of (5.3.3) are |||L,(H, K)X||| and |||L,(H, K)X|||, respectively. The decreasingness of the
second term of (5.3.3) was seen in Proposition 5.3.1, from which the first inequality is easy:

[ILo(H, K)X||| =

l—«
/ 11A(H, K)X|[| dt < |||A«(H, K)X]||.
1-2a/,

The second inequality follows from the positive definiteness of the function

Aa(€2t, 1) _ a(e2ott + e2(17a)t) _ 20[[(820” + eZ(lfa)t)
L~a(e2t, i) - f(;"(EZMt 4 62(17u)t) du - (eZz —1)— (82(1704)1 _ eZott)
2at cosh((1 — 2a)t) ot cosh((1 — 2a)1)

~ sinh7— sinh((1 — 2a)f)  sinh(ar) . cosh((1 — a)t)




Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 227

Next, when 0 < ¢ < 8 < 1/2, we have
Lg(e”, 1) 12« e21=Pr _ 2Pt 1 —2a sinh((1 —2p)1)
Lo(e?, 1) 1 —2B 21—t _ g2t 1 _28 sinh((1 — 2a)f)

Since it is positive definite, the first term in (5.3.3) is decreasing in « € (0, 1/2). We compute

lj,g(ezl, ) «o (€2 — 1) — (21-Pr _ g2P1) _a sinh(Br) cosh((1 — B)r)

L, 1) B (e — 1) — (e21—or — g2ty — B sinh(ar) cosh((1 — a)?)

and

sinh(Bt) cosh((1 — B)t) _1
sinh(at) cosh((1 — a)r)
sinh(B¢t) cosh(at + (1 — o — B)t) — sinh(at) cosh(Bt + (1 — a — B)t)
- sinh(az) cosh((1 — a)1)
{sinh(Bt) cosh(xt) — cosh(Bt) sinh(at)} cosh((1 — o — B)t)
- sinh(az) cosh((1 — )t
sinh((8 — «)f) cosh((1 —a — B)r)
= sinh(@r)  cosh((1 — a)r)

Thus, Eﬂ(ez’, 1)/l~,a(ez’, 1) is positive definite for 0 < @ < B < 2, and the decreasingness of the third term in
a € (0,1/2) is seen as in the proof of Theorem 5.2.1. ([l

We further take the limits of (5.3.3) as o \( 0 or @ /' 1/2 to have

H'XK'™" dt

1
I[H'2XK'2|| <
1 -2«

-«
[

1
/ H'XK'™" dt
0

1
= 5 IIHX + XK]]|.

/W (H'XK'™" + H'"'XK") dt
0

1
<
~ 2a

After the relations G < L < Aand G < A, < A for 0 < « < 1 are known, it is natural to question what is the relation
between the logarithmic mean L and the Heinz-type means A,. This was settled by Drissi [31] as follows.
Theorem 5.34. If0 <o« <1, then A, < L holds if and only if 1/4 < a <3/4.

Proof. Set B:=2a — 1 and define
Ay, 1) __ tcosh(Br)
L(e*,1)  sinhs

Let us determine the range of 8 for which fg is positive definite. Since f3 is not bounded if |8| > 1, it suffices to
consider the case |B| < 1. Then by (5.1.6) we have

sinh(r) _ /‘Oo s sin(rr B)
sinhz )¢ 2(cosh(ms) + cos(f))

fp() ==

(5.3.4)

Compute the derivative
i sin(rr8) __ n(cos(p) cosh(mrs) + 1)
dp cosh(ms) 4+ cos(mp) N (cosh(ms) + cos(yrﬂ))2 '

Hence the Lebesgue convergence theorem can be used to differentiate the right-hand side of (5.3.4) so that

t cosh(pr) _ /OG s TT(cos(B) cosh(rs) + 1)
sinhr J_o ¢ 2(cosh(rrs) + cos(B))?

This implies that fg is positive definite if and only if cos(wp) > 0 or || < 1/2, equivalently 1/4 < a < 3/4. U

On the other hand, the range of « for which A, < L holds was also determined in [31], as stated in the following
exercise. Thus we have a one-parameter family of examples showing the difference between < and <.

Exercise 5.3.5. Verify that A, < L holds if and only if J (1 — %) <a<i(l+ \/Lg).

We next consider the means By (x,y) = ((x* 4+ y*)/ )1/ for o« € [—00, 00]. Here, B; = A is the arithmetic mean and
B_, = H is the harmonic mean, and B, for the special values o« = 0, 00 are understood as
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Box.y) = Gx.y) = V& (= lim Bu(x.y)),
Boo(x.y) = max{r.y} (= lim By(x.y)).

Boa(ey) =minfr,y) (= lim Bu(x.y).

It is clear that B((;) = B_, for any o € [—00, 00]. From the concavity of # (f > 0) for 0 < y < 1 one readily checks
that B,(x,y) is monotonically increasing in « € [-00,00]. When o« =1/n (n=1,2,...), By, has the binomial
expansion

1 < (n
Biw(H,K)X = — HY"XK R 535
n(H, KX = ; (k) (5.3.5)
so we call B,’s binomial means.
Although the family B, was studied in [39,40], the basic monotonicity conjecture B, < Bg for —oo <a < < 00
was unsettled there except some special cases. But, in [53] Kosaki finally solved the problem by proving a much

stronger result that the ratio
B,(*, 1) B (coshat)!/®
Bg(e¥, 1) (cosh pr)'/P

is infinitely divisible, i.e., ((coshar)!/®/(cosh t)!/P)" is positive definite for each r > 0 if a < B. (The infinite
divisibility of My(e*, 1)/Mg(e*, 1) for & < B was also proved in [53].) Thus, we state

Theorem 5.3.6. If —oo <o < 8 < oo, then By, < Bg and hence
[I1Bo(H, K)X||| < [||1Bs(H, K)X|||
for any unitarily invariant norm ||| - ||].

Since By = G and B; = A, Theorem 5.3.6 together with (5.3.5) implies the next corollary except the convergence
of 2711 3o (Z)H"/”XK(”"‘)/”Hl to ||[H'/2XK/?|]|.

Corollary 5.3.7. For every positive integer n, the inequalities

n
Z (”) HkInx g n—km
k

k=0

1
INH'2XK'?))] < —

1
< —|||HX + XK
=5 <5 I

hold for any unitarily invariant norm. Furthermore,

1

211

n

Z (”) HK K n—R/n
k

k=0

decreases to  |||H'?XK'?||| as n — oo.

Exercise 5.3.8. Prove the convergence stated in the last of Corollary 5.3.7.

For n=1,2,..., both means M1y, and By, have similar forms as convex combinations of xkmy=ho/n,
k=0,1,...,n. In fact, the next proposition asserts that By, < M,41y/, holds true.

Proposition 5.3.9. For every positive integer n and unitarily invariant norm,

n
Z (n) Hk/’1XK(n7k)/n
k

k=0

n
Z Hk/nXK(nfk)/n
k=0

1

27[

1
n+1

=<

Proof. We compute

B]/,,(€2t, 1) n+1 N

cosh”($)sinh(Y) n+1
- _ — (n + 1) n n’
M y1ym(e”, 1) 2n

sinh(“H 1) 2n

L L _t ntl, _ntl,
(en —|— (4 n)n(en — e n) — (e n — e n )

=mn+1
( ) 27+ sinh(*H 1)

(5.3.6)

The numerator in the latter expression is equal to
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k=0 k
" n n+1 2%, "'H n wl=2k, ntl _ntl,
e n ' —(en'—e )
k k—1
K) (i )V“%
] +1-2k -2k
-G e
k=1

S0 ()

Now it is clear that (5.3.6) is positive definite and so is By/u(e*, 1)/Mi1)/n(e*, 1). O

Il
N|+ ﬂ‘

I
[\)
M“‘*

>~

Example 5.3.10. Here we note that L < B3 fails while L < By 3. Looking at the Taylor expansions

> " t 14w
L', 1) = and By(e',)=1+-4+—1"4+---,
b ;(n+l)! -1 2778
we notice that L < B, does not hold when 1/6 > (1 + «)/8, i.e., @ < 1/3. But L < B3 is valid, which was shown
in [61]. But here is another short proof. Indeed, it suffices to show that L(e, 1) < By 3(¢’, 1) for all ¢ > 0. This can be
directly checked because

1 2" 1
t ot 2t/3 z/% _ n
B]/3(€,1)—8(€ + 3e +3""+1) =1+ E 8 '< 3n 1)1‘
Lo e 2 D) fori<nzs
— — or ,
(n+1)! — 8n! 3n=1 0 3n-l ==

and 1/(n+ 1)! < 1/8n! is clear for n > 7. Hence we have L < B, when (and only when) « > 1/3. However, the
function

L, 1) _ sinht
Bi3(e?, 1) h tcosh3(§)

is not positive definite. This was confirmed by a numerical computation in [39] but a theoretical proof for this
non-positive definiteness was also obtained by Kosaki [54, Remark 3].
On the other hand, we observe
L, 1) sinh ¢t 2 sinh(%) / 172 cosh(ut) p
— = = u
Bijp(e¥,1)  tcosh*(%)  rcosh(}) o cosh(})

and it is positive definite. Hence L < By, is valid, which together with Proposition 5.3.9 for n = 2 implies that

1
/ H'XK'"™" dt
0

Exercise 5.3.11. We say that M € 9 is operator monotone if M(x, 1) is an operator monotone functions on (0, co)
in the sense of Definition 2.1.3. Show the following facts:

(1) M, is operator monotone when (and only when) —1 <« < 2,

(2) A, is operator monotone for any 0 < o < 1,

(3) B, is operator monotone when (and only when) —1 < o < 1.

1 I
< Z|||HX+XK+2H%x1<%||| < §|||HX+XK+H%XK%|||.

5.4 Integral expressions for solutions to Lyapunov type matrix equations

Actual computations so far in this chapter have direct relevance to integral expressions for solutions to certain
matrix equations (typically the Lyapunov equation). In this section we collect some integral formulas in this
connection.

First, for given matrices H, K, X with H,K > 0, we consider the following algebraic equations in Y:
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n—1
! > EMeDyg = 1mhieeh < (5.4.1)
=0
1 m
- ZHk/(m+1)YK(m+17k)/(m+1) - X. (542)
mi=
The limit case of these equations is
1
/ H'YK'™"dt = X. (5.4.3)
0

Proposition 5.4.1. Assume that H,K > 0. Then the above equations (5.4.1) for n > 2, (5.4.2) for m > 2, and (5.4.3)
have unique solutions Y =Y,, Y =Y, and Y = Y respectively, and furthermore they are expressed as

i ; n — 1)sin(Z

Y, = / pivg 1K Do) (5.4.4)
- cosh(rm % s) + cos(?)

7, = / * wsg-1nxg-1rg-s Mt DsinG)
o0 cosh( @ s) + cos()

Yoo = / HYH™\PXKTIPRT! s ds (5.4.5)
—00 2 cosh”(ms)

Here, the inequalities |||Y,||| < |||Ysolll < [[|¥mll| hold for any unitarily invariant norm, and |||Y,||| increases to
1 Yool|| as n — oo while |||Y,,]|| decreases to |||Ysoll| as m — oc.

Proof. Since the equations (5.4.1)—-(5.4.3) are
My—y(H,K)Y =X, Mymry(H,K)Y =X, LH,K)Y =X,
they have unique solutions respectively given as

Yo =M ((H ' KX =M nH " KX,

Yo =My (H ™ KDX = Myjguiy(H ' KX,

Yoo = LOH T, K HX = My(H™', K~ HX.
Noting that
M(e', 1) G(e'\1)
G(e', 1)  Mi_g(e', 1)

we obtain, thanks to (5.2.7), the integral expressions of ¥, and Y,, by Theorem 5.1.3. That of Y, is obtained
by (5.1.8) since

fora < 1/2,

Mo(el, 1) _ 1
G(e',1) ~ 2sinh(})’

The remaining assertions on norm inequalities are immediate from Theorem 5.2.1. (|

Secondly, for o € R with o # 1 we set f(x) := xle=D/e x < 0. Notice that
. xot—l _ ya—l
a—1 X —y

Hence, for H > 0 it follows from (5.1.3) and (2.3.9) that

o
Mo(x,y)™" = = — /ey xy >0

M (H,HY"'X = %D(f(H“))(X) (5.4.6)

for all X. For 1 < a < oo, since 0 < (o — 1)/a < 1, f(x) = x*~D/ has the integral expression

: a—1 00 L.o— 1/ : a—1 00
sin(mr == xt sin(mr == t 1
fx) = ( o ) dt = a+ ( o )/ _ fe=D/a dt
bid 0o 4+t T o \Z+1 =x+1t

: a—1
a:sm(nT) /"O 1 o
T o \t £+1

with

Therefore, we obtain
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sin(m =ty (/¢ 1) a1y
SfH* +uX) = al + g I—(H+H+uX)” )%t
T 0 2 +1
for |u| small enough. Since

= —(H* 4+ ) 'X(H* + )",

d
— (H* + I + uX)™!
du u=0

from the above integral formula we have
o Sin(”aT_]) P, -1 ~ —1 (a—1)/a
D(f(H))X) = —*—= (H* +tI)y”" " X(H* +1tI)" 't dr.
T 0
Thanks to (5.4.6) this computation with the multiple constant «/(o — 1) gives the unique solution to the equation

M,(H,H)Y = X. Thus, the usual 2 x 2 matrix trick shows

Proposition 54.2. If 1 <a <oo and H,K > 0, then the unique solution to the equation M,(H,K)Y =X is
expressed as

: a—1 00
a sin(r ==
_ s ) / (H* 4t X(K* + )~ @D/ gy,
JT(Ol — 1) 0
In particular, as an alternative form of the solution (5.4.4) to the equation (5.4.1) given in Proposition 5.4.1 we have
sin o0
Y, — n (n/n)/ CHM D 4y I (RMOD 4y gy, (5.4.7)
0 0
Also, set g(x) :=logx, x > 0, so that
L(X,Y)A = g[“(xd’), X,y > 0.
Since

L(H,H)™'X = D(g(H))(X)

A 1
= — ——)dt,
&) /0 (1+t x—H)

it follows as Proposition 5.4.2 that the solution (5.4.5) to the equation (5.4.3) also admits another integral expression

and

loe)
Yoo = / (H + ) 'X(K + 1) dt, (5.4.8)
0
and it is the limit of (5.4.7) as n — oo.
Finally, let M € 91 be an operator monotone mean (as defined in Exercise 5.3.11), so by Theorem 2.7.11, M(x, 1)
admits the representation

00
M(x,1)=a+bx+f X dm@), x>0,
0o X+t

where a,b > 0 and m is a positive measure on (0, co) such that f(;’o (1 + )~ " dm(t) < +00. But note that the symmetry
M(x,1) = xM(x~',1) forces a = b and dm(t) = tdm(t~"). Hence we have the integral expression

Mx,y) =alx+y) + / —— dm(1), x,y >0,
0o X+ity

where a and m satisfy 2a + f;o (140" "dm@) = 1. By noticing that

X 00 00 ~ B
Y _ / e Yxye™Vds = / S o= ds, xy,A >0,
X4ty 0 0

we observe that
[0¢] lo¢]
M(H,K)X = a(HX + XK) + f / e *THXKe ™ ds dm(r)
o Jo
00 OO . .
= a(HX + XK) + / / e XK ds dm(r)
o Jo

for all matrices H, K, X with H,K > 0. Assume that the measure m has the density ¢(f). We set ¥ (s, 1) = s~ o(t/s),
s,t > 0, so that ¥(s, 1) = ¥(¢,s). In this case we have
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M(H,K)X = a(HX + XK) + / [ e MHXKe (s, 1) ds dt
0 0

o] 00
— a(HX + XK) + / / e XK y(s, ) ds dt. (5.4.9)
0 0

Since the harmonic mean M_; = H is the case where a = 0 and m = 28;, we have

0 00
H(H, K)X = 2/ e HHXKe™K ds = 2/ e—H XK g
0 0

By this together with (5.4.4) and (5.4.7) for n = 2, the unique solution to the famous Lyapunov equation HY + YK = X
with H, K > 0 has the three different integral expressions as follows:

[o¢]
Y:/ e M xe ™ gy
0

1

00
— f Hl'[H*]/ZXKfl/ZK*[[ dt
oo 2 cosh(rt)

1 o]
= _/ (H? 4+ )™ 'X(K? + D)~ "¢'/? dt
T Jo
2 [oe]
( == / (H> + 2D 'X(K* + 2D ' dt).
7 Jo

As further examples of the integral expression of the form (5.4.9) we have

Proposition 5.4.3. For every H,K > 0 and X,

L(H,K)X = / / HHXKe K L g
st((log 52+ n2)

=/ / ot ek ST dsdt,
o Jo st((log )* + 72)

Mo(H, K)X = / / eHHXKe X ds di /oo /OO o—H XK M
S + t 0 0 s + t

Proof. Since

! o U /sin(rar) [ xr*~!
L(x, 1) = x*da = dt |da
0 0 4 0o X+t

o x Usin(ra) o x t+1
= do | dt = 5 dt,
0o X+t 0 e 0o X+t t((logt) +7T2)

the integral expressions in (5.4.9) for L are given with a = 0 and
s+t
st((log £)? + 72)

Y(s, 1) =

On the other hand, since

log x X AN 1 o X
My(x,1) = = - dt = -,
I—x! x—1Jy \14+t x+1t 0o (x+n1+1)

the expressions in (5.4.9) for M are given with @ = 0 and (s, ) = (s + HL U

The second expression of the above proposition implies that the solution Y, to the equation (5.4.3) admits, besides
(5.4.5) and (5.4.8), one more integral expression

dsdt
—sH —tK
= X
Foo // ¢ s—l—t

Appendix
A.1 Converse to Taylor’s theorem

In this section let X and Y be general Banach spaces and f be a map from an open subset U of X into Y. Then f is
said to be Fréchet differentiable at a point a € U if there exists a Df(a) € B(X, %) such that
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Il.f (@ 4+ x) — f(a) — Df(a)x||

flxl

— 0 asxe X, x| — 0.

The higher degree Fréchet differentiability of f is also inductively defined as stated in Section 2.3. For m € N, f is said
to be C" on U if f is m times Fréchet differentiable and D" f : U — B(X™, Y) is norm-continuous. The next lemma,
called converse to Taylor’s theorem, provides a useful technique to prove the C™ of f. For the proof see [1, pp. 6-9].

Lemma A.1.1. Let X, Y be Banach spaces, and let an open convex set U C X and a map [ : U — Y be given.
Moreover, let m > 0 and ®; : U — B,(XF, U, k=0,1,...,m, be given, where @y : U — Y and fork > 1, B, (XF, )]
denotes the set of symmetric (under permutation of arguments) bounded k-multilinear maps from X* to Y. For every
a€ U and x € X such that a + x € U, define R(a,x) € Y by
"1
— _ (k)
fla+x) = ; 1 @) + R(@, ),

where x® denotes the k times x, ...,x. Assume:

(a) for each k =0,1,...,m, Oy is norm-continuous,

®) [[R(@,x)|I/|Ix]" — 0 as (a,x) € U x X, (a,x) = (b,0) for each b € U.
Then f is C™ on U andef: Oy forallk=0,1,...,m

A.2 Regularization of functions

Choose and fix a smooth (i.e., C*) function go on R such that ¢ is supported on [—1, 1], i.e., ¢(x) = 0 outside [—1, 1],
@(x) > 0 and p(x) = ¢(—x) for all x € R, and f , ¢(x)dx = 1. Let f be a real measurable function on an open interval
(a, b) assumed to be locally integrable in the sense that f |f(x)] dx < 400 for any closed interval [c, d] inside (a, b).
For each small ¢ > 0 we define a function f; on (a + ¢,b — ¢) by

X+-¢& _ 1
£(x) = é/ g0<th>f(t) dt = / o(Of(x —etydt, xe(a+eb—e), (A2.1)
X —1

—&
which we call the regularization of f of order ¢. In fact, we have:

Lemma A.2.1.
() fois C* on (a+¢€,b—¢) for every ¢ > Q.
(2) If f is continuous at xy € (a, b), then f.(xg) converges as € \ 0 to f(xp).
() If f is continuous on (a,b), then f, converges as € \( 0 to f uniformly on any closed interval inside (a, b).
(4) If f is absolutely continuous on any closed interval inside (a,b), then (f'), = fl, i.e., the regularization (f’),
of f' is the derivative of f,, and moreover f.(x) converges as € \( 0 to f'(x) almost everywhere on (a,b).

Proof. The proofs of (1)—(3) are easy and may be left to exercises.
(4) Recall that f is absolutely continuous on [c,d] if and only if f is differentiable almost everywhere on [c, d]
with integrable derivative f’. In this case, f(x) = f(c) + f " f'(¢) dt for all x € [c,d]. Since

%{go(x_t)f(l)}=—l< )f(t)+<p< )f(t)

for almost everywhere ¢ € [c, d], we have

/ 1X
(F)el) = ~ / < >f(t)dt L / ( )f(t)dt

1 d X+& x — ,
¢<T>f(t) dt = f,(x) (A.2.2)

edx J,_,

for every x € [c + &,d — ¢]. Since [c,d] is an arbitrary closed interval inside (a,b), (f'), = f, on (a +¢&,b — ¢).
For the latter assertion, it suffices to prove that f7(x) converges as ¢ \ 0 to f'(x) at any differentiable point x € (a, b)
for f. If x is such a point, then

f@) = fx) + f'0) = x) + 6(2),
where 6(t) = o(]x — t]). Then, by (A.2.2),

, 1 e (x—1

fo(0) = —2/ 2 (T>f(f)df

f,(zx) ( >(t—x)dt+—/ ( )0(t)dt
X

The first term of the last expression is
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—f'(x) / 11 ¢'(rdt = f'(x).
The second term is dominated by
1 [r+e
L
Hence f/(x) — f'(x) as ¢ \, 0. O
Exercise A.2.2. Show (1)—(3) of the above lemma.

,(x—t)‘ oo /l , 16(2)]
7 dt - sup = |@'(t)| dt - sup — 0 ase\ 0.
—1

& |t—x|<e € lt—x|<e €

A.3 (2 of 2-convex functions: Proof of Theorem 2.4.2

This section is devoted to the proof of Theorem 2.4.2 based on the original paper of Kraus [57] and also Ando’s
English translation. We begin with the following general criteria for C' and C? functions in terms of their second and
third divided differences, which will be useful in the proof below.

Lemma A.3.1. Let f be a real-valued function on (a,b), and let a < c <d < b.
G) If fP(x1,x2, x3) is uniformly bounded when x| < x, < x3 run over [c,d], then f is C' on (c,d).
(i) If fBNx1, x0, X3, x4) is uniformly bounded when x| < x» < X3 < x4 run over [c,d], then f is C* on (c,d).

Proof. (1) Assume that
K = sup{|f[2](x1,x2,x3)| <X <X <x3 <d} <+4o0.
Let £ € (¢,d) and 6,8 € (c — &,d — &) with 8,8 # 0 and § # &'. Then

JE+O—f® [fE+8)—fE)
8 &

= |fAE+ 8,6+ -8 <KIS— 5.

This implies that

. fE+8—f®
/ = 1 _—
S® ==
exists. Moreover, for every £ < n in (¢, d), since

SO=fE) _ f)—fm)

2 x ) = —= s

§—n
for every x € (a,b) with &, x, n distinct, we have
f/(%-) _ f(g):f(’l) f(é):f(ﬂ) _ f/(n)
lim 2 x,m) = ——1— lim /gy, ) = —L———— .
xE §—n y=n §—n

Therefore,

lim [P x ) + A&y, ml < 2K

x—>&,y—>n

f@—fmw:

§—n

so that |f'(&) — f'(n)| < 2K|€ — n| for all £, 1 € (c,d), implying the C' of f on (c,d).
(i1) Assume that

K = sup{|f[3](x1,x2,x3,x4)| <X <X <X3<X4 <d} <+00.

For any choices of d’ € (c,d) and A € (d',d), apply (i) to the function fI!l(x, 1) = (f(x) — f(1))/(x — A) to see that f is
C' on (c,d'). Since d’ € (c,d) is arbitrary, f is C' on (c, d). Hence for each & € (c, d), one can define the function ge on
(a,b) by

e, 8 if x € (a,b), x #E,
@ if x=¢&

For every x;,x,,x3 € (a,b) with x1,x;, x3, & distinct, notice

ge(x) == {

2 3
g2y, x2,x3) = fPxy, 20,33, 8),

g2, x0, 8) = lim P (xy, x5, x, 8).
x—&

Therefore,

sup{lgl(x1.x0.03) 1 e <Xy <y <x3 <d} <K
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so that gz is C' on (c,d) by (i). We now define

[1] _
ne) = g = im0 2SO )
x—& x—£&
Note that
[1] _ fl1]
h(e) = lim lim ! — 9 =S8 o im My, ) (A3.1)
Ny x—y Ny

Moreover, for every & < n in (c,d), we notice

L2, p,8) — Y, )l

< 1?0, y,8 — A, 5,81 + IfPW, ,6) — AW, Y, 0 + I[P, Y, &) — FH, Y, )l
< Klx — x|+ K|y — Y|+ K| — n]. (A.3.2)

Letting y — &, ) — n and then x — &, X' — 7, we have
[h(§) — h(n)| < 3K|§ —nl, §n€(c.d)
so that A is continuous on (c, d). Letting

U 4+ 8.8 — f
r(E,B)::f ¢+ 85) f(é)_h(é)

for £ € (c,d) and § € (c — §,d — &), § # 0, one can write
FE+8) = f(&) + f(E)S + h(§)S® + r(§,8)8".

Notice that

(1] — flley
HES) = lim{f 46855
X —& E+6—X

= lim{fH. 6 48,9 - h(®)

= lim lim lim {f2(¢, € + 8, &) — F2(x, y, &)}

x—>Ey—>ExX—E&

- h(E)}

thanks to (A.3.1) and that
P&+ 8,8 — fP(x,y,8)] < KIx' — x| + KIE+ 8 — ]

as in (A.3.2). Hence |r(§,8)| < K¢ for all £ € (¢,d) and all § € (¢ — &,d — &), § # 0. This implies (see Lemma A.1.1)
that f is C? on (c,d) with f"(&) = 2h(&). O

Throughout the rest of this section, assume that f is a conditionally 2-convex function on (a,b) as stated in
Theorem 2.4.2.

Lemma A.3.2. Let & < n < & < np < & be given in (a,b) with constraint

E =M -8+ E -5 -8 - -8 -6 =0. (A.3.3)
Then

t[fm(sl,am) 21, € 1)
fR2UELE8)  fPUE,Em)
+ f21EL & 6) P 1, E ) — &) — §) <0, (A3.4)

:|($1 =) = 1m2)

or equivalently,

FAELE )P &L E m)E — n1)(E — n2)
+ f2ELE &) P, £, )& — E) (2 — &) + (2 — )1 — &) — (& — E)(&E — £)} < 0. (A.3.5)

Proof. First it is immediate to verify the equivalence between (A.3.4) and (A.3.5).

Step 1. We notice that it is enough to prove the lemma in the situation where £ = 0 € (a,b) and f(&) = f(&) = 0. In
fact, define the function g(x) := f(x + &) + ax + fon (a — &, b — &), where ¢, € R can be determined so that we have
g(&) — &) = g(& — &) = 0. Since g is conditionally 2-convex on (a — & b — £) and f?!(x, &, y) = gP?/(x — £,0,y — &) for
all x,y € (a, b) with x, &, y distinct, one can reduce the proof of the lemma to the stated situation. Thus, in the rest of the
proof, we assume that
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&<m<0<m<¥& in(ab),
fEN)=f&)=0
with constraint
§im+&m — &6 =0.
Step 2. We show that there exist aj,as,b,b, € R and A € (0, 1) such that
a%+a§=b%+b§= 1,

m 0 a2 ayay b2 b]b2
[ }=Asl o ra—el T
0 m ayar a;s b1b; b2

A61@ + (1 — V&b = 1y,
A&61a5 + (1 — DEbs = o,
A&ajar + (1 — 1)&01b, = 0.

In fact, (A.3.10) means that

It follows from (A.3.9), (A.3.11) and (A.3.12) that 1&; + (1 — 1), = 1, + 1, and hence
1= & —m —m ’
& —&
which is in (0, 1) thanks to (A.3.6). From (A.3.9) (A.3.13) and (A.3.11) we have
PEai(l —at) = (1 — )*Ebi(1 — b})
and
ny — 24&ma; + A%Ela) = (1 — A)°&b]
so that
A6 (201 — A§)a; + (1 = 6T = ny.

Solving this and (A.3.11) as a pair of linear equations for a? and a3, and applying (A.3.14), we have

2 méEm +&m —&1&)

DT -G —m -
b — —m&nz +&m — &)

YT s — ) +m— &)

Hence, by (A.3.9),

2 m2&in +&n —§15)
P g — ) E —m — )’
bl — m&in + &np — §16)

2T e —n)m A —&)

HIAI

(A.3.6)
(A.3.7)

(A.3.8)

(A.3.9)

(A.3.10)

(A3.11)

(A.3.12)
(A3.13)

(A3.14)

(A.3.15)

(A.3.16)

(A.3.17)

(A.3.18)

By assumptions (A.3.6) and (A.3.8), the right-hand sides of (A.3.15)—(A.3.18) are all nonnegative. So one can fix
ai,ax, by, by satisfying (A.3.15)—(A.3.18) with positive sign, for which (A.3.11)—(A.3.13) are really satisfied so that

(A.3.9) and (A.3.10) hold.
Step 3. Put

A= §1|: ai ‘11(12:| _ |:a1 a j|[§1 0:||:611 a :|,
ajay @ a —ar L0 O0]lax —a

5 §2|: bi blbz} _ [bl by :|[§2 o][bl by }
biby B by —bJL0 0l —b

where i @ and b b are unitaries. Then A < 0 < B and (A.3.10) means that
a —a by —b

m 0
= 1A+ (1 —)B.
0 nm

Hence the conditional 2-convexity of f implies, thanks to (A.3.7), that
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fa 0 ]
Af(A)+ (1 — Df(B
[ e fA)+ A = Df(B)

S R et [ e | O
a —a [L0 fO)[lax —a by —=bi [LO fO)][Lby —b
=f(0)|: Ad3 4+ (1 — )b3 —{daja, + (1 — /l)blbz}:|.

(A + (1= Dbiby)  Ad + (1 — b3

By taking the determinant of the difference of the right-hand and the left-hand sides, we have 8118 — ,3%2 > 0, where

Bui = f(O){Aa3 + (1 = )bz} — f(m),
B = f(O){Aa] + (1 = Db} — f(12),
Bz := f(O){2aiaz + (1 — )b1by}.
Direct computations using (A.3.9), (A.3.14), (A.3.15) and (A.3.17) yield
Bui&1&a(ma — m) = fO)ma(&1&2 — &1mi — Eam) — f(n)&1€2(n2 — m),

B226162(m — m) = fOi(E1n2 + E2m2 — §162) — f(12)6152(m2 — ).
Also, use (A.3.13)-(A.3.15) and (A.3.17) to obtain

BLEE M — 1) = FOPmin(EiE — Eim — Eam)(Ena + &y — £15).

Therefore,

0 < (BuBxn — BL)E (M — m)
= {f(0)n2(51& — Eim — &) —fMDEE (2 — m))
x {f O Emz + Eam2 — £162) — f()E1E2(n2 — M)}
— fOPmn 16 — Em — Eam)Em + &2y — £16)
= FO & Emim(n — m)* — FOF)EEM . — n)E 2 + &y — E182)
— FOf )& E2mGnz — n)EiEr — Eim — Eam) + f()f ()& 632 — m).

Since £1&>(n2 — n1) < 0, we have
FOPnima(n2 — n1) — FOL)mEm2 + Emp — £162)
— fO fmIn2618 — &m — &En) + f(n) f(12)E182(n2 — 1) < 0. (A3.19)

Step 4. What we have to prove is (A.3.5) with £ =0, i.e.,
F2EL 0, ) P (E2, 0, m)(E — n)E — m2) + FEL0,£) P (1, 0, m2)(E1mn + Eamy — £162) < 0.

By (A.3.7) this means that
{ —f©) _ fam) = f(O) } { —f©O) _ f(n) - f(O)}

& N & 2
—fO) _ —fO f)-fO) _ fG)—fO)
+ -5 5 . m m (& + Eam) — E162) <0,
& —-& n—n

which is rewritten as
1

{F(0)*nina(na — m1) — FOF N1 (E1m2 + Eamy — &162)
E1&mm(m — m)

— fOf(m)mEi&2 — Eim — Eam) +f)f (12)E1&2(m2 — m)} < 0.
Since &1&nn2(n — n1) > 0, this is nothing but (A.3.19). O
Lemma A.3.3. If f21(&),&,&) = 0 for some distinct &, &, &5 in (a,b), then f is linear on (a,b).

Proof. First, note that f m(x, y,z) > 0 for all distinct x,y,z in (a, b) since f is convex in the usual sense. Assume that
FR2(E,n1, € = 0 for some & < n; < €in (a, b). Then f is linear on [£}, €] and so fI2(&,n1,&) = 0 for all , € (&,8).
For any n,, & with £ < n, < &, the left-hand side of (A.3.3) is positive if 7, is sufficiently close to &, since it is positive
when n; = &. Since (A.3.5) holds for such 1, € (&,&) by Lemma A.3.1, we have

FELE &) P, Em) <0

so that fI21(&1, & &) = 0 or fI%(n1, & 12) = 0. When f2)(51, & 12) = 0, f is linear on [51, 7»] and hence f is linear on
[£1, n2]. This is the case also when f12(£1, £, &) = 0 and so f is linear on [}, &]. Since 1, < & can be arbitrarily close
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to b, it follows that f is linear on [£, b). From f2/(&, 15, &) = 0 where & < 1, < &, it can be similarly shown that f is
linear on (a, &]. Thus f is linear on the whole (a, b). ([l

From now on, we assume that f[z](x, v,2) > 0 for all distinct x,y,z in (a, b), i.e., f is strictly convex on (a.b).
Lemma A.34. fis C' on (a,b).

Proof. By Lemma A.3.1(i) it suffices to prove that, for any & € (a,b), there exist &, &, such that & < & < &, and
(1, & np) is uniformly bounded when 1y < & < 1, run over [£], &]. First choose &;,& witha < & < & < & < b.
Since the left-hand side of (A.3.3) is (& — &)(&2 — &) > 0 when 1, = n, = & = &), one can choose &, &, such that
& <& <& <& <& and

E = —H+E - - -G -8E-H=C (A.3.20)

for any choice of 1y <& <, in [£],&,], where C > 0 is a constant. Then it follows from (A.3.5) that for any
m < &< in [£,&],
SAELE )P (&8 m)
(&1, 8, 8)

y (m —&§)(& — )

E = -8+ E -5 -8 —&E —5E -8
S, 8) — fUELOHE &) — f1E )

(&1, 6,6)C '

Since f is strictly convex in the usual sense, it is obvious that f1(&;, &) < (5, &) < fI1(E, &) and fI(&, &) <

FUE ) < fU(E &). Furthermore, f121(£,€, &) attains the minimum value y when & runs over [£],£,], which is
positive. Therefore,

0 < 2, &m) <

(A3.21)

< {

sup{fP (i, &, m) 1 & < <E<m < &)

_ & &) — fMELOHME &) — MG €D} -
< C

+00. O

Lemma A.3.5. f is C? on (a,b).

Proof. Since the C' of f has been shown in Lemma A.3.4, we can extend the second divided difference f1* to
(x,y,2) € (a, b)3, in which two of the variables coincide but the third is different from them, as follows:

1€ — f(E)*i]‘(n)

FAEE ) = lim A, ) = ———1
= §—n

Let [£1, &>] be any closed interval included in (a, b). For any & < 7, in (&1, &), the left-hand side of (A.3.3) is positive if

Ny € (&1, €) is sufficiently close to &, since it is positive when n; = &. Since (A.3.21) holds for all such n; < &, letting
n /' €in (A.3.21) we have

f[Z](é:l s 59 g)f[Z](E’ 12, 52)

[2]
PG Em) < fRIELEE)

so that

f(02,6,8) — f2(61,6,6)
f[2] (El 5 é:s EZ) ’

FREE ) — fPELE 8 < A(E,E 9

Dividing this by 1, — &; > 0 yields
FPUELE M, &)
f21(E1,6,6)

whenever & < & <y < &. Next, for any n; < & in (&1, &), the left-hand side of (A.3.3) is positive if 1, € (§,4,) is
sufficiently close to &. Letting 1, N\ £ in (A.3.21) we have

f[Z](Ela g? nl)f[Z](s% g’ ;;-‘)
f[2](%—1 5 ‘i:’ SZ)

BUELEE ) < fPUELE,8) (A.3.22)

f[z](ﬁl,“; g) =

so that

FRELEm) — 26,6 8)

2] 72 [2]
f (771,5, 3] f (%—» s» %-2) = f (5’ %-’ 52) f[z](;;-'l,f;:, .5;:2)

Dividing this by n; — & < 0 yields
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f[3]($1,§’ 771?&2)

3] [2]
f (771"5;:’&&2)2]0 (&,6,6) f[2](§1,§,§2)

(A.3.23)

whenever & < n; < & < &.
For each & € (a, b), the proof of Lemma A.3.4 implies that there exist &/, &, such that &/ < & < & and

sup{fI(x,&,y) 1 &) <x <& <y <&} < o0 (A.3.24)

(i.e., &, &) are &, &, in the proof of Lemma A.3.4). Choose &}, &, with £/ < & < & < &, < &. Apply (A.3.22) to show
that f131(&,€,& 1) is bounded from above when & < & <, run over [£],&]. Fix & :=&,. Since (&,&) —
fP(&,& &) is continuous on [£],&,]%, the minimum value is attained at some (£, &%) € [&,,£,]%. Since f is strictly
convex, fI21(&0, &0, &) > 0 whether 5(1) =& or S(f + & Note that

FRELE M) — fPUE . &)

& —& '
Since | — &| > & — &, > 0, it follows from (A.3.24) that fB31(£, &, 12, &) is bounded from above. Moreover, since
&L E 8 = limy_¢ f120(51,€,y), fP1(§),£,6) is also bounded from above by (A.3.24). Hence the required
boundedness from above of f131(&,&, & n,) is proved.

On the other hand, apply (A.3.23) to show that f[3](171,§, &, &) is bounded from below when 1, < & < &, run over
[£),&,]. Fix & := &/. In the same way as above, fl?1(&},&, &) attains the positive minimum value, fB31(&), & 1y, &) is
bounded from below, and f1?/(£,£, &) > 0 is bounded from above. Hence the required bounded from below is proved.
We thus conclude that

PlELE M. &) =

K :=sup{|fPN&1,6,6,&)| 1 &) <& <& <& <&} < +oo. (A.3.25)

Since f is C' on (a, b), one can compute

d o) d f(S;:J;(SI) _ f(ég:g(éz)
d_%-f ($1’€,€2):d_§= 51_52 }
1 f/(%-) _ f(gg:];(fl) f/(%-) _ f(é;:g(éz)
:sl—&{ -6 i-6 }
[2] _ fl21
— f (E’ E’EI) f (E’ E’ 52) _ f[S](El, %_’ S, %_2)
& —&

Hence (A.3.25) is rephrased as

d
—fPELEE)| =K

ds
forall £ < & < & in [£],&,]. For any & < ) < A, < & in [§],&,], we have

&L A2, 8) — (&L 41, 8) 1 /‘Azi

BUEL Ay, 40, 8) = P&, 8) dE

A — 4 b ), dE
so that
FEL A1 o, )] < — f "1 e, | a < k.
A — Ay Ja, |dE
Hence Lemma A.3.1 (i) implies that f is C* on (&), &). (]

Lemma A.3.5 together with Lemma A.3.3 proves Theorem 2.4.2.

Remark A.3.6. Theorem 2.4.2 tells that if f is a non-linear 2-convex function on (a,b), then it is a strictly
convex C? function there. Then f 2l(x, v,z) > 0 for all x,y,z € (a, b) unless x,y, z are all identical. If f is a non-linear
3-convex function on (a,b), then Corollary 2.4.6 shows that f1(1,-) is a non-constant 2-monotone function for
every A € (a,b). Hence Theorem 2.4.1 implies that 4 114, x) = f121(4, x,x) > 0 for all A,x € (a,b) and so f(x) > 0
for all x € (a,b). We do not know whether there is a non-linear 2-convex function f on (a,b) with f”(x) = 0 for
some x € (a,b).

A.4 Proof of Nevanlinna’s theorem, Theorem 2.6.2

To prove Theorem 2.6.2, we utilize the Poisson integral representation for analytic and also harmonic functions in
the unit disk D := {¢ € C: |¢| < 1}. We begin with the following lemma.
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Lemma A.4.1. If f is an analytic function in a domain containing the closed unit disk D :={¢ e C:|¢] <1},
then

1 2
=2 " fee ”) — 1l

dt, ¢ eD.
27 Jo leit — ]

Proof. For every ¢ € D, the Cauchy integral formula implies that

1 f(Z) 27 f(ett)ezt
— , A4l
fO=ng ] it a ) wpd (A4.1)
On the other hand, if ¢ € D\ {0} and so |1/¢| > 1, then the Cauchy integral theorem implies that
1 27 ity it 27 it
0= L @ de = f(e )e dr = 7f(e )é“ (A42)
2701 Jiyer 27— (1/0) 2w Jo et —(1/D) 2 {—e
The above last integral is zero also when ¢ = 0. By (A.4.1) and (A.4.2) we have
1 27 . eit E 1 |§.|2
=— N — — = _ | dt = — it dt. O
f© = /0 fle )(e,, o e,,) = 7 fery L g

The kernel function in the above integral representation is the so-called Poisson kernel that is rewritten as
1—|¢? 1—72
leit — > 1 —2rcos(t —6) +r2’

t € [0,2n], (A4.3)

for each ¢ = re® with 0 <r < 1.

A real-valued function ¢ on a simply connected domain D is a harmonic function if and only if it is the real part
of an analytic function f in D (see [27,p. 202]). Moreover, it is well known that such an analytic function f in D is
unique up to a pure imaginary additive constant.

Theorem A.4.2. If ¢ is a nonnegative harmonic function on D, then there exists a positive finite Borel measure o on
[0, 2] such that

%4 1 — 2

i r i0

o(re"”) = / do(t), re” € .
o 1 —2rcos(t—0)+r?

Proof. There exists an analytic function f in ID such that ¢(¢) = Re f(¢), ¢ € D. For each p € (0, 1), since f(p¢) is
analytic in || < 1/p, Lemma A.4.1 implies that

1 o ‘ _p
feo=o | e T o
so that
A 17
w(pl) = E/O w(pe’) 1 —2rcos(t — 6) + r2 i

for all ¢ = re” € D. Define a positive Borel measure o, on [0,27] by do,(1) := (1/2m)¢(pe') dt. Then

27T 1 27 )
/ do,(t) = oy / @(pe") dt = ¢(0).
0 T Jo

We now consider {0, : p € (0, 1)} as a subset of the set X of positive linear functionals on C([0,27]) with norm
¢(0), where C([0, 2r]) is the Banach space of complex functions on [0, 2] with sup-norm. Since the set X is compact
and metrizable in the weak* topology, one can choose a sequence p, € (0, 1) with p, ' 1 such that o, converges in
the weak* topology to some p € ¥ regarded as a positive finite Borel measure on [0, 27]. For every ¢ = re? € D we
then have

27 1_r2
= i nl) = i doy(t
¢(§) = lim ¢(p,¢) nggo/O [~ 2rcosi — ) 3 2 4@

27 1— V2
= / do(1). O
o 1—2rcos(t—0)+r2

The Poisson integral representation in Theorem A.4.2 as well as in the next theorem is sometimes called the Helglotz
theorem.
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Theorem A.4.3. If f is an analytic function in D with nonnegative real part, then there exists a positive finite Borel
measure o on [0,2m] such that

27T zt + c
f©) = / pr do(t) + i Im £(0), ceD. (A.4.4)
0

Proof. Let o be the positive finite measure on [0, 27] taken in Theorem A.4.2 for ¢ = Re f. We write g(¢) for the first
term (the integral term) of the right-hand side of (A.4.4). For each ¢ € D, since

g+ A —g©) /2” 2e'¢ 4
- = - - o(1)
AL 0 (e = O)e — ¢ — AY)
and
e''c - Iq _ 20

(e" = )" — ¢ —AD)| T (A —1Zhd — gl —|AZ) ~ (A —|¢)?

for all ¢ € [0,2x] and for all A¢ € C with |AZ] < (1 — [g])/2, it follows from the Lebesgue dominated convergence
theorem that

i SCHAD—g®) _ [T 2e"g
m ———— = —
AL=0 A¢ 0 (e"—0)

it 1— 2
Re(? + ;> _ 1ok
=) e —¢]
is the Poisson kernel in (A.4.3), we have Re f(¢) = Re g(¢) so that f(¢) = g(¢) + ib, ¢ € D, for some b € R. Letting
¢ =0 gives b = Im f(0) thanks to g(0) € R. Hence the desired expression is obtained. [l

do(?).

Hence g is analytic in . Since

Now we turn to the proof of Nevanlinna’s theorem (Theorem 2.6.2). Assume that f is a non-constant Pick function,
i.e., an analytic function in C* such that f(C*) c C*. The proof is to rephrase Theorem A.4.3 by transforming f in C*
to an analytic function in D by the Cayley transform that is the fractional linear transform given by

z—1i
7) = —0:.
2 Z+1
Exercise A.4.4. Show that the Cayley transform ¢(z) maps CT bijectively to D with the inverse z({) =
i(1+¢)/(1 = ¢), and that £(z) maps the real line (—o00, 00) bijectively to the unit circle {e” : 0 < ¢ < 2} but 1.

From this exercise, it follows that —if(z(¢)) is an analytic function in I with nonnegative real part. Hence
Theorem A.4.3 implies that there exists a positive finite measure o on [0, 2] such that

27T ll
* g do(t) + i Tm(—if(z(0)))

_if() = /
0

ell

2 it
=f e.+§da(t)—iRef(i), ¢ eD.
i

With « := Re f(i) € R and 8 := o({0,27}) > 0, the above integral expression is rewritten as
1+ § e” +¢
1- C (0.27) = ¢
Let v be the positive finite Borel measure on R transformed from o,y via the map 7 € (0,27) >1 = e €
(—00,00) or e’ = ¢(A). Substituting ¢(z) for ¢ and ¢(2) for € in (A.4.5) we have
¢() +¢(2)

— ~ +
f(Z)_a+'3Z+/_oolg“(/l)—c(z)dv(/l)’ zeC™.

f@@) =a+pi do(1), ¢eD. (A.4.5)

Since

[+ _ StE 1+

l/lz z—i
B C R Tt R = B A e

s

we arrive at

14+ Az

f(z)=a+ﬁz+/ dv(), zeC™ .

oo A —2Z
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A.5 Proofs of Fourier transforms for hyperbolic functions

We prove the formulas (5.1.6)—(5.1.8) of Fourier transforms for certain ratios of hyperbolic functions, which play
crucial roles in Chapter 5. The proofs below are based on the residue theorem in complex function theory. A similar
computation for (5.1.6) is found in [31].

Proof of (5.1.6). We may assume that 0 < a < b and ¢ > 0. In fact, the case # < 0 holds by symmetry and the case
t = 0 by continuity from the case t # 0. Define a complex function

itz

f@:=

cosh(¥ z) + cos(%)’

which is holomorphic in C except the points z where the denominator vanishes. It is clear that those exceptional points
are poles of f(z). The equation cosh(% 7))+ cos(%) = 0 means that

27 Ta\ =«
ert+ 2c0s<7>ebz +1=0,

z. a .. [Ta FiZe
et = —cos| — ) L£isin| — )| = —e™'>
b b

50 that 59 — — 1. Therefore, the poles of f(z) are

z, =i(2n—1b—a), z' :=i(2n— )b+ a),

n

which is solved as

ne.
The residues of f(z) at z7 are computed as

eitz,,¥ eft((an 1)bFa)

Res(z}; f) = T T
n d%COSh(% Z)|Z=Z,T 2771 (ezz((2n—l)bq:a) _ e—;l((2n—l)b:Fa))

g:tatef(anl)bt b :te:l:atef(anl)bt

2 (—e¥5 + et i sin(%)
Now, for R > 0 we take the contour
=X, —R <x <R,
T : z=R+1y, 0<y<R,
z=x+ IR, R>x> —R,
z=—-R+1iy, R>=y>0.

When 2n — 1)b —a < R < (2n — 1)b + a, the residue theorem implies that

n n—1
f@)dz = 2’”'{2 Res(zif) + ) Res<z,t;f>}
r k=1 k=1

so that
R R R R
/ fx) dx + / f(R+iy)idy — / f(x+iR)dx — / f(—=R +iy)idy
—R 0 —R 0
— 2b eai Xn: e*(Zk*l)bt _ efat nX_]: e*(Zk*l)bt . (ASl)
sin(%’) =1 =1
Since
. e—t}’
|f(£R + iy)| =

IA

|cosh(%E) cos(F y) = i sinh(%F) sin(F y) + cos(%2)|

67Ty

\/coshz(”h—R) cos2(Zy) + sinh*(Z8) sin*(F y) — 1

e v
<
~ sinh(Z8) — 17

we have
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R
1
R+ iy)|ldy< —————— 0 as R — oo.
/0 FER+ildy < o
Moreover, for the particular choice R = (2n — 1)b we have

e*l‘R

|cosh(% x) cos(ZR) + i sinh(} x) sin(ZE) + cos(Z)|

e—lR e—tR

= <
|—cosh(¥ x) 4 cos(29)| ~ 1 — cos(%)

G+ iR)| =

so that

R 2Re—tR
/ lfx+iR)|dx<——0 asR=2n—1)b— oo.
R 1 —cos(%")

Hence, letting R = (2n — 1)b — oo in (A.5.1) and using (A.5.2) and (A.5.3), we obtain

de—op ¢ - —(2k—T1)bt
/, feode =26 = Ze

2 e — e“" _ 2b  sinh(ar)
sin(®4) e — e sin(%) sinh(br)’

which becomes (5.1.6).
Proof of (5.1.7). As in the proof of (5.1.6) we may assume that 0 < a < b and ¢ > 0. Define

e cosh(Z z
(22 = f(z) cosh
cosh( z) + cos(%) 2b
which is holomorphic in C except the poles z[, n € Z, as above. The residues of g(z) at z;| are computed as

) b :tei‘”e’(z”’l)b’ cos(m(n — %) F 5

g(2) =

Res(z]; g) = Res(z]; f) cosh <— Fai

2" i sin(%)
b :teiate—(Zn— l)bt(:l:( )n 1 S]Il( )) b (_ l)n—lg:i:atef(anl)bt
T sin(%") = i cos(3,

For the same contour ['g as above with R € ((2n — 1)b — a,(2n — 1)b + a), the residue theorem implies that

R R R R
/ g(x)dx + / gR+iy)idy — / gx+iR)dx — / g(—R +iy)idy
R 0 — 0

n—1
at el g—@k=Dbt | =t 1yl k=n |
COS({Z() e;<)e
Since
(LR + )] = | FER + i) cosh (2 (LR + i) )| < 26 coshGy)
= cosh| — - b
& v v 2 Y)1 = Tsinh@E) — 1
we have
/R| (£R + i)l dy < 2cosh(3 0 asR
l _— —> as —> OQ.
) ¢ Y= (sinh(ZB) — 1)

Moreover, for the particular choice R = (2n — 1)b we have
e "R sinh(Z x)

cosh(} x) — cos(5") ~

lg(x + iR)| = —k

bid
f(x+iR)cosh| — (x + iR) ' =
2b
for all x € R with some constant C > 0, and hence
R
f lg(x +iR)|dx <2CRe™ — 0 as R=(2n— 1)b — oo.
—R

Combining (A.5.4)—(A.5.6) implies that
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(A.5.2)

(A.5.3)

(A.5.4)

(A.5.5)

(A.5.6)



244 HIAI

eat + e—at 00

00
gy dx =b ——— ) (—1yrlem kbl
/oo cos(3; ;

b el 4 e~ b cosh(at)
- cos(3p) et et B cos(3%) cosh(br)’

which is nothing but (5.1.7). |

Proof of (5.1.8). Considering the inverse Fourier transform of (5.1.8) and exchanging —¢ with ¢, we may prove that

00
1 ist ! 7

— —— dr = 5 . (A.5.7)
2n J_«  sinh(3) cosh”(rrs)

Define
isz

hz) = ———, here h(0) = 2.
() sinh(%) where h1(0)
The poles of h(z) are i2nm, n € Z. The residue of h(z) at i2nm is

2nmwe= 2

T = i(=1)"4nme ",
dz Slnh(j)|z=i2nn

Res(i2nm; h) =
For the same contour I'g as above with R = (2n + 1), the residue theorem implies that

R R R R
/ h(x) dx + / h(R + iy)i dy — / h(x + iR) dx — / h(—R + iy)i dy
—R 0 0

i(— l)k4kne—2km‘ =47 Z(_ 1 )k_12k7fe_2kns.
k=1 =1

= 27i

n

As in the proofs of (5.1.6) and (5.1.7), it is easy to verify that all the integrals but the first in the above left-hand side
converge to 0 as R = (2n + 1)r — oo. Hence we obtain

oo - k—1 2% d | k —2nk
h(x)dx =4y (—1)" 2kme ™™ =47 — (=Dfe™ 7"
I. 2 ap3

k=1

d ( —e ) 272
= 4jT — = 3 ,
ds \e™ + e cosh”(7s)

which is nothing but (A.5.7). O

REFERENCES

[1] Abraham, R., and Robbin, J., Transversal Mappings and Flows, Benjamin, New York (1967).
[2] Anderson, W. N., and Duffin, R. J., “Series and parallel addition of matrices,” J. Math. Anal. Appl., 26: 576-594 (1969).
[3]1 Ando, T., Topics on Operator Inequalities, Lecture notes (mimeographed), Hokkaido Univ., Sapporo (1978).
[4] Ando, T., “Comparison of norms |||f(A) — f(B)||| and |||f(|JA — B])I|||,” Math. Z., 197: 403—-409 (1988).
[5] Ando, T., “Majorization, doubly stochastic matrices and comparison of eigenvalues,” Linear Algebra Appl., 118: 163-248
(1989).
[6] Ando, T., “Majorization and inequalities in matrix theory,” Linear Algebra Appl., 199: 17-67 (1994).
[7]1 Ando, T., Operator-Theoretic Methods for Matrix Inequalities, Survey notes, Hokusei Gakuen Univ., Sapporo (1998).
[8] Ando, T., and Hiai, F., “Log majorization and complementary Golden-Thompson type inequalities,” Linear Algebra Appl.,
197/198: 113-131 (1994).
[9] Ando, T., and Zhan, X., “Norm inequalities related to operator monotone functions,” Math. Ann., 315: 771-780 (1999).
[10] Araki, H., “On an inequality of Lieb and Thirring,” Lett. Math. Phys., 19: 167-170 (1990).
[11] Audenaert, K. M. R., and Aujla, J. S., On Ando’s inequalities for convex and concave functions, Preprint (2007),
arXiv:0704.0099.
[12] Bendat, J., and Sherman, S., “Monotone and convex operator functions,” Trans. Amer. Math. Soc., 79: 58-71 (1955).
[13] Bhatia, R., Matrix Analysis, Springer-Verlag, New York (1996).
[14] Bhatia, R., Positive Definite Matrices, Princeton Univ. Press, Princeton (2007).
[15] Bhatia, R., “Linear algebra to quantum cohomology: The story of Alfred Horn’s inequalities,” Amer. Math. Monthly, 108:
289-318 (2001).
[16] Bhatia, R., and Davis, C., “More matrix forms of the arithmetic-geometric mean inequality,” SIAM J. Matrix Anal. Appl., 14:
132-136 (1993).
[17] Bhatia, R., and Davis, C., “A Cauchy—Schwarz inequality for operators with applications,” Linear Algebra Appl., 223/224:
119-129 (1995).
[18] Bhatia, R., and Kittaneh, F., “Norm inequalities for positive operators,” Lett. Math. Phys., 43: 225-231 (1998).



Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization 245

(19]

[20]
(21]
(22]
(23]

(24]
[25]

(26]
(27]
(28]

[29]
(30]

(31]
(32]

(33]
(34]
(35]
(36]
(371

(38]
(39]
[40]
(41]

(42]
[43]

(44]
[45]
[40]

(47]
(48]

[49]
(50]

(51]

(52]
(53]
[54]
[55]

[56]
(571
(58]
[59]

(60]

(61]
[62]
[63]
[64]

Bhatia, R., and Parthasarathy, K. R., “Positive definite functions and operator inequalities,” Bull. London Math. Soc., 32: 214—
228 (2000).

Bhatia, R., and Sano, T., “Loewner matrices and operator convexity,” Math. Ann., 344: 703-716 (2009).

Bhatia, R., and Sano, T., “Positivity and conditional positivity of Loewner matrices,” Positivity, to appear, 2009.

Birkhoff, G., “Tres observaciones sobre el algebra lineal,” Univ. Nac. Tucuman Rev. Ser. A, 5: 147-151 (1946).

Birman, M. Sh., Koplienko, L. S., and Solomyak, M. Z., “Estimates for the spectrum of the difference between fractional
powers of two self-adjoint operators,” Soviet Math. (Iz. VUZ), 19: 1-6 (1975).

Bourin, J.-C., “A matrix subadditivity inequality for symmetric norms,” Proc. Amer. Math. Soc., 138: 495-504 (2010).
Bourin, J.-C., and Uchiyama, M., “A matrix subadditivity inequality for f(A + B) and f(A) + f(B),” Linear Algebra Appl.,
423: 512-518 (2007).

Choi, M.-D., “A Schwarz inequality for positive linear maps on C*-algebras,” Illlinois J. Math., 18: 565-574 (1974).
Conway, J. B., Functions of One Complex Variable I, Second edition, Springer-Verlag, New York-Berlin (1978).

Daleckii, Ju. L., and Krein, S. G., “Integration and differentiation of functions of Hermitian operators and applications to the
theory of perturbations,” Amer. Math. Soc. Transl., Ser. 2, 47: 1-30 (1965).

Davis, C., Notions generalizing convexity for functions defined on spaces of matrices, in Convexity, Proceedings of Symposia
in Pure Mathematics, Vol. 7, Amer. Math. Soc., Providence, R.I., 1963, pp. 187-201.

Donoghue, W. F., Jr., Monotone Matrix Functions and Analytic Continuation, Springer-Verlag, Berlin-Heidelberg-New York
(1974).

Drissi, D., “Sharp inequalities for some operator means,” SIAM J. Matrix Anal. Appl., 28: 822-828 (2006).

Fulton, W., “Eigenvalues, invariant factors, highest weights, and Schubert calculus,” Bull. Amer. Math. Soc., 37: 209-249
(2000).

Furuta, T., “Simple proof of the concavity of operator entropy f(A) = —AlogA,” Math. Ineq. Appl., 3: 305-306 (2000).
Golden, S., “Lower bounds for Helmholtz function,” Phys. Rev., 137: B1127-B1128 (1965).

Hansen, F., and Pedersen, G. K., “Jensen’s inequality for operators and Lowner’s theorem,” Math. Ann., 258: 229-241 (1982).
Heinz, E., “Beitridge zur Storungstheorie der Spektralzerlegung,” Math. Ann., 123: 415-438 (1951).

Hiai, F., Log-majorizations and norm inequalities for exponential operators, in Linear Operators, Janas, J., Szafraniec, F. H.,
and Zemanek, J., (eds.), Banach Center Publications, Vol. 38, 1997, pp. 119-181.

Hiai, F., and Kosaki, H., “Comparison of various means for operators,” J. Funct. Anal., 163: 300-323 (1999).

Hiai, F., and Kosaki, H., “Means for matrices and comparison of their norms,” Indiana Univ. Math. J., 48: 899-936 (1999).
Hiai, F., and Kosaki, H., Means of Hilbert Space Operators, Lecture Notes in Math. 1820, Springer-Verlag (2003).

Hiai, F., and Nakamura, Y., “Majorization for generalized s-numbers in semifinite von Neumann algebras,” Math. Z., 195: 17—
27 (1987).

Hiai, F., and Petz, D., “The Golden-Thompson trace inequality is complemented,” Linear Algebra Appl., 181: 153-185
(1993).

Hiai, F., and Petz, D., “Riemannian metrics on positive definite matrices related to means,” Linear Algebra Appl., 430: 3105—
3130 (2009).

Hiai, F., and Sano, T., Loewner matrices of matrix convex and monotone functions, Preprint (2010), arXiv:1007.2478.
Horn, R. A., “Schlicht mappings and infinitely divisible kernels,” Pacific J. Math., 38: 423-430 (1971).

Horn, R. A., “Norm bounds for Hadamard products and the arithmetic-geometric mean inequality for unitarily invariant
norms,” Linear Algebra Appl., 223/224: 355-361 (1995).

Horn, A., “Eigenvalues of sums of Hemitian matrices,” Pacific J. Math., 12: 225-241 (1962).

Kato, T., Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups, in Topics in Functional
Analysis, Gohberg, 1., and Kac, M., (eds.), Ad. Math. Suppl. Studies 3, Academic Press, New York (1978) 185-195.
Klyachko, A. A., “Stable bundles, representation theory and Hermitian operators,” Selecta Math., 4: 419-445 (1998).
Knuston, A., and Tao, T., “The honeycomb model of GL,(C) tensor products I: Proof of the saturation conjecture,” J. Amer.
Math. Soc., 12: 1055-1090 (1999).

Koranyi, A., “On a theorem of Lowner and its connection with resolvents of transformations,” Acta Sci. Math. (Szeged), 17:
63-70 (1956).

Kosaki, H., “Arithmetic-geometric mean and related inequalities for operators,” J. Funct. Anal., 156: 429-451 (1998).
Kosaki, H., Strong monotonicity for various means, Preprint (2009).

Kosaki, H., Positive definiteness of functions with applications to operator norm inequalities, III, Preprint (2010).

Kosaki, H., Positive Definiteness of Functions with Applications to Operator Norm Inequalities, Memoirs Amer. Math. Soc.,
Providence, R.I., to appear.

Kosem, T., Inequalities between || f(A + B)|| and ||f(A) + f(B)||, Linear Algebra Appl., 418: 153—-160 (2006).

Kraus, F., Uber konvexe Matrixfunktionen, Math. Z., 41: 18-42 (1936); also English version translated by T. Ando.

Kubo, F., and Ando, T., Means of positive linear operators, Math. Ann., 246: 205-224 (1980).

Lenard, A., “Generalization of the Golden—Thompson inequality Tr(e*eP) > Tre* 8. Indiana Univ. Math. J., 21: 457-467
(1971).

Li, C.-K., and Mathias, R., “The LIdskii—-Mirsky—Wielandt theorem—additive and multiplicative versions,” Numer. Math., 81:
377413 (1999).

Lin, T.-P., “The power mean and the logarithmic mean,” Amer. Math. Monthly, 81: 879-883 (1974).

Lowner, K., “Uber monotone Matrixfunctionen,” Math. Z., 38: 177-216 (1934).

Marshall, A. W., and OIkin, 1., Inequalities: Theory of Majorization and Its Applications, Academic Press, New York (1979).
Mathias, R., “An arithmetic-geometric-harmonic mean inequality involving Hadamard products,” Linear Algebra Appl., 184:
71-78 (1993).



246

[65]
(66]
[67]
[68]
[69]

[70]
(71]
(72]
(73]
(74]
[75]
[76]
(771

(78]

[79]
(80]

HIAI

Petz, D., “Monotone metrics on matrix spaces,” Linear Algebra Appl., 244: 81-96 (1996).

Petz, D., Quantum Information Theory and Quantum Statistics, Springer-Verlag, Berlin-Heidelberg (2008).

Phelps, R. R., Lectures on Choquet’s Theorem, Second edition, Lecture Notes in Math. 1757, Springer-Verlag (2001).
Powers, R. T., and Stgrmer, E., “Free states of the canonical anticommutation relations,” Comm. Math. Phys., 16: 1-33 (1970).
Pusz, W., and Woronowicz, S. L., “Functional calculus for sesquilinear forms and the purification map,” Rep. Math. Phys., 8:
159-170 (1975).

Reed, M., and Simon, B., Methods of Modern Mathematical Physics II, Academic Press, New York (1975).

Suzuki, M., “Quantum statistical Monte Carlo methods and applications to spin systems,” J. Stat. Phys., 43: 883-909 (1986).
Symanzik, K., “Proof and refinements of an inequality of Feynman,” J. Math. Phys., 6: 1155-1156 (1965).

Thompson, C. J., “Inequality with applications in statistical mechanics,” J. Math. Phys., 6: 1812-1813 (1965).

Thompson, C. J., “Inequalities and partial orders on matrix spaces,” Indiana Univ. Math. J., 21: 469-480 (1971).
Uchiyama, M., “Subadditivity of eigenvalue sums,” Proc. Amer. Math. Soc., 134: 1405-1412 (2006).

Uchiyama, M., “Operator monotone functions, positive definite kernels and majorization,” Proc. Amer. Math. Soc., to appear.
von Neumann, J., “Some matrix-inequalities and metrization of matrix-space,” Tomsk Univ. Rev., 1: 286-299 (1937)
(Collected Works, Vol. IV, pp. 205-218).

Wang, B.-Y., and Gong, M.-P., “Some eigenvalue inequalities for positive semidefinite matrix power products,” Linear
Algebra Appl., 184: 249-260 (1993).

Wielandt, H., “An extremum property of sums of eigenvalues,” Proc. Amer. Math. Soc., 6: 106-110 (1955).

Zhan, X., “Inequalities for unitarily invariant norms,” SIAM J. Matrix Anal. Appl., 20: 466470 (1998).



Matrix Analysis: Matrix Monotone Functions, Matrix Means, and Majorization

Index

(-, -), 140

(-5 s, 148
All, 147
IAlls. 148
lAll &> 205
1A, 204
[lx]l, 140

Ct, 174

M, 139

FH, 140

H® K, 150
HBK 213
H*, 213

H B FHo, 151
ML, 141

P, 174
P(a,b), 175
detA, 144
Diag, 146
M, 219
kerA, 143
A(A), 197
d® P, 153
ranA, 143
o(A), 145, 188
TrA, 147

|A], 146
|u)(v|, 144

A : B, 190
A!B, 193
A#B, 193
AAB, 193
AVB, 193

Ao B, 151

A® B, 150
a~<b, 196

a <y b, 196
a <(log) b, 197
a '<w(10g) b, 197
A*, 140, 141
A®% 214
AN 214
Ay(x,y), 225
Ay, 145
B(¥), 141
B(#)", 143
B(#)*, 143
B(¥, X), 142
By(x,y), 225
D" f(Ao), 159
Df(Ay), 159
fM 156
M(H,K), 219
M, (x,y), 222
r(A), 149, 188
s(A), 197

Sa, 220

A-L-G interpolating means, 223
absolute value, 146

adjoint
matrix, 140

operator, 141
a-power mean, 193
Ando, 202, 211, 225, 234
Ando and Hiai, 217
Ando and Zhan, 208
antisymmetric tensor power, 214
antisymmetric tensor product, 213
approximation number expression, 198
Araki, 215
arithmetic mean, 193

Bendat and Sherman, 177
Bhatia, 152, 203

Bhatia and Davis, 218
Bhatia and Kittaneh, 209
Bhatia and Sano, 183
Binet—Cauchy theorem, 214
binomial means, 228
Bourin, 211

Bourin and Uchiyama, 210

cand., 184

c.p.d., 184

Cayley transform, 241

Choi, 152

Choi matrix, 154

completely positive, 153
compound, 214

conditional expectation, 155
conditionally convex, 166
conditionally negative definite, 184
conditionally positive definite, 184
contraction, 144

CP, 153

Daleckii, 167
Daleckii and Krein, 159
Davis, 167
decomposition

Descartes, 149

Jordan, 145

orthogonal, 141

polar, 147

Schmidt, 145

singular value, 198

spectral, 145, 189
decreasing rearrangement, 196
density operator, 148
Descartes decomposition, 149
diagonalization, 146
direct sum Hilbert space, 151
divided differences, 156
Drissi, 227

eigenvalue, 144, 197
eigenvector, 144
£,-norms, 203

Fourier expansion, 141

Fréchet derivative, 159

Fréchet differentiable, 158, 232
Fulton, 203

247

functional calculus, 145, 188
Furuta, 174

Gelfand—Naimark theorem, 201
geometric mean, 193
Golden—-Thompson inequality, 216
Golden—-Thompson trace inequality, 216
Gram-Schmidt procedure, 141

Holder inequality, 205
Hadamard product, 151
Hansen and Pedersen, 168, 177
harmonic function, 240
harmonic mean, 193
Heinz, 226
Heinz-type means, 226
Helglotz theorem, 240
Hermitian, 143
Hermitian inner product, 140
Hilbert space, 140

direct sum, 151

tensor product, 150
Hilbert—Schmidt inner product, 148
Hilbert—Schmidt norm, 148, 205
Horn, 187, 203
Horn conjecture, 203

inequality
Golden-Thompson, 216
Golden-Thompson trace, 216
Holder, 205
Kadison’s, 152
Lowner-Heinz, 155
matrix arithmetic-geometric, 218
Powers—Stgrmer, 211
Rotfel’d, 208
Schwarz, 140
Segal’s, 216
Weyl’s, 208
infinitely divisible, 228
inner product, 140
Hermitian, 140
Hilbert—Schmidt, 148
inverse, 143
invertible, 143
isometry, 144

Jordan decomposition, 145

K-functional, 205
Kadison’s inequality, 152
kernel, 143

Klyachko, 203

Knuston and Tao, 203
Koranyi, 177

Kosaki, 218, 225, 228, 229
Kosem, 210

Kraus, 166, 234

Kraus representation, 154
Kronecker product, 150
Kubo and Ando, 188
Kubo and Ando’s theorem, 190



248

Ky Fan norm, 205

Lowner, 163, 166, 167, 176, 177
Lowner’s theorem, 177
Lowner-Heinz inequality, 155
Lagrange interpolation polynomial, 168
Li and Mathias, 199
Lidskii—Wielandt theorem, 199
Lie-Trotter formula, 216

linear operator, 140, 141
log-majorization, 197
logarithmic mean, 193
Lyapunov equation, 232

majorization, 196

log-, 197

weak, 196

weak log-, 197
Marshall and Olkin, 202
matrix, 139

adjoint, 140

Choi, 154
matrix arithmetic-geometric inequality,

218

matrix convex, 156
matrix monotone, 156
matrix units, 139
mini-max expression, 198
more mixed than, 199

n-concave, 156
n-convex, 156
n-monotone, 156
n-positive, 153
negative part, 145
Nevanlinna’s theorem, 174
norm, 140
£p-, 203
Hilbert—-Schmidt, 148, 205
Ky Fan, 205
operator, 147, 188, 205
Schatten p-, 205
symmetric, 203, 204
trace-, 205
unitarily invariant, 204
normal, 143
numerical radius, 149
numerical range, 149

operator, 140, 141
adjoint, 141
density, 148
Hermitian, 143
normal, 143
positive, 143
positive definite, 143
positive semidefinite, 143
Schur multiplication, 220
self-adjoint, 143
strictly positive, 143
tensor product, 150

operator concave, 156
operator connection, 189
operator convex, 156
operator mean, 189
a-power, 193
adjoint, 194
arithmetic, 193
dual, 194
geometric, 193
harmonic, 193
logarithmic, 193
symmetric, 194
transpose, 194
operator monotone, 156, 229
operator norm, 147, 188, 205
orthogonal, 141
orthogonal complement, 141
orthogonal decomposition, 141
orthogonal projection, 143
orthonormal, 141

parallel sum, 190

partial trace, 155

partition of unity, 145

Petz, 225

Pick function, 174

Poisson kernel, 240

polar decomposition, 147

polarization, 143

positive, 143, 148, 151
n-, 153
completely, 153
linear functional, 148
map, 151

positive definite, 143

positive definite kernel, 221

positive part, 145

positive semidefinite, 143

Powers—Stgrmer inequality, 211

product, 140, 141
Hadamard, 151
Kronecker, 150
Schur, 151

pure states, 148

Radon—Nikodym derivative, 148
range, 143
regularization, 233
representation

Kraus, 154

Stinespring, 154
representing function, 192
resolution of identity, 189
Riesz representation theorem, 141, 188
Riesz—Markov theorem, 188
Rotfel’d inequality, 208

Schatten p-norm, 205
Schatten form, 145

Schmidt decomposition, 145
Schur product, 151

HIAI

Schur product theorem, 151
Schwarz inequality, 140
Schwarz map, 154
Segal’s inequality, 216
self-adjoint, 143
Shannon entropy, 196
singular value, 197
singular value decomposition, 198
spectral decomposition, 145, 189
spectral mapping theorem, 188
spectral measure, 145, 188
spectral radius, 149, 188
spectrum, 145, 188
square-root, 146
state, 148
pure, 148
Stieltjes inversion formula, 175
Stinespring representation, 154
strictly positive, 143
strong operator topology, 188
symmetric
operator mean, 194
symmetric gauge function, 203
dual, 206
symmetric homogeneous mean, 218
symmetric norm, 203, 204

tensor product
antisymmetric, 213
Hilbert space, 150
map, 153
operator, 150
theorem
Binet—Cauchy, 214
Gelfand—Naimark, 201
Helglotz, 240
Kubo and Ando’s, 190
Lowner’s, 177
Lidskii—Wielandt, 199
Nevanlinna’s, 174
Riesz representation, 141, 188
Riesz—Markov, 188
Schur product, 151
spectral mapping, 188
Weyl majorization, 215
trace, 147
partial, 155
trace-norm, 205

Uchiyama, 208

unital, 151

unitarily invariant norm, 204
unitary, 143

von Neumann, 204

weak log-majorization, 197
weak majorization, 196

Weyl majorization theorem, 215
Weyl’s inequality, 208



