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An explicit formula of the Hamiltonians generating one-dimensional discrete-time quantum walks is given. The
formula is deduced by using the algebraic structure introduced before. The square of the Hamiltonian turns out to
be an operator without, essentially, the ‘‘coin register,’’ and hence it can be compared with the one-dimensional
continuous-time quantum walk. It is shown that, under a limit with respect to a parameter, which expresses the
magnitude of the diagonal components of the unitary matrix defining the discrete-time quantum walks, the one-
dimensional continuous-time quantum walk is obtained from operators defined through the Hamiltonians of the
one-dimensional discrete-time quantum walks. Thus, this result can be regarded, in one-dimension, as a partial
answer to a problem proposed by Ambainis.
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1. Introduction

The notion of discrete-time quantum walks (quantum walks for short) are originally proposed in quantum physics by
Aharonov–Davidovich–Zagury [2] and re-discovered in computer science by, for instance, Nayak–Vishwanath [14],
Aharonov–Ambainis–Kempe–Vazirani [1], Ambainis–Bach–Nayak–Vishwanath–Watrous [4]. For more historical
background, see, for instance [7, 10]. The one-dimensional quantum walks, which we are going to consider here, are
defined as a non-commutative analogue of the usual random walks on the set of integers, Z, and they are defined as
unitary operators on the Hilbert space ‘2ðZ;C2Þ consisting of all square summable C2-valued functions on Z.
According to the asymptotic formulas obtained in [17], there is a resemblance between the asymptotic behavior, in a
long-time limit, of transition probabilities of one-dimensional quantum walks and the asymptotic behavior, in a high-
energy limit, of modulus squares of the Hermite functions on the real line. Thus, it would be reasonable to think one-
dimensional quantum walks as a discretized, in both of space and time parameters, model for one-dimensional quantum
systems. However, concrete formulas of their Hamiltonian had not been made clear. The aim of this paper is to give an
explicit formula for the Hamiltonians generating the one-dimensional quantum walks and investigate their properties.
As a result, a direct relation between operators defined through the Hamiltonians of the discrete-time quantum walks
and the continuous-time quantum walk in one-dimension is obtained.

To describe our main results let us prepare notation. The inner product h�; �i‘2 on ‘2ðZ;C2Þ is defined by

h f ; gi‘2 ¼
X
x2Z
h f ðxÞ; gðxÞi

C
2 ; f ; g 2 ‘2ðZ;C2Þ;

where h�; �i
C

2 denotes the standard Hermitian inner product on C2. Let T be a two-by-two special unitary matrix.1 The
quantum walk associated with T , denoted UðTÞ, is defined, as a unitary operator on ‘2ðZ;C2Þ, by the formula

UðTÞ ¼ TP1� þ TP2�
�1; ð1:1Þ

where � is the shift operator on ‘2ðZ;C2Þ defined by

ð� f ÞðxÞ ¼ f ðx� 1Þ ð f 2 ‘2ðZ;C2ÞÞ; ð1:2Þ

and Pi : C2! C
2 denotes the orthogonal projection onto the one-dimensional subspace Cei in C2, where fe1; e2g

denotes the standard basis on C2. Suppose that the special unitary matrix T is given by
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T ¼
a b

�b a

 !
with ab 6¼ 0: ð1:3Þ

We set

s ¼ jaj; r ¼ jbj; � ¼
a

jaj
; � ¼

b

jbj
: ð1:4Þ

We define the function ’sð�Þ in � 2 R by

’sð�Þ ¼ arccosðs cos �Þ: ð1:5Þ

For any integer x, we define the integrals IðxÞ, JðxÞ by

IðxÞ ¼
1

2�

Z 2�

0

e�ix� sin �
’sð�Þ

sin ’sð�Þ
d�; JðxÞ ¼

1

2�

Z 2�

0

e�ix�
’sð�Þ

sin’sð�Þ
d�: ð1:6Þ

We define the matrix-valued function DT on Z by

DT ðxÞ ¼
s�xIðxÞ �ir�xþ1�Jðxþ 1Þ

ir�x�1��1Jðx� 1Þ �s�xIðxÞ

 !
ðx 2 ZÞ: ð1:7Þ

We then define the bounded self-adjoint operator DðTÞ on ‘2ðZ;C2Þ by the formula

DðTÞ ¼
X
y2Z

DT ðyÞ�y: ð1:8Þ

Theorem 1.1. We have UðTÞ ¼ eiDðTÞ.
That is, the bounded self-adjoint operator DðTÞ is the Hamiltonian generating the quantum walk UðTÞ. Note that Ko

and Yoo [12] also obtained a formula for the Hamiltonian, see the Eqs. (3.3), (3.4) in [12], although, they do not write
down a concrete formula on ‘2ðZ;C2Þ. The proof of Theorem 1.1 is rather easy, but the method to deduce the formula
ð1.8Þ might not be so obvious. However, through the Fourier transform, the diagonalization works well and is easy way
([12]). See §3. In the present paper, we use the algebraic structure behind one-dimensional quantum walks introduced
in [18] to compute the Hamiltonian because it itself would be interesting. This algebraic structure is nothing but a
unitary representation of the infinite dihedral group ([15]). See §2 in this paper for this viewpoint.

Having obtained the Hamiltonian generating the one-dimensional quantum walk, it would be important to understand
its various properties. First, we mention some of simple properties of the operator DðTÞ. The following can be proved in
an easy way. (See §3 for details.)

. The spectrum, Spec ðDðTÞÞ, is given by

Spec ðDðTÞÞ ¼ ½�arccosð�sÞ;�arccosðsÞ� [ ½arccosðsÞ; arccosð�sÞ�: ð1:9Þ

. DðTÞ does not have the locality, that is, DðTÞð�x � ’Þ has an infinite support, where the function �x � u with x 2 Z
and u 2 C2 is defined by

ð�x � uÞðyÞ ¼
u (when y ¼ x),

0 (when y 6¼ x).

�
. The square DðTÞ2 is, essentially, an operator acting on scalars (without ‘‘the coin register’’), that is, we have the

following.

DðTÞ2 ¼
X
y2Z

�yF ð’2
s ÞðyÞI2�

y; ð1:10Þ

where I2 is the two-by-two identity matrix and F : L2ðS1Þ ! ‘2ðZÞ is the Fourier transform defined by

F ðkÞðxÞ ¼
1

2�

Z 2�

0

e�ix�kð�Þ d� ðx 2 Z; k 2 L2ðS1ÞÞ; ð1:11Þ

where L2ðS1Þ denotes the Hilbert space, with the usual inner product, consisting of all square integrable functions
(with respect to the uniform measure) on the unit circle S1.

According to the last item of the above, it would be reasonable to consider the operator bHð’sÞ on the space ‘2ðZÞ of
square summable (scalar) functions on Z defined by

bHð’sÞ :¼X
y

F ð’sÞðyÞ�y; ð1:12Þ

where � is now the shift operator on ‘2ðZÞ defined by the same formula as in ð1.2Þ. In [3], Ambainis proposed a problem
how discrete- and continuous-time quantum walks can be obtained one from another. Since we found the operators
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bHð’sÞ acting on ‘2ðZÞ from the Hamiltonians of the one-dimensional discrete-time quantum walks, it would be
interesting to consider some relationships between these operators and the continuous-time quantum walk. Recall that
the continuous-time quantum walk, introduced originally by Childs–Farhi–Gutmann [5], is the unitary operator eit

d
H

acting on ‘2ðZÞ, where bH denotes the standard symmetric random walk on Z defined by

bH ¼ 1

2
ð� þ ��1Þ: ð1:13Þ

Note that we have Spec ðbHÞ ¼ ½�1; 1� while Spec ðbHð’sÞÞ ¼ ½arccosðsÞ; arccosð�sÞ�. Therefore, it would be reasonable
to scale the function ’s as

 sð�Þ :¼
1

arcsinðsÞ
arcsinðs cos �Þ ¼

1

arcsinðsÞ
�

2
� ’sð�Þ

� �
ð1:14Þ

so that Spec ðbHð sÞÞ ¼ ½�1; 1�, where bHð sÞ is the operator defined by the formula ð1.12Þ with  s replacing ’s. We
then compare the operator bH with bHð’sÞ and bHð sÞ. Note that if we set

 0ð�Þ ¼ cos � ð� 2 RÞ; ð1:15Þ

then one has bHð 0Þ ¼ bH, and by Taylor’s formula for arcsinðxÞ, we see

k s �  0kCðS1Þ ¼ Oðs2Þ; kbHð sÞ � bHð 0Þkop ¼ Oðs2Þ ðs! 0Þ; ð1:16Þ

where k � kCðS1Þ denotes the supremum norm on the algebra CðS1Þ consisting of all continuous functions on S1 and
k � kop denotes the operator norm. Thus, in the above sense, the classical random walk is obtained, in the limit s tending
to zero, from the operators bHð sÞ defined through the Hamiltonians of the discrete-time quantum walks. However, it
would be interesting to compare these operators in the weak-limits of the probability distributions. To define these
probability distributions, we generalize a little bit our setting up. For any k 2 CðS1Þ, we denote MðkÞ the multiplication
operator on L2ðS1Þ by k. We define the operator bHðkÞ on ‘2ðZÞ bybHðkÞ ¼ FMðkÞF �; ð1:17Þ

where F � is, with respect to the usual inner product on ‘2ðZÞ, the adjoint operator of the unitary operator F given
explicitly by

ðF � f Þð�Þ ¼
X
x2Z

f ðxÞeix� ð f 2 ‘2ðZÞÞ:

Note that bHðkÞ with k ¼ ’s in ð1.17Þ coincides with the operator defined in ð1.12Þ. When k is real-valued, the operatorbHðkÞ is self-adjoint, and hence we have the 1-parameter group of unitary operators eit
d
HðkÞ. For any t 2 R, we define the

function ptðk; xÞ in x 2 Z by

ptðk; xÞ ¼ jheit
d
HðkÞ�0; �xij2 ðx 2 ZÞ; ð1:18Þ

where h; i denotes the standard ‘2-inner product on ‘2ðZÞ and �x 2 ‘2ðZÞ is defined as

�xðyÞ ¼
1 (when y ¼ x),

0 (otherwise).

�
Note that fptðk; xÞgx2Z is a probability distribution for each t 2 R and each continuous real-valued function k on S1. Our
next theorem is on the weak limit distributions of the probability measures

d�tðkÞ :¼
X
x2Z

ptðk; xÞ�x=t ð1:19Þ

on R for k ¼  0, k ¼ ’s and k ¼  s (0 < s < 1), where �	 for 	 2 R denotes the Dirac measure at 	.

Theorem 1.2. For any interval I in R, let 
IðxÞ denote the indicator function of I. We set �ðsÞ :¼ arcsinðsÞ. Then we
have the following.

(1) w-lim
t!1

d�tð 0Þ ¼
1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p 
ð�1;1ÞðxÞ dx.

(2) w-lim
t!1

d�tð’sÞ ¼
r

�ð1� x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � x2
p 
ð�s;sÞðxÞ dx (0 < s < 1).

(3) w-lim
t!1

d�tð sÞ ¼
�ðsÞr

�ð1� �ðsÞ2x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � �ðsÞ2x2

p 
ð�s=�ðsÞ;s=�ðsÞÞðxÞ dx (0 < s < 1).

Note that (1) in Theorem 1.2 is well-known ([9]), and the weak limits in (2) and (3) are essentially (scaled) Konno’s
distribution ([8]), which appears as weak limit distributions of the transition probabilities of the one-dimensional
discrete-time quantum walks. By Taylor’s formula for arcsinðsÞ as s! 0 one finds that the distribution in the right-
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hand side of (1) is obtained from that in (3) under the weak limit s! 0. More generally, we have the following.

Theorem 1.3. For ðs; uÞ 2 ½0; 1Þ � ½0;1Þ, we define the probability measures d�ðs;uÞ on R by

d�ðs;uÞ ¼

d�1=uð sÞ (0 � s < 1; 0 < u),

�ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

�ð1� �ðsÞ2x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � �ðsÞ2x2

p 
ð�s=�ðsÞ;s=�ðsÞÞðxÞ dx (0 < s < 1; u ¼ 0),

1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p 
ð�1;1ÞðxÞ dx (s ¼ u ¼ 0).

8>>>>>><>>>>>>:
Then, the map ðs; uÞ 7!d�ðs;uÞ defines a weakly continuous map from ½0; 1Þ � ½0;1Þ to the space of all probability
measures on R with the weak topology. In particular, we have

w-lim
ðs;1=tÞ!ð0;0Þ

d�tð sÞ ¼
1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p 
ð�1;1ÞðxÞ dx:

Thus, the one-dimensional continuous-time quantum walk is obtained, under the limit s ¼ jaj ! 0, from the scaled
operator bHð sÞ defined through the Hamiltonian DðTÞ of the one-dimensional discrete-time quantum walk UðTÞ.

We close Introduction by mentioning earlier works closely related to Theorems 1.2, 1.3. To our knowledge, the
relationship between weak limits of continuous-time and discrete-time quantum walks was first pointed out by Strauch
[16]. In [16], the quantum walk defined by the coin matrix

T ¼
cos � �i sin �
�i sin � cos �

� �
is considered. Strauch constructed a Hamiltonian, under the limit �! �=2, and discovered that the solutions to the
corresponding Schrödinger equation are decomposed into two terms, each of which solves the Schrödinger equation for
the continuous-time quantum walk. Compared with it, the limit procedure is the same as ours. Both consider the limit
s! 0. But in our approach a one-parameter family of Hamiltonians Hð sÞ is obtained, before taking a limit s! 0,
which converges, as s! 0, to the classical symmetric random walk, see ð1.16Þ. The relations among weak limit
distributions obtained in Theorems 1.2, 1.3 is essentially a consequence of ð1.16Þ.

Chisaki–Konno–Segawa–Shikano [6] relates weak limits for discrete-time quantum walks with that for continuous-
time quantum walks by introducing the notion of position measurements for discrete-time quantum walks and final-
time-dependent discrete-time quantum walks. Konno–Machida–Wakasa [11] found that both of weak limit
distributions for discrete-time and continuous-time quantum walks satisfy certain ordinary differential equations of
Fuchs type (Heun equation for discrete-time and Gauss hyper-geometric equation for continuous-time). Then, they
relates the both by considering confluent form of Heun equation obtained by taking the limit s! 0 (in our notation)
and a time scaling parameter �!1 with constraint s2� ¼ 1. It seems that these works are rather important not just on
the relationship between continuous-time and discrete-time quantum walks but on other viewpoints, although our
approach seems to be somewhat straightforward at least to relates discrete-time with continuous-time quantum walks.

2. An Algebraic Structure

In our previous paper [18], we have introduced an algebraic structure behind the one-dimensional discrete-time
quantum walks. Because we need to use this to deduce the Hamiltonian DðTÞ in the next section, let us begin by
recalling this structure. Suppose that we are given two unitary operators V , W on a Hilbert space H0 satisfying the
following relations.

(QW1) W2 ¼ �I.
(QW2) VW ¼ WV�1.

We remark that, in [18], we have introduced another unitary operator, �, satisfying some relations with V and W .
However we do not introduce the operator � here because we will not use it. Now, if the positive numbers s; r satisfy
s2 þ r2 ¼ 1, then it turns out that the linear combination

U ¼ sV þ rW ð2:1Þ

is a unitary operator on H0. We have the following examples.

Example 2.1. Let H0 ¼ C2. For any �; � 2 S1, we set

Vð�Þ ¼
� 0

0 �

� �
; Wð�Þ ¼

0 �

�� 0

 !
:
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Then, the unitary matrices V ¼ Vð�Þ, W ¼ Wð�Þ satisfy the relations (QW1), (QW2).

Example 2.2. Let H0 ¼ ‘2ðZ;C2Þ. We take �; � 2 S1. Let V , W be the quantum walks,

V ¼ UðVð�ÞÞ; W ¼ UðWð�ÞÞ
defined in ð1.1Þ associated with the unitary matrices Vð�Þ, Wð�Þ given in Example 2.1. Then V and W satisfy the
relations (QW1), (QW2).

We note that for T 2 SUð2Þ given by ð1.3Þ, the quantum walk UðTÞ is written in the form ð2.1Þ as

UðTÞ ¼ sUðVð�ÞÞ þ rUðWð�ÞÞ;
where the parameters s, r, �, � are defined in ð1.4Þ. Furthermore, if we define a unitary matrix TðzÞ with z 2 S1 by

TðzÞ ¼ sVð�zÞ þ rWð�zÞ; ð2:2Þ

then, under the Fourier transform F : L2ðS1;C2Þ ! ‘2ðZ;C2Þ, defined by the same formula as in ð1.11Þ for
k 2 L2ðS1;C2Þ, UðTÞ and TðzÞ are related each other by the formula

F �UðTÞF ¼ T ; ð2:3Þ
where T is the multiplication operator defined by

ðT kÞð�Þ ¼ Tðei�Þkð�Þ ðk 2 L2ðS1;C2ÞÞ:
The following is proved in [18].

Proposition 2.3. Suppose that the unitary operators V , W satisfy the relations (QW1) and (QW2). Let x ¼
s
2
ðV� þ VÞ, y ¼ s

2i
ðV � V�Þ, w ¼ rW . Then, the n-th power Un of the unitary operator U defined in ð2.1Þ is represented

as

Un ¼ TnðxÞ þ ðiyþ wÞUn�1ðxÞ;

where TnðxÞ and Un�1ðxÞ are, respectively, the Chebyshev polynomials of the first kind of degree n and the second kind
of degree n� 1.

Before explaining how to deduce the formula ð1.8Þ of the operator DðTÞ, let us mention the meaning of the algebraic
structure (QW1), (QW2). The relations (QW1), (QW2) define a unitary representation of the infinite dihedral group
(see, for example, [13]) as follows. The infinite dihedral group � is a discrete group defined by

� ¼ Zo Z2 ¼	 Z2 � Z2;

where Z2 ¼ f
1g and it acts on Z in an obvious manner. As a set, � is the product Z� Z2, and its group structure is
given by

ðx; �Þðy; 
Þ ¼ ðxþ �y; �
Þ ððx; �Þ; ðy; 
Þ 2 Z� Z2Þ:

Hence the unit is e :¼ ð0; 1Þ and the inverse element of ðx; �Þ 2 Z� Z2 is given by ð��x; �Þ. We set a ¼ ð1; 1Þ and
b ¼ ð0;�1Þ. Then, a and b generate � with the relation

ab ¼ ba�1; b2 ¼ e:

Let V and W be unitary operators on a Hilbert space H0 satisfying the relations (QW1) and (QW2). Then, we can
define a unitary representation � : �! UðH0Þ of �, where UðH0Þ denotes the group consisting of all unitary operators
on H0, by setting

�ðaÞ ¼ V ; �ðbÞ ¼ �iW:

In particular, by Example 2.2, the quantum walks V ¼ UðVð�ÞÞ, W ¼ UðWð�ÞÞ define a unitary representation
ð‘2ðZ;C2Þ; �QWÞ of �.

Theorem 2.4. The unitary representation ð‘2ðZ;C2Þ; �QWÞ of � so defined is unitarily equivalent to the regular
representation ð‘2ð�Þ;RÞ.

Proof. We first recall that the (right) regular representation ð‘2ð�Þ;RÞ, where ‘2ð�Þ is the Hilbert space consisting of all
square summable functions on � with the standard inner product, is defined by the formula

R : �! Uð‘2ð�ÞÞ; ðRðgÞ f ÞðhÞ ¼ f ðhgÞ; f 2 ‘2ð�Þ; g; h 2 �:

Let �ðx;�Þ be an element in ‘2ð�Þ defined by

�ðx;�Þðy; 
Þ ¼
1 (when ðy; 
Þ ¼ ðx; �Þ),
0 (otherwise).

�
Note that f�ðx;�Þ ; ðx; �Þ 2 �g is an orthonormal basis of ‘2ð�Þ. Then a direct computation shows that the unitary
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operator u : ‘2ð�Þ ! ‘2ðZ;C2Þ defined by the formula

u�ðx;1Þ ¼ ��x��x � e1; u�ðx;�1Þ ¼ i��x��1ð�1�x � e2Þ ðx 2 ZÞ

intertwines two representations ð‘2ðZ;C2Þ; �QWÞ and ð‘2ð�Þ;RÞ. �

3. The Hamiltonian DðTÞ

Let us explain how to deduce the formulas ð1.6Þ, ð1.7Þ and ð1.8Þ for the Hamiltonian DðTÞ. As mentioned in §1, the
diagonalization works in this case. Indeed, as in the proof of Theorem 1.1 below, it is enough to compute the matrix-
valued function Lð�Þ such that eiLð�Þ ¼ Tðei�Þ where the matrix Tðei�Þ is defined in ð2.2Þ. But the matrix Tðei�Þ has the
eigenvalues e
’sð�þ�Þ. Since Tðei�Þ is unitary, it is diagonalized by a matrix Bð�Þ so that

Tðei�Þ ¼ Bð�Þ
ei’sð�þ�Þ 0

0 e�’sð�þ�Þ

 !
Bð�Þ�1 ¼ eiLð�Þ; Lð�Þ ¼ Bð�Þ

’sð� þ �Þ 0

0 �’sð� þ �Þ

 !
Bð�Þ�1:

This formula with unitary Bð�Þ is explained in [12]. [Though Bð�Þ can be taken to be unitary, it is not necessary for us.]
The diagonalization is an easy way to get Lð�Þ just as explained above. But we use Proposition 2.3 here which enables
us to obtain directly an effective formula for the n-th power of Tðei�Þ. We apply Proposition 2.3 for the matrices
V ¼ Vð�zÞ, W ¼ Wð�z�1Þ with � and � given in ð1.4Þ to get the following formula.

TðzÞn ¼
pnð�zÞ qnð�zÞ

�qnð�zÞ pnð�zÞ

 !
ðz 2 S1Þ; ð3:1Þ

where pnðzÞ and qnðzÞ are the Laurent polynomials given by

pnðzÞ ¼ Tnðs2ðzþ z�1ÞÞ þ
s

2
ðz� z�1ÞUn�1ðs2ðzþ z�1ÞÞ; qnðzÞ ¼ r��z�1Un�1ðs2ðzþ z�1ÞÞ: ð3:2Þ

The matrix TðzÞ is a Laurent polynomial in z and hence TðzÞn is also a Laurent polynomial. The above formulas ð3.1Þ
and ð3.2Þ states that these Laurent polynomials are written in terms of the Chebyshev polynomials. Setting � ¼ ei�,
z ¼ ei�, and using the function ’sð�Þ defined in ð1.5Þ, we see that

pnð�zÞ ¼ cosðn’sð� þ �ÞÞ þ is sinð� þ �Þ
sinðn’sð� þ �ÞÞ
sin ’sð� þ �Þ

; qnð�zÞ ¼ r�e�i�
sinðn’sð� þ �ÞÞ
sin’sð� þ �Þ

: ð3:3Þ

According to the formula ð3.3Þ, the functions pnð�zÞ, qnð�zÞ are differentiable with respect to n at n ¼ 0. Then,
differentiating each component of Tðei�Þn in n at n ¼ 0 and dividing them by i, we obtain a matrix Lð�Þ defined by

Lð�Þ ¼
’sð� þ �Þ

sin’sð� þ �Þ
s sinð� þ �Þ �ir�e�i�

ir�ei� �s sinð� þ �Þ

 !
: ð3:4Þ

Let L be the bounded self-adjoint operator on L2ðS1;C2Þ defined by

ðLkÞð�Þ ¼ Lð�Þkð�Þ ðk 2 L2ðS1;C2ÞÞ:

Then, the operator DðTÞ defined in ð1.8Þ is related to the operator L by the formula

DðTÞ ¼ FLF �: ð3:5Þ

Proof of Theorem 1.1. From ð3.5Þ, we see that eiDðTÞ ¼ F eiLF �. Thus, according to ð2.3Þ, it is enough to show that
eiL ¼ T . The eigenvalues of Lð�Þ defined in ð3.4Þ is 
’sð� þ �Þ. Then, the matrix Lð�Þ is diagonalized as

Bð�Þ�1Lð�ÞBð�Þ ¼
’sð� þ �Þ 0

0 �’sð� þ �Þ

� �
with the matrix Bð�Þ given by

Bð�Þ ¼
ir�e�i� ir�e�i�

s sinð� þ �Þ � sin’sð� þ �Þ s sinð� þ �Þ þ sin ’sð� þ �Þ

 !
:

Then, one can check directly that

eiLð�Þ ¼ Bð�Þ
ei’sð�þ�Þ 0

0 e�i’sð�þ�Þ

 !
Bð�Þ�1 ¼ Tðei�Þ;
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which shows eiL ¼ T and hence Theorem 1.1. �

Since the spectrum of the operator DðTÞ coincides with that of L and the latter is given by the union of the images of
two functions � 7!
 ’sð� þ �Þ, we have ð1.9Þ. ð1.10Þ is a consequence of the fact that Lð�Þ2 ¼ ’2

s ð� þ �ÞI2.

4. Limit Theorems

Let k be a smooth real-valued function on S1 and consider, for each t 2 R, the measure d�tðkÞ defined in ð1.19Þ. To
prove Theorem 1.2, we use the characteristic function Etðk; 	Þ of d�tðkÞ, which is explicitly given by the formula

Etðk; 	Þ ¼
X
x2Z

ptðk; xÞeix	=t ð	 2 RÞ: ð4:1Þ

Let us rewrite the function Etðk; 	Þ in a useful form. Recall that the convolution of two continuous functions f ; g on S1 is
defined by

ð f � gÞð�Þ ¼
1

2�

Z 2�

0

f ðrÞgð� � rÞ dr:

If f is a smooth function on S1, then the Fourier series

f ð�Þ ¼
X
x2Z

F ð f ÞðxÞeix�

of f converges to f itself uniformly in �, and hence, for f ; g 2 C1ðS1Þ,

ð f � gÞð�Þ ¼
X
y2Z

F ð f ÞðyÞF ðgÞðyÞeiy�;

which converges uniformly in �. We set �ð f Þð�Þ :¼ f ð��Þ so that F ð�ð f ÞÞðxÞ ¼ F ð f ÞðxÞ and

ð f � �ð f ÞÞð	Þ ¼
X
x2Z
jF ð f ÞðxÞj2eix	: ð4:2Þ

Now we set

f ð�Þ ¼
X
x2Z
heit

d
HðkÞ�0; �xieix�;

which is well-defined in L2ðS1Þ. Since eit
d
HðkÞ ¼ F eitMðkÞF � and F ��x ¼ ex, where ex 2 L2ðS1Þ is defined by exð�Þ ¼ eix�,

we have heit
d
HðkÞ�0; �xi ¼ heitMðkÞe0; exi and hence f ð�Þ ¼ eitMðkÞe0 ¼ eitkð�Þ. Thus f is a smooth function on S1, and by

ð1.18Þ, ð4.1Þ, ð4.2Þ, we see

Etðk; t	Þ ¼ ð f � �ð f ÞÞð	Þ ¼
1

2�

Z 2�

0

eit½kð�Þ�kð��	Þ� d�: ð4:3Þ

Proposition 4.1. Let k be a smooth real-valued function on S1. Then, for each 	 2 R, we have

lim
t!1

Etðk; 	Þ ¼
1

2�

Z 2�

0

ei	k
0ð�Þ d�:

Proof. By ð4.3Þ and Taylor’s formula, we have

Etðk; 	Þ ¼
1

2�

Z 2�

0

eit½kð�Þ�kð��	=tÞ� d� ¼
1

2�

Z 2�

0

eit½	k
0ð�Þ=tþOð1=t2Þ� d�!

1

2�

Z 2�

0

ei	k
0ð�Þ d�

as t!1, which completes the proof. �

Proof of Theorem 1.2. The items (1), (2), and (3) in Theorem 1.2 are easily proved by using Proposition 4.1 with
k ¼  0 for (1), k ¼ ’s for (2) and k ¼  s for (3), respectively. �

Proof of Theorem 1.3. Let ðso; uoÞ 2 ½0; 1Þ � ½0;1Þ. First assume that uo > 0. We set arcsinðsÞ ¼ sð1þ s2aðsÞÞ with a
smooth function aðsÞ bounded on 0 � s � 1=2. We have

 sð�Þ ¼ cos �
1þ s2aðs cos �Þ

1þ s2aðsÞ
; ð4:4Þ

which shows that the function  sð�Þ is continuous for ðs; �Þ with 0 � s and � 2 R. Thus, the characteristic function

Etð s; 	Þ ¼
1

2�

Z 2�

0

eit½ sð�Þ� sð��	=tÞ� d�
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is continuous in s; t; 	 even when s ¼ 0. Hence the weak continuity of d�ðs;uÞ at ðso; uoÞ is obvious when uo > 0. Let us
prove that d�ðs;uÞ is weakly continuous at ðso; 0Þ. Suppose first that so > 0. Obviously we have w-lim

s!so
d�s;0 ¼ d�so;0. Let

s; u > 0 and set t ¼ 1=u. Then, we have

Etð s; 	Þ �
1

2�

Z 2�

0

ei	 
0
so
ð�Þ d�

���� ���� � 1

2�

Z 2�

0

e
i	ð 0sð�Þ� 0so ð�ÞÞ�ið	

2=tÞ
R 1

0
ð1�rÞ 00s ð��r	=tÞ dr � 1

���� ���� d�: ð4:5Þ

By ð4.4Þ, we have

 0sð�Þ ¼ �sin �ð1þ Oðs2ÞÞ;  00s ð�Þ ¼ �cos �ð1þ Oðs2ÞÞ:

Hence the right-hand side of ð4.5Þ tends to zero as ðs; 1=tÞ ! ðso; 0Þ. Since the characteristic function of the measure
d�ðso;0Þ is given by

	 7!
1

2�

Z 2�

0

ei	 
0
so
ð�Þd�;

we see that d�ðs;uÞ is weakly continuous at ðso; 0Þ. Next, let us prove the continuity at ð0; 0Þ. Obviously we have
w-lim
s!0

d�ðs;0Þ ¼ d�ð0;0Þ. Now let s; u > 0 and we set t ¼ 1=u. Then, again by Taylor’s formula, we obtain

eit½ sð�Þ� sð��	=tÞ� � e�i	 sin �
�� �� � Cðs2 þ 1=tÞ;

where the positive constant C can be chosen uniformly in � 2 R and locally uniformly in 	 2 R. From this, we have

Etð s; 	Þ ¼
1

2�

Z 2�

0

e�i	 sin � d� þ Oðs2 þ 1=tÞ ¼
1

�

Z 1

�1

cosð	xÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dxþ Oðs2 þ 1=tÞ;

which shows w-lim
ðs;1=tÞ!ð0;0Þ

d�ðs;1=tÞ ¼ d�ð0;0Þ. This completes the proof. �
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