リテラシーや素材の製造や構築の観点から、Ti-Nb-Ta-Zr (TNTZ)タイプのβ-Ti合金の製造について検討しました。この研究は、高延性を可能なARC溶着型の溶出法を用いた。

| 著者 | 植原 望義, 中野 他, 今出 伸夫, 雅子
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Fabrication of Beta-Ti-Type Ti-Nb-Ta-Zr (TNTZ) Wire with High-Ductility by Arc-Melt-Type Melt-Extraction Method</td>
</tr>
</tbody>
</table>
| 編集者 | 材料技術学会
| 発行誌名 | Materials Transactions
| シリーズ名 | 材料技術学会誌
| シリーズ編集者 | 材料技術学会
| シリーズ発行者 | 材料技術学会
| シリーズ年 | 2010
| シリーズ巻 | 51
| シリーズ号 | 2
| 巻合集号 | 377-380
| 本誌URL | http://hdl.handle.net/10097/52209
Fabrication of Beta-Ti-Type Ti-Nb-Ta-Zr (TNTZ) Wire with High-Ductility by Arc-Melt-Type Melt-Extraction Method

Takeshi Nagase¹,²,* , Takayoshi Nakano², Yukichi Umakoshi³ and Mitsuo Niinomi⁴

¹Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
²Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
³National Institute for Materials Science, Tsukuba 305-0047, Japan
⁴Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Received May 7, 2009; Accepted November 9, 2009; Published December 23, 2009)

Keywords: titanium-based alloy, rapid solidification, melt-extraction method, full ductility

1. Introduction

Among metallic biomaterials such as stainless steels, Co-Cr alloys, bulk metallic glasses (BMGs), pure Ti, and Ti alloys, Beta-Ti-type Ti-Nb-Ta-Zr (TNTZ) quaternary alloys with a bcc structure are most suitable for biomaterials. This is because of some of their attributes such as low Young’s modulus, low cytotoxicity, high specific strength, and superior corrosion resistance.¹⁻⁴ If TNTZ alloys are to be used in biomedical applications, we must first ensure whether the biomaterials having different shapes can be prepared using these alloys. Recently, we succeeded firstly in fabricating the continuous, rapidly quenched Ti-rich Ti-Zr wires containing no bio-toxic elements by arc-melt-type melt-extraction method.⁵ These continuous Ti-Zr alloy wires exhibit a good white luster, very smooth surface, high tensile strength, and good bending ductility. In addition, their diameter is almost constant. The arc-melt-type melt-extraction method can be effectively used for fabricating new Ti-based metallic crystalline wires for biomaterials. Binary Ti-Zr alloys have a good wire-forming ability. However, these wires do not exhibit a Beta-phase with a bcc structure; instead, they exhibit an Alpha-phase with an hcp structure. Hitherto, the fabrication of a melt-extracted Beta-Ti metallic wire has not been reported. In this study, we have attempted to fabricate melt-extracted TNTZ alloy wires with a Beta-phase by the arc-melt-type melt-extraction method.⁵⁻⁷ Figure 1 shows (a) a schematic illustration and (b) the corresponding image of the apparatus. (NISSIN-GIKEN, NEV-AT3). The diameter of the Cu-roll used in this method was 200 mm, and the angle of the edge was fixed at 60°. The rotation speed was maintained at 1000 rotation per minutes (rpm) or 2000 rpm, and the circumferential velocity of the Cu roll was 21 ms⁻¹ in the case of 2000 rpm. Mother alloys were arc melted from the master ingots under an Ar gas atmosphere on a water-cooled Cu mold. This apparatus allowed us to control the position of the Cu roll. The extraction of the molten mother alloy was performed by moving down the rotating Cu roll. The above conditions are the similar as those used in the fabrication of the Ti-Zr alloys⁵ and Zr-based metallic glasses.⁵ The constituent phases of the wire were confirmed by X-ray diffraction (XRD) using Cu-Kα radiation, differential scanning calorimetry (DSC) at a heating rate of 0.67 Ks⁻¹, and optical microscopy (OM). The surface morphology of the wires was examined by OM and scanning electron microscopy (SEM). The tensile strength of the wire specimens was measured by an Instron-type testing machine at a strain rate of 4.2 × 10⁻⁴ s⁻¹ in air. The length of wire for mechanical tensile strength measurement is 10 mm. The wire elongation was measured by the position of the crosshead and not by...
using a strain gage. The ductility of the wires was evaluated by means of a simple bending test. A ductile wire is one that can be bent through 180° without fracture.

3. Results and Discussions

Figure 2 shows the outer appearance of melt-extracted Ti-based alloy wires fabricated at 2000 rpm. The TNTZ alloy (a) exhibits a good wire-forming ability and therefore continuous wires can be produced from it. The length and fluctuations in diameter of the TNTZ wire are similar to those of the Ti-Zr wire (b). A corresponding decrease in the diameter of the TNTZ wire is observed with an increase in the rotation speed of Cu; however, the length of the wire is not sensitive to the rotation speed. The constituent phases of melt-extracted TNTZ and Ti-Zr wires prepared at a rotation speed of 2000 rpm were investigated using XRD analysis and DSC measurement. Figure 3 shows the XRD patterns of melt-extracted alloy wires. Sharp diffraction peaks in the XRD pattern of the Ti-Zr wire were identified as those belonging to the Alpha-(Ti, Zr) phase. In contrast, the TNTZ wire showed sharp diffraction peaks corresponding to the Beta-phase with a bcc structure. The formation of the Alpha-phase in TNTZ wires cannot be detected by XRD analysis. Figure 4 shows the DSC curves of melt-extracted wire at a heating rate of 0.67 Ks⁻¹. The Ti-Zr wire shows properties similar to that of an endothermic reaction. This is due to the phase transition of the Ti-Zr wire from the Alpha-phase to the Beta-phase. The TNTZ wire does not exhibit any sharp endothermic or exothermic peaks. The XRD analysis and DSC measurement confirm the formation of a Beta-single phase in the TNTZ wire.

Figure 5 shows typical examples of the outer surface appearance of the melt-extracted TNTZ wire ((a) and (b)) and the Ti-Zr wire ((c) and (d)). The OM images of the TNTZ wire (a) show no fluctuation in diameter, but a small amount of fluctuation, indicated by white arrows, can be observed in the images of the Ti-Zr alloy wire (c). From Figs. 5(b) and (d), we can observe that the TNTZ and the Ti-Zr wires have a rough surface and not a mirror surface that is characteristic of melt-extracted amorphous wire. In order to investigate the surface morphology of the melt-extracted wires in detail, we carried out SEM observations. The SEM images of the melt-extracted wires along with the SEM images of a conventional steel code are shown in Fig. 6. The surface morphology of the Beta-Ti-type TNTZ alloy wire was observed to be different from the surface morphologies of the Alpha-Ti-type Ti-Zr alloys. It should be noted that the degree of surface roughness of the melt-extracted TNTZ wire (a) and the Ti-Zr wire (b) is smaller than that of the conventional steel code prepared by wire-drawing in a mass production system (c). Rapid solidification of the extracted wire in the thermal-melt process during its free flight in an Ar gas atmosphere results in the formation of a fine crystalline precipitates formation, leading to a very smooth surface. The XRD and DSC measurements shown in Figs. 3 and 4 also confirm the formation of the crystalline
precipitates on the wires. The difference in the morphological properties of the melt-extracted wires between the TNTZ and Ti-Zr alloys may be attributed to either the crystallization behavior of the melt or phase transition, or both during the free flight of the TNTZ and Ti-Zr wires in the Ar gas atmosphere. The extremely fine dendrite formation in the TNTZ alloy leads to the formation of the continuous Beta-Ti wire with small fluctuation in diameter and significantly smooth surface roughness.

The mechanical properties of melt-extracted TNTZ crystalline wires were investigated by the tensile test in air. Figure 7 shows the tensile load-elongation curves of 10 samples and 3 examples of Ti-Zr wire. The length of wire for mechanical tensile strength measurement is 10 mm. The tensile elongation value of 0.1 means 1.0 mm elongation. The elongation of the wires was measured by determining the displacement of a crosshead and not by using a strain gage. The absolute values of the tensile stress and elongation could not be determined because of the fluctuations in the diameter of the wires.
values of tensile stress and tensile elongation cannot be discussed here. However, it can be observed that as compared to the Ti-Zr wire, the melt-extracted TNTZ wire exhibits superior mechanical properties for biomaterials, such as lower Young’s modulus, large plastic deformation region, and superior ductility, the melt-extracted Beta-Ti-type TNTZ metallic wires can be used in biomedical applications. It is well known that Beta-Ti type TNTZ alloy shows high plasticity and ductility because of the b.c.c.-structure.1–4) The melt-extracted wire in the present study also exhibits the superior bending ductility, indicating that the very smooth surface without any crack initiation sites and significantly small fluctuation in the diameter are effective for removing the lost of the superior mechanical properties of TNTZ alloy.

4. Conclusion

In this study, new Beta-Ti-type (TNTZ) metallic wires with full ductility were developed using the arc-melt-type melt-extraction method. The results were summarized, and the following conclusions were drawn:

(1) A melt-extracted wire with the Beta-Ti single phase can be obtained from Ti-30Nb-10Ta-5Zr alloy by the arc-melt-type melt-extraction method. A fine dendrite structure was observed on the surface of the Beta-Ti wire. Because of this dendrite structure, the fluctuation in the diameter and surface roughness of the wire was negligible.

(2) The continuous melt-extracted TNTZ wire exhibits high tensile strength and full ductility. Thus, the arc-melt-type melt-extraction method is very effective for fabricating Beta-Ti metallic wires for biomaterials.

Acknowledgement

This work was supported by a Grant-in-Aid for Scientific Research on Priority Area (A), “Materials Science of Metallic Glasses” from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Part of this work was also supported by Priority Assistance for the Formation of Worldwide Renowned Centers of Research—The Global COE Program (Project: Center of Excellence for Advanced Structural and Functional Materials Design) from MEXT, Japan.

REFERENCES