Ba1-xCaxTi2O5の誘電体特性についての研究

<table>
<thead>
<tr>
<th>著者</th>
<th>植木 貞 邦, 竹田 隆, 遠藤 公 望</th>
</tr>
</thead>
<tbody>
<tr>
<td>材料</td>
<td>ベーキング カーボン電極</td>
</tr>
<tr>
<td>電気</td>
<td>電子電気工学</td>
</tr>
<tr>
<td>金属</td>
<td>ベーキング カーボン電極</td>
</tr>
<tr>
<td>電気</td>
<td>電子電気工学</td>
</tr>
<tr>
<td>金属</td>
<td>ベーキング カーボン電極</td>
</tr>
</tbody>
</table>
Dielectric Properties of \(\text{Ba}_{1-x}\text{Ca}_x\text{Ti}_2\text{O}_5 \) Prepared by Arc Melting

Xinyan Yue\(^1,2\), Rong Tu\(^2\) and Takashi Goto\(^2\)

\(^1\)School of Materials and Metallurgy, Northeastern University, Shenyang 110004, P.R.China
\(^2\)Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

\(b \)-axis-oriented \(\text{CaO} \) substituted polycrystalline \(\text{BaTi}_2\text{O}_3 \), \(\text{Ba}_{1-x}\text{Ca}_x\text{Ti}_2\text{O}_5 \) (\(\text{BCT}_x \), \(x = 0 \) to 0.10), was prepared by arc melting. The dielectric property of \(\text{BCT}_x \) was investigated by an AC impedance method. The lattice parameters of \(\text{BCT}_x \) decreased with increasing \(\text{CaO} \) content in the range up to around \(x = 0.08 \). The remnant polarization \((P_r) \) and coercive electric field \((E_c) \) of polycrystalline \(\text{BCT}_x \) at \(x = 0.08 \) were \(1.6 \times 10^{-2} \text{Cm}^{-2} \) and \(0.4 \times 10^3 \text{Vm}^{-1} \), respectively. The \(P_r \) of polycrystalline \(\text{BCT}_x \) was larger than that of \(\text{BaTi}_2\text{O}_3 \) (\(\text{BCT}_0 \), \(P_r = 0.9 \times 10^{-2} \text{Cm}^{-2} \)), while the \(E_c \) of \(\text{BCT}_x \) was smaller than that of polycrystalline \(\text{BT}_0 \) (\(E_c = 0.7 \times 10^3 \text{Vm}^{-1} \)). The permittivity of \(\text{BCT}_x \) showed the maximum value of 4950 at \(x = 0.02 \) and a Curie temperature \((T_c) \) of 736 K. The \(T_c \) of \(\text{BCT}_x \) decreased from 750 to 665 K with increasing \(\text{CaO} \) content from 0 to 0.10. [\(\text{doi:10.2320/matertrans.MRA2008333} \)]

(Received September 10, 2008; Accepted November 4, 2008; Published December 17, 2008)

Keywords: \(\text{BCT}_x \), polycrystals, arc melting, orientation, dielectric properties

1. Introduction

\(\text{BaTi}_3\text{O}_5 \) (\(\text{BT} \)) is a well-known ferroelectric material exhibiting distinctly high permittivity and a Curie temperature \((T_c) \) of 400 K.\(^1,2\) In the \(\text{BaO}-\text{TiO}_2 \) system, several \(\text{TiO}_2 \)-rich compounds such as \(\text{BaTi}_4\text{O}_7 \) and \(\text{Ba}_2\text{Ti}_5\text{O}_{20} \) are promising dielectric materials in the microwave frequency range due to a significantly small dielectric loss. \(\text{BaTi}_3\text{O}_5 \) (\(\text{BT} \)), on the other hand, has not received much attention since it has been misunderstood to be a common paraelectric compound.\(^3\) \(\text{BT} \) has been thought to be unstable above \(1500 \text{K} \), decomposing into \(\text{BT} \) and \(\text{Ba}_6\text{Ti}_3\text{O}_{40} \).\(^4,5\) Recently, our research group\(^6\) and Akishige et al.\(^7\) have independently synthesized single crystalline \(\text{BT} \) and detected ferroelectricity in the \(b \)-direction. As single crystalline \(\text{BT} \) has a high permittivity (20500) with a high Curie temperature (750 K), comparable to widely used PZT (Lead zirconium titanate), it is promising as a new lead-free high \(T_c \) ferroelectric material.\(^7\) In practical applications, however, polycrystalline material is preferable to single crystalline material due to its ease of manufacturing and low cost. In a previous study,\(^8\) we prepared (020) oriented polycrystalline \(\text{BT} \) by arc melting. Substitution of foreign element has been commonly applied to improve and modify the performance of ferroelectric compounds. We have studied the effects of several foreign element substitutions, \(\text{e.g.}, \text{Sr} \) and \(\text{Zr} \), on the dielectric properties of polycrystalline \(\text{BT} \) prepared by arc melting.\(^9,10\)

It has long been known that the substitution of \(\text{Ca} \) in \(\text{BT} \) is effective to modify the dielectric properties. Mitsui et al.\(^1,12\) reported that the \(T_c \) of \(\text{BT} \) increased from 403.8 to 409.2 K with increasing \(\text{Ca} \) substitution until \(x = 0.08 \) in \(\text{Ba}_{1-x}\text{Ca}_x\text{Ti}_2\text{O}_3 \) (\(\text{BCT} \)). Chen et al.\(^13\) reported that the permittivity of \(\text{BCT} \) decreased with increasing \(\text{Ca} \) substitution. Tikhonovsky et al.\(^14\) demonstrated that \(\text{Ca} \) substitution inhibited the grain growth of \(\text{BT} \). Jayanthi et al.\(^15\) reported that the lattice parameters of \(\text{BT} \) decreased with increasing \(\text{Ca} \) substitution. Wang et al.\(^16\) found the highest content of \(\text{Ca} \) substitution in \(\text{BT} \) to be \(x = 0.21 \). In the present study, \(b \)-axis oriented polycrystalline \(\text{Ba}_{1-x}\text{Ca}_x\text{Ti}_2\text{O}_5 \) (\(\text{BCT}_x \)) was prepared by arc melting and the effect of \(\text{Ca} \) substitution on the dielectric properties of polycrystalline \(\text{BCT}_x \) was investigated.

2. Experimental

\(\text{TiO}_2 \), \(\text{BaCO}_3 \), and \(\text{CaCO}_3 \) (99.9% in purity) powders were mixed in compositions of \(\text{Ba}_{1-x}\text{Ca}_x\text{Ti}_2\text{O}_5 \) (\(x = 0 \sim 0.10 \)). The mixed powders were pressed into pellets 20 mm in diameter at 10 MPa and calcined at 1223 K for 43 ks in air. The pellets were melted on a water-cooled copper plate by arc melting in Ar. The specimens were heat-treated at 1323 K for 43 ks in air. The crystal orientation was measured by X-ray diffraction (XRD). The lattice parameters were calculated based on a least squares analysis. The \(\text{Ca} \) content \((x) \) in \(\text{BCT}_x \) melted specimens was analyzed by electron probe micro-analysis (EPMA). The microstructure was observed by scanning electron microscopy (SEM) and field-emission scanning electron microscope (FESEM). Specimens, \(3 \times 3 \times 1 \text{mm}^3 \) in size, for dielectric measurements were cut out parallel to the copper plate. Gold paste as an electrode was painted on both sides of the specimens, and was fired at 1123 K for 300 s. The polarization \((P) \)–electric field \((E) \) characteristics were evaluated by Radiant RT6000HVS at room temperature. The dielectric properties were measured using an AC impedance analyzer (Hewlett Packard 4194A) at frequencies \((f) \) from \(10^2 \) to \(10^7 \text{Hz} \) and temperatures from 293 to 1073 K in air.

3. Results and Discussion

Figure 1 shows the XRD pattern of polycrystalline \(\text{BCT}_x \) at \(x = 0.04 \) for a powdered specimen (a) and for an as-prepared bulk specimen (b). \(\text{BCT}_0 \) in a single phase was obtained (Fig. 1(a)) and showed a strong orientation of (020) (Fig. 1(b)). We have previously reported that the powder XRD pattern of \(\text{Sr} \)- or \(\text{Zr} \)-substituted polycrystalline \(\text{BCT} \) contained second phases when the substitution content was more than 0.15 and 0.01 mass%, respectively.\(^9,10\) Bulk XRD patterns of \(\text{Zr} \)-substituted polycrystalline \(\text{BCT} \) showed no \(b \)-axis orientation when the \(\text{Zr} \) content was more than 0.07 mass%. In the present study, however, XRD patterns of polycrystalline \(\text{BCT}_x \) showed no second phase of \(\text{BCT} \) until \(x = 0.10 \). XRD patterns of polycrystalline \(\text{BCT}_x \) also showed a significant \(b \)-axis orientation less than \(x = 0.10 \).
Figure 2 shows the effect of Ca substitution on the lattice parameters of BCT$_2$. The lattice parameters linearly decreased with increasing CaO content up to around $x = 0.08$, obeying Vegard’s law, and then became almost constant. The decrease of lattice parameters may have been caused by the ionic radius of Ca$^{2+}$ (0.13 nm) being smaller than that of Ba$^{2+}$ (0.16 nm). The solubility limit of Ca$^{2+}$ in BT$_2$ ($x = 0.08$) could be smaller than that in BT ($x = 0.21$). We have previously reported that the solubility limit of Sr$^{2+}$ in BT$_2$ ($x = 0.12$) was also smaller than that in BT ($x = 1$). It is known that the perovskite structure accommodates a large number of foreign elements. However, BT$_2$ has a lower symmetry structure than BT, which consists of a combination of corner- and edge-shared TiO$_6$ octahedrons. This may cause the smaller range of solid solution in BT$_2$.

Figure 3 depicts the Cole-Cole plot (a) and M' and Z' as functions of frequency (b) of polycrystalline BCT$_2$ ($x = 0.10$) at 976 K. The Cole-Cole plots of polycrystalline BCT$_2$ showed a slightly depressed semicircle. The capacitance values associated with the semicircle can be calculated from the relationship of $1/C^2 = 1$, where ω ($= 2\pi f$) is the angular frequency and τ ($= RC$, R: resistivity and C: capacitance) is the relaxation time. The associated capacitance value was $10\times 1 \mu F$ at $x = 0.10$, implying a bulk response. No grain boundary or second phase response was identified in the polycrystalline BCT$_2$. The single peaks of the Z' and M' vs. frequency plots (Fig. 3(b)) also indicated a bulk response. The peak frequency at Z'' vs. frequency plot should have been theoretically the same ($f = 1/2\pi RC$) as that of M' vs. frequency plot. However, a discrepancy is often observed due to a slightly distributed τ, mainly resulting from a defect structure; the greater the discrepancy, the greater the defect. In the present study, the discrepancy was minimal, suggesting a less defect structure, even with a significant amount of the Ca substitution, $x = 0.10$.

Figure 4 shows the temperature dependence of the permittivity of BCT$_2$. The measurement deviation of ε_r in the present study was 5 to 8% at $T < T_c$ and less than 3% at $T > T_c$. The peak value of permittivity (ε_{max}) at the T_c changed depending on x and showed the highest value of 4950 at $x = 0.02$. Many researchers have studied the temperature and composition dependences of the permittivity
of BCT. Mitsui et al.\(^1\) reported that Ca substitution caused almost no change in the peak height at the \(T_c\), but broadened the width of the peak of permittivity vs. temperature plot. This could have been resulted from the distribution of Ca in BCT. Figure 5 demonstrates the effect of \(x\) on the \(T_c\) and the \(\varepsilon_{\text{max}}\) at \(T_c\). The \(\varepsilon_{\text{max}}\) was 2780 at \(x = 0\) and increased with increasing \(x\), showing the highest value of 4950 at \(x = 0.02\). Comparing to the \(\varepsilon_{\text{max}}\) at \(x = 0\) in the previous study (1800),\(^9\) the \(\varepsilon_{\text{max}}\) value in the present study was increased by modifying the mixing time of powders and slightly elongating an arc-melting time to eliminate the secondary phases of BaTiO\(_3\) and Ba\(_6\)Ti\(_{17}\)O\(_{40}\) and to improve the \(\varepsilon_{\text{max}}\).

Figure 6 shows the temperature dependence of the electrical conductivity (\(\sigma\)) of BCT. The \(\sigma\) of BCT had a linear relationship with temperature in the Arrhenius format and showed a slight decrease with Ca substitution. The activation energy of BCT increased slightly from 1.41 eV (\(x = 0\)) to 1.70 eV (\(x = 0.08\)).

Figure 7 shows the polarization (\(P\)) vs. electric field (\(E\)) plots perpendicular to the (010) plane at room temperature. The \(P-E\) plots showed hysteresis loops, indicating ferroelectricity. The remnant polarization (\(P_r\)) and coercive electric field (\(E_c\)) of polycrystalline BCT \(x = 0.08\) were \(1.6 \times 10^{-2}\) Cm\(^{-2}\) and \(4.0 \times 10^{6}\) Vm\(^{-1}\), respectively. The \(P_r\) of polycrystalline BCT \(x = 0\) was larger than that of polycrystalline BT \(P_r = 0.7 \times 10^{6}\) Vm\(^{-1}\). Wang et al.\(^{16}\) have reported that the highest \(P_r\) (\(17 \times 10^{-2}\) Cm\(^{-2}\)) of BCT is at \(x = 0.23\) (near the solubility limit composition of BCT).
of $x = 0.21$), where the electrostrictive strain (0.22% at 5×10^6 Vm$^{-1}$) is 157% higher than that in pure BaTiO$_3$ ceramic (0.14% at 5×10^6 Vm$^{-1}$). With a further increase of Ca content from $x = 0.21$ to 0.50, the remnant polarization and electrostrictive strain decreased. They suggested that the large electrostrictive strain may originate to form a non-180° domain rotation driven by an external electric field. In the present study, the highest P_r at the solubility limit composition of $x = 0.08$ may have been caused by the electrostrictive strain being as high as that in BCT.

4. Conclusions

b-axis-oriented polycrystalline CaO-substituted BaTi$_2$O$_5$, Ba$_{1-x}$Ca$_x$Ti$_2$O$_5$ (BCT$_2$), was prepared by arc melting. The lattice parameters of BCT$_2$ decreased with increasing x up to 0.08. The remnant polarization of BCT$_2$ (1.6×10^{-2} Cm$^{-2}$) was greater than that of polycrystalline BT$_2$ (0.9×10^{-2} Cm$^{-2}$). The maximum permittivity (ε_{max}) increased from 2780 (BT$_2$) to 4950 at $x = 0.02$, and then decreased with increasing x. The T_c of BCT$_2$ decreased from 750 to 665 K with increasing x from 0 to 0.10.

Acknowledgements

This study was financially supported by a Grant-in-Aids for Exploratory Research (17656209) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Global COE Program Materials Integration and the Asian CORE Program of the Japan Society for the Promotion of Science (JSPS).

REFERENCES