著者	クリストファー・エドワード・アンダーセン、ビジャ・スワラ、ヨシフ・カワゾーテ、ウィリアム・ピッカーット
卷 | 95
号 | 8
頁 | 089901(E)
発行年 | 2005
URL | http://hdl.handle.net/10097/53251
doi: | 10.1103/PhysRevLett.95.089901
Erratum: Origin of Spontaneous Electric Dipoles in Homonuclear Niobium Clusters

Kristopher E. Andersen,1 Vijay Kumar,2,3 Yoshiyuki Kawazoe,3 and Warren E. Pickett1,*

1Department of Physics, University of California, Davis, California 95616-8677, USA
2Dr. Vijay Kumar Foundation, 45 Bazaar Street, Chennai 600 078, India
3Institute for Materials Research, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Japan

(Received 29 July 2005; published 18 August 2005)

DOI: 10.1103/PhysRevLett.95.089901 PACS numbers: 81.07.Nb, 61.46.+w, 73.22.2f, 77.84.2s, 99.10.Cd

The asymmetry of the classical deflection profiles was exaggerated due to an error in the numerical simulation. Figure 1, which should replace Fig. 5 of the original Letter, shows the classical deflection of Nb12 approximated as a symmetric rigid body, with inertial moments $I_1 = 0.136$, $I_2 = 0.17$, $I_{12} = 0.22$, and $I_3 = 0.134$. The method used to generate these profiles involves the discrete sampling of Eq. (23) in Ref. [1] using the parameters in Table I. For each deflection profile 10^7 random configurations $\{\theta, \phi, \psi\}$ were sampled with the angular velocities $\{\dot{\theta}, \dot{\phi}, \dot{\psi}\}$ bounded by $5/4k_B T / (I_{12} + I_3)$. The original interpretation that thermal averaging affects the symmetry of the deflection profile, leading to more asymmetry at lower temperatures, is still supported by the numerical simulations. The conclusion that thermal averaging reduces the asymmetry and thereby masks the electric dipole at higher temperatures is supported by more extensive calculations and thus remains valid.

The authors thank W. A. de Heer, X. Xu, and R. Moro for fruitful discussions that led to the discovery of this error.

*Electronic address: pickett@physics.ucdavis.edu