Polaron in a one-dimensional C60 crystal

Belosludov V. R., Inerbaev T. M., Belosludov R. V., Kawazoe Y.

journal or publication title Physical Review. B

volume 67

number 15

page range 155410

year 2003

URL http://hdl.handle.net/10097/53337
doi: 10.1103/PhysRevB.67.155410
Polaron in a one-dimensional C_60 crystal

V. R. Belosludov and T. M. Inerbaev
Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090, Russia

R. V. Belosludov and Y. Kawazoe
Institute of Materials Research, Tohoku University, Sendai 980–8577, Japan
(Received 30 September 2002; published 25 April 2003)

Polaron states in a linear chain of fullerenes have been investigated using the Su-Shiriffer-Heeger model supplemented by the Hubbard on-site Coulomb energy. The model is solved numerically within the adiabatic approximation. In this study, the electron charge distribution over the molecular surface, Jahn-Teller distortions of bonds between carbon atoms, and the density of electron states have been calculated self-consistently for a linear chain of C_60 molecules with one extra electron or hole. It is shown that the structure of an electron or hole polaron in the chain differs from the structure of the polaron in a single molecule. These distinctions are caused by both the conjugation of π electrons on the nearest-neighbor molecules and electron-electron correlation. Finally, the critical value of the intermolecular hopping integral for the existence of a self-trapped charge carrier due to the lattice distortion has been determined.

DOI: 10.1103/PhysRevB.67.155410 PACS number(s): 71.38.Ht, 71.15.Dx

I. INTRODUCTION

The outstanding discovery of the fullerene has created a new field of research at the boundary of chemistry and condensed-matter physics, and the properties of the C_60 molecule and C_60 solids have been the subject of much attention from both experimental and theoretical viewpoints. The theoretical interests lie in investigating the bonding character and stability of the isolated fullerene and heterofullerene molecules and C_60 solids, 2–4 the reactivity of the C_60 fullerene, 5 and insertion of different atoms in C_60 fullerene cages. 6–8 Solid C_60 is a molecular crystal bound by van der Waals forces and its properties reflect both the properties of individual C_60 molecules as well as the solid. However, the electronic configuration of crystal C_60 is fundamentally different from usual molecular crystals because of the conjugated character of the bonds in solid C_60. In the C_60 molecule, as well as in conjugated polymers, the chemical bonding inside the molecule leads to one unpaired electron (π electron) per carbon atom. These π electrons delocalize on the quasi-two-dimensional surface of the C_60 molecule and can move between molecules in solid C_60. In spite of the fact that π conjugation between C_60 molecules is much weaker than inside the C_60 molecule, solid C_60 as crystal has remarkable physical properties.

Among different properties, the unusual behavior of fullerenes as a function of alkali-metal doping has been extensively studied. 9 For example, A_2C_60 (A = K, Rb, or Cs) is a superconductor, whereas A_xC_60 and A_2C_60 are insulators. KC_60 shows a metallic temperature dependence of the electrical conductivity, while RbC_60 is an insulator at ambient pressure but under pressure it transforms to a metallic phase. 10 A dimer phase for Li_xC_60 (x ≤ 1) has been identified. 11 Until now many experimental and theoretical investigations aimed at revealing the nature of the unique behavior of pure and doped C_60 solids have been conducted. The studies have suggested that pure and doped C_60 solids are strongly correlated π electron systems and that π electrons interact with the intramolecular distortions of the C_60 molecules. This is due to the narrow bandwidth compared with the strong intramolecular Coulomb repulsion and the presence of Jahn-Teller (JT) distortions in the C_60 molecule. Several theoretical studies have shown that an electron (hole) doped in a C_60 molecule is self-trapped by the JT distortions of its structure, forming a polaron by means of electron-lattice interactions. 12–14 Polaron states in a linear chain of fullerenes caused by the cooperative Jahn-Teller effect 15 have been reported. In accordance with the Landau concept of the polaron (an electron that can be trapped by digging its own hole in a crystal), 16 from these studies it follows that upon addition of an electron the C_60 molecule distorts and additional charge is almost completely accumulated in an equatorial ring circling the C_60 molecule, i.e., a molecular polaron forms. Therefore, one could expect that the properties of the doped C_60 solids will be determined by the properties of the molecular polarons of individual molecules. However, theoretical investigations conducted up to the present have revealed some interesting collective properties connected both with the conjugated character of bonds between molecules in C_60 solids and with the strong correlation of π electrons. For example, calculations of the electronic structure of C_60 solids with full-potential and all-electron ab initio formalism 17,18 have shown that the electronic structure is sensitive to the orientation of the fullerenes in the crystal.

Variation in the band structures of one- and two-dimensional C_60 polymers with changes in the π conjugation was studied using a semiempirical model with Su-Schrieffer-Heeger-type electron-phonon interactions. 19,20 It has been found that the electronic structures change from direct-gap insulators to metals, depending on the degree of π conjugation. The C_60 polymer doped with one electron per molecule is always a metal whereas doping with two electrons C_60 can change the electronic structure from an indirect-gap insulator to a direct-gap insulator, as the conjugations become stronger. 21 The band reconstruction of A_nC_60 (n = 1,2,3,4)
Ref. 22) and the electronic structure of linear chains of fullerene23,24 caused by the cooperative Jahn-Teller effect were studied using a generalized Su-Shrieffe-Heeger (SSH) model for the intermolecular and intramolecular degrees of freedom. It was shown that only the cooperative Jahn-Teller effect can explain the existence of metallic and insulating phases in these compounds. The JT distortions can arise in \(A_1C_60 \) with strong electron correlation and change a Mott-Hubbard insulator into a band insulator.\(^{25} \) Inhomogeneous charge distribution among carbon atoms in \(A_1C_60 \) appears with JT distortions.\(^{26} \) Models with Coulomb interactions were used for calculation of the electronic structure of \(C_60 \) polymers and a phase diagram was obtained by changing the Coulomb interaction strengths and the parameter of \(\pi \) conjugation between \(C_60 \) molecules.\(^{27} \) It was found that antiferromagnetism can be described by this model. Using a model with electron-electron and electron-phonon interactions, it was shown\(^ {28} \) that both interactions are important for explanation of observed anomalies in the alkali-metal-doped \(A_1C_60 \). JT distortion of the \(C_60 \) molecule could create an effective electronic interaction that would modulate electron-electron repulsion, so that on-site Hubbard electron-electron interaction may be important in understanding the origin of high-temperature superconductivity at finite doping. For low doping of \(C_60 \) solids and weak \(\pi \) conjugations between \(C_60 \) molecules one could suggest that electrons form polarons on single molecules. Will the molecular polarons remain such with increasing conjugation strength and doping level? Does the electron correlation and conjugation of \(\pi \) electrons have a strong effect on the conditions under which polarons can form? These questions are important to understand the nature of the unusual physical properties of doped \(C_60 \) solids.

We, therefore, investigate the role of electron correlation, conjugation of \(\pi \) electrons and level of doping on formation of polarons in \(C_60 \) solids. For description of the polaron we use a generalized SSH model for the intermolecular and intramolecular degrees of freedom including a Hubbard-type on-site interaction. Our previous results show that this model satisfactorily describes the physical picture of the phenomena as well as several properties of the fullerene compounds.\(^ {15,22–24} \)

II. MODEL

The model Hamiltonian for the \(C_60 \) crystal including electron correlation can be written as the sum of the extended SSH Hamiltonian\(^ {22} \) and the Hubbard interaction term:

\[
H = H_{ph} + H_{el-ph} + H_{el-el},
\]

\[
H_{el-ph} = - \frac{1}{2} \sum_{n,n'} \sum_{(ij)k} t_{ij}^{nn'} a_{ni}^\dagger a_{nj}^\dagger a_{nk} + \text{H.c.},
\]

\[
H_{el-el} = U \sum_n a_{ni}^\dagger a_{ni} a_{ni}^\dagger a_{ni}.
\]

Here \(a_{ni}^\dagger \) creates a \(\pi \) electron on the \(i \)th carbon atom of the \(n \)th molecule; intramolecular hopping integrals for the \(n \)th molecule are represented by \(t_{ij}^{nn'} = t - \alpha d_{ij}^{nn'} \) for nearest-neighbors and 0 otherwise; \(d_{ij}^{nn'} \) is the change in bond length between sites \(i \) and \(j \) of molecule \(n \); intermolecular hopping integrals from molecule \(n \) to \(n' \) are given by \(t_{ij}^{nn'} = T - \alpha' d_{ij}^{nn'} \) for nearest-neighbors and 0 otherwise; \(d_{ij}^{nn'} \) is the change in bond length between sites \(i \) in molecule \(n \) and \(j \) in molecule \(n' \); \(\alpha \) and \(\alpha' \) are the electron-lattice coupling constants; and \(U \) is the on-site Hubbard electron-electron interaction. In the approximation where displacements of carbon atoms caused by intramolecular and intermolecular vibrations are ignored, \(H_{ph} \) is the bond-stretching energy of the crystal with spring constants \(K \) and \(K' \).

For simplicity, we have not considered electron-electron interactions among electrons located at different sites. It can be supposed that this interaction will merely “renormalize” \(t \) and \(U \).\(^ {31} \) As usual we treat the above Hamiltonian in the adiabatic approximation.

In the one-electron approximation the wave function \(\psi_{\mu} \) of a \(\pi \) electron with spin \(s \) on carbon atom \(i \) of molecule \(n \) can be represented by \(\psi_{\mu} = a_{ni}^\dagger |0\rangle \langle 0| \) (the ground state of the system without \(\pi \) electrons). The electron eigenfunction \(\psi_{\mu_{ni}} \) at site \(i \) corresponding to the energy level \(\varepsilon_{\mu} \) can be found from the Schrödinger equation,

\[
H \psi_{\mu_{ni}} = \varepsilon_{\mu} \psi_{\mu_{ni}}.
\]

The model is treated in the Hartree-Fock approximation,

\[
\sum_{ni} a_{ni}^\dagger a_{ni} a_{ni}^\dagger a_{ni} = \sum_{ni} (n_{ni} a_{ni}^\dagger a_{ni} + n_{ni} a_{ni}^\dagger a_{ni}) - \sum_{ni} n_{ni} n_{ni}
\]

\[
= \sum_{ni} (n_{ni} a_{ni}^\dagger a_{ni} + n_{ni} a_{ni}^\dagger a_{ni}) - \sum_{ni} n_{ni} n_{ni}.
\]

In the Hartree-Fock approximation, \(H \Rightarrow H_{HF} \).

\[
H_{HF} = - \sum_{n,n'} \sum_{(ij)k} t_{ij}^{nn'} a_{ni}^\dagger a_{nj}^\dagger a_{nk} + \text{H.c.}
\]

\[
+ U \sum_{ni} (n_{ni} a_{ni}^\dagger a_{ni}^\dagger + n_{ni} a_{ni}^\dagger a_{ni}).
\]

Equation (5) can be written as
Here \(n_{i1(2)}^n \) is the electron density on the \(i \)th atom of the \(n \)th molecule with spin up (down). The total energy of the system is

\[
E(\{d_{ij}^n\},\{d_{ij}^{n'}\},\{n_{js}\}) = \sum_\mu E_\mu(\{d_{ij}^n\},\{d_{ij}^{n'}\},\{n_{js}\}) + \frac{K}{2} \sum_{n12(1)} (d_{ij}^n)^2
\]

\[
+ \frac{K'}{2} \sum_{n,n'} (d_{ij}^{n'})^2 + U \sum_{ni} n_{i1} n_{i2}.
\]

We determine the lowest energy state using the variational theorem,

\[
\frac{\partial E(\{d_{ij}^n\},\{d_{ij}^{n'}\},\{n_{js}\})}{\partial d_{ij}^n} = 0, \quad \frac{\partial E(\{d_{ij}^n\},\{d_{ij}^{n'}\},\{n_{js}\})}{\partial d_{ij}^{n'}} = 0.
\]

under conditions \(\Sigma d_{ij}^n = 0 \) and

\[
\frac{\partial E(\{d_{ij}^n\},\{n_{js}\})}{\partial n_{ij}^n} = 0.
\]

From Eq. (10) one can obtain \(d_{ij}^n \) and \(d_{ij}^{n'} \),

\[
d_{ij}^n = -\frac{2\alpha}{K} \sum_\mu \psi_{\mu1} \psi_{\mu2} \psi_{\mu1}^* \psi_{\mu2}^* + \frac{2\alpha'}{90K} \sum_\mu \psi_{\mu1} \psi_{\mu2} \psi_{\mu1}^* \psi_{\mu2}^*
\]

\[
d_{ij}^{n'} = -\frac{2\alpha'}{K'} \sum_\mu \psi_{\mu1} \psi_{\mu2} \psi_{\mu1}^* \psi_{\mu2}^*.
\]

and from Eq. (11),

\[
n_{ij}^n = \sum_\mu \psi_{\mu1} \psi_{\mu2}^*.
\]

The nonlinear system of equations (8), (12), and (13) is closed and its solution allows self-consistent determination of the electron structure of a one-dimensional C\(_{60}\) crystal, the distributions of bond lengths between carbon atoms, and the charge densities with spins up and down on each site. For an ideal crystal one can use translational symmetry to reduce the system of 120N (\(N \) is the number of C\(_{60}\) molecules in the crystal) equations to a system of 120 equations, because the unit cell contains one C\(_{60}\) molecule. In the case of crystal doping by one electron (hole) and creation of a polaron, the translational symmetry is broken and, in general, in order to find a solution, the system of 120N equations has to be solved. Thus, to study polaron formation, it is necessary to consider a larger cell than the basic unit cell. We have therefore constructed a supercell of \(m \) unit cells consisting of \(m \) C\(_{60}\) molecules and one excess electron (hole). In this case the system of 120N equations is reduced to a system of 120m equations. The value of \(m \) is determined from the condition that the resulting system of equations would permit description of the creation of polaron in the C\(_{60}\) crystal to a reasonable degree of approximation. It is convenient to introduce in this case two indices \(n \) and \(l \) for molecules in the crystal supercell instead of one index \(n \). Thus \(\psi_{il}^{nl} \) is the eigenfunction of an electron at site \(i \) of the \(l \)th \((l=1,2,\ldots,m)\) molecule in supercell \(n \) \((n=1,2,\ldots,N_c)\) of the crystal. Using the Fourier transformation for a one-dimensional crystal

\[
\psi_{lj}^{nl} = \frac{1}{\sqrt{N_c}} \sum_q \psi_{lj}(q) e^{iqa_n},
\]

where \(N_c \) is the number of supercells, \(a_c = ma \) is the length of the supercell, \(a \) is the length of the unit cell, \(q \) is the modulus of the reciprocal lattice vector. Applying the translational symmetry, \(\psi_{lj}^{nl} = \psi_{lj}^{n'l} \) and \(d_{ij}^{nl} = d_{ij}^{n'l} = d_{ij}^l \). The system of equations (8) can be presented in the matrix form as

\[
\begin{bmatrix}
A + C_1 & 0 & \vdots & \vdots & 0 & 2\cos(qa_c)B^{1m}

0 & B^{21} & A^2 & B^{23} & \vdots & \vdots

\vdots & \vdots & \ddots & \ddots & \vdots & \vdots

0 & \vdots & \vdots & A^{m-1} & B^{mn-1}

B^{m12} \cos(qa_c) & 0 & \cdots & \cdots & A^m
\end{bmatrix}
\]

where

\[
A = \begin{bmatrix}
A^1 & B^{12} & 0 & \cdots & 0 & 2\cos(qa_c)B^{1m}

B^{21} & A^2 & B^{23} & \vdots & \vdots & \vdots

\vdots & \vdots & \ddots & \ddots & \vdots & \vdots

\vdots & \vdots & \ddots & A^{m-1} & B^{mn-1}

B^{m12} \cos(qa_c) & 0 & \cdots & \cdots & A^m
\end{bmatrix}
\]

155410-3
Here N is the number of molecules in the crystal, A'_{ij} is the 60 × 60 matrix corresponding to the hopping of electrons between carbon atoms inside the ith fullerene molecule; $A'_{ij} = t - \alpha d'_{ij}$ for nearest-neighbors of the ith and jth carbon atoms of the lth molecule. $B^l = 1$ is a 60 × 60 matrix that describes electron hopping between nearest-neighbor fullerene molecules l and $l + 1$: $B^l = T - \alpha' d'_{ij}$ for nearest-neighbors of the ith carbon atom on the lth molecule and the jth carbon atom on the $l + 1$th molecule and 0 otherwise.

From Eqs. (12)–(14) one can obtain d^l_{ij} and $d^{l,\prime}_{ij}$,

$$d^l_{ij} = -\frac{2\alpha}{KN_c} \sum_{\mu q} \psi^m_{\mu i}(q)\psi^m_{\mu j}(q)$$

$$+ \frac{2\alpha}{90KN_c} \sum_{\mu q} \psi^m_{\mu i}(q)\psi^m_{\mu j}(q),$$

$$d^{l,\prime}_{ij} = -\frac{2\alpha'}{K'N_c} \sum_{\mu q} \psi^m_{\mu i}(q)\psi^m_{\mu j}(q),$$

$$n_{ij}^l = \frac{1}{N_c} \sum_{\mu q} \psi^m_{\mu i}(q)\psi^m_{\mu j}(q).$$

III. RESULTS AND DISCUSSION

As was described above, in order to solve the problem of the existence of one polaron in the C_{60} chain we have used the approximation in which the possibility of the existence of a polaron in a supercell was considered. The one-dimensional chain was modeled by means of defining the supercell from three, five, seven, or nine fullerene molecules. In our calculations the parameter of the intermolecular electron hopping T was varied from 0.01t to 0.4t (t is the value of intramolecular hopping integral). The system (16) of self-consistent equations was solved numerically by ordinary iteration techniques. The calculations were conducted in 61 points in the Brillouin zone in the reciprocal space.

FIG. 1. Numbering of carbon atoms in the C_{60} molecule. Bold numbers show atoms on which the main part of the charge is concentrated after formation of a string polaron. The heavy curves indicate the path in which dimerization is suppressed for the string polaron. (Ref. 13) Front (a) and back (b) views of an electron or hole polaron on single C_{60}. Front (c) and back (d) views of a hole polaron in a linear chain for $T/t = 0.1$ and $U = 0$.

The interatomic distances and charges on the central C_{60} molecule were initially set to the values corresponding to an isolated charged molecule. Those of the other molecules were initially set to the values of an isolated neutral molecule. These values were obtained from the calculations of the electronic structure and bond lengths between carbon atoms for isolated charged and neutral C_{60} molecules, respectively. The initial bond lengths between atoms in the neutral molecule were equal. In the case of charged molecule the initial bond lengths were taken as the calculated bonds for the neutral molecule.

Following Ref. 14 we have numbered the 60 carbon atoms per C_{60} molecule as indicated in Fig. 1. Bonds between carbon atoms are numbered as shown in Table I. The numbering of bonds is chosen so that the first 30 bonds separate the pentagons from the hexagons and the remaining 60 bonds separate the hexagons.

For the neutral C_{60} molecule in the case where electron-electron interaction is neglected, $U = 0$ and with the parameters $t = 2.5$ eV and $\alpha = 6.31$ eV/Å, $K = 49.7$ eV/Å, $K' = K$, $\alpha' = \alpha$ two distinct bond lengths exist. Bonds separating the pentagons and hexagons become longer than the bonds separating the hexagons, and changes in the bond lengths are identical to previous results. The calculated width of the energy band gap in the electron spectrum of the neutral C_{60} molecule is equal to 2.25 eV, which agrees well with the experimental photoelectron and inverse-photoelectron spectra for solid C_{60} (Ref. 35) as well as earlier calculations. In the case of $U \neq 0$, for $0 < U < 2t$ in the neutral molecule, the bond lengths and energy gap in the electronic spectrum are the same as in the case $U = 0$. With increasing U, the behavior of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels in the electronic spectrum is linear and identical to previous results.
TABLE I. Numbering of bonds in the linear chain.

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30				
i	1	3	4	5	6	11	12	13	14	19	20	21	22	27	28	29	31	35	36	37	38	43	44	45	46	51	52	54	56	59				
j	2	9	10	7	15	16	17	18	23	24	25	26	34	33	30	32	39	40	41	42	47	48	49	50	51	52	53	58	57	60				
k	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60				
l	1	1	2	2	3	4	5	6	7	7	8	8	9	10	11	15	15	16	16	17	17	18	19	20	21	22	23	24	25	26	27	28	29	30
m	3	5	4	6	11	13	12	14	10	22	9	21	19	20	12	14	23	29	24	30	25	26	31	27	28	27	28	36	35					
n	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90				
p	4	5	6	7	8	9	10	11	13	15	15	16	16	17	17	18	19	20	21	22	23	24	25	26	27	28	29	30						

For the C_{60} molecule with one extra charge, in the case where $U=0$, the same bond lengths between carbon atoms and electronic spectrum as in earlier reports12,14 have been obtained. Using the notation described above for the carbon atoms (Fig. 1) and bonds (Table I), the distribution of excess charge and relative changes in bond lengths are shown in Fig. 2. It is seen that upon electron as well as hole doping there occurs a nonhomogeneous distribution of excess charge on the molecule and dimerization is suppressed on the bonds that connect sites with maximum values of extra charge [Figs. 1(a,b)], which corresponds to formation of a string polaron.3

Upon addition of extra charge in a one-dimensional C_{60} crystal under weak conjugation ($T/t\ll 1$) a polaron is formed on the central molecule in the supercell, and with increasing conjugation there occurs a redistribution of charge on the other molecules in the supercell. This is accompanied by changes in the bond lengths between carbon atoms and in the electronic structure of the fullerene chain.

In Figs. 3–8 we show the results of calculations of the charge distribution, changes in the bond lengths, and electron density of states in a supercell consisting of three C_{60} molecules for different doping levels and values of the parameters T/t and U.

For small values of the parameter T/t extra charge is localized on the central molecule. For $U=0$ distribution of the excess electron [Fig. 3(a)] and distortions in the bond lengths [Fig. 4(a)] in this molecule differ slightly from the case of the isolated fullerene [Figs. 2(a,b)], and some spreading of the string polaron occurs. The behavior of all considered quantities for the end molecules is the same as for the isolated neutral molecule. Taking the Hubbard interaction into account produces an insignificant influence on the charge distribution in the system and has very little influence on the bond lengths [Figs. 3(b) and 4(b)]. In the case of hole doping for $U=0$, distribution of the excess charge on the central molecule [Fig. 5(a)] and changes in the bond lengths [Fig. 6(a)] in this molecule also differ from the case of the isolated molecule [Figs. 2(c,d)], while the end molecules remain neutral. Figures 1(c,d) show the change in distribution of the hole polaron on the surface of the central molecule in supercell as compared with the isolated fullerene (Fig. 1). Inclusion of the Hubbard interaction qualitatively changes the picture of Figs. 1(c,d) to that of Figs. 1(a,b) [see also Figs. 5(b) and 6(b)].

Increasing the parameter T/t leads to disappearance of the...
polaron. The atomic charge distribution differs in the cases of electron and hole doping. In both cases the charge distribution on all molecules is similar but on the bonds linking the end molecules of neighboring supercells in the chain. The results for both end molecules are identical.

FIG. 4. Change in bond length d_{ij} in the chain modeled by a system of three periodically repeated C$_{60}$ molecules with one additional electron. The results are shown only for the central (atom numbers 1–90) and one end molecule (atom numbers 93–182). Bonds 91 and 92 link the central and end molecules; while bonds 183 and 184 connect the end molecules of neighboring supercells in the chain. The results for both end molecules are identical.

FIG. 5. Charge distribution for carbon atoms in the chain modeled by a system of three periodically repeated C$_{60}$ molecules with one additional hole. The numeration of atoms is the same as in Fig. 3.

FIG. 6. Change in bond length d_{ij} in the chain modeled by a system of three periodically repeated C$_{60}$ molecules with one additional hole. The numeration of atoms is the same as in Fig. 4.

Hubbard interaction has practically no influence on the bond lengths [Figs. 4(c,d) and 6(c,d)].

The densities of electron states for electron and hole doping with $U=0$ in comparison with the neutral chain are shown on Fig. 7. The electronic structure of the chain is reconstructed. In the case of the neutral chain [Fig. 7(a)], the interaction between different C$_{60}$ molecules implies that, distinct from an isolated molecule, the gap in electronic spectrum is narrowed to 1.78 eV and doubly degenerate energy levels are split from the corresponding HOMO and LUMO levels of the single molecule. Upon addition of one electron (hole) to the system these split levels become closer. The extra electron (hole) occupies one of the levels and the split-
FIG. 8. Electron DOS (in arbitrary units) for the chain modeled by a system of three periodically repeated C_{60} molecules for $U = 2t$: (a) Neutral system, $T/t = 0.1$; (b) one additional electron, $T/t = 0.1$ and (c) $T/t = 0.4$; (d) one additional hole, $T/t = 0.1$ and (e) $T/t = 0.4$. The Fermi levels are marked by the vertical dashed lines.

FIG. 9. Distribution of the mean value of charge on the central and end molecules for supercells consisting of 3, 5, 7, and 9 fullerenes as a function of the conjugation parameter T/t for $U = 0$ in the case of one added electron per supercell. One can see that for small enough values of the parameter T/t the additional charge is localized on the central molecule, and starting from the threshold value $T^* = 0.215$, redistribution on the end molecules occurs. From Fig. 9, it can be also seen that with increasing supercell size the charge distribution approaches limiting behavior for large N_c. Thus, we conclude that a polaron can also exist in the limit of an infinite supercell. Change of U within the considered limits leads to only insignificant variations in the resulting picture.

The phenomenon of polaron formation has been also studied in many models of interaction of a Fermi particle (the charge carrier) with a boson field (phonon). Among these models are the relatively simple tight-binding Holstein and SSH (Ref. 39) models. Using these models, the formation and self-trapping transition under changes in the relation between the electron-phonon coupling constant, the nearest-neighbor hopping integral, and the Einstein frequency have been investigated. Thus, in the one-dimensional Holstein model the line of so-called self-trapping transition separating the small polaron from the large polaron has been determined and different criteria for single polaron formation have been established. By contrast, in our case, the formation of a polaron in a one-dimensional doped (electron or hole) C_{60} crystal has been considered. In this model, as distinct from the linear chain Holstein and SSH models, the polaron in the neutral one-dimensional C_{60} crystal is absent and forms only when an electron or hole is added.

IV. CONCLUSIONS

The electronic structure of a molecular polaron and associated Jahn-Teller distortions in a doped C_{60} chain have been studied with the use of a generalized version of the Su-Shrieffer-Heeger model for the intermolecular and intramolecular degrees of freedom. Inclusion of electron correlation effects (on-site Hubbard repulsion) has been considered.

The present numerical results for the neutral and doped single C_{60} systems agree well with the known results. When the molecule is doped with one electron or hole the additional charge accumulates along a nearly equatorial line in the molecule. Dimerization becomes weaker along the same line. In both cases of electron and hole doping the forms of the polaron on an isolated molecule are the same. In the case of a linear chain with one extra electron (hole), for weak π conjugation a polaron is also generated. In this case the electronic structure and distortions in the bond lengths for electron and hole doping differ significantly. These distinctions are caused by conjugation of π electrons and electron-electron interactions. For $U = 0$ the electron string polaron is spread out while the hole polaron conserves its form and rotates on the surface of the molecule. Inclusion of the Hubbard interaction makes no influence on the form of the electron polaron while the structure of the hole polaron returns, with slight quantitative changes, to the form characteristic of a string polaron on an isolated molecule. Further strengthening of π electron conjugation leads to disappear-
ance of the polaron in the linear chain. In this case the doped charge is located on the nearest atoms of neighboring molecules of chain and the bond lengths between neighboring molecules change significantly. Hubbard on-site repulsion does not change the physical picture of formation and disappearance of the polaron.

Thus, as shown in this paper, single polarons existing in separate fullerene molecules can also exist in C\textsubscript{60} solids for adequately strong π conjugation. Existence of such polarons is important to understand the charge transport mechanisms in fullerene and heterofullerene molecules and C\textsubscript{60} solids and the reactivity of these compounds.

9. O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997), and references therein.

ACKNOWLEDGMENTS

We would like to thank the Information Science Group of the Institute for Materials Research, Tohoku University for their continuous support of the SR8000 supercomputing system. We are also thankful to Dr. T. M. Briere for carefully reading the manuscript. One of the authors, V.R.B., has been supported by the Japan Society for the Promotion of Science (JSPS) (Grant ID No. RC 30126005). This work was also supported by the Russian high Tc superconductivity research program (Grant No. 98009).