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Dirichlet Prior for Estimating Unknown Regression Error Heteroskedasticity

Hiroaki Chigira and Tsunemasa Shiba
1 Introduction

We propose a Bayesian approach to estimate heteroskedastic parameters of regression error variances

that are of unknown form, using Dirichlet prior pdf. As Amemiya (1985, p.199) points out, the

crucial ω vector1 cannot be consistently estimated because as the number of parameters increases, the

sample size also increases at the same rate, leading to the lack of identifiability of ω. Eicker (1963) and

White (1980) independently developed a well-known consistent variance-covariance matrix estimator

(“HCCM” hereafter) for the OLS regression coefficient estimator. We use HCCM information to

formulate proposal density of a Metropolis-Hastings (“M-H” hereafter) algorithm in Markov Chain

Monte Carlo simulation. Unidentifiability of ω poses no problem to us. As in Amemiya (1985, p.199)

we use an orthogonal regression that circumvents possible underidentifiability of ω, this problem. Also,

a Dirichlet prior on ω should make it identifiable in a Bayesian context.

The trend in the HCCM literature seems to be in the ways to improve finite sample performance

of tests of the linear restriction(s) on the coefficient vector, e.g., Long and Ervin(2000) and Godfrey

(2006), among others. Our focus in this paper is in the direct estimation of the elements of ω. There

are papers that deal with statistical inferences of regression coefficients, when the skedastic function

of the error term is unconstrained. Robinson (1987) assumes it to be a function of regressors, and

derives an GLS estimator that is more efficient than the existing ones. Our Bayesian estimation of ω

will help to sharpen posterior density of β and/or lead to a better predictive density. It may also lead

to more efficient estimator of β in terms of asymptotic theory framework as well.

In Bayesian econometrics, starting with a seminal work by Geweke (1993) there is a homoskedastic

Student-t regression model derived from normal linear regression (“NLR” hereafter) with a particular

set of Gamma priors for heteroskedasticity parameters. This model has been introduced in such books

as Koop (2003), Geweke(2005) and Greenberg (2013), among others, and is now a popular Bayesian

model. We will compare our model to this model using the Deviance Information Criterion (“DIC”

hereafter).

We shall discuss estimation of ω, where ωi is the ith volatility. In order to access an option

pricing, we first need to come up with a reasonable estimate of volatility. Our estimation of ω needs
1The ω vector has in its elements, all the normalized diagonal elements of variance-covariance matrix of the regression

error term. The normalization rule for the matrix is given just below equation (4).
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no parametric model for volatility process such as the GARCH model, since we only use HCCM

information. If we wish to estimate a volatility process in time series data nonparametrically, what we

usually do is to calculate a historical volatility series. But this is just a descriptive statistic without a

theoretical background. Moreover, when it comes to cross section data, historical volatility calculation

breaks down for obvious reasons.

After assuming a usual prior density for the parameters in the regression model, we may obtain a

joint posterior density. The usual parameters, e.g., (β, σ2), may be easily simulated using the Gibbs

sampling. It is in the simulation of the elements of ω that we use the HCCM. We use results from

HCCM to form the proposal density in the M-H algorithm.

The rest of this paper is organized as follows. In section 2, we set our regression model. Prior

pdf’s are assumed here, and the joint posterior pdf is derived. Section 3 starts out with our Bayesian

MCMC calculation by a Gibbs sampler. We propose to use the Eicker–White result to simulate ω by

a M-H scheme. In sections 4 numerical illustrations to compare our methodology to homoskedastic t

distiruted error term model, are given. We us DIC to this effect.

2 Model and Assumptions

2.1 Likelihood

Let an NLR model with heteroskedastic error term be

yi = x′
iβ + ui, (i = 1, . . . , n) (1)

where yi ∼ dependent variable, xi ∼ K×1 non stochastic explanatory variables, β ∼ K×1 coefficients,

and the properties of regression error term u be

ui |ωi, σ
2 ∼ N(0, σ2ωi) . (2)

Our single likelihood function for yi has the following normal distribution

yi | xi,β, ωi, σ
2 ∼ N(x′

iβ, σ
2ωi) . (3)

We may use the following two notations: ωi =
1

λi
, where λi is the precision. Geweke (1993) uses ωi ,

whereas Geweke (2005) and Greenberg (2013) use λi . (1) in an matrix form becomes

y = Xβ + u , (4)
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where y ∼ n × 1 of yi’s, X ∼ n ×K matrix of stacked up x′
i, u ∼ Nn(0, σ

2Ω), and Ω = diag(ω) =

diag(ω1, . . . , ωn) ∼ n×n with
n∑

i=1

ωi = tr(Ω) = n. Note that tr(Ω) = n restriction is often employed in

heteroskedasticity literature, e.g., Greene (2012, p 308). The likelihood function for the whole sample

becomes

ℓ(y|X,θ) ∝ σ−n(
n∏

i=1

ω
− 1

2
i ) exp

( −1

2σ2
(y −Xβ)′Ω−1(y −Xβ)

)
, (5)

where we noted |σ2Ω|
−1
2 = σ−n

n∏
i=1

ω
−1
2

i . On completing squares on β above, we obtain

ℓ(y|X,θ) ∝ σ−n(
n∏

i=1

ω
−1
2

i ) exp

( −1

2σ2
(νs2 + (β − β̂)′X̃

′
X̃(β − β̂)

)
, (6)

where ν = n −K, νs2 ∼ the sum of squared residuals from the regression of ỹ on X̃, ỹ = Ω−1/2y,

X̃ = Ω−1/2X, and β̂ = (X̃
′
X̃)−1X̃

′
ỹ = (X ′Ω−1X)−1X ′Ω−1y is the GLS estimator of β. (6) turns

out to be useful for simulating β since it is in a multivariate normal form in β.

2.2 Prior and Posterior

Let θ = (β′, σ2,ω′)′ ∼ (K+1+n)× 1 be our parameter vector. We assume prior distribution on θ as

π(θ) ∝ π(β)π(σ2)π(ω) , (7)

where the three arguments of θ are independent. Individual prior for β and σ2 are

β ∼ NK(β0,B0), σ2 ∼ IG(α0

2
,
δ0
2
), (8)

where β0 ∼ K × 1, B0 ∼ K ×K, α0 and δ0 are hyper parameters in the prior pdf’s that are assumed

to be known, and IG(·) denotes an inverted gamma distribution.

We note that ω is an n dimensional continuous multivariate random variable vector that satisfies

the tr(Ω) =
∑

i ωi = n restriction. The best suited prior to this regard, is obviously Dirichlet with its

hyper parameter values the same for all i = 1, . . . , n. This way, we may effectively represent unknown

heteroskedasticity structure and satisfy tr(Ω) = n restriction. If we employed Gamma prior, e.g.,

Geweke (1993, 2005) and Greenberg (2008), among others, then we are in effect imposing a certain

structure in the heteroskedasticity.

Since a Dirichlet has the property that its elements add up to one, not n, we cannot place a

Dirichlet prior directly on ω. Instead, we shall assume

ω̃ ∼ D(η
0
), (9)
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where ω̃ =
1

n
ω, andD(η

0
) denotes a Dirichlet distribution with a parameter vector η

0
= (η01 , . . . , η0n)

′ ∼

n × 1. The values of η
0
will be given later in this paper. The assumption on ω̃ is tr(Ω̃) = 1, thus

tr(Ω) = n. If we make a transformation from ω̃ vector to ω vector, we arrive at our prior distribution

on ω that resembles to Dirichlet aside from normalizing constant:

π(ω) =
1

n

Γ

(∑
i

η0i

)
n∏

j=1

Γ(η0j )

n∏
h=1

(
ωh

n

)η
0h

−1

= n
n−1−η̃0

Γ

(∑
i

η0i

)
n∏

j=1

Γ(η0j )

n∏
ℓ=1

ω
ℓ

η
0ℓ
−1 , (10)

where η̃0 =
n∑

h=1

η
0h
. Hence, its kernel is given by

π(ω) ∝
n∏

i=1

ω
η0i−1
i . (11)

Given (8) and (11), our joint prior for θ becomes

π(θ) ∝ exp

(−1

2
q
β

)(
1

σ2

)α0
2
+1

exp

(−δ0
2σ2

) n∏
h=1

ω̃
η
0h

−1

h , (12)

where q
β
= (β−β0)

′B−1
0 (β−β0). Finally, the posterior π(θ|y,X), is obtained by combining (6) and

(12) as π(θ|y,X) ∝ ℓ(y|X,θ)π(θ) to obtain

π(θ|y,X) ∝ σ−n(
n∏

i=1

ω
−1
2

i ) exp

(−ψ
2σ2

)
exp

(−1

2
q
β

)(
σ2
)−(

α0
2
+1)

exp

(−δ0
2σ2

) n∏
h=1

ω̃
η
0h

−1

h , (13)

where ψ = νs2+(β− β̂)′X̃
′
X̃(β− β̂). Note that in θ, ψ depends on β and ω, while q

β
depends on β.

2.3 Student-t homoskedasticity model and our model

The main purpose of our model is in Bayesian estimation of the n elements in ω without assuming

a prior structure for it. On the other hand, Geweke’s (1993) Student-t homoskedasticity model, also

given in Geweke (2005) and Greenberg (2012), among others, is primarily concerned with estimating

β coefficient vector in heteroskedastic NLR model.

Suppose a heteroskedastic regression disturbance ui| λi, σ2 ∼ N(0, σ2/λi). If we assume a Gamma

with an identical shape and scale parameters, ν = ν1 = ν2 on a prior for λi , then the resultant ui| λi, σ2

distribution becomes a fat-tailed homoskedastic Student-t with the parameters (ν, 0, σ2).

If there is a compelling need for such Gamma prior on λi, then the above equivalence of (1) NLR

with heteroskedasticity, and (2) homoskedastic Student-t should be of a great value. What would

the effect be if there is only one parameter value ν1 = ν2 = ν in the Gamma distribution? Such
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Gamma random variable would have E(x) = 1 always, and its pdf becomes concentrated abround it

as ν gets large. We may thus conclude that the single parameter Gamma distribution assumption,

is rather peculiar. In view of the above conclusion, we suggest that we depart from λi ∼ Gamma

distribution assumption, and adopt more reasonable prior for ui heteroskedasticity. Notice, however,

that even if a Gamma prior G(
ν1
2
,
ν2
2
), on λi is assumed, then n λi’s are, again, generated from one

single Gamma. This is in effect assuming a particular structure on the heteroskedasticity of ui’s. If

the interest of the Bayesian analysis, is in finding the parameter of the structure, ν = ν1 = ν2, then

the Gamma distribution assumption may be justified. But if we are interested in estimating each

σ2i = σ2/λi = σ2ωi then we need something other than a scalar Gamma assumption. As we developed

in the previous subsection, we employ a Dirichlet prior to this end.

Dirichlet prior on λi or ωi is suitable for Bayesian estimation of heteroskedastic variance parameters

that have unknown structure, on two grounds. First, it is free of restrictions from the small number of

parameters that govern the entire shape of the prior pdf. In Geweke’s Gamma pdf prior for λ ∼ n×1,

ν is the only parameter of the distribution. If the prior pdf of the λ vector were to be of unknown

structure, it should have n parameters. Secondly, Dirichlet distributed random variables, xi’s are

continuous and satisfy the
n∑

i=1

xi = 1 constraint by construction. This is a welcome constraint to our

setup, where
∑
ωi = n restriction, needs to be satisfied a priori.

3 MCMC Simulation of θ

We use notations “θ−ϑ” to denote θ less ϑ hereafter. For instance, “θ−β” implies θ−β = (σ2,ω′)′ ∼

(1 + n)× 1.

3.1 Gibbs Sampler for β and σ2

As shown in the two remarks below, tractable fully conditional posteriors of β and σ2 may be obtained.

On the other hand we need to implement an Independence Chain M-H algorithm for simulating ω.

Remark 1. Fully conditional posterior of β is given by

β|θ−β, y,X ∼ NK(β1, σ
−2B1) , (14)

where B1 = (X̃
′
X̃ + (σ−2B0)

−1)−1, β1 = B1φ, and φ = X̃
′
X̃β̂ + (σ−2B0)

−1β0.

Proof From the joint posterior (13), conditional posterior of β becomes

π(β| θ−β,y,X) ∝ exp(

(−ψ
2σ2

)
exp

(−1

2
qβ

)
∝ exp(

−1

2σ2
Aβ) ,
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where Aβ = (β − β̂)′X̃
′
X̃(β − β̂) + (β − β0)

′(σ−2B0)
−1(β − β0). On completing squares for β, Aβ

becomes

Aβ = (β − β1)
′B−1

1 (β − β1) + (β̂ − β0)
′[(X̃

′
X̃)−1 + σ−2B0]

−1(β̂ − β0) .

Hence,

π(β|θ−β, y,X) ∝ exp

(
−1

2
(β − β1)

′(σ−2B1)
−1(β − β1)

)
(15)

The right hand side of (15) may be used to simulate β from a multivariate normal.

Remark 2. Fully conditional posterior of σ2 is in Inverted Gamma:

σ2 | θ−σ2 , y, X ∼ IG
(
n+ α0

2
,
ψ + δ0

2

)
(16)

Proof From the joint posterior (13), conditional posterior of σ2 becomes

π(σ2| θ−σ2 , y, X) ∝ σ−n exp

(
− ψ

2σ2

) (
σ2
)−(α0

2 +1)
exp

(−δ0
2σ2

)

∝
(
σ2
)−(n+α0

2 +1
)
exp

(
−(ψ + δ0)

2σ2

)
.

3.2 Independence Chain for ω

We now turn to ω simulation. From the joint posterior, (13), we have

π(ω|θ−ω, y,X) ∝ (
n∏

i=1

ω
(η∗

0i
−1)

i ) exp

(−ψ
2σ2

)
, (17)

where η∗
0i
= η0i −

1

2
> 0 for i = 1, .., n in order for η∗

0
vector to make sense as a Dirichlet parameter.

Let

Aω =
n∏

i=1

ω
(η∗

0i
−1)

i and Bω = exp

(−ψ
2σ2

)
hence π(ω|θ−ω, y,X) = Aω Bω. Obviously Aω is a kernel of D(η∗

0
). On the other hand Bω certainly

looks like a Nn(Xβ, σ2Ω), however, as a kernel of ω, Bω is not of any known form.

We shall use an Independence Chain M-H simulator for ω. Since Bω is not going to give any clue

for a proposal density, we use information contained in Aω ∼ Dirichlet distribution, for our proposal

density. Particular value of the parameter vector in the proposal density, will be discussed later. In

the following, we shall first give an outline of our M-H strategy.
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3.2.1 M-H Acceptance Probability of ω

Let ω(r) be the “rth” current value in the chain. Then the acceptance probability of ω(′) given ω(r)

would be

α(ω(r), ω(′)) = min

(
1,
π(ω(′), θ−ω|y,X)

π(ω(r), θ−ω|y,X)

f(ω(r))

f(ω(′))

)
,

where f(ω) represents our proposal density for ω, and it is explained in below. We first take up the

ratio of posterior densities in the acceptance probability. Noting that arguments other than ω cancels

out, it becomes

π(ω(′), θ−ω|y,X)

π(ω(r), θ−ω|y,X)
=

∏
i

(
ω
(′)
i

)η∗
0i
−1

∏
j

(
ω
(r)
j

)η∗
0j

−1

exp

(
−ψ(′)

2σ2

)

exp

(
−ψ(r)

2σ2

) , (18)

where ψ(′) = (y − Xβ)′
(
Ω(′)

)−1
(y − Xβ), Ω(′) = diag(ω(′)) and this is not to be confused with a

transpose of Ω. Likewise, ψ(r) = (y −Xβ)′
(
Ω(r)

)−1
(y −Xβ), Ω(r) = diag(ω(r)). Suppose that we

employ D(η
p
) as our proposal2 , then the ratio of proposal densities above becomes

f(ω(r))

f(ω(′))
=

∏
i

(
ω
(r)
i

)ηpi−1

∏
j

(
ω
(′)
j

)ηpj−1 . (19)

Results of (18) and (19) may be put together to produce

α(ω(r), ω(′)) = min

1,
exp

(
−ψ(′)

2σ2

)

exp

(
−ψ(r)

2σ2

) ∏
i

(
ω
(r)
i

)ηi−η∗
0i

∏
j

(
ω
(′)
j

)ηj−η∗
0j

 . (20)

3.2.2 Proposal Density Parameter

In this subsection, we outline how we specify the Dirichlet proposal density that uses White’s HCCM

information. Notice that our prior for ω = n ω̃ resembles to a Dirichlet, where ω̃ ∼ D(η0). We let the

parameter vector of the Dirichlet proposal density be ηp = c η̂, where c is a scalar tunning parameter,

and information on η̂ is to be extracted from a regression to be explained in below. We briefly discuss

how we obtain η̂.

We first regress y on X by the OLS to obtain estimated residual vector eols.We then use it to con-

struct White’s HCCM estimator, Ĥ. Let the vector obtained from Ĥ be ĥ, where ĥ = vech(Ĥ) ∼ K ′×

2The details of our proposal density are given in the next subsection.
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1 and K ′ = 1
2K(K + 1). As a regressor matrix to ĥ, consider X n = [vech(x1x

′
1), . . . , vech(xnx

′
n)] ∼

K ′ × n. Regression of ĥ on X n, i.e.,

ĥ = X nσ
2ω + v , (21)

where v is some error term vector, will yield an estimator of ω, when K ′ > n and n > K. When

these conditions are not met, we may always augment X by W ∼ n×KW such that W ′(y, X) = 0.

This is essentially finding an orthogonal comlement of the matrix (y, X). Using such software as R

and GAUSS, among others, we can easily find W . Actually we only need W ∼ n ×KW such that

KW meets the next two conditions: 1
2(K +KW )(K +KW + 1) > n and n > (K +KW ). Since W is

orthogonal to both y and X, OLS estimated regression residual from (21), eols, is the same whether

we used X or W augmented (X, W ) as the regressor matrix. In summary, we may always estimate

ω given data, y and X, using (21). Let the resultant estimator of ω from (21) be ω̂ols.

It turns out, however, that we cannot simply set ω̂ols equal to η̂. Our preliminary investigations

revealed that there are cases where the variability of ω̂ols is too big for it to be η̂. A variability

measure of ω̂
ols

could be R =
max(ω̂

ols i
)

min(ω̂
ols i

)
, where ω̂

ols i
is the ith element of ω̂. We aim to obtain a

moderate R value, while preserving the ranking, the order or the relative magnitude of the elements

of ω̂
ols

that HCCM information conveys. To this effect, we introduce an additional scalar tunning

parameter d ≥ 0 to be added to ω̂
ols i

as η̂i = (ω̂
ols i

+ d), where η̂i is the ith element of η̂. Define the

new ratio to be f(d) =
max(ω̂

ols i
) + d

min(ω̂
ols i

) + d
. This ratio, f(d) is a function of d ≥ 0, and has the property

such that

R ≥ f(d) ≥ 1 since f ′(d) < 0, lim
d→∞

f(d) = 1, and lim
d→0

f(d) = R.

Thus by an appropriate choice of d, we may make the variability of ω̂
ols

to be any desirable level. A

suggested value for d is to set f(d) = n, i.e., sample size n dependent. Solving the equation for d, we

obtain

d =
max(ω̂

ols i
)− n min(ω̂

ols i
)

n− 1
≈ 1

n
max(ω̂

ols i
)−min(ω̂

ols i
),

which is a reasonable value.

In summary our Dirichlet proposal density parameter ηp = c η̂ is set to be η̂i = ω̂
ols i

+d with c and

d tunning parameters. One proposed value for d is given in the preceding paragraph. If it happens

that R ≤ n, then set d = 0 and η̂ = ω̂
ols

would do the job.
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4 Empirical Investigation: Japanese Stock Returns

In this section, using Japanese stock dataset, we present a comparison of our Dirichlet prior method,

Student-t homoskedasticity model (Geweke(1993)’s), and the usual homoskedastic NLR model, in

terms of DIC.

4.1 One Factor Model and Dataset

We carry out a two-step time series to cross section regressions, in a way similar to the Fama-Macbeth

procedure (see e.g., Cochrane (2001 p.244)). We used data on the daily stock prices of fifty Japanese

pharmaceutical/ biomedical companies. To obtain an excess return series, we used 10-year Japanese

Government Bond (JGB) rate for the risk free rate. For the market return, we used TOPIX. The

sample period is from May 6, 2005 to April 28, 2006, hence the sample size is 245 in total. We obtained

stock return data and the JGB data from Yahoo Finance and Nikko Financial Intelligence web site,

respectively.

We begin with an one factor return generating equation:

R = (ιT f)

(
α
β

)
+ ε, (22)

where R= (R1 · · ·RN ) ∼ T ×N is a T period excess returns for N firms, ιT ∼ vector of one’s, f is

a T × 1 vector of one factor, α=(α1, . . . , αN ) ∼ 1 ×N vector of constants, β = (β1 · · ·βN ) ∼ 1 ×N

is a vector of beta’s, ε=(ε1 · · · εN ) ∼ T ×N matrix of error terms, N is the number of stocks, and T

is the time series sample size. Equation (22) is just a set of N time series regressions. We obtain an

OLSE of β , β̂ ∼ 1×N from equation (22). Define sample mean of R to be an N dimensional vector

R̄, we then obtain a cross sectional regression model

R̄ = β̂
′
ϕ+ u, (23)

where R̄ =
1

T
R′ιT = (R̄1 · · · R̄N )′ ∼ N × 1 vector of average excess returns, ϕ ∼ 1× 1 scalar is a risk

premium associated with the factor f , u ∼ N × 1 is a vector of pricing errors. Equation (23) is the

one factor type CAPM without an intercept term given in Cochrane op.cit., p.235, among others3.

3This specification is found e.g., in Cochrane op.cit. equation 12.10. We have regressed with an intercept term,
and the OLSE of it is 0.001 (0.054) and the slope estimate is 0.109 (0.069), where the figures inside the parentheses
are estimated standard errors. Without an intercept term, the slope estimate is 0.110 (0.025), and there is very little
difference whether we include an intercept term or not.
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In this section so far, we have used a set of notations that are common in empirical finance,

and in this paper equation (23) corresponds to equation (1). We need to clarify the notational

correspondences between the ones used so far in the current section, and in the previous subsections.

The correspondences are: R̄ ∼ N × 1 corresponds to y in (1), β̂
′ ∼ N × 1 corresponds to X in (1),

u ∼ N × 1 corresponds to ε in (1), λ ∼ scalar corresponds to β in (1), the number of factor in (23) is

one and it corresponds to K in (1), N the number of stocks corresponds to n in (1).

4.2 The Three Models Compared

The three models we compare are

(i) homoskedastic NLR model,

(ii) Geweke’s (1993) model, and

(iii) our model in this paper.

We designed the common parameters of the three models to be the same. For instance, all are based

on NLR of equation (23), with mutually independent priors:

ϕ ∼ N(β0 , B0), σ2 ∼ IG
(
α0

2
,
δ0
2

)
(24)

where we set α0 = δ0 = 10−2, β0 = 0, and B0 = 104. The posterior pdf is given by

π(θ|y,X) = π(ϕ)π(σ2)π(ω)π(y|ω,X), (25)

where π(ϕ) and π(σ2) are given in (24), while π(ω) depends on the model, and π(y|ω,X) is a

multivariate normal based likelihood given in (6)4 . In all three MCMC similations, burn-in is set to

be 10,000 while one apart simulated values are taken out of 8,000, i.e. total of 4,000 simulated values

are obtained.

Let us first discuss model (i), homoskedastic NLR Model. Homoskedasticity in terms of π(ω) is

represented by ω = ιn , i.e., all elements to be one. The model is now a homoskedastic NLR, however,

MCMC is needed since our prior for σ2 is an informative inverted gamma.

We next take up model (ii), Geweke (1993)’s model. This is an NLR model with heteroskedasticity.

As we stated in section 2.3, Geweke (1993) converted this model to Student-t homoskedastic model.

Unlike our inverted gamma σ2 prior in (24), he used noninformative σ2 prior, however. The same

4β in (6) should be replaced by ϕ.
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inverted gamma σ2 prior as in (24), is used in Koop (section 6.4, 2003). Hence, we decided to follow

Koop (op. cit.)’s MCMC sampler for model (ii). Joint posterior of Geweke (1993)’s model is still (25)

except for π(ω). This is specified with a single parameter ν0 inverted gamma density. We use two

different ν0 values: 25 and 5. ν0 = 5 should be interpreted as an indication of larger heteroskedasticity

compared to ν0 = 25.5 So far as the regression coefficients β and the error term variance scale

parameter σ2 are concerned, MCMC procedures are the same as homoskedastic NLR model stated in

the above paragraph.

4.2.1 Comparison of the Models: DIC and Posterior Evaluation

Since Spiegelhalter et al. (2002) first proposed DIC it has become one of the most frequently used

model comparison criterion for Bayesians.6 Let a single parameter of interest be θ, then the deviance

is defined to be D(θ) = −2 log(likelihood). The posterior mean deviance, D(θ), is defined to be D(θ)

evaluated under posterior measure, thus D(θ) = E
θ
[D(θ)|y], where y denotes data. The penalty term

for DIC, pD , is defined to be pD = D(θ)−D(θ̄), where θ̄ denotes posterior mean of θ. Then DIC is

given by

DIC = D(θ) + pD . (26)

Note that pD is often interpreted to be the effective number of parameters, hence a measure of model

complexity.

The following shows D(θ), pD and DIC of the three models.

Table 1. DIC Compared

homoskedastic NLR Geweke (ν0 = 25) Geweke (ν0 = 5) Our model

D(θ) -52.975 -79.049 -81.598 -114.956

pD 1.924 3.070 2.438 2.907

DIC -51.051 -75.980 -79.160 -112.050

Since the null model in (24) essentially contains two parameters, σ2 and ϕ, pD should approximately

two. We observe that homoskedastic NLR has pD ≈ 2 while Geweke (1993)’s model and ours have

pD ≈ 3. As regards to the goodness of fit measure, i.e., D(θ), our model has the best measure while

5See Koop (2003, p.129) for setting ν0 .
6See Spiegelhalter et al. (2014) for an excellent survey, pros and cons of DIC.
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the other two have lesser D(θ). In summary, our model has the best DIC with reasonable pD values

in the models compared.

We next examine three model’s parameter θ estimation result. Numerical results, except for ω

are given in Table 2. Homoskedastic NLR has the smallest ϕ and the largest σ2 of all the models

considered. This may indicate a tradeoff between ϕ and σ2 due to misspecification of homoskedasticity,

since other models’ ϕ and σ2 are more or less the same. Let estimated parameter value over its standard

deviation be “t-value.” We observe that our model’s two parameters presented in Table 2, have the

largest t-value. This fact may imply GLS-like treatment of our model is most appropriate for the

dataset.

Table 2. Posterior Mean Compared

homoskedastic NLR Geweke (ν0 = 25) Geweke (ν0 = 5) Our model

ϕ
0.111
(0.026)

0.138
(0.025)

0.141
(0.024)

0.118
(0.013)

σ2
0.021
(0.004)

0.010
(0.004)

0.008
(0.003)

0.014
(0.003)

ν −−
4.967
(5.174)

3.349
(1.735) −−

“(·)” indicates posterior standard deviation.

4.3 ω: Posterior Mean and Posterior Density

We may now present 50 posterior mean’s of our remaining parameter, ω, i.e., E
θ
(ω |data) ∼ 50× 1.

Since we do not know the true heteroskedasticity of our data, however, presenting 50 posterior means

would not contribute to our understanding of unknown skedastic structure.

“Size effect” hypothesis that indicates an inverse relationship between volatility to size of a com-

pany, may be an appropriate hypothesis to be dealt with. In the U.S. and world wide, starting with

a seminal paper by Banz (1981) many observed “size effect” that is the smaller the company is the

higher its return7. This phenomenon could be naively associated to the mean-variance efficiency to

yield a thesis that says smaller companies are expected to be more riskier, i.e., the smaller the size,

the larger the mean and volatility of returns. Berk (1997) among others examined the so-called size

effect and proposed that a size of a company should not be measured by the market value of its equity

7For the size effect in Japan, see e.g., Chan and Chen (1991), among others.
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Figure 1: Volatility versus Size: σ2ωi’s and MVE

(MVE) but some other variables such as sales. In this section, we intend to investigate whether larger

(smaller) size companies have smaller (larger) ωi’s.

For the fifty stock data, we now collected the market value of its equity (MVE) data (in one billion

yen)8 . We then drew a graph with the MVE on the horizontal axis, and posterior mean of σ2ωi’s

from our model on the vertical axis. This is shown in Figure 1. The downward sloping solid line in

Figure 1, is the OLS estimated line. This figure clearly shows the larger the MVE, the smaller the

volatility as measured by σ2ωi. In summary, we have confirmed that E
θ
(ω |data) from our model,

gives reasonable values.

We need to see each simulated posterior density of ωi has a shape that is reasonable as a density

of variance, e.g., gamma density. To this end we selected two stocks (i) that has large MVE and small

σ2ωi, and (ii) that has small MVE and large σ2ωi, to see what the marginal posterior pdf’s of σ2ωi

of these companies look like. Specifically, we chose Taisho Pharmaceutical Co., Ltd. for (i), and Site

Support Institute Co., Ltd. for (ii). They are given in Figures 2 below. Notice that the two charts

have different horizontal axis scale. The smaller MVE stock has very large volatility (see the lower

chart) compared to the that of the larger MVE stock (see the upper chart). The two pdf’s have quite

8Berk (1997) among others, examined the so-called size effect and proposed that a size of a company should not be
measured by MVE but some other variables such as sales.
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Figure 2: Marginal Posterior pdf of σ2ωi for Taisho Phamaceutical Co. and Site Support Institute

reasonable shapes. We conclude that our Bayesian estimation of volatility supports the view that the

smaller the size of the stock, the larger is the volatility.

5 Concluding Remarks

In this paper, we proposed a Bayesian method to estimate regression error heteroskedasticity structure

that is unknown. “Unknown” in the sense that no structure is assumed. Geweke (1993)’s model is

such that when Gamma priors with a particular set of hyper parameter values are assumed on the

precision parameters of heteroskedastic regression error term, then this leads to a homoskedastic

Student-t regression error term. We pointed out that assuming such priors, are in effect, imposing an

unwanted structure in the heteroskedasticity. We have, thus, proposed to use a Dirichlet prior with

equal hyper parameter values. This should represent we “know nothing” status about the structure

of heteroskedasticity.

We, on the other hand, believe that the Eicker-White HCCM should provide valuable information

about the heteroskedasticity, although derived from a sampling theory point of view. In empirical

analysis, regression equation is bound to be misspecified. HCCM, in essence, draws heteroskedasticity

information connecting with regressors. Our idea is to use this HCCM information in the proposal

distribution in the Independence sampler. We showed that this approach is reasonably successful.
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Finally we compared homoskedastic NLR, Geweke (1993)’s model, and our model in terms of DIC,

posterior mean significance (we used “t-value” to this effect), and posterior pdf’s. All the exercises

indicate that our model is definitely capable of drawing unknown heteroskedasticity structure.
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