Nuclear Magnetic Resonance of Cubic Ferromagnetic Compounds Co$_2$MnSn and CoMnSb

Takeshi SHINOHARA and Hiroshi WATANABE

The Research Institute for Iron, Steel and Other Metals

Abstract

The nuclear magnetic resonance was studied in the cubic ferromagnetic compounds Co$_2$MnSn and CoMnSb. In Co$_2$MnSn four signals were observed, whose frequencies extrapolated to 0\degree K were estimated at 157.0, 150.3, 153.5 and 147.4 Mc/s. They were identified to be due to Sn117 and Sn119 in domains and walls. In CoMnSb five resonance signals were observed, whose frequencies extrapolated to 0\degree K were found to be 147.8, 126.5, 118.2, 115.4 and 111.1 Mc/s. The first of these lines was identified to be due to Sb123, while the identification for the remaining four lines was not so straightforward. The difference between the hyperfine field of Sn117 in Co$_2$MnSn and that of Sb123 in CoMnSb is discussed.

* The 1337th report of the Research Institute for Iron, Steel and Other Metals. Published in the Journal of the Physical Society of Japan, 21 (1966), 1658.