Thermal Expansion, Electrical Resistance and the Effect of Hydrostatic Pressure on the Neel Temperature in Fe-Mn Alloys

FUJIMORI Hiroyasu

journal or publication title
Science reports of the Research Institutes, Tohoku University. Ser. A, Physics, chemistry and metallurgy

volume
19

page range
339-339

year
1967

URL
http://hdl.handle.net/10097/27403

<table>
<thead>
<tr>
<th>著者</th>
<th>FUJIMORI Hiroyasu</th>
</tr>
</thead>
<tbody>
<tr>
<td>原タイトル</td>
<td>熱的膨張、電気抵抗及び静水圧の影響について</td>
</tr>
<tr>
<td>雑誌名</td>
<td>科学報告，東北大学研究機関. A, 物理、化学及び冶金学</td>
</tr>
<tr>
<td>卷</td>
<td>19</td>
</tr>
<tr>
<td>頁</td>
<td>339-339</td>
</tr>
<tr>
<td>年</td>
<td>1967</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10097/27403</td>
</tr>
</tbody>
</table>
ABSTRACTS OF PAPERS
Published in Other Journals

Thermal Expansion, Electrical Resistance and the Effect of Hydrostatic Pressure on the Néel Temperature in Fe–Mn Alloys*

Hiroyasu Fujimori
The Research Institute for Iron, Steel and Other Metals

Abstract

Thermal expansion, temperature change of electrical resistance and its change due to hydrostatic pressure, and magnetic susceptibility were measured with some antiferromagnetic Fe-Mn alloys containing 30 to 40 at% Mn. It was found that an additional magnetic volume expansivity, $\delta V/V$, due to an antiferromagnetic spin ordering is as large as $10^{-3} \sim 10^{-4}$, and the change of the Néel temperature with pressure, $\partial T_N/\partial P$ is about -2.5×10^{-3} deg. Kg$^{-1}$cm2 in 30 at% Mn alloy. With these values, the volume dependence of the molecular field constant, $\partial A/\partial \omega$ is estimated to be positive by the molecular field theory with the localized moment model. The results are discussed in comparison with Bethe-Slater's and Weiss' theories and with the similar behavior in some ferromagnetic invar-type alloys.