X-Ray Measurement of Order in the Beta-Prime Phases of Noble Metal Alloys. I: AuZn

Iwasaki Hiroshi, Uesugi Tomoko

Journal or publication title: Science Reports of the Research Institutes, Tohoku University. Ser. A, Physics, Chemistry and Metallurgy

Volume: 20
Page range: 222-222
Year: 1968
URL: http://hdl.handle.net/10097/27454
X-Ray Measurement of Order in the Beta-Prime Phases of Noble Metal Alloys. I. β'AuZn*

Hiroshi Iwasaki and Tomoko Uesugi

The Research Institute for Iron, Steel, and Other Metals

Abstract

The long range order parameter of the β'AuZn alloy of the $L2_1$-type structure has been measured by X-ray diffraction at temperatures ranging from 200°C to 650°C, the latter temperature being 75°C below the melting point T_m. Relative intensities of several $h00$ type reflections from single crystals have been measured using a counter diffractometer equipped with a high temperature attachment. It has been observed that the order parameter gradually decreases with rising temperature but appears to keep an appreciably high value at T_m. An abnormal increase in the lattice spacing has also been observed at about 550°C, which corresponds to the onset of an appreciable disordering detected by the intensity measurement. It is concluded that β'AuZn is a special type of ordered alloy and it would undergo a transition into the disordered alloy state, if it were not melted.

The root-mean-square displacement of atoms due to thermal vibration has been measured as a function of temperature. At room temperature the displacement is 0.125Å, 4.6% of the nearest neighbor distance, and increases to 0.255Å at 650°C.

* The 1396th report of the Research Institute for Iron, Steel and Other Metals. Published in the Journal of the Physical Society of Japan, 25 (1968), 1640.