A Portevin-Le Chatelier Effect expected from Solvent Atmosphere Dragging

YOSHINAGA H., MOROZUMI S.

Science Reports of the Research Institutes, Tohoku University. Ser. A, Physics, Chemistry and Metallurgy

Volume 23
Page 144
Year 1971
URL http://hdl.handle.net/10097/27609
A Portevin–Le Chatelier Effect expected from Solute Atmosphere Dragging*

H. YOSHINAGA and S. MOROZUMI

*The Research Institute for Iron, Steel and Other Metals

Abstract

A solute atmosphere, will be formed around a moving dislocation in a solid solution, when the dislocation velocity is smaller than the critical value

\[v_{CL} = AD/kTb^{2} \]

for the case of solute atoms interacting hydrostatically with an edge dislocation, where \(A \) is a parameter indicating the strength of the interaction, \(b' \) is a distance of the order of the interatomic one, and the other parameters have their usual meanings. There may exist another critical velocity (Cottrell 1953a), \(v_{CH} \), which corresponds to the maximum drag stress due to the solute atmosphere.

In the range of \(v_{CH} < v < v_{CL} \), a moving dislocation will be subjected to a lower dragging stress with higher velocity. A kind of Portevin-Le Chatelier effect is expected from this dynamical instability of plasticity.