著者	田中 光彦
タイトル | 断裂挙動と延性破壊の関係について
年 | 1972
巻 | 24
号 | 85-85
URL | http://hdl.handle.net/10097/27643
Relationship between Stress-Corrosion Cracking and Strain Rate in Alpha Brass*

Michinori TAKANO

The Research Institute for Iron, Steel and Other Metals

Abstract

Stress-corrosion cracking of Cu-30%Zn alloy under the constant strain rate in the range of $6.6 \times 10^{-6} \text{s}^{-1}$ to $1.1 \times 10^{-5} \text{s}^{-1}$ was investigated in Mattsson’s solution (pH 7.2) (for intergranular cracking) and in 1 M/L NH$_4$OH + 0.25 M/L CuCl$_2$ aqueous solution (pH 11.0) (for transgranular cracking). Within strain rates of $6.6 \times 10^{-6} \text{s}^{-1}$ for intergranular cracking and of $1.1 \times 10^{-5} \text{s}^{-1}$ for transgranular cracking, the rate-controlling step of stress-corrosion cracking corresponds to the slip step formation. Exceeding the above strain rates the s c c is controlled by the corrosion, where the rate-controlling mechanism requires the activation energy of about 18.7 Kcal/mol. When the strain rate exceeds $1.1 \times 10^{-5} \text{s}^{-1}$, intergranular s c c never occurs at room temperature. Width of crack tip increases with increase of strain rate for intergranular cracking, while decreases for transgranular cracking.

* The 1564th report of the Research Institute for Iron, Steel and Other Metals. Published in the Corrosion Science, 11 (1971), 813.