著者	東北大学機械研究所
タイトル	ロジック設計への応用
論文名	東北大学機械研究
巻号	49
頁数	5
号数	5
発行年	1978
doi	10.1063/1.325138
Logic design of Josephson network. II

K. Nakajima and Y. Onodera

Research Institute of Electrical Communication, Tohoku University, Sendai, Japan

(Received 10 October 1977; accepted for publication 1 December 1977)

By numerical calculations of the differential-difference sine-Gordon equation, we have discussed the discrete Josephson-junction transmission lines which are constructed of a series of small-area Josephson junctions connected by superconducting strips. It is shown that the discrete Josephson lines containing D lines, N lines, T turning points, and S turning points are elementarily characterized by the discreteness parameter \((2\pi LI_i/\Phi_0)^{1/2}\). On the discrete Josephson logic circuits there exists a region of forbidden propagation in the \((2\pi LI_i/\Phi_0)^{1/2} - \gamma\) (bias-current parameter) plane for single flux quanta. A single flux quantum can be stuffed in a small area of the discrete Josephson logic circuits. The discrete circuits can be conveniently and easily linked to each other in a practical fabrication of a Josephson network.

PACS numbers: 85.25.+k; 74.50.+r

I. INTRODUCTION

Logic devices based on the Josephson effect are extremely attractive for high-performance computers. It is now possible to make Josephson junctions and transmission lines with reasonable mechanical and electrical stability. In previous papers we proposed a Josephson computing network using continuous Josephson-junction transmission lines which are described by the sine-Gordon equation having a loss term and a bias term. Mathematical properties and physical applications of the pulselike solitary wave as the solution of the sine-Gordon equation and the other nonlinear partial differential equations \(17,25\) have been the subject of many investigations. Moreover, research in recent years exhibits an increase of interest in the differential-difference form of the sine-Gordon equation. The discreteness effects modify significantly the continuum dynamics given by the sine-Gordon equation which describes a continuous Josephson line. In the present paper, of which Ref. 8 is a companion paper (hereafter denoted as part I), we discuss the characteristics of discrete Josephson transmission lines and networks which are constructed of a series of small-area Josephson junctions connected by superconducting strips. In Sec. II we describe a differential-difference equation of the discrete Josephson line and its equivalent circuit, and we discuss the propagation characteristics of single quanta of magnetic flux, which can be employed as information bits, and flux-quantum–antiflux-quantum (soliton–antisoliton) collision properties by using the result of computer simulations. It can be seen from these results that the discrete Josephson lines with bias-current sources have nearly the same characteristics as the continuous lines, but there exists a region of forbidden propagation for single flux quanta depending upon the bias current and line constant.

Section III deals with turning points and line branches, and it is shown that the behavior of single flux quanta arriving at a turning point are nearly the same as the case of continuous lines. In Sec. IV we compare the transmitting characteristics of flux quanta on continuous and discrete Josephson lines, and conclude briefly.

II. DISCRETE JOSEPHSON TRANSMISSION LINE

Consider a series of small-area Josephson junctions connected by superconducting strips, as shown in Fig. 1(a). We assume the junctions are small enough that they never contain an appreciable fraction of a flux quantum, and, for simplicity, the individual junction critical currents \(I_c\)'s, capacitances \(C\)'s, conductances \(G\)'s, and the self-inductances \(L\)'s of single double-junction loops which are shown in Fig. 1(b) have the same values. From the equivalent circuit shown in Fig. 1(b), the phase differences \(\phi_{i+1} - \phi_i\) and \(\phi_{i-1} - \phi_i\) are restricted by the usual constraint, \(28,30\)

\[
\phi_i - \phi_{i+1} = 2\pi \frac{\Phi_{i+1}/\Phi_0}{2} = 2\pi L I_i/\Phi_0, \quad (1)
\]

\[
\phi_i - \phi_{i-1} = 2\pi \frac{\Phi_i/\Phi_0}{2} = 2\pi L I_{i-1}/\Phi_0, \quad (2)
\]

where \(\Phi_{i+1}\) and \(\Phi_{i-1}\) are the net magnetic fluxes within the individual double-junction loops, \(\Phi_0\) is the flux quantum, and the equation for \(I_i\) and \(I_{i-1}\) can be written

\[
I_i = I_{i+1} - \frac{\Phi_0}{2\pi} \frac{C}{L} \frac{\partial^2 \phi_i}{\partial t^2} - \frac{\Phi_0}{2\pi} \frac{G}{C} \frac{\partial \phi_i}{\partial t} - I_c \sin \phi_i. \quad (3)
\]

From Eqs. (1)–(3), the differential-difference equa-
tion for ϕ_{i+1}, ϕ_i, and ϕ_{i-1} can be written

$$\frac{\Phi_0}{2\pi L_c} (\phi_{i+1} - 2\phi_i + \phi_{i-1}) - \frac{C\phi_i}{2\pi L_c} \frac{\partial^2 \phi_i}{\partial t^2} - \frac{G\phi_i}{2\pi L_c} \frac{\partial \phi_i}{\partial t} = \sin \phi_i. \quad (4)$$

When time is measured in units of $\tau_f = (C\Phi_0^2/2\pi L_c)^{1/2}$ and bias current $I_B(=L_c)$ is applied to every junction, Eq. (4) can be rewritten

$$\frac{\Phi_0}{2\pi L_c} (\phi_{i+1} - 2\phi_i + \phi_{i-1}) - \frac{\partial^2 \phi_i}{\partial t^2} - \Gamma \frac{\partial \phi_i}{\partial t} = \sin \phi_i - \gamma_i, \quad (5)$$

where $\Gamma = (C\Phi_0^2/2\pi L_c)^{1/2}$ and $\gamma_i = I_B L_c/I_c$. If we replace the second-order partial derivative of ϕ with respect to space in the equation describing the continuous Josephson line without the effect of losses associated with the flow of normal electrons parallel to the junction by the differences of ϕ_i, the equation has the same form as Eq. (5); but there are differences in the definitions of the units of time, the units of distance, Γ, and the bias current between the continuous lines and the discrete lines. This partial differential-difference equation (5) can also describe the mechanical transmission line reported in Ref. 31. The discreteness parameter $(2\pi L_c/c)^{1/2}$ in Eq. (5) corresponds to $(mgI/K)^{1/2}$ in the mechanical system where m is the mass of the bob of the single pendulum, g is the acceleration due to gravity, l is the length of the single pendulum, and K is the torque constant of the single section of spring between two pendulums.

Standing single flux quantum solutions are shown in Fig. 2 which are obtained from Eq. (5) ($\gamma_i = 0$) by using numerical calculation. It can be seen from Fig. 2 that the number of the loops where a single flux quantum is spread decreases with an increase in the value of $(2\pi L_c/c)^{1/2}$. When $1/\Lambda_f$ is larger than ≈ 3, a single flux quantum is almost stuffed in one double-junction loop.

It may be expected that single flux quanta cannot propagate down on the discrete Josephson line if the value of bias currents is smaller than some critical one. Figure 3 shows the results of numerical calculation on this critical value of bias currents. For simplicity, we made the individual junction bias currents γ_i’s equal. In Fig. 3, at the region denoted by Π, single flux quanta cannot begin to propagate down on a discrete Josephson transmission line. When $1/\Lambda_f$ is larger than ≈ 3, a single flux quantum is almost stuffed in one double-junction loop.

![FIG. 2. Standing single flux quantum solutions as a function of $(2\pi L_c/c)^{1/2}$. γ denotes the individual junction phase differences on a discrete Josephson line.](image)

![FIG. 3. Region of allowed propagation, I, and region of forbidden propagation, Π, for single flux quanta on a discrete Josephson line with bias current sources, decreasing the value of Γ to 0.5, 0.3, 0.1, and 0.01; the region where single flux quanta are able to propagate down steadily decreases to I--1, I--3, I--2, and I--1, respectively.](image)
FIG. 4. Behaviors of two flux quanta with opposite signs after a head-on collision on a discrete Josephson line with bias current sources; the region under the solid line is the same region of allowed propagation for single flux quanta as shown in Fig. 3. The broken lines denoted by l_1, l_2, and l_3 distinguish discrete Josephson lines between D (the region on the left-hand side of l_1, l_2, and l_3) and N lines (the region on the right-hand side of l_1, l_2, and l_3) when $\Gamma = 0.1$, 0.3, and 0.5, respectively.

In our logic design of Josephson networks we have used the D or the N lines, on which two flux quanta with opposite signs are annihilated after head-on collision, or pass through each other after head-on collision, respectively. The result shown in Fig. 4 represents the behaviors of two flux quanta with opposite signs after a head-on collision on a discrete Josephson line with bias current sources. In Fig. 4 the region under the solid line is the same as the region of allowed propagation for single flux quanta shown in Fig. 3. When $\Gamma = 0.1$, on the left-hand side of the line denoted by l_1 in Fig. 4, Josephson lines have characteristics of the D line; on the right-hand side of line l_1, Josephson lines are the N lines. When $\Gamma = 0.3$, Josephson lines are the D lines on the left-hand side of line l_2, and the N lines on the right-hand side of line l_2. The line denoted by l_3 in Fig. 4 distinguishes between D and N lines when $\Gamma = 0.5$.

III. TURNING POINTS

A. TTP (trigger turning point) (Ref. 8)

TTP can be constructed of discrete Josephson lines such as shown in Fig. 5(a). An equivalent circuit of TTP is shown in Fig. 5(b). The equations for phase differences at the TTP which are restricted by the usual constraint are derived as the following:

\[
\begin{align*}
\Phi_0 &= \frac{1}{2\pi L_1 C_1} \left[\left(L_1 + L_2 + L_3 \right) \Phi_N - \left(L_1 \frac{L_2 + L_3}{L_2 + L_3} \right) \Phi_N \right], \\
&\quad - \left(\Phi_N - \Phi_{N-1} \right) - \frac{C_1 \Phi_0^2}{2\pi C_1} \frac{\partial \Phi_N}{\partial t} - \frac{C_1 \Phi_0 \Phi_N}{2\pi C_1} \frac{\partial \Phi_N}{\partial t} = \sin \phi \Phi_N,
\end{align*}
\]

where the ϕ's are the individual junction phase differences, in which the subscripts of the left-hand side (1, 2, and 3) are used to designate parameters belonging to discrete Josephson lines 1, 2, and 3, respectively, and the subscripts on the right-hand side denote the junction number for each line, the L's are the self-inductances of individual double-junction loops, in which the subscripts 1, 2, and 3 denote the line numbers, and the Γ's are the flowing currents such as shown in Fig. 5(b). The differential-difference equation for Φ_{N-1}, Φ_N, Φ_{N+1}, and Φ_N can be written

\[
\begin{align*}
\Phi_0 &= \frac{1}{2\pi L_1 C_1} \left[\left(L_1 + L_2 + L_3 \right) \Phi_N - \left(L_1 \frac{L_2 + L_3}{L_2 + L_3} \right) \Phi_N \right], \\
&\quad - \left(\Phi_N - \Phi_{N-1} \right) - \frac{C_1 \Phi_0^2}{2\pi C_1} \frac{\partial \Phi_N}{\partial t} - \frac{C_1 \Phi_0 \Phi_N}{2\pi C_1} \frac{\partial \Phi_N}{\partial t} = \sin \phi \Phi_N,
\end{align*}
\]

(11)

FIG. 6. Behaviors of single flux quanta propagating toward a TTP as a function of the bias current and $(2\pi L_1 \Phi_0^2)^{1/2}, \bigcirc$ and \bigcirc denote the behaviors of a flux quantum inserted schematically in this figure.

where the ϕ's are the individual junction phase differences, in which the subscripts of the left-hand side (1, 2, and 3) are used to designate parameters belonging to discrete Josephson lines 1, 2, and 3, respectively, and the subscripts on the right-hand side denote the junction number for each line, the L's are the self-inductances of individual double-junction loops, in which the subscripts 1, 2, and 3 denote the line numbers, and the Γ's are the flowing currents such as shown in Fig. 5(b). The differential-difference equation for Φ_{N-1}, Φ_N, Φ_{N+1}, and Φ_N can be written

\[
\begin{align*}
\Phi_0 &= \frac{1}{2\pi L_1 C_1} \left[\left(L_1 + L_2 + L_3 \right) \Phi_N - \left(L_1 \frac{L_2 + L_3}{L_2 + L_3} \right) \Phi_N \right], \\
&\quad - \left(\Phi_N - \Phi_{N-1} \right) - \frac{C_1 \Phi_0^2}{2\pi C_1} \frac{\partial \Phi_N}{\partial t} - \frac{C_1 \Phi_0 \Phi_N}{2\pi C_1} \frac{\partial \Phi_N}{\partial t} = \sin \phi \Phi_N,
\end{align*}
\]

where the ϕ's are the individual junction phase differences, in which the subscripts of the left-hand side (1, 2, and 3) are used to designate parameters belonging to discrete Josephson lines 1, 2, and 3, respectively, and the subscripts on the right-hand side denote the junction number for each line, the L's are the self-inductances of individual double-junction loops, in which the subscripts 1, 2, and 3 denote the line numbers, and the Γ's are the flowing currents such as shown in Fig. 5(b). The differential-difference equation for Φ_{N-1}, Φ_N, Φ_{N+1}, and Φ_N can be written

\[
\begin{align*}
\Phi_0 &= \frac{1}{2\pi L_1 C_1} \left[\left(L_1 + L_2 + L_3 \right) \Phi_N - \left(L_1 \frac{L_2 + L_3}{L_2 + L_3} \right) \Phi_N \right], \\
&\quad - \left(\Phi_N - \Phi_{N-1} \right) - \frac{C_1 \Phi_0^2}{2\pi C_1} \frac{\partial \Phi_N}{\partial t} - \frac{C_1 \Phi_0 \Phi_N}{2\pi C_1} \frac{\partial \Phi_N}{\partial t} = \sin \phi \Phi_N,
\end{align*}
\]

(11)
FIG. 8. (a) STP constructed of discrete Josephson lines and (b) equivalent circuit of STP.

\[
\frac{\Phi_0}{2\pi L_2 C_2} \left(\phi_2 - 2\phi_3 \right) - \frac{L_2}{L_{1,2}} (\phi_1 - 3\phi_0) \right)
- \frac{C_2 \phi_0 \phi_1}{2\pi L_2 C_2} \frac{d^2 \phi_1}{dt^2} - \frac{C_3 \phi_0 \phi_1}{2\pi L_3 C_3} \frac{d^2 \phi_1}{dt^2} = \sin \phi_1, \\
- \frac{\Phi_0}{2\pi L_2 C_2} \left(\phi_2 - 2\phi_3 \right) - \frac{L_2}{L_{1,2}} (\phi_1 - 3\phi_0) \right)
- \frac{C_2 \phi_0 \phi_1}{2\pi L_2 C_2} \frac{d^2 \phi_1}{dt^2} - \frac{C_3 \phi_0 \phi_1}{2\pi L_3 C_3} \frac{d^2 \phi_1}{dt^2} = \sin \phi_1,
\]

where \(I_{\text{c}} \)'s are the individual junction critical currents, in which the subscripts 1, 2, and 3 denote the line numbers 1, 2, and 3, respectively. Figure 6 shows the result obtained by numerical analyses for the behavior of single flux quanta propagating toward the TTP as a function of the bias current and \(\mu \). When \(L_1 = L_2 = L_3 = I_{\text{c1}} = I_{\text{c2}} = I_{\text{c3}}, G_1 = G_2 = G_3 \), \(y_1 = I_{\text{B1}}/I_{\text{c1}} \) = \(y_2 = I_{\text{B2}}/I_{\text{c2}} \) = \(y_3 = I_{\text{B3}}/I_{\text{c3}} \), \(U_{\text{B1}}, U_{\text{B2}}, U_{\text{B3}} \) are the individual junction bias currents on lines 1, 2, and 3, respectively, and \(\Gamma = G_1 (\Phi_0/2\pi I_{\text{c1}} C_1)^{1/2} \approx 0.3 \). In Fig. 6 the dashed lines show the same region boundary of allowed stable propagation as is shown in Fig. 3. If bias currents are relatively small, a single flux quantum propagating toward the TTP cannot pass through the turning point and stops at the turning point. However, if the biases are relatively large, a propagating single flux quantum can pass through the TTP and initiate a single flux quantum into both connected lines. In the case of the above line constant conditions, it can be seen from the result that a single flux quantum cannot pass through the TTP without some amount of kinetic energy. This kinetic energy seems to be converted into the potential energy of a single flux quantum. It is also possible to give this potential energy to the halting flux quantum, if enough bias current is applied. When a single flux quantum stops at the turning point after propagating on one line, and then a single flux quantum with opposite sign propagates toward the turning point on the other line, after a head-on collision a single flux quantum is initiated into the third line as shown in Fig. 7(a).

B. STP (selective turning point) (Ref. 8)

STP can be also constructed of discrete Josephson lines such as shown in Fig. 8(a). An equivalent cir-
When $L_1 = L_2 = L_3 = L_{1\pm 2}$, the relation of $\phi_{1p} \neq 2 \phi_{1p}$ and ϕ_{2p} derived from Eqs. (18)–(20) is reduced to the boundary condition for the STP of a continuous Josephson line. Figure 9 shows the result obtained by numerical analyses of Eqs. (18)–(20) for the behavior of single flux quanta propagating toward the STP as a function of the bias current of each line and $1/\Lambda_\gamma$, where $L_1 = L_2 = L_3 = L_{1\pm 2}$, $C_1 = C_2 = C_3$, $I_{C1} = I_{C2} = I_{C3}$, $G_1 = G_2 = G_3$, and $\Gamma = 0.3$. In the numerical calculations we let the bias currents for individual junctions have the following relation:\(^\text{9}\)

$$\sin^\gamma_1 = \sin^\gamma_2 + \sin^\gamma_3,$$

(21)

where γ_1, γ_2, and γ_3 are the individual junction bias currents of Josephson lines 1, 2, and 3, respectively. When $\gamma_2 = \gamma_3$, it can be seen from Fig. 9(a) that if γ_1 is relatively small, a single flux quantum propagating toward the STP on line 1 cannot pass through the turning point and stops at the turning point; however, if γ_1 is relatively large, it initiates a flux quantum into lines 2 and 3, and also initiates a flux quantum with an opposite sign on line 1. This phenomenon is denoted by squares in Fig. 9, and it has been used for computing the logic design of our previous papers as S_T, T_P.$^{8-11}$ If γ_1 increases further, the arriving flux quantum causes a prompt increase of phase difference at the turning point which is denoted by filled triangles in Fig. 9. If $\gamma_2 = \gamma_3$ there is a region denoted by open circles, where a single flux quantum propagating toward the STP on line 1 can pass through the STP, and it is initiated on either line 2 or 3. This region falls between the region denoted by filled circles and squares, as shown in Fig. 9(b). The phenomenon denoted by open circles has been used for the logic design of our previous papers as S_S, T_P.$^{8-11}$ Increasing the difference between γ_2 and γ_3, the S_T region increases. When $\gamma_2 = 0$, the STP does not have the characteristics of S_T as shown in Fig. 9(c). When a single flux quantum stops at the turning point after propagating on line 1, and then a single flux quantum with opposite sign propagates toward the turning point on line 2 (or line 3), after the head-on collision the two flux quanta are annihilated, which is shown schematically in Fig. 7(b); but if γ_1 is relatively large, after the head-on collision between the stopped flux quantum and the propagating flux quantum they pass through each other and begin to propagate into lines 1 and 2 (or line 3), respectively, which is shown in Fig. 7(c). The phenomenon shown in Fig. 7(c) is observed in a relatively narrow range of γ_1.$^{9-11}$ Using the above-mentioned characteristics, complete logic capability can be achieved with networks of discrete Josephson lines alone, as in the case of continuous lines. Not only all the computing logic circuits using continuous lines reported in our previous papers,$^{9-11}$ but also new logic networks can be constructed of the discrete Josephson transmission lines.

IV. CONCLUSIONS

By numerical calculations we have discussed the discrete Josephson-junction transmission lines which are constructed of a series of small-area Josephson junctions connected by superconducting strips. We have also studied the behaviors of single flux quanta propagating on the discrete Josephson lines with T_T and T_S. Comparing with the continuous line, the features of the discrete line are the following: (1) there exists a region of forbidden propagation in the $1/\Lambda_\gamma$–γ plane, (2) it may be easy to adjust the value of the line constants L_1, C_1, and I_1 at a desired position, (3) T_Ts, T_Ss, and lines are able to be linked easily, and (4) it is possible to have a single flux quantum stuffed in a small area by adjusting the line constant. In the case of a continuous line, single flux quanta can propagate down smoothly; therefore there does not exist such energy dissipation47 coming from the small oscillation generated by single flux quanta transmitting on a discrete line. In order to get the flux quantum speed almost up to Λ_γ/τ_j (section/see) on a discrete line, it is necessary to increase not only γ but also Γ to damp down the small oscillation on the line. In the continuous line with increasing γ only, one can easily obtain the flux quantum transmitting velocity which is near the limiting value $1/(LC)^{1/2}$. It is expected that the useful and practical Josephson logic networks can be made by the combination of discrete and continuous lines.

ACKNOWLEDGMENTS

The authors are grateful to Professor Y. Sawada, Professor T. Anayama, and Professor R. Sato for helpful discussions. All numerical results were calculated using the digital computer in the computer center of Tohoku University.

