Three-dimensional P-wave velocity structure of Iwate volcano, Japan from active seismic survey

Geophysical Research Letters
Volume 29
Number 10
Page range 1420
Year 2002
URL http://hdl.handle.net/10097/50798
doi: 10.1029/2002GL014983

<table>
<thead>
<tr>
<th>著者</th>
<th>田中 聡, 浜口 浩, 西村 竜, 山尾 章, 上木 史, 中道 昌, 瀬戸 唯, 宮内 浩, 末輪 誠, 大川 友, 井沢 和, 目白 正, 並澤 章, 森 拓, 逢沢 裕</th>
</tr>
</thead>
<tbody>
<tr>
<td>電子メール</td>
<td></td>
</tr>
<tr>
<td>住所</td>
<td></td>
</tr>
<tr>
<td>掲載誌名</td>
<td>Geophysical Research Letters</td>
</tr>
<tr>
<td>卷</td>
<td>29</td>
</tr>
<tr>
<td>号</td>
<td>10</td>
</tr>
<tr>
<td>ページ</td>
<td>1420</td>
</tr>
<tr>
<td>年</td>
<td>2002</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10097/50798</td>
</tr>
<tr>
<td>doi</td>
<td>10.1029/2002GL014983</td>
</tr>
</tbody>
</table>
Three-dimensional P-wave velocity structure of Iwate volcano, Japan from active seismic survey

S. Tanaka,1 H. Hamaguchi,1 T. Nishimura,1 T. Yamawaki,1 S. Ueki,1 H. Nakamichi,1,10 T. Tsutsui,2 H. Miyamachi,3 N. Matsuwo,4 J. Oikawa,5 T. Ohminato,5 K. Miyaoa,5 S. Onizawa,7 T. Mori,8 and K. Aizawa9

Received 24 February 2002; revised 1 April 2002; accepted 10 April 2002; published 24 May 2002.

[1] The three-dimensional P-wave velocity structure of the Iwate volcano, northeastern Japan, is determined to depths of 2 km through an active seismic survey conducted in October 2000. Seismic tomography is applied to approximately 2700 travel-time data. The most prominent discovery is an existing of column-like high-velocity body ($V_p > 5.4$ km/s) that extends vertically for 2 km beneath the caldera. While the western part of the volcano extending from the caldera is characterized by a moderate-velocity region ($4.8 < V_p < 5.4$ km/s), the summit and eastern flank of the volcano are covered with very low-velocity material ($V_p < 4$ km/s) which represent relatively younger volcanic edifices. The spatial difference in the velocity structures between the western and eastern parts of the volcano is explained by the evolutionary history of the volcano. And we find that the western structure may give constraints on the volcanic activity in 1998.

INDEX TERMS: 7203 Seismology: Body wave propagation; 7280 Seismology: Volcano seismology (8419); 8180 Evolution of the Earth: Tomography

1. Introduction

[2] The Iwate volcano, located in the Northeastern Japan Arc (Figure 1), became highly active in 1998. This volcanic crisis associated with volcano-tectonic (VT) and low-frequency (LF) earthquakes, volcanic tremors, very long period (VLP) events, and crustal deformation [e.g., Nishimura et al., 2000; Miura et al., 2000; Tanaka et al., 2002]. Although there has been no eruption since the crisis started, a detailed investigation of the structure of the volcano is considered to be very important. We expect that three-dimensional velocity structure of the volcano helps to determine accurate hypocenters for prediction of volcanic eruptions. Resolving anomalous bodies under volcanoes by exploration using natural earthquake sources, we sometime meet difficulty in imaging due to the source-receiver geometry. Thus seismic explorations employing active sources have been initiated in the world [e.g., Zolfo et al., 1998]. Japanese researchers have carried out a large-scale active survey around volcanoes in Japan every year since 1994 under the National Project for the Prediction of Volcanic Eruptions [e.g., Kagaivama et al., 1995].

2. Data and Method

[3] The 7th seismic survey of the volcanic structure was conducted around the Iwate volcano in October 2000 in order to study the three-dimensional P-wave velocity in detail [Tanaka et al., 2001]. This survey is the most extensive conducted to date, in terms of the number of stations and shots and the size of the study area. Seventy scientists participated from 11 national universities of Japan (Tohoku, Hokkaido, Hiroasaki, Akita, Iwate, Tokyo, Tokyo Institute of Technology, Nagoya, Kyoto, Kyushu, and Kagoshima), the National Institute of Polar Research (NIPR) and the Japan Meteorological Agency (JMA). Nine chemical explosions using dynamite charges of 200-250 kg excited seismic waves (Figure 1). Data were recorded at 330 temporary seismic stations deployed around the volcano within 20 km from the summit (study area 40×40 km2). Each station consisted of a vertical short-period seismometer with a natural frequency of 2 Hz and a small data logger. More than 3000 seismograms were acquired with sampling interval of 4 ms, and they showed good signal-to-noise ratios. Additional seismograms with sampling interval of 10 ms from 33 permanent stations established to monitor volcano-seismic activity by Tohoku University, JMA and the National Research Institute for Earth Science and Disaster Prevention (NIED) are also used in the following analysis.

[4] The first arrival times of seismic waves were identified manually [Tanaka et al., 2001], giving a data set of 2676 useful readings. The numbers of readings with error less than 10 ms, 30 ms, 100 ms and more than 100 ms are 1077, 607, 572, and 420, respectively. The weights of 1.0, 0.5, 0.25, and 0.1 are assigned to the readings depending on the accuracy defined above.

[5] Prior to tomographic inversion, we constructed an initial velocity model as follows. We identified a 3-layered P-wave velocity structure from all the travel time (Figure 2a). A velocity model with stacked homogeneous layers is not suitable for the initial model in tomographic inversion used in this study. Therefore, the discrete velocities were smoothed in order to obtain continuous velocity structure consisting of a surface layer of 2 km thickness and a basement (Figure 2b). In order to estimate the thickness variation of the surface layer, we applied the time-term method [Schiedegger and Willmore, 1957] to the travel time data for distances greater than or equal to 7.9 km. And then we converted the time-terms to the surface layer thickness using the average velocity above the layer of the velocity of 6.0 km/s. The velocities for the top, middle and base of the surface layer are fixed as 2.5, 3.7 and 6.0 km/s, respectively. When we assigned the absolute depths of the three points of the surface layer, we considered topography.

[6] And we used TOMOG3D [Zhao et al., 1992] for tomographic inversion. TOMOG3D adopts the pseudo-bending [Um and Thurber, 1987] for ray tracing, and the damped least squares method [e.g., Aki and Richards, 1980] to invert the travel time data to velocities at grid points. As a preliminary step, we took 11×14 horizontal grid nodes with a grid interval of 0.04° (approximately
4 km) for the latitudinal and longitudinal directions and 16 vertical grid nodes at 1-km intervals. We obtained a preliminary model by iterative improvement starting from the initial model determined in the above. And then the horizontal grid interval is set to be 0.02° (approximately 2 km). We again inverted the travel time data to focus the central area of the study region, as a final model starting from the preliminary model under the fine grid interval.

3. Results

After inverting the travel time data, the weighted RMS residual is reduced from 0.36 s at the initial model to 0.18 s at the preliminary model after 10 iterations under the damping factor of 50. At the final model, the RMS residual becomes 0.17 s after 10 iteration under the damping factor of 15. The total...
A depth of 2 km is swept out. The pattern at a depth of 1 km although the magnitude of the reconstructed velocity perturbation exceeds 15% for the fine grid case. Figures 3(b), 3(c), and Figures 4(b), 4(c) indicate spatial resolutions of the results. In the large grid case, the model for the large grid case and on that of the preliminary model. We can confirm quite good correlation between the pattern of three-dimensional velocity structure and the evolutionary history of the volcano.

The many phenomena associated with the volcanic crisis of the Iwate volcano are mainly observed in the period from February to August 1998. [10] We have succeeded to reveal the three-dimensional P-wave velocity structure of the Iwate volcano in detail. High reliability of the result for depths shallower than 1 km confirmed by a checkerboard test. The Iwate volcano is characterized by a relatively high-velocity body at shallow depths beneath the western part of the volcano and a thick low-velocity surface layer beneath the eastern part including the summit. High-velocity anomalies under volcanoes have been recently detected through tomographic studies at many volcanoes, e.g. Mt. Etna [Villasenor et al., 1998], Mt. Vesuvius [Zollo et al., 1998], and others [e.g. Benz et al., 1996; Nishi, 1997; Tomatsu et al., 2001]. They may be common in volcanoes. Many high-velocity anomalies are interpreted as magma solidified after intrusion [e.g., Villaseñor et al., 1998]. The high-velocity body under the western part of the Iwate volcano may be formed in the same way, because geological studies show that major volcanism in the western part started about 300 ka and already stopped at about 30 ka preceding the formation of the eastern part [e.g. Nakagawa, 1987]. Thus the high-velocity body under the caldera can be interpreted as a center of the old western volcanic edifice. On the other hand, the eastern part of the volcano including the summit has been formed since 30 ka and shows the youngest activity even in historic time [e.g Nakagawa, 1987]. This suggests that the low-velocity materials covering the summit and the eastern flank consist of young and unconsolidated volcanic products. We can confirm quite good correlation between the pattern of three-dimensional velocity structure and the evolutionary history of the volcano.

4. Discussion

Figure 4. Vertical cross-sections of (a) tomographic image of Iwate volcano and the reconstructed images of the checkerboard tests for (b) the large grid case and (c) the fine grid case through the AA’ line in Figure 3a.

The final results are shown in Figures 3 and 4 with the results of the checkerboard reconstruction tests. The presented areas are limited the region around the volcano, 20 × 13 km² in plan views and 5 km in vertical cross-sections. For the checkerboard pattern, a velocity perturbation of ±30% is alternately superimposed at every grid point on the structure of the initial model for the large grid case and on that of the preliminary model for the fine grid case. Figures 3(b), 3(c), and Figures 4(b), 4(c) indicate spatial resolutions of the results. In the large grid case, the magnitude of the reconstructed velocity perturbation exceeds 15% at the most of the grids shallower than depth of 1 km. The positive and negative pattern at depths of 2 and 3 km seems to be smeared by only the patterns at a depth of 2 km. In the fine grid case, the reconstruction of the checkerboard pattern is quite well at a depth of 0 km. We can recognize the positive and negative pattern at a depth of 1 km although the magnitude of the reconstructed perturbation is only 2.5 to 5% under the volcano. The pattern at a depth of 2 km is swept out.

The most prominent feature of the result is the high-velocity body under the caldera, as presented by a blue area (Vp > 5.4 km/s) in the plan view at a depth of 0 km (Figure 3a). The vertical cross-section (Figure 4a) indicates that the high-velocity body protrudes vertically 2 km, forming a column-like structure, and it laterally extends at 0 km depth under the caldera (Figure 4a). The second prominent feature is the moderate-velocity region distributed around the caldera as presented by green area (4.4 < Vp < 4.6 km/s) (Figure 3a). The moderate-velocity region in the west of the caldera has a thickness of more than 2 km and surrounds a slightly low-velocity region (a yellow area) at a depth of 1 km (Figure 4a). Additionally, a thin, tongue-like region of the moderate velocity extends northeastward beneath the northeastern flank from the high-velocity body under the caldera (Figure 3a). In contrast with the western part of the volcano, the summit and the eastern flank are thickly covered with very low-velocity material presented by an orange area (Vp < 4 km/s) (Figures 3a and 4a).

Figure 5. Comparison of the P-wave velocity structure with the hypocenters of VT and LF earthquakes [Tanaka et al., 2002], the locations of VLP events [Nishimura et al., 2000] and dikes and Mogi sources [Miura et al., 2000] observed in the period from February to August 1998.
to August 1998. Although depths of the sources are determined with 1-D structure and should be reexamined, they are located at shallow depths comparable to the P-wave velocity structure obtained in this study (Figure 5). The activity of VT and LF earthquakes [Tanaka et al., 2002] started under the caldera, then migrated westward. The activity is trapped in the high- and moderate-velocity regions beneath the west of the volcano. The VLP events [Nishimura et al., 2000] stayed at the western bottom of the moderate-velocity region. The deformation sources [Miura et al., 2000] moved westward along the western lower edge of the moderate-velocity region. These suggest that the magmatic activity in the 1998 crisis received structural constraint by the old western volcanic edifice.

[12] Acknowledgments. We are grateful to the participants of the active seismic survey at Iwate volcano. We thank Iwate Prefecture and local authorities around Iwate volcano for helping with the survey, and Tohoku University, JMA, and the HiNet of NIED for providing seismograms observed at the respective permanent stations. D. Zhao kindly provided the tomography code, and the GMT system [Wessel and Smith, 1998] was used for preparation of all the figures. We thank H. Benz, A. Zollo, and an anonymous reviewer for constructive comments. This research was financially supported by the National Project for Prediction of Volcanic Eruptions and Iwate Prefecture.

References

Miura, S., et al., Crustal deformation associated with the 1998 seismic–volcanic crisis of Iwate volcano, northeastern Japan, as observed by a dense GPS network, Earth Planet Space, 52, 1003–1008, 2000.

K. Aizawa, Graduate School of Science, Nagoya University, Nagoya 464-0812, Japan.

H. Hamaguchi, H. Nakamichi, T. Nishimura, S. Tanaka, S. Ueki, and T. Yamawaki, Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan. (tanaka@aob.geophys.tohoku.ac.jp)

N. Matsuwo, Institute of Seismology and Volcanology, Graduate School of Sciences, Kyushu University, Shimabara 855-0843, Japan.

H. Miyamachi, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan.

T. Mori, Volcanic Fluids Research Center, Tokyo Institute of Technology, Kusatsu 377-1771, Japan.

T. Ohminato and J. Oikawa, Earthquake Research Institute, University of Tokyo, Tokyo 113-0032, Japan.

S. Onizawa, Institute of Seismology and Volcanology, Graduate School of Sciences, Hokkaido University, Sapporo 060-0810, Japan.

T. Tsutsui, Division of Applied Earth Sciences, Akita University, Akita 010-8502, Japan.