Principles of Wet Chemical Processing in ULSI Microfabrication

| 著者 |
| --- | --- |
| Kikuyama Hirohisa, Miki Nobuhiro, Saka Kiyonori, Takano Jun, Kawanabe Ichiro, Miyashita Masayuki, Ohmi Tadahiro |
論文タイトル	IEEE Transactions on Semiconductor Manufacturing
巻	4
号	1
頁	26-35
年	1991
URL	http://hdl.handle.net/10097/48031
doi	10.1109/66.75861
Principles of Wet Chemical Processing in ULSI Microfabrication

Hirohisa Kikuyama, Member, IEEE, Nobuhiro Miki, Member, IEEE, Kiyonori Saka, Jun Takano, Ichiro Kawanabe, Masayuki Miyashita, and Tadahiro Ohmi, Member, IEEE

Abstract—Fine patterning technology for integrated device manu-
factoring requires properties such as surface cleanliness, surface smooth-
ness, complete uniformity and complete etching linearity in wet chem-
ical processing. Especially, since improvements in device integra-
tion usually require fine patterning of high aspect ratio contact and via holes, surface chemical technology must achieve perfect smoothness of the wafer surface. Acidic ammonium fluo-
ride solution, called buffered hydrogen fluoride (BHF), is an import-
ant chemical because of its reactivity to silicon compounds. It is wid-
ely used as a surface treatment agent for processes such as etching, patterning and cleaning of silicon wafer surfaces. The chemical composition of BHF is usually a mixture of 40% NH₄F and 49% or 50% HF, ranging in weight ratios of NH₄F : HF from 5:1 to 30:1. High concentrations of NH₄F are considered to buffer the reaction rate of SiO₂ and to prevent the attack of HF on the photoresist. Although work has been done on effects of varying concentration of NH₄F in BHF [1]-[4], additional attention to the problems caused by high concentration of NH₄F is required. The chemical activity and the functional properties of BHF must be enhanced in order to improve wet etching technology. In this work, theoretical con-
sideration is directed to the chemical composition of BHF based on the spectroscopic study of the dissociation of the NH₄F-HF-H₂O system.

The high concentration of NH₄F has been confirmed to re-
sult in insufficient etching of SiO₂ because of the precipitation of ((NH₄)₂SiF₄) on the wafer surface. Furthermore, high NH₄F concentrations in BHF has been demonstrated to cause the seg-
regation of crystalline (NH₄HF₂), due to the reduced solubility of (NH₄HF₂) in BHF [5].

Perfect surface smoothness is a key technology for manu-
factoring of ULSI devices having very thin gate and storage capacitor oxides and having very shallow junctions. It will be shown in this study that the smoothness of silicon wafer surface required by such constraints cannot be obtained through wet chemical etching without the improvement of the wettability of BHF.

Wettability control of BHF through the addition of surfac-
tants has previously been discussed, based on ten requirements for advanced wet processing: comparable etching rates as tra-
ditional BHF, low contact angle, non-segregation, non-foam-
ing, low particle, low impurities, low particulate adhesion on wafer surface, no surface residuals, excellent surface smoothness, and high etching selectivity [6]-[9].

This paper is going to propose an advanced surface-active BHF having an optimal chemical composition and good wettability, based on ultra clean grade liquid chemicals, in which impurity levels are suppressed to less than 0.1 ppb [10]. Fur-
ther, we describe the four principles studied in wet chemical processing of silicon: determination of dominant reaction (etching) species, stability of the chemical composition of the etching solution, solubility of reaction product, and wettability of the wafer surface.

I. INTRODUCTION

I. INTRODUCTION

ImPROVEMENT of surface chemical technology in wet chem-
istry is an essential requirement for progressive ULSI processing. Especially, since improvements in device integra-
tion usually require fine patterning of high aspect ratio contact and via holes, surface chemical technology must achieve perfect smoothness of the wafer surface. Acidic ammonium fluo-
ride solution, called buffered hydrogen fluoride (BHF), is an import-
ant chemical because of its reactivity to silicon compounds. It is widely used as a surface treatment agent for processes such as etching, patterning and cleaning of silicon wafer surfaces. The chemical composition of BHF is usually a mixture of 40% NH₄F and 49% or 50% HF, ranging in weight ratios of NH₄F : HF from 5:1 to 30:1. High concentrations of NH₄F are considered to buffer the reaction rate of SiO₂ and to prevent the attack of HF on the photoresist. Although work has been done on effects of varying concentration of NH₄F in BHF [1]-[4], additional attention to the problems caused by high concentration of NH₄F is required. The chemical activity and the functional properties of BHF must be enhanced in order to improve wet etching technology. In this work, theoretical con-
sideration is directed to the chemical composition of BHF based on the spectroscopic study of the dissociation of the NH₄F-HF-H₂O system.

The high concentration of NH₄F has been confirmed to re-
sult in insufficient etching of SiO₂ because of the precipitation of ((NH₄)₂SiF₄) on the wafer surface. Furthermore, high NH₄F concentrations in BHF has been demonstrated to cause the seg-
regation of crystalline (NH₄HF₂), due to the reduced solubility of (NH₄HF₂) in BHF [5].

Perfect surface smoothness is a key technology for manu-
factoring of ULSI devices having very thin gate and storage capacitor oxides and having very shallow junctions. It will be shown in this study that the smoothness of silicon wafer surface required by such constraints cannot be obtained through wet chemical etching without the improvement of the wettability of BHF.

Wettability control of BHF through the addition of surfac-
tants has previously been discussed, based on ten requirements for advanced wet processing: comparable etching rates as tra-
ditional BHF, low contact angle, non-segregation, non-foam-
ing, low particle, low impurities, low particulate adhesion on wafer surface, no surface residuals, excellent surface smoothness, and high etching selectivity [6]-[9].

This paper is going to propose an advanced surface-active BHF having an optimal chemical composition and good wettability, based on ultra clean grade liquid chemicals, in which impurity levels are suppressed to less than 0.1 ppb [10]. Fur-
ther, we describe the four principles studied in wet chemical processing of silicon: determination of dominant reaction (etching) species, stability of the chemical composition of the etching solution, solubility of reaction product, and wettability of the wafer surface.

II. FUNDAMENTALS OF WET CHEMICAL PROCESSING IN SILICON TECHNOLOGY

I. Dominant Reaction (Etching) Species

Etching rates of thermal silicon oxide films having a thick-
ness of 1 μm are observed in various compositions of BHF at 25°C and are plotted in Fig. 1. The vertical axis is NH₄F weight concentration and the horizontal axis is HF weight concentration. Solid lines depict constant etching rates of 200 Å/min, 500 Å/min, 1000 Å/min, and 1200 Å/min as a function of NH₄F weight concentration and HF weight concentration. The two dashed lines correspond to conventional BHF compositions and equivalent mole ratios. The conventional BHF composition line indicates the direct mixing of 40% NH₄F solution and 50% HF solution. The equivalent mole ratio line is determined from the fact that the molecular weight of NH₄F is 37 and that the HF is 20.

It is seen from Fig. 1 that the etching rate of SiO₂ increases with an increase of HF concentration but it is almost indepen-
dent of NH₄F concentration above the equivalent mole ratio line. On the other hand, it has been found [2] that SiO₂ films are not
etched by NH₄F solution, which is a strong electrolyte, i.e., there exist large number of F⁻ ions in solution. These two results seem to indicate that the dominant etching species of SiO₂ is HF₂⁻, not the F⁻ ion [11].

The reaction of BHF and SiO₂ is described by

$$\text{SiO}_2 + 4\text{HF} + 2\text{NH}_4\text{F} \rightarrow (\text{NH}_4)_2\text{SiF}_6 + 2\text{H}_2\text{O}. \quad (1)$$

Details of the etching step are

$$\text{SiO}_2 + 3\text{HF}_2^+ + \text{H}^+ \rightarrow \text{SiF}_6^{2-} + 2\text{H}_2\text{O} \quad (2)$$

$$2\text{NH}_4^+ + \text{SiF}_6^{2-} \rightarrow (\text{NH}_4)_2\text{SiF}_6. \quad (3)$$

In the HF-H₂O system, the ionization process has been represented by two steps which generate the bifluoride ion HF₂⁻ [8]:

$$\text{HF} \rightleftharpoons \text{H}^+ + \text{F}^- \quad (4)$$

$$\text{HF} + \text{F}^- \rightleftharpoons \text{HF}_2^- \quad (5)$$

The first step, with an equilibrium constant ranging from 2.4×10^{-7} to 1.3×10^{-3} (25°C) [12], implies a dissociation of HF into H⁺ and F⁻ ions at a rate of only a few percent. So, dilute hydrofluoric acid behaves as a surprisingly weak acid, in marked contrast with other hydrohalic acids. The F⁻ ion generated from the equilibrium equation (4) produces the bifluoride ion HF₂⁻ following (9), but the concentration of F⁻ ions is very small due to the small equilibrium constant, thus, only small numbers of bifluoride ions HF₂⁻ are generated by hydrofluoric acid. Because NH₄F is a strong electrolyte, a large amount of F⁻ ion is generated by the NH₄F-HF-H₂O system according to the following:

$$\text{NH}_4^+ + \text{F}^- \rightarrow \text{NH}_4\text{F} \quad (6)$$

A large amount of F⁻ facilitates the generation of a generates a large amount of bifluoride ions, HF₂⁻, following (5).

The conductivity of NH₄F solution is shown in Fig. 2. We have measured the conductivity using parallel electrodes made of platinum. The cell constant is 1.025 and carried out at 3000 Hz. With the increase of NH₄F concentration the conductivity increases; it reaches a maximum value at the concentration of 7 mol/l and then decrease. The ratio of effective ion concentration decreases with the increase of NH₄F, owing to ion interaction. This indicates that NH₄F does not dissociate completely. In the equilibrium state of the NH₄F-HF-H₂O system, the concentrations of significant species are expressed by the following:

$$\frac{[\text{H}^+] [\text{F}^-]}{[\text{HF}]} = K_1 \quad (7)$$

$$\frac{[\text{HF}] [\text{F}^-]}{[\text{HF}_2^-]} = K_2 \quad (8)$$

$$m = [\text{HF}] + [\text{H}^+] + [\text{HF}_2^-]. \quad (9)$$

$$m + n\alpha = [\text{HF}]+ [\text{F}^-] + 2[\text{HF}_2^-]. \quad (10)$$

Where m is the mole concentration of HF, n is the mole concentration of NH₄F, and α is the dissociation ratio of NH₄F. The results are shown in Fig. 4, where FT-IR spectra are illustrated for three representative HF concentrations at HF concentration of 2.5 mol/l. The spectrum of HF₂⁻ ion appears at 1210 cm⁻¹ and its absorption intensity increases with an}
Fig. 3. Relationship of H⁺ ion concentration and NH₄F concentration.

TABLE I

COMPOSITION AND CALCULATED CONCENTRATIONS IN THE NH₄F-HF-H₂O SYSTEM

<table>
<thead>
<tr>
<th>Composition</th>
<th>NH₄F</th>
<th>H⁺</th>
<th>[HF⁻]</th>
<th>[HF₃⁻]</th>
<th>[HF₆⁻]</th>
<th>[F⁻]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mol/g</td>
<td>mol/g</td>
<td>mol/g</td>
<td>mol/g</td>
<td>mol/g</td>
<td>mol/g</td>
<td>mol/g</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1.0</td>
<td>0.000</td>
<td>9.8x10⁻²</td>
<td>8.7x10⁻²</td>
<td>0.82</td>
<td>6.0x10⁻³</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.270</td>
<td>2.5x10⁻²</td>
<td>0.96</td>
<td>0.26</td>
<td>0.72</td>
<td>3.0x10⁻²</td>
</tr>
<tr>
<td>1.0</td>
<td>0.500</td>
<td>2.5x10⁻²</td>
<td>0.54</td>
<td>0.26</td>
<td>0.72</td>
<td>3.5x10⁻²</td>
</tr>
<tr>
<td>1.0</td>
<td>0.540</td>
<td>7.9x10⁻³</td>
<td>0.98</td>
<td>0.45</td>
<td>0.54</td>
<td>9.0x10⁻²</td>
</tr>
<tr>
<td>1.0</td>
<td>0.750</td>
<td>1.6x10⁻²</td>
<td>0.65</td>
<td>0.42</td>
<td>0.57</td>
<td>7.0x10⁻²</td>
</tr>
<tr>
<td>1.0</td>
<td>1.000</td>
<td>4.3x10⁻³</td>
<td>0.70</td>
<td>0.57</td>
<td>0.43</td>
<td>0.13</td>
</tr>
<tr>
<td>1.0</td>
<td>2.000</td>
<td>2.5x10⁻⁴</td>
<td>0.77</td>
<td>0.86</td>
<td>0.14</td>
<td>0.68</td>
</tr>
<tr>
<td>1.0</td>
<td>3.890</td>
<td>6.3x10⁻⁵</td>
<td>0.60</td>
<td>0.93</td>
<td>7.0x10⁻²</td>
<td>1.39</td>
</tr>
<tr>
<td>1.0</td>
<td>6.000</td>
<td>4.0x10⁻⁵</td>
<td>0.45</td>
<td>0.94</td>
<td>6.0x10⁻²</td>
<td>1.77</td>
</tr>
<tr>
<td>1.0</td>
<td>10.000</td>
<td>5.0x10⁻⁶</td>
<td>0.61</td>
<td>0.98</td>
<td>2.0x10⁻²</td>
<td>5.09</td>
</tr>
<tr>
<td>1.5</td>
<td>0.000</td>
<td>0.14</td>
<td>0.13</td>
<td>1.23</td>
<td>1.0x10⁻²</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.270</td>
<td>5.0x10⁻²</td>
<td>1.00</td>
<td>0.29</td>
<td>1.16</td>
<td>3.0x10⁻²</td>
</tr>
<tr>
<td>1.5</td>
<td>0.750</td>
<td>1.6x10⁻²</td>
<td>0.88</td>
<td>0.61</td>
<td>0.87</td>
<td>7.0x10⁻²</td>
</tr>
<tr>
<td>1.5</td>
<td>0.811</td>
<td>1.3x10⁻²</td>
<td>0.90</td>
<td>0.66</td>
<td>0.83</td>
<td>8.0x10⁻²</td>
</tr>
<tr>
<td>1.5</td>
<td>1.125</td>
<td>6.3x10⁻³</td>
<td>0.86</td>
<td>0.84</td>
<td>0.65</td>
<td>0.14</td>
</tr>
<tr>
<td>1.5</td>
<td>1.500</td>
<td>4.0x10⁻³</td>
<td>0.75</td>
<td>0.95</td>
<td>0.55</td>
<td>0.16</td>
</tr>
<tr>
<td>1.5</td>
<td>3.000</td>
<td>6.3x10⁻⁴</td>
<td>0.59</td>
<td>1.25</td>
<td>0.25</td>
<td>0.51</td>
</tr>
<tr>
<td>1.5</td>
<td>4.500</td>
<td>1.0x10⁻⁴</td>
<td>0.61</td>
<td>1.39</td>
<td>0.11</td>
<td>1.36</td>
</tr>
<tr>
<td>1.5</td>
<td>5.840</td>
<td>4.0x10⁻⁵</td>
<td>0.62</td>
<td>1.43</td>
<td>7.0x10⁻²</td>
<td>2.19</td>
</tr>
<tr>
<td>2.5</td>
<td>0.000</td>
<td>0.23</td>
<td>0.22</td>
<td>2.05</td>
<td>1.0x10⁻²</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.270</td>
<td>0.12</td>
<td>1.00</td>
<td>0.37</td>
<td>2.01</td>
<td>2.0x10⁻²</td>
</tr>
<tr>
<td>2.5</td>
<td>1.250</td>
<td>2.0x10⁻²</td>
<td>0.86</td>
<td>1.03</td>
<td>1.45</td>
<td>7.5x10⁻²</td>
</tr>
<tr>
<td>2.5</td>
<td>1.350</td>
<td>1.6x10⁻²</td>
<td>0.98</td>
<td>1.23</td>
<td>1.25</td>
<td>0.11</td>
</tr>
<tr>
<td>2.5</td>
<td>1.875</td>
<td>1.0x10⁻²</td>
<td>0.83</td>
<td>1.42</td>
<td>1.07</td>
<td>0.14</td>
</tr>
<tr>
<td>2.5</td>
<td>2.500</td>
<td>4.0x10⁻³</td>
<td>0.80</td>
<td>1.75</td>
<td>0.75</td>
<td>0.24</td>
</tr>
<tr>
<td>2.5</td>
<td>5.000</td>
<td>4.0x10⁻⁴</td>
<td>0.62</td>
<td>2.23</td>
<td>0.28</td>
<td>0.86</td>
</tr>
<tr>
<td>2.5</td>
<td>7.500</td>
<td>6.3x10⁻⁵</td>
<td>0.62</td>
<td>2.39</td>
<td>0.11</td>
<td>2.24</td>
</tr>
<tr>
<td>2.5</td>
<td>9.730</td>
<td>1.6x10⁻⁵</td>
<td>0.72</td>
<td>2.45</td>
<td>5.0x10⁻²</td>
<td>4.51</td>
</tr>
<tr>
<td>1.2</td>
<td>10.300</td>
<td>4.0x10⁻⁵</td>
<td>0.72</td>
<td>1.18</td>
<td>2.0x10⁻²</td>
<td>6.27</td>
</tr>
<tr>
<td>2.7</td>
<td>4.595</td>
<td>1.6x10⁻⁴</td>
<td>0.87</td>
<td>2.55</td>
<td>0.17</td>
<td>1.46</td>
</tr>
</tbody>
</table>

1) [H⁺] is calculated from pH value which is measured with pH paper
 pH = -log[H⁺]
2) α : degree of NH₄F dissociation

The dependence of the intensity of HF⁺ spectrum on NH₄F concentration is shown in Table II, where etching rates of SiO₂ films are simultaneously tabulated.

A plot of the calculated value of [HF⁺] concentration against absorption intensity of [HF⁺] is found to be linear, as shown in Fig. 5. The empirical equation can be expressed as

\[[HF⁺]_{obs} = 8.518 [HF⁺]_{cal} + 0.014. \]
This result seems to support above described method for calculating HF$_2^-$ ion concentration. HF$_2^-$ ion concentrations in the NH$_4$F-HF-H$_2$O system from Table II are plotted as a function of NH$_4$F concentration for the three HF concentrations, in Fig. 6, where theoretical values are also shown by dashed lines. It is seen from Fig. 6 that the HF$_2^-$ ion concentration tends to saturate in NH$_4$F concentrations greater than an equivalent mole ratio of HF and NH$_4$F. Theoretical results coincide well with experimental values. In Fig. 7, etching rate of thermal silicon dioxide films is plotted as a function of NH$_4$F concentration for the three HF concentrations. It is worthwhile to note in Figs. 6 and 7, that the dependence of the etching rate on NH$_4$F concentration is well described by the HF$_2^-$ ion concentration dependence on NH$_4$F concentration except for NH$_4$F concentrations higher than several mole concentrations. In spite of the constant HF$_2^-$ ion concentration, the etching rate of SiO$_2$ starts to decrease with an increase of NH$_4$F concentration greater than the above mentioned several mole concentrations. This phenomenon is attributed to the decrease of H$^+$ ion concentration with an increase of NH$_4$F concentration (as shown in Fig. 3) combined with the fact that the surface reaction of SiO$_2$ with HF$_2^-$ ions requires the existence of H$^+$ ions (as described in (2)).

Fig. 8 shows the ratio of etching rate to HF$_2^-$ concentration as a function of the [H$^+$/[HF$_2^-$]] ratio. It can be seen that the etching rate of SiO$_2$ gradually decreases with decreasing in H$^+$ concentration even if the HF$_2^-$ concentration remains constant. Fig. 8 indicates the existence of two different SiO$_2$ etching mechanisms for different ranges of H$^+$ ion concentrations, as shown next:

\[E_1 = 1282.8 \log_{10} [H^+] + 388.8 \log_{10} \frac{[HF_2^-]}{[H^+]}/[HF_2^-] \] \ (12)

when

\[\left[\frac{[H^+]}{[HF_2^-]} \right] \geq 2 \times 10^{-10} \]

\[E_2 = \frac{757.9}{[HF_2^-]} + 79.0 \log_{10} \frac{[H^+]}{[HF_2^-]} \] \ (13)

when

\[\left[\frac{[H^+]}{[HF_2^-]} \right] < 2 \times 10^{-10}. \]

Here, E_1 and E_2 are etching rates of thermal silicon oxide (Å/min) and [HF$_2^-$], and [H$^+$] is the HF$_2^-$ ion concentration (mol/l) and the H$^+$ ion concentration (mol/l), respectively. As can be seen from (12) and (13), etching rate depends mainly on the [HF$_2^-$] concentration. The functionality of [H$^+$] is small, because it changes logarithmically. The mechanism of why the H$^+$ ion concentration influence SiO$_2$ etching is changed at the [H$^+$]/[HF$_2^-$] ratio of 2×10^{-2} is now under investigation.

2. Solubility of the Reaction (Etching) Product in the Etching Solution

Ammonium hexafluorosilicate (NH$_4$)$_2$SiF$_6$) is produced by the reaction of SiO$_2$ and BHF. Its solubility (except for that in NH$_4$F [15]) in BHF has never been reported. We have measured the solubilities of (NH$_4$)$_2$SiF$_6$) in several BHF compositions, by filtration and collection of the undissolved portions, and have plotted them as a function of NH$_4$F concentration in Fig. 9. The solubility of (NH$_4$)$_2$SiF$_6$) in BHF has been demonstrated to increase with a decrease of NH$_4$F concentration
Fig. 5. Relationship of HF\textsubscript{2} absorption intensity in FT-IR spectrum and theoretically calculated HF\textsubscript{2} concentration. ○: HF = 1.0 mol/l. ●: HF = 1.5 mol/l. ●: HF = 2.5 mol/l. □: 1) HF = 1.2 mol/l; NH\textsubscript{4}F = 10.3 mol/l; 2) HF = 2.7 mol/l; NH\textsubscript{4}F = 4.6 mol/l.

Fig. 6. Relationship of HF\textsubscript{2} concentration and NH\textsubscript{4}F concentration.

The HF concentration maintains constant. With the NH\textsubscript{4}F concentration held constant, the solubility of ((NH\subscript{4})\textsubscript{2}SiF\subscript{6}) decreases with increasing HF concentration. In the vicinity of 20\% NH\textsubscript{4}F concentration, the solubility of ((NH\subscript{4})\textsubscript{2}SiF\subscript{6}) shows a localized increase in concentration. It has been reported that solid phase changes from ((NbF\textsubscript{6} \cdot (NH\subscript{4})\textsubscript{2}SiF\subscript{6})) in 19.04 and 21.42 wt. % NH\textsubscript{4}F, and within this concentration region two solid phases coexist in solution [15].

The relationships between etching depth and time for 10 \mu m \times 10 \mu m holes with improved (1.7\% HF: 15\% NH\textsubscript{4}F) and conventional (2.4\% HF: 38.1\% NH\textsubscript{4}F) BHF are shown in Fig. 10. The etching rate for both BHF is 370 Å/min at 25°C. 10-μm2 contact holes with a resist (OFPR-800) thickness of 1.3 μm are patterned on 1.0-μm thick silicon dioxide and the holes
are etched with improved and conventional BHF. The etched thickness is measured by a surface profilometer. Complete etching linearity of improved BHF has been confirmed up to 1 μm thickness in SiO₂. While the etching rate of conventional BHF is lower than improved BHF at the start of etching to 8 min, it is approximately the same as improved BHF from 8 min to 20 min, and is slower again after 20 min.

As can be seen from the above mentioned results, etching linearity is enhanced with improved BHF. This is attributed to the increased solubility of the reaction products. The control of etching process is difficult in conventional BHF because the etching rate of SiO₂ does not increase linearly with the etching time. Contact holes of various sizes from 0.7 μm to 10.0 μm are etched with conventional BHF, improved BHF and ad-
TABLE III

IMPERFECTION RATIO OF CONTENT HOLE ETCHING

<table>
<thead>
<tr>
<th></th>
<th>Conventional BHF</th>
<th>Improved BHF</th>
<th>Advanced BHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄F (%)</td>
<td>39.6 38.1 30.0</td>
<td>15.0 15.0 15.0</td>
<td>15.0 15.0 15.0</td>
</tr>
<tr>
<td>HF (%)</td>
<td>0.5 2.4 6.0</td>
<td>0.5 2.4 6.0</td>
<td>0.5 2.4 6.0</td>
</tr>
<tr>
<td>Surfactant* ppm</td>
<td>0 0 0</td>
<td>0 0 0</td>
<td>100 100 100</td>
</tr>
</tbody>
</table>

1) Surfactant : Hydrocarbon surfactant

Advanced surface active BHF (advanced BHF), i.e., containing a selected surfactant in improved BHF. The heterogeneous etching is easily observed by the interference color of etched surface with a microscope. If any irregularity in interference is noted, it is counted as an imperfection. One thousand contact holes for each size are etched by using their BHF solution; imperfection ratios are shown in Table III. The conventional BHF gives higher imperfection ratio while the improved BHF and the surface active BHF exhibit complete etching uniformity for all sizes of contact holes. In the case of conventional BHF, the imperfection ratio increases with increasing NH₄F concentration and contact hole size.

The concentration of ((NH₄)₂SiF₆) at the liquid-solid interface, where the etching takes place is directly proportional to the size (surface area) of the contact hole. Consequently, the local saturation of the reaction product ((NH₄)₂SiF₆) causes suppression of the etching rate.

Improved BHF and advanced BHF do not show this saturation effect because of the higher solubility of ((NH₄)₂SiF₆) in these solutions. Thus, it can be concluded that the composition of the etching solution must be designed to maximize the solubility of the etching reaction products.

3. Stability of Chemical Composition

Solid phase segregation from a liquid a chemical occurs at temperatures less than a critical value, the solid phase segregation temperature.

Conventional BHF is plagued by solid phase segregation of NH₄HF₂ during transportation and storage, particularly in winter. In conventional BHF with HF concentrations of 6-8%, solid phase segregation occurs at temperatures from 9-17°C.

The relation between solid phase segregation temperature and NH₄F concentration has been measured and is shown in Fig. 11. Two relationships, the freezing depression curve and the solubility curve, are observed to have a point of intersection. This represents the minimum solid phase segregation temperature.

In the region of NH₄F concentrations below the point of intersection, the freezing temperature decreases with increasing NH₄F concentration, and the equilibrium solid phase is ice. In the region above the intersection, the segregation temperature increases with increasing NH₄F concentration. This is due to the decreasing solubility of the solid phase species (NH₄HF₂) in solutions of increasing NH₄F concentration. Conventional BHF is likely apt to exhibit segregation of NH₄HF₂ crystals due to the reduction of NH₄HF₂ solubility. Segregated solid phase chemicals have been confirmed to be difficult to redissolve, even if the ambient temperature returns to a temperature higher than...
the solid phase segregation temperature. This results in a variation of the composition of the liquid chemicals, and consequently, in a variation of the etching rate. Solid phase segregation temperature of BHF can be lowered by decreasing NH4F concentration. It is desirable to formulate liquid chemicals such that the solid segregation temperature is as low as possible. For example, BHF having NH4F concentration of 15% has a usefully lowered segregation temperature of \(-18^\circ\text{C}\).

4. Wettability of the Wafer Surface

It is critically important to improve the wetting characteristics of liquid chemicals in order to achieve complete cleaning of the wafer surface. However, BHF have large surface tension values ranging from 84 dyne/cm to 93 dyne/cm and high contact angles ranging from 69 degrees to 73 degrees on bare silicon surfaces [9], [16]. BHF generally has poor wettability on bare silicon and resist-coated surfaces, resulting in rough silicon surfaces after SiO2 etching. In order to improve the wettability of BHF on a wafer surface, it is necessary to add selected hydrocarbon surfactants such as aliphatic amines, acids and alcohols. This surface active BHF has been reported in a previous paper [6]-[9], in which it has been shown that the following 10 characteristics are essentially required of surfactants: 1) same etching rate as BHF; 2) low contact angle; 3) non-segregation; 4) non-fouling; 5) low particulates; 6) low impurities (possibility of purification); 7) low particulate adhesion on wafer surface; 8) no surface residuals; 9) excellent surface smoothness; and 10) high etching selectivity.

Rough silicon wafer surfaces cause problems in succeeding process steps, particularly for shallow junction devices. Uniformity of SiO2 etching by BHF has been demonstrated to be significantly improved by decreasing NH4F concentration down to 15 weight percent. Less smoothness of the silicon surface is obtained after etching with both conventional BHF and improved BHF, as shown in Fig. 12, where the etching time is increased to 1 h in order to show the surface roughness. Complete smoothness of silicon surface after the SiO2 etching is achieved by the advanced BHF including surfactants such as aliphatic amine and aliphatic alcohol. Even after immersing the wafer in the advanced BHF for 48 h after the SiO2 etching, complete smoothness of the silicon surface is guaranteed as shown in Fig. 12. Smoothness of the etched silicon surface is affected by the manufacturing conditions of silicon wafer, i.e., FZ method and CZ method, the conductivity type and the crystal orientation of the wafer. Silicon wafers, especially those having (111) crystal orientation produce severe surface roughness when they are immersed in conventional BHF and improved BHF for 48 h. N-type silicon wafers exhibit better etching smoothness than p-type silicon wafers. The results are summarized in Table IV.

Roughness when they are immersed in conventional BHF and improved BHF for 48 h.

TABLE IV

<table>
<thead>
<tr>
<th>Silicon Wafer</th>
<th>Conventional Composition</th>
<th>Improved Composition</th>
<th>Advanced Surface Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>FZ n (100) 3-5</td>
<td>R R R VR VR VS</td>
<td>R R R VR R VR VS</td>
<td></td>
</tr>
<tr>
<td>CZ p (100) 6-8</td>
<td>R R R VR R VR S S</td>
<td>R R R VR R VR S S</td>
<td></td>
</tr>
<tr>
<td>FZ n (111) 100</td>
<td>R VR R VR VR S S S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ p (100) 20</td>
<td>R R S R VR S S S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ n (100) 20</td>
<td>R R R S VR R R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: VS: Very-smooth; S: Smooth; VR: Very-rough; R: Rough
Conventional composition BHF: NH4F 38.1%, HF 2.4%
Improved composition BHF: NH4F 15%, HF 2.4%
Advanced surface active BHF: NH4F 15.0%, HF 2.4%, Hydrocarbon surfactant 200ppm.

III. Conclusion

Improvement of the chemical composition of BHF has been examined from a theoretical viewpoint, based on ionization mechanisms of liquid chemicals and surface chemical reactions. The dissociation mechanism of BHF has been examined theoretically and experimentally, concluding that HF3 is the dominant reactive ion species in SiO2 etching. The relationship of etching rate of silicon oxide films and HF3 and H+ ion concentrations has been determined. Etching rate of SiO2 films in the NH4F-HF-H2O system has been confirmed to increase linearly with the HF3 ion concentration, while it decreases logarithmically with a decrease of the H+ ion concentration, even if the HF3 ion concentration is kept constant. We conclude that the
composition of liquid chemicals for etching solution must be selected to have the most appropriate concentration of HF$_2^-$ ion species for the etching rate. The composition and properties of liquid chemicals should be designed by considering the following characteristics: sufficient solubility of etching product in the etching solution; sufficiently segregation temperatures for the solid phase; and excellent wettabiltiy.

1) Ordinary compositions of BHF having excess NH$_4$F concentration cause several serious problems excess NH$_4$F does not contribute to the ionic reaction with silicon oxide and seriously degrades the etching uniformity and linearity due to the lack of solubility of etching product in BHF.

2) We have found that the solubility of the etching product of SiO$_2$ increases in BHF with a decrease of NH$_4$F concentration.

3) Another practical hindrance is the solid phase segregation of NH$_4$HF$_2$, crystals formation in a low temperature environment. This solid phase segregation creates particles and results in compositional variation of the liquid chemical. Considering the transportation and the stocking of liquid chemicals, particularly in winter, the solid phase segregation temperature must be made as low as possible. The improved composition of BHF, having an NH$_4$F concentration of about 15%, is confirmed to resolve these problems and perform etching with complete linearity and uniformity.

4) Through appropriate surfactants addition, liquid chemicals exhibit excellent wettability on wafer surfaces and allow high quality wet chemical processing. Complete smoothness of the wafer surface after the SiO$_2$ etching has been achieved by an introduction of advanced surface active BHF having an NH$_4$F concentration of 15% and selected hydrocarbon surfactants such as aliphatic amine and aliphatic alcohol.

APPENDIX

By combining (4)–(10) in Section II, we obtain the expression

\[
\begin{align*}
[H_F^2^-] &= 2[H^+] (\alpha n + [H^+]) + K_1 K_2 - \sqrt{K_1 K_2 [KF]} + 4[H^+ (\alpha n + [H^+])] \\
[F^-] &= K_2 [HF] \\
[HF] &= \frac{1}{K_1} [H^+] [F^-].
\end{align*}
\]

(14)

The concentrations of respective species are obtained by using the values from [7] $K_1 = 1.3 \times 10^{-3}$, $K_2 = 0.104$, $[H^+]$ is measured with pH paper, results are tabulated in Table I.

ACKNOWLEDGMENT

This research has been mainly carried out in the Super Clean Room in the Laboratory for Microelectronics, Research Institute of Electrical Communication, Tohoku University. If it is noted that proceeding work of importance related to this article is not cited as a reference, it is due to our incomplete survey of references. It would be greatly appreciated if such information of comments are provided to the authors.

REFERENCES

*Hirohisa Kikuyama was born in Osaka, Japan, on July 1, 1949. He received the B.S. and M. S. degrees in chemical engineering in 1974 and 1977, respectively, from Doshisha University. In 1977, he joined Hashimoto Chemical Industry Company, Ltd. where he worked on advanced synthesis technologies of high-purity fluorine compounds. Since 1983, he has been engaged in research and development of high-purity hydrogen fluoride and buffered hydrogen fluoride, especially cleanliness technology of
these chemicals. He developed property-controlled buffered hydrogen fluoride and fluoride for optical glass. He is now Manager of the Research and Development Division.

Mr. Kikuyama is a member of The Institute of Environmental Sciences, and The Japan of Applied Physics.

Nobuhiro Miki (S’69–M’74) was born in Kyoto, Japan, on December 31, 1922. He was qualified as a Consulting Engineer in applied science by the Science and Technology Agency in 1959.

In 1978, he joined Hashimoto Chemical Industry Co., Ltd., where he worked on the advanced manufacturing process technologies of fluorine chemicals, such as hydrogen fluoride, crystals of fluorides and several gaseous fluorides. He has been engaged in the research of the ultrapurification technology and functional performance of hydrofluoric acid and buffered hydrogen fluoride for semiconductor processing, the development of fluorine passivation technology of metal surfaces, the synthesis technology of high pure materials for optical glass, and fluoride complexes for fluorine cells. He is now Managing Director and General Manager of the Technical and Research Department.

Mr. Miki is a member of The Chemical Society of Japan, The Electrochemical Society of Japan, The Japan Society for Analytical Chemistry, and The Institute of Environmental Sciences.

Kiyonori Saka was born in Osaka, Japan, on March 30, 1959. He received the B.S. degree in chemical engineering from Doshisha University.

He joined Hashimoto Chemical Industry Company, Ltd. and since that time he has been engaged in the research and development of high quality fluoride chemicals.

Jun Takano was born in Osaka, Japan, on June 28, 1961. He received the B.S. degree in chemical engineering from Doshisha University.

He joined Hashimoto Chemical Industry Company, Ltd. and since that time he has been engaged in the research and development of high quality fluoride chemicals.

Ichiro Kawanabe was born in Kagoshima, Japan, on September 3, 1957. He received the B.S. degree in chemical engineering from Kagoshima University.

He joined Hashimoto Chemical Industry Company, Ltd., in 1980 and since then he has been engaged in the research and development of high quality fluoride chemicals. He is presently the Visiting Researcher of Faculty of Engineering of Tohoku University, where he is now carrying out research on gas phase etching of oxide films and related process technologies.

Masayuki Miyashita was born in Osaka, Japan, on June 14, 1961. He received the B.S. degree in chemistry from Ritsumeikan University, Kyoto, Japan in 1984.

He joined Hashimoto Chemical Industry Company Ltd. in 1984 and since then he engaged in the research and development of high quality fluoride chemicals. At present, he is the Visiting Researcher on the Faculty of Engineering of Tohoku University, where he is now carrying out research works on gas phase etching of oxide films and related process technologies.

Tadahiro Ohmi (M’81) was born in Tokyo, Japan on January 10, 1939. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from Tokyo Institute of Technology, Tokyo, in 1961, 1963 and 1966, respectively.

Prior to 1972, he served as a Research Associate in the Department of Electronics of Tokyo Institute of Technology, where he worked on Gunn diodes such as velocity overshoot phenomena, multi-valley diffusion and frequency limitation of negative differential mobility due to an electron transfer in the multi-valleys, high field transport in semiconductor such as unified theory of space-charge dynamics in negative differential mobility materials, block oscillation induced negative mobility, and block oscillators, and dynamics in injection layers. He is presently a Professor in the Department of Electronics, Faculty of Engineering, Tohoku University, where he is engaged in research on high performance ULSI such as ultra high speed ULSI, current overshoot transistor LSI, HBT LSI and SOI on metal substrate; base store image sensor (BASIS) and high speed flat panel display; and advanced semiconductor process technologies; i.e., ultra clean technologies such as high quality oxidation. Also, high quality metalization due to low kinetic energy particle bombardment; very low temperature Si epitaxy having simultaneous doping capability due to low kinetic energy particle bombardment; crystalinity control film growth technologies from single crystal; grain size controlled polysilicon and amorphous to low kinetic energy particle bombardment; in situ wafer surface cleaning technologies due to low kinetic energy particle bombardment; highly selective CVD, and RIE. In addition, high quality ion implantations having low temperature annealing capability, etc., based on the new concept supported by newly developed ultra clean gas supply system; ultra high vacuum compatible reaction chamber having self-cleaning function; ultra clean wafer surface cleaning technology, etc.

His research activities include 260 original papers and 190 patent applications. He received the Ichimura Award in 1979, the Teshima Award in 1987, and the Inoue Harushige Award in 1989. He serves as a General Chairman of the International Symposium on Power Semiconductor Devices and of the Institute of Basic Semiconductor Technology Development (Ultra Clean Society).

Dr. Ohmi is a member of the Institute of Electronics, Information and Communication Engineers of Japan, the Institute of Electrical Engineers of Japan, the Japan Society of Applied Physics, and the ECS.