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Slow dynamics of nonequilibrium density fluctuations in hard-sphere suspensions
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The coupled diffusion equations recently proposed for concentrated hard-sphere suspensions are numerically
solved to investigate the dynamics of density fluctuations around time-dependent nonequilgpatrally
inhomogeneoysstates. As the volume fraction of sphergsipproaches the critical valug, from below, the
self-intermediate scattering functiéiy(k,t) is shown to obey two different slow relaxations whose time scales
ts andt, diverge as the separation parameter (¢— ¢4)/ , approaches zerdz~|o| # andt,~|o| ¢,
where ¢g=(4/3)3/(7 In3—81n2+2). Thus, the importance of nonequilibrium effects on slow dynamics is
stressed from a unifying viewpoirtS1063-651X%97)50601-5

PACS numbefs): 82.70.Dd, 05.40¢j, 51.10-+y

Recent experimental workd—3] show that concentrated posed by Tokuyam§7], which describes a linear relaxation
hard-sphere suspensions also exhibit a transition from a fllaround the time-dependent nonequilibrium state. This is be-
ids phase to a glass phase, similar to that in supercoolegause the density fluctuations should be small compared to
liquids. Many attempts to understand the dynamics of susthe average number density, since the glass transition seems
pensions approaching the glass transition have been made Rt to be a critical phenomenon. In fact, the glass transition
employing the mode-coupling theofCT) [4,5] for the  is dynamic in origin in contrast to critical phenomena, and
dynamics of supercooled fluids. The most striking feature ohence, there is no correlation length diverging at the glass
MCT is the prediction of two different slow relaxations of {,ansition point. Finally, in hard-sphere suspensions MCT
d_ensity fluctuations, the sq-call@landa relaxations, whose  4ntains two parameters, the volume fraction of partighes
time scalest; andt, are singular as~[1-/¢c| Fand 45 microscopic time scatg which is treated as a free fit

1 i . W, ) :
;an d|1an(g/¢ecl|reé Wgr?(ra?rictgsbz gg:;‘;:_ﬁggk:ggcgﬁcéﬁ?éte arameter. On the other hand, the present theory contains
@ B xp ined. wo parametersg and the initial number densitp(x,0),

colloidal suspensiong§2—4|, MCT predicts 8=1.66 and both of which can be fixed by an experiment.

a=2.58. Thus, MCT has stimulated much of the recent ex- R tv. the ab led diffusi i .
periment, computational and theoretical works on colloidal ecently, the above coupled ditfusion equations were in-

suspensions. In this paper, we present a theoretical approa}fﬁs“g_ated asymptotlcallﬁ/?] and gnalytlcally[S]. Thus, the
different from MCT in the following three basic view points, WO different slow relaxations with the exponergs-1 and
First, MCT has been applied mainly to equilibrium systems.®=2 Were predicted to exist near the critical volume fraction
On the other hand, the present theory deals with a nonequi2g~0-57184 ..., if thesystem is initially nonequilibrium.
librium system and starts with the nonlinear deterministicIn this paper, therefore, we numerically solve those coupled
diffusion equation for the average number density,t), diffusion equations self-consistently under appropriate initial
which was recently derived by Tokuyama and Oppenheintonditions and thus investigate the dependence of the slow
on the time scale much longer than the Brownian relaxatiorflynamics on the two parametegsandn(x,0), including the
timetg [6]. This is because most experimental measurementemporal power laws and the crossovers.
are, in general, done in guenched metastable fluid states prior The particle dynamics of colloidal suspensions can be
to crystallization where the nonequilibrium effects may measured by dynamic light scattering through the intermedi-
change the behavior of relaxation processes. The determinigie scattering functiofi9], which is given by the Fourier
tic equation forn(x,t) then describes the nonequilibrium transformF (k,t) of the autocorrelation function of the den-
transitional behavior from a nonequilibrium initial state with sity fluctuationsF (x,t) ={n(x,t) 5n(0,0)/N, where the an-
n(x,0) to an equilibrium state witm(x,2)=n,, wheren,  gular brackets denote the average over the canonical en-
=N/V is the equilibrium number densitid andV being the semble. The scattering functidi(k,t) can be separated into
total number of Brownian particles and the total volume ofa self-partF g(k,t), which describes the average self-motion
the system, respectively. Second, MCT assumes that the deof individual particles, and a cross-paft(k,t), which de-
sity fluctuations obey the nonlinear stochastic equations foscribes the average relative motion between different par-
the density fluctuationssn(x,t). On the other hand, the ticles: F(k,t)=Fg(k,t)+Fc(k,t). Since in the present
present theory starts with the linear stochastic diffusionwork we are interested only in scattering vectors much larger
equation for the density fluctuationdn(x,t) recently pro- than the maximum positiork,, of the structure factor
S(k)=F(k,0), we can neglect the cross-paRc(k,t).
Introducing the Fourier transform of(x,t) by n(t)
*Permanent address: Statistical Physics Division, Tohwa Institute= [ dx exp(k - x)n(x,t), therefore, we start with the coupled
for Science, Tohwa University, Fukuoka 815, Japan. diffusion equations fon,(t) andFg(k,t) [6-8]
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(D=~ KCDE@IN(~DY#) S k- aMy4(Dng(0) M

d
atFs(ki)=—KDY(@)Fs(k) ~KDY$) 2 Mio(DF (D). @

with the Fourier transfornM (t) of the memory function

(1-2)[DE(1- ¢?2) + u{DEp%z(— 1+ pz+ o) + 0X(1— $2)2}]

M (z(x,t))= , 3
(zet) V(D5+ 0% ¢)[D¢z+(1- ¢2)?] ©®
|
where z(x,t) =n(x,t)/ng, DE=D¥D,, d=4malny3, ¢ [ ol oS
= ¢l ¢y, ando=¢—1, Dy anda, being the single-particle Mig(t: )= foexp(k Dss){k®DsMy—q(8)}
diffusion coefficient and the particle radius, respectively. .
HereDZ(¢) andDX(¢) denote the short- and the long-time X exp(—q°Dgs)ds (7)

self-diffusion coefficient, respectivelisee Ref[6] for de-

tails). The coupling factou=(9/32)¢, denotes the coupled Here exp denotes a time-ordered exponential, ordered from
effect between the many-body short-range hydrodynamic inthe left. Thus, the scattering functidfg(k,t) is factorized
teractions and the many-body direct interactions among painto a memory part, which depends on the initial conditions
ticles. The long-time self-diffusion coeﬁiciemg and the  for n,(0), and dong-time part, which is independent of such

memory functionM(z) can be written, neasy, as initial conditions.
For the short-time region of ordelry=27rlk2DS, the
Di~Do(1—u)o?+0(c?), relaxation obeys the shorttime  decayFg3(k,t)

4) =[exp_{ —m(0;¢)t} luk, Which is mainly governed by the

M(z)~ —20(1-2){(1—u)/DZ+O(c(1-2)?).

We should mention here that these properties result from the
correlation effects due to the many-body long-range hydro-
dynamic interactions between particlgs], leading to the
two different slow relaxation§7,8].

Equation (1) is the nonlinear diffusion equation for
ng(t) and describes a transient behavior of the average num-
ber densityn,(t) from a spatially inhomogeneous, nonequi-
librium initial state described by, (0) to the spatially ho-
moegeous, equilibrium state given hyydy under the
conservation lawng(t)=ny. We should note here that the
memory functiorM (z(x,t)) describes the nonequilibrium ef-
fect. In fact, it becomes zero in the equilibrium state where 1 —_ —
z(x,t)=1. Thus, the diffusion fieldor the relaxation time I (b)
changes in space and time if the initial state of the system is
nonequilibrium.

Equation(2) is the linear diffusion equation fdf g(k,t)
which describes a linear relaxation of the self-diffusion pro- z
cess around the time-dependent nonequilibrium states deter- uw
mined by Eq.(1). Solving it formally, we obtain

Fs(k,1)

=]
N

4 .
logo(t/to)

Fs(k,t)=f(k,t; ¢)exp —k?DLt) (5)

. — .
with the memory part log1o(t/to)

(=]
N

C oy — _ . FIG. 1. Self-intermediate scattering fucntioRg(k,t) vs
flk,t¢)=[exp-{=m(t;é)} i, © log(t/ty) at () z,=0.8 and(b) z,=0.5 for different volume frac-
tions (from left to right: 0.543, 0.566, 0.569, and 0.571, where
wherem(t; ¢) denotes the matrix whosé(q) componentis ka,=2.8 andt,=a3/D,. The symbols indicate the time scales:
given by (@), t5 (O), andt, ().
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TABLE I. Time exponentd, andb for different values, and

¢ atkag=2.8.
— 20205 20:08
3
< ¢ by b bo b
R 0.566 0.41 0.42 0.46 0.61
o 0.569 0.38 0.54 0.42 0.68
= 0.571 0.31 0.66 0.34 0.74

and the self-part of the dynamic susceptibility given by
xo(k,0)= o[ jcoswt)Fgk,t)dt numerically. To intergrate
those equations, we employ the forward Euler difference
scheme with the time step Oﬁ)f,llDo and the lattice spacing
0.5a, in the volume (128,)2 of the simulation system. As
the initial conditions, we fix the values of the particle volume
fraction ¢ and the reduced initial humber densityx,0)
=n(x,0)/ny. In order to distinguish the initial states from
each other qualitatively, it is convenient to introduce a pa-
rameterz,, which measures how close the initial state of the
system is to the equilibrium state and is given by

logqo[ X §"(k, w)]

1
zozl—vf dx|1—z(x,0)|, (8)

logo(w o) where 0<sz,<1, andz,=1 in equilibrium. Then, the initial
value z(x,0) is chosen at each position from a random
FIG. 2. Log-log plot of self-part of dynamic susceptibility number with a Guassian distribution, which is characterized
)(g(k,w) VS wto for different volume fraCti0n$frOm left to I’Ight) by a mean Value 1 and a Standard dev|a®nHere the
0.571, 0.569, Q.5§6, and 0.543. Detajls are the same as in Fig. Ltandard deviatios is adjusted so as to satisfy E@) for a
The symbols indicate the frequencies:, (@), w; (O), and  giyen valuez,. In the following, we thus discuss the numeri-
W (#). cal results for two typical statega) a near-equilibrium state

short-time self-diffusion coefficierDS. On the other hand, With 2o=0.8, wheres=0.235, andb) a nonequilibrium state

: : ith zo=0.5, wheres=0.591.
for the long-time region of ordet,=2x/k’D%, we have WIth Zo= . .
n(x,t)=ngy and M(z(x,t))=0. Hence, the relaxation is de- In Figs. X&) and 1b) we show the time evolution of

scribed by the long-time decdys(k,t) = exp(—k?DYt). Thus, Fs(k.) at (@ 2,=0.8 and(b) 2=0.5 for various volume

there exists a crossover from the short-time relaxation rofractlons wherekay=2.8. For small volume fractions where
Prog p<te, the scattering function decays quickly to zero. As the
cess to the long-time relaxation process.

For the intermediate-time regian<t<t,, the dynami- \S/ﬁgjme f]cra;ﬁtlon lnt(t:re_asef amg bec%mes larger thati, th.?. i

cal behavior ofFg(k,t) becomes more complicated because pe of fhe scatering functions becomes very Sensitive 1o
the volume fraction, forming a shoulder, which becomes at

of the memory functioM (z(x,t)), which causes a structural &, a plateau with the heighi,8]
arrest. In fact, neagp,, the number densityi(x,t) is ex- g
pected to become almoat, after some time, betweent Clo N — i — i .
andt, [7,8]. SinceM (z(x,t)) reduces to zero for=t,, qu. fidZ) = lim Fs(k,t) = M f(k.t; ) ©
(5) can be approximately written as Fg(k,t)
=f(K,te; p)exp(—kDg). For intermediate timest,<t In order to see the crossover behavior in the intermediate-
<t,, therefore, FS(k t) becomes nearly constant for a time region more clearly, we also calculate the self-part of
while, sincek?D St<1 This continues up to the timg;  the dynamic susceptibilityg(k,w). In Figs. 2a) and 2b)
where the termk?D St becomes the same order as the termwe plot it at(a) z,=0.8 and(b) z,= 0.5 for different volume
m(te; ¢). On the time scale of ordey, Fy(k,t) then starts  fractions wherekao 2.8. There are two peaks and one mini-
to decay again, obeymlas(k t). Thus,t; denotes the cross- mum in xg(k,w). The first peak is the so-called peak at
over time from structural arrest to long-time decay and isw=w, in the lower-frequency region and describes the long-
found, using Eq(4), astB~|a|‘1, te<tg<t,. Neargy, the time relaxation process on the time scale of orggr The
nonequilibrium effect is thus expected to cause two differensecond peak is the so-call@peak atw=w,, in the higher-
slow relaxations, the so-calle@land « relaxations, with the freugency region and describes the short-time relaxation pro-
time scalesz~|o|~* andt,~|o| % cess on the time scale of ordey. The minimum at the

We now solve the coupled diffusion equatiqd$ and(2)  frequency o=w; corresponds to the crossover point in
self-consistently under appropriate initial conditions and in-Fg(k,t) at the timet;, wherew ,<wg<w, . Then, the char-
vestigate the self-intermeidate scattering functieg(k,t) acteristic frequencies,, wg, and », are related to the

t—oo t—oo
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characteristic timed,, tg, andt, through witj=27 (i state(0<0): one is the so-callegs-relaxation stage fot,
=a,B,y), and are shown to be scaled with the separation<t<t; (wg<w<w,), where the power laws hold
parameterr as 5 . ) , , b
FS(K, )= —A(t/tp)™, xs(K,w)=A(wlwg)™,
wa~lol®  wg~|olf, w,~la]”, (10 (11

wherea=2.03(a) and 1.99b), and3=0.97(a) and 1.02(b). whereA, andA; are weak functions df ando. The other is
Thus, the analytical values=2 and g=1 predicted previ- the so-called a-relaxation stage fortz<t<t, (w,<w

ously in Ref.[8] are numerically verified to hold. <wg), Where the power laws hold

From Figs. 1 and 2, we see that the plateau height in the
near-equilibrium statéa) is higher than that in the nonequi- Fa(k,D)=fi—By(t/t,)°, x4k, 0)=Bi(w/w,) ",
librium state(b), and thea peak in(a) is higher than that in (12

(b), while the 8 peak in(a) is lower than that inb). This is
because the memory functioll(z(x,t)) in (b) is much
larger than that i@ since in(b) it takes a longer time for
n(x,t) to becomen, than in (a). This also shows that the
crossover inb) occurs more slowly than ita). In fact, from
Fig. 2, wg in (b) is smaller than that ifa). Thus, the plateau

whereB, andBy, are weak functions ok and o.

In conclusion, by solving the coupled diffusion equations
numerically, we have shown how the initial inhomogeneties
in space change the qualitative behavior of the relaxation
processes neap,, leading to the two different slow relax-
height and the peak heights turn out to depend on how fa?tions. Such ?nhomoegene_iti_es_ start to pecome smoqth, obey-
from equilibrium the initial state is. ing the nonlinear deterr_n|n|st|c.equat|d|1). For regions

In order to see the time dependencd-gfk,t) in terms of where th_e number %ensmy(x,t) is larger ‘haf‘ the crmcal_

valueny=3¢4/(4may), however, the smoothing process is

a power-law formula in the intermediate-time region, we also : .
calculate the logarithmic derivative given by=dlog|fS slowed down, leading to a structural arrest. Thus, the density

_ . fluctuations undergo a slow relaxation, although they are
F s(k,t)|/dlogt. Tr_\en, _thf effective exponegtreveals two governed by the linear stochastic equati@h The detailed
fairly plateau regionsip=bg(0,zy) for t,<t<t; and ¢

—b(0,2o) for ty<t<t,, where the exponents, andb are analysis will be discussed elsewhere.
listed in Table I. For intermediate times, therefore, the relax- This work was supported by the Tohwa Institute for Sci-
ation proceeds in the following two time stages in the fluidence, Tohwa University.
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