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Slow dynamics of nonequilibrium density fluctuations in hard-sphere suspensions

Michio Tokuyama,1,* Yoshihisa Enomoto,2 and Irwin Oppenheim1
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2Department of Physics, Nagoya Institute of Technology, Nagoya 466, Japan
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The coupled diffusion equations recently proposed for concentrated hard-sphere suspensions are numerically
solved to investigate the dynamics of density fluctuations around time-dependent nonequilibrium~spatially
inhomogeneous! states. As the volume fraction of spheresf approaches the critical valuefg from below, the
self-intermediate scattering functionFS(k,t) is shown to obey two different slow relaxations whose time scales
tb and ta diverge as the separation parameters5(f2fg)/fg approaches zero:tb;usu2b and ta;usu2a,
wherefg5(4/3)3/(7 ln328 ln212). Thus, the importance of nonequilibrium effects on slow dynamics is
stressed from a unifying viewpoint.@S1063-651X~97!50601-5#

PACS number~s!: 82.70.Dd, 05.40.1j, 51.10.1y
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Recent experimental works@1–3# show that concentrate
hard-sphere suspensions also exhibit a transition from a
ids phase to a glass phase, similar to that in superco
liquids. Many attempts to understand the dynamics of s
pensions approaching the glass transition have been mad
employing the mode-coupling theory~MCT! @4,5# for the
dynamics of supercooled fluids. The most striking feature
MCT is the prediction of two different slow relaxations o
density fluctuations, the so-calledb anda relaxations, whose
time scalestb and ta are singular astb;u12f/fcu2b and
ta;u12f/fcu2a, wherefc is a critical packing fraction,
anda andb are exponents to be determined. In concentra
colloidal suspensions@2–4#, MCT predicts b51.66 and
a52.58. Thus, MCT has stimulated much of the recent
periment, computational and theoretical works on colloi
suspensions. In this paper, we present a theoretical appr
different from MCT in the following three basic view points
First, MCT has been applied mainly to equilibrium system
On the other hand, the present theory deals with a none
librium system and starts with the nonlinear determinis
diffusion equation for the average number densityn(x,t),
which was recently derived by Tokuyama and Oppenhe
on the time scale much longer than the Brownian relaxa
time tB @6#. This is because most experimental measurem
are, in general, done in quenched metastable fluid states
to crystallization where the nonequilibrium effects m
change the behavior of relaxation processes. The determ
tic equation forn(x,t) then describes the nonequilibrium
transitional behavior from a nonequilibrium initial state wi
n(x,0) to an equilibrium state withn(x,`)5n0 , wheren0
5N/V is the equilibrium number density,N andV being the
total number of Brownian particles and the total volume
the system, respectively. Second, MCT assumes that the
sity fluctuations obey the nonlinear stochastic equations
the density fluctuationsdn(x,t). On the other hand, the
present theory starts with the linear stochastic diffus
equation for the density fluctuationsdn~x,t! recently pro-
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posed by Tokuyama@7#, which describes a linear relaxatio
around the time-dependent nonequilibrium state. This is
cause the density fluctuations should be small compare
the average number density, since the glass transition se
not to be a critical phenomenon. In fact, the glass transit
is dynamic in origin in contrast to critical phenomena, a
hence, there is no correlation length diverging at the gl
transition point. Finally, in hard-sphere suspensions M
contains two parameters, the volume fraction of particlesf,
and a microscopic time scalet0 which is treated as a free fi
parameter. On the other hand, the present theory cont
two parameters,f and the initial number densityn(x,0),
both of which can be fixed by an experiment.

Recently, the above coupled diffusion equations were
vestigated asymptotically@7# and analytically@8#. Thus, the
two different slow relaxations with the exponentsb51 and
a52 were predicted to exist near the critical volume fracti
fg'0.571847 . . . , if thesystem is initially nonequilibrium.
In this paper, therefore, we numerically solve those coup
diffusion equations self-consistently under appropriate ini
conditions and thus investigate the dependence of the s
dynamics on the two parameters,f andn(x,0), including the
temporal power laws and the crossovers.

The particle dynamics of colloidal suspensions can
measured by dynamic light scattering through the interme
ate scattering function@9#, which is given by the Fourier
transformF(k,t) of the autocorrelation function of the den
sity fluctuationsF(x,t)5^dn(x,t)dn(0,0&/N, where the an-
gular brackets denote the average over the canonical
semble. The scattering functionF(k,t) can be separated int
a self-partFS(k,t), which describes the average self-motio
of individual particles, and a cross-partFC(k,t), which de-
scribes the average relative motion between different p
ticles: F(k,t)5FS(k,t)1FC(k,t). Since in the presen
work we are interested only in scattering vectors much lar
than the maximum positionkm of the structure factor
S(k)5F(k,0), we can neglect the cross-partFC(k,t).
Introducing the Fourier transform ofn(x,t) by nk(t)
5*dxexp(ik•x)n(x,t), therefore, we start with the couple
diffusion equations fornk(t) andFS(k,t) @6–8#
te
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]t
nk~ t !52k2DS

L~f!nk~ t !2DS
S~f!(

q
k•qMk2q~ t !nq~ t !, ~1!

]

]t
FS~k,t !52k2DS

L~f!FS~k,t !2k2DS
S~f!(

q
Mk2q~ t !FS~q,t !, ~2!

with the Fourier transformMk(t) of the memory function

M „z~x,t !…5
~12z!@D̂S

S~12f̂2z!1u$D̂S
Sf̂2z~211f̂z1s!1s2~12f̂z!2%#

V~D̂S
S1s2/f̂ !@D̂S

Sf̂z1~12f̂z!2#
, ~3!
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where z(x,t)5n(x,t)/n0, D̂S
S5DS

S/D0, f54pa0
3n0/3, f̂

5f/fg , ands5f̂21, D0 anda0 being the single-particle
diffusion coefficient and the particle radius, respective
HereDS

S(f) andDS
L(f) denote the short- and the long-tim

self-diffusion coefficient, respectively~see Ref.@6# for de-
tails!. The coupling factoru5(9/32)fg denotes the coupled
effect between the many-body short-range hydrodynamic
teractions and the many-body direct interactions among
ticles. The long-time self-diffusion coefficientDS

L and the
memory functionM (z) can be written, nearfg , as

DS
L;D0~12u!s21O~s3!,

~4!

M ~z!;22s~12z!$~12u!/D̂S
S%1O„s2~12z!2….

We should mention here that these properties result from
correlation effects due to the many-body long-range hyd
dynamic interactions between particles@6#, leading to the
two different slow relaxations@7,8#.

Equation ~1! is the nonlinear diffusion equation fo
nk(t) and describes a transient behavior of the average n
ber densitynk(t) from a spatially inhomogeneous, nonequ
librium initial state described bynk(0) to the spatially ho-
moegeous, equilibrium state given byn0dk,0 under the
conservation lawn0(t)5n0. We should note here that th
memory functionM „z(x,t)… describes the nonequilibrium e
fect. In fact, it becomes zero in the equilibrium state wh
z(x,t)51. Thus, the diffusion field~or the relaxation time!
changes in space and time if the initial state of the system
nonequilibrium.

Equation~2! is the linear diffusion equation forFS(k,t)
which describes a linear relaxation of the self-diffusion p
cess around the time-dependent nonequilibrium states d
mined by Eq.~1!. Solving it formally, we obtain

FS~k,t !5 f ~k,t;f!exp~2k2DS
Lt ! ~5!

with the memory part

f ~k,t;f!5@exp2$2m~ t;f!%#kk , ~6!

wherem(t;f) denotes the matrix whose (k,q) component is
given by
.
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mkq~ t;f!5E
0

t

exp~k2DS
L s!$k2DS

SMk2q~s!%

3exp~2q2DS
Ls!ds ~7!

Here exp2 denotes a time-ordered exponential, ordered fr
the left. Thus, the scattering functionFS(k,t) is factorized
into a memory part, which depends on the initial conditio
for nk(0), and along-time part, which is independent of suc
initial conditions.

For the short-time region of ordertg52p/k2DS
S , the

relaxation obeys the short-time decayFS
S(k,t)

5@exp2{2ṁ(0;f)t} #kk , which is mainly governed by the

FIG. 1. Self-intermediate scattering fucntionFS(k,t) vs
log(t/t0) at ~a! z050.8 and~b! z050.5 for different volume frac-
tions ~from left to right!: 0.543, 0.566, 0.569, and 0.571, whe
ka052.8 andt05a0

2/D0. The symbols indicate the time scales:tg
~d!, tb ~s!, andta ~l!.
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short-time self-diffusion coefficientDS
S . On the other hand

for the long-time region of orderta52p/k2DS
L , we have

n(x,t)5n0 andM „z(x,t)…50. Hence, the relaxation is de
scribed by the long-time decayFS

L(k,t)5exp(2k2DS
Lt). Thus,

there exists a crossover from the short-time relaxation p
cess to the long-time relaxation process.

For the intermediate-time regiontg!t!ta , the dynami-
cal behavior ofFS(k,t) becomes more complicated becau
of the memory functionM „z(x,t)…, which causes a structura
arrest. In fact, nearfg , the number densityn(x,t) is ex-
pected to become almostn0 after some timete betweentg
and ta @7,8#. SinceM „z(x,t)… reduces to zero fort>te , Eq.
~5! can be approximately written as FS(k,t)
. f (k,te ;f)exp(2k2DS

Lt). For intermediate timeste<t
!ta , therefore,FS(k,t) becomes nearly constant for
while, sincek2DS

Lt!1. This continues up to the timetb
where the termk2DS

Lt becomes the same order as the te
m(te ;f). On the time scale of ordertb , FS(k,t) then starts
to decay again, obeyingFS

L(k,t). Thus,tb denotes the cross
over time from structural arrest to long-time decay and
found, using Eq.~4!, astb;usu21, te!tb!ta . Nearfg , the
nonequilibrium effect is thus expected to cause two differ
slow relaxations, the so-calledb anda relaxations, with the
time scalestb;usu21 and ta;usu22.

We now solve the coupled diffusion equations~1! and~2!
self-consistently under appropriate initial conditions and
vestigate the self-intermeidate scattering functionFS(k,t)

FIG. 2. Log-log plot of self-part of dynamic susceptibilit
xS9(k,v) vs vt0 for different volume fractions~from left to right!:
0.571, 0.569, 0.566, and 0.543. Details are the same as in Fi
The symbols indicate the frequencies:vg ~d!, vb ~s!, and
va ~l!.
-
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-

and the self-part of the dynamic susceptibility given
xS9(k,v)5v*0

`cos(vt)FS(k,t)dt numerically. To intergrate
those equations, we employ the forward Euler differen
scheme with the time step 0.01a0

2/D0 and the lattice spacing
0.5a0 in the volume (128a0)

3 of the simulation system. As
the initial conditions, we fix the values of the particle volum
fraction f and the reduced initial number densityz(x,0)
5n(x,0)/n0. In order to distinguish the initial states from
each other qualitatively, it is convenient to introduce a p
rameterz0, which measures how close the initial state of t
system is to the equilibrium state and is given by

z0512
1

VE dxu12z~x,0!u, ~8!

where 0<z0<1, andz051 in equilibrium. Then, the initial
value z(x,0) is chosen at each positionx from a random
number with a Guassian distribution, which is characteriz
by a mean value 1 and a standard deviationS. Here the
standard deviations is adjusted so as to satisfy Eq.~8! for a
given valuez0. In the following, we thus discuss the numer
cal results for two typical states:~a! a near-equilibrium state
with z050.8, wheres50.235, and~b! a nonequilibrium state
with z050.5, wheres50.591.

In Figs. 1~a! and 1~b! we show the time evolution o
FS(k,t) at ~a! z050.8 and ~b! z50.5 for various volume
fractions whereka052.8. For small volume fractions wher
tb<te , the scattering function decays quickly to zero. As t
volume fraction increases andtb becomes larger thante , the
shape of the scattering functions becomes very sensitiv
the volume fraction, forming a shoulder, which becomes
fg a plateau with the height@7,8#

f k
c~z0!5 lim

t→`

FS~k,t !5 lim
t→`

f ~k,t;fg!. ~9!

In order to see the crossover behavior in the intermedi
time region more clearly, we also calculate the self-part
the dynamic susceptibilityxS9(k,v). In Figs. 2~a! and 2~b!
we plot it at~a! z050.8 and~b! z050.5 for different volume
fractions whereka052.8. There are two peaks and one min
mum in xS9(k,v). The first peak is the so-calleda peak at
v5va in the lower-frequency region and describes the lon
time relaxation process on the time scale of orderta . The
second peak is the so-calledb peak atv5vg in the higher-
freuqency region and describes the short-time relaxation
cess on the time scale of ordertg . The minimum at the
frequency v5vb corresponds to the crossover point
FS(k,t) at the timetb , whereva!vb!vg . Then, the char-
acteristic frequenciesva , vb , and vg are related to the

1.

TABLE I. Time exponentsb0 andb for different valuesz0 and
f at ka052.8.

z050.5 z050.8

f b0 b b0 b

0.566 0.41 0.42 0.46 0.61
0.569 0.38 0.54 0.42 0.68
0.571 0.31 0.66 0.34 0.74
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characteristic timesta , tb , and tg through v i t i52p ( i
5a,b,g), and are shown to be scaled with the separat
parameters as

va;usua, vb;usub, vg;usug, ~10!

wherea52.03~a! and 1.99~b!, andb50.97~a! and 1.02~b!.
Thus, the analytical valuesa52 andb51 predicted previ-
ously in Ref.@8# are numerically verified to hold.

From Figs. 1 and 2, we see that the plateau height in
near-equilibrium state~a! is higher than that in the nonequ
librium state~b!, and thea peak in~a! is higher than that in
~b!, while theb peak in~a! is lower than that in~b!. This is
because the memory functionM „z(x,t)… in ~b! is much
larger than that in~a! since in~b! it takes a longer time for
n(x,t) to becomen0 than in ~a!. This also shows that the
crossover in~b! occurs more slowly than in~a!. In fact, from
Fig. 2,vb in ~b! is smaller than that in~a!. Thus, the plateau
height and the peak heights turn out to depend on how
from equilibrium the initial state is.

In order to see the time dependence ofFS(k,t) in terms of
a power-law formula in the intermediate-time region, we a
calculate the logarithmic derivative given byw5] logufk

c

2FS(k,t)u/] logt. Then, the effective exponentw reveals two
fairly plateau regions:w5b0(s,z0) for tg!t!tb and w
5b(s,z0) for tb!t!ta , where the exponentsb0 andb are
listed in Table I. For intermediate times, therefore, the rel
ation proceeds in the following two time stages in the flu
n
st
n

e

ar

o

-

state~s,0!: one is the so-calledb-relaxation stage fortg
!t!tb (vb!v!vg), where the power laws hold

FS
b~k,t !5 f k

c2Ak~ t/tb!b0, xS9~k,v!5Ak9~v/vb!b0,
~11!

whereAk andAk9 are weak functions ofk ands. The other is
the so-calleda-relaxation stage fortb!t!ta (va!v
!vb), where the power laws hold

FS
a~k,t !5 f k

c2Bk~ t/ta!b, xS9~k,v!5Bk9~v/va!2b,
~12!

whereBk andBk9 are weak functions ofk ands.
In conclusion, by solving the coupled diffusion equatio

numerically, we have shown how the initial inhomogenet
in space change the qualitative behavior of the relaxa
processes nearfg, leading to the two different slow relax
ations. Such inhomoegeneities start to become smooth, o
ing the nonlinear deterministic equation~1!. For regions
where the number densityn(x,t) is larger than the critical
valueng53fg /(4pa0

3), however, the smoothing process
slowed down, leading to a structural arrest. Thus, the den
fluctuations undergo a slow relaxation, although they
governed by the linear stochastic equation~2!. The detailed
analysis will be discussed elsewhere.
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