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Test of mean-field equations for two types of hard-sphere systems by a Brownian-dynamics
simulation and a molecular-dynamics simulation
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A mean-field nonlinear equation for the mean-square displacement, recently proposed by one of the present
authors[M. Tokuyama, Phys. Rev. B2, R5915(2000; Physica A289, 57 (2001)], for concentrated, equilib-
rium suspensions of hard spheres is extended to describe equilibrium atomic systems of hard spheres. The
validity of two types of mean-field equations is investigated by two kinds of computer simulations; a
Brownian-dynamics simulation on suspensions of hard spheres and a molecular-dynamics simulation on
atomic systems of hard spheres. A good agreement between the mean-field equations and simulations is then
shown for different volume fractions. The two types of model systems of hard spheres are thus shown to be
identical to each other on the study of the liquid-solid transition. However, analyses suggest that a new
interaction is indispensable to understand the mechanism for the liquid-glass transition in both systems.
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There has been considerable interest in the dynamics ¢EkgT/67r7a) is the free diffusion coefficient of the sphere,
colloidal suspensions of hard spheres since the discovery afhere # is a viscosity of the fluid. We note here that the
the colloidal glass transitiofil—3]. However, our under- singular term in Eq(2) results from the many-body correla-
standing of the mechanism for the glass transition in colloition effects due to the long-range hydrodynamic interactions
dal systems as well as in atomic systems is still incompletebetween spheres, and factop®2 indicates the coupling
In this Brief Report, we propose two types of mean-fieldeffects between the direct interactions and the short-range
equations, the first type for colloidal suspensions of harchydrodynamic interactions,7].
spheres and the second type for atomic systems of hard Equation(1) can be solved to give a formal solution
spheres. Then, we investigate their validity by performing
two kinds of computer simulations, a Brownian-dynamics 1
(BD) simulation on the suspensions and a molecular- My(t)= Xln
dynamics(MD) simulation on the atomic systems. Thus, we
show that the mean-field results are in good agreement with L .
simulation results for different volume fractions. Hence, weWWherets=1/(2d\Ds) denotes theg-relaxation time, around
expect that both the equations could be useful tools to de¥hich the many-body interactions between particles be-

_ Sy .
scribe the dynamical behavior of hard spheres near the gla§9mes important, antt=1/(2d\Dyg) is the short time for a
transition. colloid to diffuse over a distance of ordar 2. This solu-
Recently, Tokuyamd4,5] has proposed the following tion suggests tPree different time scalgs; t,, and a long
nonlinear equation for the particle mean-square displacemetitme t (=a*Dg), wheretc<tg<t, anda is the average
M,(t), to describe the equilibrium suspensions of colloidalparticle radius. In fact, one can find the following asymptotic

t
1+ Lletts—1}
te

; ()

hard spheres near the colloidal glass transition: forms:
d ol s L M) 2dDg  for t<tc<ty
giMa(t)=2dD5() +2d[DS(h) ~D() e "2 My~ @)
2dDgt  for tg<t <t.
(o
with the long-time self-diffusion coefficient Thus, Eq.(1) describes the dynamics of a crossover from the
short-time self-diffusion process characterizedy to the
) D(¢)(1—96/32) long-time self-diffusion process characterizeddy. Equa-
Ds(¢)= s 7o N 2 tion (3) has been used to analyze the recent experimental
1+(¢pDg ¢y Do)(1—pl pgy™) data for equilibrium colloidal suspensions near the colloidal

_ ) ) glass transition and has been shown to describe those data
whereg is the particle volume Lractlon of hard sphergghie  very well for a wide range of volume fractions from a liquid
spatial dimensionality, andD3(¢) the short-time self- state to a glass state by adjustingsee Fig. 1[4,5]. Thus,

diffusion coefficient given by Eq(11) of Ref. [6]. Here  parametei has been found to approximately obi&)
\(¢) is a free parameter to be determined, wheré’ is

related to the free volume of a particle a¢§o represents a docb
theoretical colloidal glass transition volume fraction given Md’)aZ:—To OTO —dyp+dye2, (5)
by ¢4°=(4/3)%(7In3-8In2+2)=0.5718 ... [6,7]. D, by (bg — &)
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L L A N B AT LYY two types of mean-field equations given by E(.and(6),

we perform two kinds of computer simulations, BD and MD.

I ] In both simulations we consided different hard spheres

or ] with radiusa; and massn; (i=1, ... N) in a cubic box of

lengthL at a constant temperatufewhereN is chosen to be

[ ] 10976 here. We also simulate two cases separately, a mono-

- F - disperse case where spheres are all identical, that sa

[ ] andm;=m, and a polydisperse case where the distribution of

[ ] radii obeys a Gaussian distribution with standard deviagion

2 . divided bya, and massn; proportional toaig. The volume

I ] fraction ¢ is then given bygp=(47a3N/3L%)(1+30?). In

I ] the suspensions, the spheres are suspended in an equilibrium

3F - fluid. For simplicity, however, we neglect the hydrodynamic

I ] interactions between spheres, leading D@z Dy. Hence

] there are two interactions, the direct interactions between

e — spheres leading to binary collisions, and the interactions be-
-2 0 2 4 6 tween spheres and fluid particles leading to a Brownian mo-

tion. On a time scale of ordef , the position vectoK;(t) of

ith sphere then obeys the Langevin-like equation

Iog, , (M, ()

Iog,, (6D )

FIG. 1. Alog-log plot of the mean-square displacemight(t)
vs time. The solid line indicates the theoretical results from Fgf.
The symbols indicate the experimental data from R&f. A for a
liquid state,® for a supercooled state, afdl for a glass state.

d 1
atim=1 2 Py +R(), )

whereF;; indicates the force between sphereandj, and
for 0.4=$<¢°, where dy=0.032, d;=57.514, andd, yi(=677;7ai) is the friction coefficient. We assume elastic
=194.574. In order to describe the equilibrium atomic Syfs'binary collisions between patrticles. HERqt) is the reduced
e hgrd spheres, we also propose the following nonling; 5 ssian random force with zero mean, and satisfies
ear equation foM(t): (R(D)R(t'))=2D 8(t—1') &, ;1, where the brackets de-
note the average over an equilibrium ensemble &ng
e M) (p) =kgT/v;. We then employ the forward Euler difference
scheme to integrate Eq9) with time step 103t under
Lo ) e - periodic boundary and appropriate initial conditions. On the
where Dg is the long-time self-diffusion coefficient for qiher hand, in the atomic systems, the spheres obey the New-
atomic systems to be determined. Herg=ydksT/m de- o equations with forceB;(t). We then solve them under
notes the average velocity of an atom, wheémndmare the  periodic boundary and appropriate initial conditions, together
temperature and the average particle mass, respectively. {fith the momentum and the energy conservation laws. In
Eq. (6), the short-time self-diffusion coefficier®§ is re-  Bp, space is scaled with the particle average radjdsne is
placed by term¢$/d)t. This is reasonable because in atomicscaled with the structural relaxation time given iy
systems the short-time process is governed by the ballistie- 32/D,, and diffusion coefficient®3 andD5 are scaled by
motion, leading taV5(t)=(vot)?, while in suspensions itis p,. In MD, space is scaled with the particle average radius
governed by the short-time diffusion process. Equatin 5 time is scaled with tima/v,, and the diffusion coefficient
can be solved to give D is scaled bydy(=av,). The mean-square displacement
M,(t) is given by

d L vg L
FiM(t)=2dD5(¢) +2d| L t-DK(¢)

1 tg)? v
My(t)= —In[1+2| =] {e"s—(1+t/tp)}|, (7
A tA 1 N
, . My(t)= — Xi(t)—X;(0)1?). 10

wheret,=1/(voA*?) is the short time for an atom to move 2D=7 .21 (X0 =X(0)19 (10
over a distance of ordex™ Y2, Similar to the colloidal sus-
pensions, there are three different time scalestz, andt,,  |n poth simulations, we start from a random configuration
where ta<tg<t, . In fact, one can find the following optained by using the Jodrey-Tory algorithiei and wait for
asymptotic forms: a long enough time to reach a final state where the mean-

square displacement grows linearly in time and the radial
) distribution function does not change. Then, we use this final

state as an initial state and repeat the same simulation pro-

cedures to obtain the numerical results in an equilibrium lig-
Thus, Eq.(6) describes the dynamics of a crossover from theuid state. Thus, the mean-square displacements obtained by
ballistic motion characterized by, to the long-time self- both simulations are compared with the mean-field results
diffusion process characterized lﬁ;%S In order to test the given by Eqs.(3) and(7) which are calculated by using the

(vot)?  for t<tp<tyg,

M,(t)=
2t 2dDgt for tg<t <t.
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FIG. 2. Alog plot of the long-time self-diffusion coefficiebts FIG. 3. Alog-log plot of the mean-square displacembhy(t)

vs ¢. The open symbols indicate the simulation results in a monofor BD Vs time, for different volume fractionéfrom left to right

disperse case: the squares BI¢® and the circles foD5® . The 0.45, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, and 0.56. The solid line
filed symbols indicate the simulation results for a polydisperseindicates the mean-field results obtained by £). The symbols

case. The solid and dot-dashed lines are the theoretical results fidicate the BD resuits: the open square is for a monodisperse equi-
D§ and forD§ respectively. The dashed and dotted lines indicate"br'um fluid state, the cross is for a monodisperse metastable fluid

diffusion coefficientng(C) andDg(A) given by Eqs(11) and(12) state, and the open circle is for a polydisperse metastable fluid state.
respectively. The dot—long-dashed and the long-dashed lines denote

¢m(0) and$(0.06), respectively. where the singular pointp.(o) is given by ¢.(0.06)

. S . .
simulation data for scaled diffusion coefficients and by ad-=0-586 andDg(¢) is given by Eq.(11) of Ref. [6]. For
justing \ to fit with the simulation results. higher volume fractions, both coefficients become singular

Depending on the values of the volume fraction, there aré@s D™ (¢)/dp=(1— ¢/ ¢:)?. Both coefficients show the
three phase regions; a fluid region for@< ¢¢(c), ameta- same singular behavior as that of H), except that the
stable region forg:(o)<d<dm(a), and a crystal region singular pointp]© is now replaced byp. . This is because
for ¢n(o)=<¢, where ¢¢(o) and ¢(o) are the so-called the long-time behavior is considered not to depend on the
freezing and melting volume fractions, respectively. Ourdetails of interaction§19], where the singular terms of Egs.
simulations show that¢:(0.0)=0.51, ¢:(0.06)=0.53, (11) and(12) result from the long-time correlations due to
$m(0.0)=0.54, and¢,,(0.06)=0.57. We note here that this the many-body collision interactions, while the singular term
kind of a first-order fluid-solid transition and the existence ofof Eq. (2) results from the long-time correlations due to the
a metastable branch in the hard-sphere systems are the salf@g-range hydrodynamic interactions. We note here that the
as those discussed already by a number of computer simulgliffusion coefficients for a polydisperse case are slightly
tions [10—17 since the pioneering work of Alder and larger than those for a monodisperse case at higher volume
Wainwright [18]. Both in an equilibrium fluid state and in fractions.

a metastable fluid state, the long-time self-diffusion In Fig. 3 we show a log-log plot oM (t) in the suspen-
coefficient D5 can be obtained ang(p)(qS)/dp sions, together with the mean-field results obtained by Eq.
—lim__ M,(t)/(2dt), wherep=A for the atomic systems, (3). for different volume fractions. In Fig. 4 we also show a
e , , log-log plot of M,(t) in the atomic systems, together with
p=C for the :?‘u.spens:g)r)]sl,A:do, anddc=Do. INFig. 2we 5 mean-field results obtained by Ea), for different vol-
plot the coefficientDsg . (¢)/d, versusg. For comparison, - yme fractions. In both cases, parametéu) is obtained by
the theoretical result® s given by Eq.(2) andDg given by fitting the theoretical values given by Ed8) and(7) to the
Eq. (11) of Ref. [6], are also shown. As discussed in the simuylation results and is found to be approximated by the
previous papef19), the coefficientd P are well described same equation as E@5), except that the singular point is
by the following functions: now replaced byp, . In any fluid state, the mean-field results
L(C P L(A s are thus shown to agree with the simulation results well. It is
D5'?(¢)/Do=[Ds™(¢)/do]/[DY($)/Do], (11 also shown that the long-time behavior of the equilibrium
DLA () DS(¢)/D physical quantities, in both the hard-sphere systems, such as
S — S 0 the mean-square displacement, the diffusion coefficient, and
do 1+[¢D(P) pcDol[1— Pl ()] 2 the radial distribution function, is exactly identical to each
(120  other, although their short-time behavior is different.
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s . | . T . We have performed those simulations for different volume
fractions in two cases, a monodisperse case and a polydis-
2 b 4 perse case. Thus, we have shown that the mean-field results

agree with the simulation results very well, where the free
parametein obeys the same equation as E5), except that
b4 is now replaced byp, . Since Eq(1) has been success-
fully used to analyze the recent experiments near the glass
o transition[5], therefore, Eq(6) may also be expected to be a
useful tool to analyze the experiments in glass-forming ma-
r 7 terials near the glass transition. Finally, we should refer to
model systems to study the liquid-glass transition. If the
2 b - short-time hydrodynamic interactions are considered self-
consistent, the colloidal suspensions of hard spheres can
s L i serve as valuable models for the study of the atomic systems
of hard spheres on the liquid-solid transititsee Eq.(11)].
3 . , , . . Both simulations show that there exists a liquid-solid transi-
-2 -1 0 1 2 z 4 tion but not a liquid-glass transition even for a polydisperse
case. Hence both systems may still lack an important inter-
log (7 1) action to understand the mechanism for the liquid-glass tran-
) sition. In the suspensions, it is considered to be a long-time
FIG. 4. A log-log plot of the mean-square displacemel{(t)  nhydrodynamic interaction between particles as discussed in
for MD vs time, for different volume fractionérom left to righ? Refs.[6,7]. In the atomic systems a new interaction is also

0.45, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, and 0.56. The solid ling.sigered to be indispensable to undergo the glass transi-
indicates the mean-field results obtained by &). The details are tion. This will be discussed elsewhere

the same as in Fig. 3.

10

log, (M /&%)
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