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Abstract

Recent developments in animal breeding theory
have been driven largely by computer science and
molecular biology. Several of the theories designed
for practical application to animal breeding are
heavy computing requirements. The development
of computer hardware and of many algorithms for
constructing and solving mixed model equations
(MME) has enabled breeding values to be estimated
from data on a huge number of animals by best
linear unbiased prediction (BLUP) procedures. It has
also enabled genetic parameters to be estimated by
restricted maximum likelihood (REML). However,
because the size of the MME that can be analyzed
by REML depends on the genetic model and the
numbers of traits and animals, all kinds of data
cannot be used to estimate genetic parameters by
even the latest supercomputers. For this reason,
traditional theories are still being improved and new
theories studied for practical applications to animal
breeding. Traditional quantitative genetics theory
has been based almost exclusively on the assumption
that genetic variation in quantitative traits of interest
is controlled by polygenes. On the other hand,
molecular genetics techniques have made it possible
to estimate individual genotypes. Because DNA
marker information can be obtained by using these
molecular biological techniques, theoretical studies
of linkage mapping, detection of quantitative trait
loci (QTLs), and the potential for marker-assisted
or genotype selection have been developed in the
last decade. Information on QTLs with large effects
will be used for the genetic improvement of animals
in the near future. These new technologies will not
replace existing animal breeding practices, but will
be blended with them through the use of breeding
program design and genetic evaluation methods that
cover both known and unknown QTLs.

1. Introduction
Population genetics and quantitative genetics are
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the sciences behind animal breeding theory. Fisher
(1918) demonstrated that measured correlations be-
tween relatives could be explained by the contribu-
tions of a large number of Mendelian factors (now
called polymorphic loci), each with a small effect.
The advancement and use of animal breeding theory
have been based almost exclusively on this assump-
tion. The classical model of inheritance based on
this assumption seems to be quite robust in the pre-
dicted response to selection and simulation studies.
The development of computer hardware has enabled
this traditional theory to be applied to actual animal
breeding programs. On the other hand, molecular
genetics techniques have made it possible to detect
quantitative trait loci (QTLs). This information may
increase the efficiency of genetic selection programs
for livestock. For these reasons, computer science
and molecular biology have largely driven recent ad-
vances in animal breeding theory.

The purpose of this review is to introduce the
traditional and recent animal breeding theories that
are widely applied to animal breeding. In addition,
I will discuss the effect of including information
on currently identified QTLs. Finally, I will briefly
discuss the nature of animal breeding in the near
future.

2. Effects of development of computer science
on animal breeding theory
2.1 Application of best linear unbiased prediction
(BLUP) to genetic evaluation

Figure 1 is an example of a basic system of genetic
improvement by selection in livestock. In this system,
genetic improvement in the population is strongly
affected by selection rather than by constructing
base population, mating system, or first-stage
selection at weaning. The basic problem in animal
improvement through breeding is to choose animals
that have the greatest genetic value as parents of
the next generation. To evaluate the genetic value
of candidates for selection, we need to divide the



phenotypic value into component parts attributable
to different causes. The simplified model for the
relationship between an animal” phenotype and its
genotype is:

Phenotype = Genotype + Environment
= (Additive genetic effect + Other genetic
effects) + E.

Before 1970s the selection index was the major
tool used in genetic improvement programs in
most countries for estimating individual genotypes
although it is dependent on the animal species. The
selection index is a tool for estimating the breeding
value of an animal by combining all information
available on the animal and its relatives (Hazel,
1943). The theory of restricted selection indices,
whereby the aim is a genetic change of zero in one
or some traits (Kempthorne and Nordskog, 1959) or
predetermined relative changes in some (Harville,
1975) or all traits (Yamada et al., 1974) under
selection, was developed after the introduction of
selection index theory by Hazel. A detailed discussion
can be found in a review by Brascamp (1984). The
restricted selection index theory is still studied today
and new theories are still being developed (e.g. Lin,
2005).

The application of best linear unbiased prediction
(BLUP) to dairy and beef cattle breeding continued
to develop rapidly during the 1970s. The theory of
BLUP was originally developed by Henderson (1949,
1973) for the genetic evaluation of sires in the dairy
industry. Since then, it has evolved from application
to sire and maternal grandsire models for genetic
evaluation in the early years to multiple-trait animal
models (Henderson and Quaas, 1976) and random

...................................................

regression models (Henderson, 1982), which are used

to analyze of longitudinal data or repeated records

on individuals over time, in recent years. BLUP has
become the most widely accepted method of genetic
evaluation of domestic animals.

Some of the reasons for the greater genetic gain
achievable by using BLUP are summarized by Long
et al. (1991), as follows:

- BLUP uses information from all known relatives
of an individual and facilitates comparisons of
the genetic merit of animals by using differing
amounts of information.

- It facilitates comparisons of genetic merit among
animals for which data have been recorded in
different management regimes or over different
periods of time, and it facilitates comparisons
between animals from different herds.

- It allows comparisons to be made among animals
that have undergone different amounts of prior
selection.

- It partitions genetic and non-genetic effects on
performance into their respective components,
thus enabling breeders to assess genetic change
over time.

We need to solve mixed model equations (MME)
to obtain BLUP of breeding values. The size of the
MME depends on the genetic model (Figure 2). One
of the main advantages of the genetic models used
lately is the fact that they increase the accuracy of
evaluations. For example, although the breeding
values can be predicted by solving MME with several
dozen or a few hundred unknowns in a sire model,
one multiple-trait, random regression model in a
country with an advanced dairy cattle evaluation
system led to MME with near 100 million unknowns
(Lidauer et al., 1999).

Parturition

Fig.1. A basic system for genetic improvement by selection.
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Fig. 2. Relationship between size of MME and mathematical model.

Genetic evaluation of livestock owes what
its current status to increasing computer power.
Currently we can solve MME with a few million
unknowns by using only a personal workstation.
The development of computer science has facilitated
stochastic computer simulation studies for comparing
genetic models or animal breeding systems by
selection using BLUP. The genetic evaluation systems
are supported not only by computer hardware but also
by software. After the 1970s, many studies on BLUP
methodologies, such as methods for computing the
inverse of a relationship matrix (Henderson, 1976;
Quaas, 1976), rules for calculating the coefficients
associated with genetic group effects of MME
(Westell et al., 1988; Quaas, 1988), or iterative
algorithms and their application in solving MME
(e.g. Schaeffer and Kennedy, 1986; Tsuruta et al.,
2001; Strandén et al., 2002), have been developed. As
a result, many programs for calculating the BLUP of
breeding values are now offered worldwide. For these
reasons, the development of computer hardware and
software is enabling us to apply important breeding
theory to practical animal breeding systems.

2.2 Problems in applying BLUP to genetic evaluation

Some basic assumptions of the linear model are
demanded for predicting breeding values by using
BLUP methodology. For example, the distributions of
observations, breeding values, and random residual
effects are assumed to be multivariate normal,
implying that traits are determined by many additive
genes, each with infinitesimal effects, at many
infinitely unlinked loci; and the base population is
assumed to be unrelated, unselected, and sampled
randomly from a conceptually infinite population.
However, actual data are not based on these
assumptions. Several problems, therefore, arise when
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breeding values are predicted by the BLUP method
on the basis of actual data. Two of them—genetic
parameter estimation and selection with constraints—
are introduced in this subsection.

In the BLUP method, genetic parameters in the
base population are assumed to be known. However,
the genetic parameters are generally unknown.
Accordingly, we have to estimate genetic parameters
in the population beforehand. Before the 1980s,
Henderson’s Method III (Henderson, 1953) was
widely used for estimating the variance component.
A disadvantage of this method for animal breeding
application is that it was difficult to estimate genetic
covariances. Restricted maximum likelihood (REML.:
Patterson and Thompson, 1971) was then adopted by
animal breeders for estimating genetic parameters.
More recently, Bayesian inference via Gibbs sampling
(Geman and Geman, 1984; Gianola and Fernando,
1986) and Method R (Reverter et al., 1994) have been
proposed for estimating variance components.

The effects of selection (e.g. van der Werf and
de Boer, 1990; Schaeffer et al., 1998), statistical
models (e.g. Clément et al, 2001; Satoh et al., 2002),
incomplete pedigree information (e.g. Schenkel
and Schaeffer, 2000; Roughsedge et al., 2001), and
different methods of estimating genetic parameters
(e.g. van Tassell et al., 1995; Cantet et al., 2000) have
been studied for a few decades. There have also been
many studies on the empirical comparison of REML
algorithms. A detailed discussion can be found in a
review by Hofer (1998).

The REML technique is the most accurate method
available, because it takes account of all genetic re-
lationships between the animals and the effects of
selection. Larger data sets and more complex models
can be analyzed by REML, owing to the increased
power of computers and advances in computing algo-



Table 1. An example of comparison with methods for calculating restricted BLUP!

Selection method: Constraints Number of nonzero CPU time?
Author and (Year) elements? (second)
Satoh (1998) All animals 144,161 0.72
Quaas and Henderson (1976) Some animals 204,561,480 6,916.91
Satoh (2004) Some animals 17,620,448 169.97

! Total number of animals used for calculation is 31,650 and the number of restricted animals is 6,000.
2 Number of nonzero elements in the upper triangular matrix on the left-hand side of restricted BLUP equations.

3 Central processing unit time.

rithms. However, the computational requirements for
variance component estimation are still demanding,
and continued efforts at improvement are still neces-
sary.

In Japan, selection for desired change in all
traits has been frequently used in swine or poultry
breeding programs. At first, this selection procedure
was based on a restricted selection index, achieving
predetermined relative changes in all traits (Yamada et
al., 1974). After that, restricted selection indices were
applied to restricted BLUP (Quaas and Henderson,
1976). The original method for calculating restricted
BLUP of breeding values has been improved by Itoh
and Iwaisaki (1990) and Satoh (1998). More recently,
Satoh (2004) derived a new procedure for estimating
restricted BLUP of breeding values when constraints
were imposed on the additive genetic values of only
some animals in a population. This method requires
several hundred times more computing power than
usual multiple-trait BLUP (Table 1).

Because the population size of closed herds in
swine or poultry breeding in Japan is generally
small, calculation of restricted BLUP is not difficult.
However, if all the animals in the whole country were
to be evaluated, the computing requirement would
be quite heavy. Because restricted selection includes
selection with zero change in one or a few traits,
if some economic trait is optimized by selection,
then restricted selection with zero change will be
conducted. Egg weight in laying hens and backfat
thickness and meat quality (e.g. intramuscular fat
content and meat color and pH value) in swine
and beef cattle have optimum levels in terms of
economics or consumer requirements, and these
traits may reach their optimum levels in the near
future. Traits that required balance, such as milk and
milk fat yields in dairy cattle, body weight and leg
weakness in swine, and composition of fatty acids in
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meat will be also used for selection with constraints.
Calculation of restricted BLUP as well as REML will
require increased computing power.

3. Effects of development of molecular biology
on animal breeding theory
3.1 Detection of QTLs segregation

Over the last few decades, we have developed
molecular biology techniques and the associated
analytical genetic tools. These advances have
increased interest in using genotypic information
to improve response to selection. In particular,
theoretical studies on the detection of QTLs by using
polymorphic DNA markers and on the use of QTL
information for genetic improvement in livestock
have developed rapidly in the last decade. These are a
series of problems, including genetic marker linkage
analysis and mapping, identification of marker loci
linked to QTLs, and identification of QTLs. Interest
of the next step can be divided into two directions.
One is the analysis of gene function and genetic
mechanisms by molecular geneticists; the other is the
use of linkage associations or QTLs directly in the
genetic improvement of economic merit by animal
breeders and quantitative geneticists.

Dense marker linkage maps have been constructed
for the most important domestic species. There are
few theoretical problems in terms of yield. DNA
polymorphisms are used as linked or direct markers
to detect QTLs segregating in particular populations
with specific allele frequencies. More recent practical
studies have investigated polygenic traits with the
aim of identifying QTLs for production traits such
as growth, meat, milk, wool, fertility, and disease
resistance, and the results of a large number of studies
have been summarized in species-specific QTL maps
(e.g. Bidanel and Rothschild, 2002; Khatkar et al,
2004). Finally, all QTLs with economic merits will



be identified and the location of the QTLs in the
genome and the size of the QTL allele effects will be
estimated.

Accurate estimation and improvement of the
accuracy of estimation of QTL allele effects are most
important in the use of QTL information for genetic
improvement in livestock. The accuracy of this
procedure depends on the number of animals and the
heritability of the trait affected by the QTLs. In this
respect, estimation of the genotype of the QTL allele
is similar to breeding value estimation using BLUP
methodology. After all, estimation of the genotype of
the QTL allele is affected by the phenotype itself.

3.2 Selection efficiency of direct use of QTL
information

Genetic markers can be used to identify specific
regions of chromosomes where genes affecting
quantitative traits are located. Marker-assisted
selection (MAS) uses information about these regions
in livestock selection programs to identify individuals
with favorable combinations of QTL. Most
researchers agree that MAS is likely to complement,
rather than replace, conventional selection systems,
leading to increased rates of genetic change.
However, there is a risk of reduced genetic response
if the marker association information is inaccurate,
since MAS is a form of indirect selection. On the
other hand, if assumed, error-free QTL information
is used directly to predict response to selection,
the genetic improvement is expected to be greater
than that by using MAS and QTL information
with errors. However, if the response to selection
by using identified error-free QTL information is
inferior to that by using conventional selection,
information on the identified QTL will not be useful
for genetic improvement. The potential benefit from
using information on identified QTLs in selection is
discussed in this and the next subsections.

The benefits of combining both the genotype
and performance information have mostly been
assessed in terms of the short- and medium-term
genetic responses relative to traditional mass or
BLUP selection. However, the benefits decrease in
long-term selection (e.g. Larzul et al., 1997; Pong-
Wong and Woolliams, 1998; Villanueva et al., 1999).
The general conclusions are that the use of QTL
information from genes with large effects or from
markers linked to these genes significantly increases
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the short-term genetic response but has lower
cumulated gain than the use of traditional selection
methods such as phenotypic or BLUP selection.
Figure 3 shows the typical responses to selection
using QTL information. Loss of long-term response
with genotypic selection or with BLUP selection
based on genetic markers linked to a QTL is caused
by a reduction in the effective intensity of selection
that is applied to polygenes (Gibson, 1994). The loss
in polygenic response is not offset by the increased
response for the major gene. Build-up of gametic-
phase disequilibrium between the major gene and the
polygenes is also a reason why the result of genotypic
selection is less than that of phenotypic selection
in the medium to long term. The most important
conclusion is that there is no large difference in
response to selection whether or not QTL information
is used for genetic evaluation.

3.3 Selection efficiency indirectly using QTL
information

Much of the breeding of commercial plants such
as rice, wheat, and soybean is based on pedigree
selection, by which elite inbred lines are crossed
and then self-fertilized for several generations to
produce a large number of recombinant inbred lines
that are tested to select a new set of elite inbreds.
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Fig. 3. Total genetic gain over 20 generations of
selection using BLUP with the genotype
information when selecting a performance
trait with heritability (4#%) of either 0.2 or 0.5.
Results are expressed as deviation from the
predicted cumulated gain achieved with the
conventional BLUP selection.



This breeding system may be effective in using
QTL information. Furthermore, each plant species
has many genetic resources that may include some
important QTLs. Therefore, the advantages of using
QTL information in animal breeding are smaller than
in plant breeding, particularly if the allele effect of
the identified QTL is not large.

Candidates for performance testing in cattle or in
swine being grown for breeding stock are generally
selected by information on relatives and by visual
inspection. Additionally the use of information on
a QTL identified in the first-stage of selection in a
multi-stage selection system is more effective than
the direct use of information on the identified QTL
(Figure 4), even if the total genotypic variance of
the identified QTL is around 20% or less of the
total genetic variance of the trait. The use of QTL
information may also be effective in evaluating
genetic performance when it is applied to traits such
as those that:

- have low heritability and/or are unmeasurable
before sexual maturity

- are expressed late in life, i.e. lifetime productivity

- are sex-limited, i.e. reproductive or maternal
performance

- are expensive and difficult to measure, i.e. disease

resistance.
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Fig. 4. Total genetic gain over 20 generations of two-
stage selection using BLUP with the genotype
information. First-stage selection was carried
out within families on the basis of QTL infor-
mation, and second-stage selection was based
on BLUP selection. Results are expressed as
deviations from the predicted cumulated gain
achieved with conventional BLUP selection.

50

Little attention has been paid to research into
unproductive traits, such as disease inheritance.
However, owing to the high selection intensity of
recent animal breeding systems, studies on disease
inheritance or inbreeding depression will become
important. In fact, single recessive genes that cause
inherited diseases and have major negative impacts
on productive traits have now been identified by
using molecular genetic approaches (Raadsma and
Tammen, 2005). Consequently, the design of breeding
programs and genetic evaluation methods to exploit
properly the benefits of major genes is urgently
required.

4. Conclusions and implications

Almost one century has passed since the first
step in animal breeding theory was taken. Recent
advances in animal breeding theory have been driven
largely by computer science and molecular biology.
Conventional animal breeding systems will gradually
change with these advances. The genetic model for
evaluating candidates for selection will become
more complex, and evaluation of combining both
information on identified major genes (such as those
for inherited diseases) and conventional performance
in economic traits will be used in breeding systems.
New molecular biological technologies will not
replace existing animal breeding practices. Indeed,
these new techniques will blend in with conventional
methods that are used in breeding program design
and genetic evaluation methods which covering both
known and unknown QTLs. However, since genetic
improvement of economic traits is very rapid, even
if we were to continue to use traditional genetic
evaluation systems, some traits would approach
their selection limits in the near future. We need to
consider the development of animal breeding theory
aimed at genetic improvement by balancing genetic
merit and genetic diversity.
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