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We attempt to analyze a one-dimensional space-inhomogeneous quantum walk (QW) with one defect at the
origin, which has two different quantum coins in positive and negative parts. We call the QW “the two-phase QW
with one defect”, which we treated concerning localization theorems [7]. The two-phase QW with one defect has
been expected to be a mathematical model of topological insulator [15] which is an intense issue both theoretically
and experimentally [3,5, 11]. In this paper, we derive the weak limit theorem describing the ballistic spreading,
and as a result, we obtain the mathematical expression of the whole picture of the asymptotic behavior. Our
approach is based mainly on the generating function of the weight of the passages. We emphasize that the time-
averaged limit measure is symmetric for the origin [7], however, the weak limit measure is asymmetric, which
implies that the weak limit theorem represents the asymmetry of the probability distribution.

KEYWORDS: quantum walk, weak convergence, generating function, quantum probability, topological
insulator

1. Introduction

This is a continuation of the previous work of [7], where we obtained the limit theorems for localization. For their
characteristic properties, quantum walks (QWs) have attracted much attention in various fields, such as, quantum
search algorithms [2, 23], and topological insulators [15], and so on. For the application of quantum walks, it is of great
importance to further develop both analytic and numerical methods. Indeed, during the past decade many researchers
have investigated the asymptotic behaviors of QWs from various viewpoints [6,14,17,21,22,24]. From a
mathematical viewpoint, two types of limit theorems for QWs have been established. The one is localization theorem.
Localization is one of the typical properties of discrete-time QWs, which was first studied by Inui et al. [13] both
mathematically and numerically. The detailed definition of localization is found in [1, 14] for example. The other is the
weak limit theorem whose typical expression is described as follows [21]: There exist C € [0,1), a € (0, 1), and a
rational polynomial w(x) such that

w(dx) = Cdo(dx) + w(x) fx(x; a)dx (1.1)
where
V1 —a?
Sk a) = (1 _xz)ml(*a,u)(x) (1.2)
with
1 (xeA)
) = {o (xgA)
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Here, that the first term, Dirac measure part in Eq. (1.1), Cdy(dx), corresponds to localization, and the second term,
absolutely continuous part, w(x) fx(x; a)dx, describes the ballistic spreading. We remark that Eq. (1.1) gives

1=C+ /00 w(x) fx (x; a)dx.

So far, the weak limit theorem of one-dimensional space-homogeneous QWs, such as Hadamard walk [17], Grover
walk [19], have been derived. In 2013, Konno ef al. [21] have first given the weak limit theorem for the typical
inhomogeneous QWs, taking advantage of the generating function of the weights of passages. The method permits
the analysis only for the QWs with one defect at the origin, whose quantum coins are the same both in positive
and negative parts. Recently, various kinds of methods have been constructed to investigate mathematically the
asymptotic behavior of QWs, such as the Fourier analysis [12], the CGMV method [4], the stationary phase method
[16], the path counting method [18], and the generating function method [8]. We can expect to analyze various kinds
of inhomogeneous QWs by the generating function method, while the Fourier analysis and stationary phase method
are useful to study homogeneous QWs. However, the types of QWs that can be analyzed by the generating function
method have not been obvious so far. We can also analyze inhomogeneous QWs by the CGMV method, however, the
CGMYV method allows only for the general discussion of localization for the typical QWs in one dimension. On the
other hand, the generating function method offers not only localization theorem, but also the weak limit theorem for
QWs.

By using the generating function method, we focus on the ballistic behavior of “the two-phase QW with one defect”.
It has been known that the two-phase QW with one defect is deeply related to topological insulator which has attracted
much attention of many physicists recently [3, 11, 15] as a key to construct the device of quantum computer. Hence we
expect that the two-phase QW with one defect can be utilized to study topological insulator as its ideal mathematical
model. By putting a phase in the unitary matrix of the QW in [20], we see that localization happens. Moreover, one-
defect QW, whose time-evolution is described by the following two kinds of the unitary matrices, has already been

studied in detail [21].
[“ b] (x#0)
X b
c d

ap by
=0).
|: co do :| =0

This is one of the main mathematical motivations why we study the two-phase QW with one defect. Therefore, it would
be greatly worth to study the mathematical aspects of the two-phase QW with one defect to exactly grasp the
asymptotic behavior. Our main result is the first application of the generating function method to the weak limit
theorem of QWs which have two phases with one defect. Combining the time-averaged limit measure [7] with the
result in this paper, we obtain the whole mathematical picture of the asymptotic behavior of our two-phase QW.

The rest of this paper is organized as follows. In Section 2, we define the two-phase QW with one defect which is the
main target in this paper, and present our main result. In addition, we give a concrete example of our two-phase QW,
and show what our analytical result implies. In Section 3, we give the proof of Theorem 2.1.

U, =

2. Model and Results
2.1 The two-phase QW with one defect

For the general setting of two-state discrete-time QW in one dimension, the walker has a state at position x in each
time ¢ described by a two-dimensional vector as follows:
a(x)
Bi(x)

where Z is the set of integers, and C is the set of complex numbers.
In this paper, we focus on a discrete-time QW with two phases in one dimension whose time-evolution is described
by the unitary matrices as follows:

W,(x) = |: i| (x €Z, a;(x), Bi(x) € C),

U 1 1 el as D)
= — . X N
* V2| e7ior —1 o

|: 1 ei":|
U =3U_.=— . x<-1), 2.1
e 1

Uy = b =0
=1y _4 (x = 0),




Weak Limit Theorem of a Two-phase Quantum Walk with One Defect 19

where o € [0, 27).
For the simplicity of analysis, we put the unitary matrix Uy at x = 0 and unified all the determinants to det(U,) = —1.
Here, the time evolution is determined by the recurrence formula

Vi () = P Wi+ D+ 0 Wix — 1) (x € Z),

where
L[l em} Ge ), L[ 0 O} (= 1)
210 0 - V2 e —1 -7
Py = [1 O} (x=0), 0, = [0 0] (x=0),
0 0 0 -1
171 é° 1 0 0
E[O 0 i| (x=-D, E[e_i” _]] (x = —1),

with U, = P, 4+ Q.. Note that P, and Q, correspond to the left and right movements, respectively. The walker steps
differently in positive and negative parts each other. In this paper, we call the QW “the two-phase QW with one
defect”. The model with o, = o_ becomes a one-defect QW, which has been analyzed in detail so far [21]. Owing to
the defect at the origin, the model has an origin symmetry, and the analysis becomes simple. One of the mathematically
interesting future problems is to analyze QW with two phases which does not have defect at the origin, and we will
report the analytical results of a two-phase QW without defect at the origin in the upcoming paper. We derived
localization theorems [7] for the two-phase QW with one defect, in particular, the time-averaged limit and stationary
measures. Hence, by obtaining the weak limit theorem corresponding to the ballistic spreading, we can mathematically
express the whole picture of the asymptotic behavior of the two-phase QW with one defect.

2.2 Main result: the weak limit theorem

Let 1, (x) be the time-averaged limit measure defined by
o . 1 T*l
Poo(X) = Tlggo T ; P(X; = x).
Then, we introduce C defined by the summation of the time-averaged limit measure fZ.,(x):
C=) Tal).

x€Z

We see that localization for the QW starting from the origin happens if

Tioo(0) > 0.

Here {X,} is a set for the position of the walker at time 7 defined by P(X; = x) = ||W,(x)||?>, where P(X, = x) is the
probability that the walker exists at position x. Now, we present the weak limit theorem for the missing part 1 — C with
0 < C < 1. The proof of Theorem 2.1 is given in Section 3. In general, the weak limit theorem describes the ballistic
spreading of the QW [17]. Hereafter, let R be the set of real numbers.

Theorem 2.1. Consider the two-phase QW with one defect starting from the origin with the initial coin state
w0 = T[a, Bl, where o, B € C. Put o = ae'®, B = be'® witha,b > 0,a*> +b*> =1 and ¢, ¢, € R. Let o = (6, — 0_)/2
and ¢1» = @1 — ¢». For the two-phase QW with one defect, X;/t converges weakly to the random variable Z which has
the following measure:

1u(dx) = Co(dx) + wx) fic(x; 1/+/2)dx,
where fx(x;1/+/2) is defined by Eq. (1.2) and

t3x5 + t2x4 + t1x3 + l‘())C2

w(x) =
) sox* + s1x2 + 5

(2.2)
with

3 = 4cos’ o (b — d°),

t, = 4[cos® o(1 + 2ab sgn(x) cos y(x)) + 2ab sgn(x) sin y(x) sin 207],
nh=20* —d%),

to = 2{1 + 2ab sgn(x) cos y(x) — 2ab sgn(x) sin y(x) sin 20},

Sy = 4 cos” o,
s1 = 4cos® o(1 + 2sin® 0),

S0 = cos’ 20,

and
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d—o0_ (x>0,
—pn+op (x<0).

Here we should note that w(x) fx(x; 1/+/2) is an absolutely continuous part of the weak limit measure p(dx).
If 0. = o_, then, we see from Eq. (2.2) that the weight function is given by

y(x) = {

w(x) =

252 { 14 V2% (e “af) + (B> — aP)x (x> 0), 2.3)

1+22 | | — V2% ap) + (b* — aP)x  (x < 0),
which agrees with the result obtained by Theorem 4.1 in [21].

Remark:
Here we should note that the expression of the weight function in Theorem 4.1 in [21] contains a typo, and the correct
transcription is

Ic|22

(lcl> = m)* + (e — m)x?

wx) =

2R (aoarbo B) }xi|

2
|aol

[y(x) — |ao|2{(|01|2 — 18" +

As we see in Egs. (2.2) and (2.3), the two different quantum coins give such complexity to the weight function. In
our previous paper [7], we reported that the time-averaged distribution of the two-phase QW with one defect is
symmetric for the origin, however, we emphasize that the weight function w(x), the main result in this paper, is
asymmetric, which suggests that the probability distribution has asymmetry for the origin. One of the interesting future
problems is to show the explicit relation between topological insulator and the two-phase QW with one defect, for the
two-phase QW with one defect can be considered as an ideal mathematical model of topological insulator which has
been considered as a key to construct the device of quantum computer.

2.3 Example

In this subsection, we see a concrete example of our result. We consider the QW defined by the unitary matrices

1 [t —i
U+=ﬁ[i —1} w=h2e)
1 1 -1
Ux= U_:E[_l _1:| (x:_],_z,...),
1 0
Uoz[o _1] (x = 0).

We obtain the QW by putting oy = 37/2 and o_ = 7 in Eq. (2.1), which we examined its localization effect in
Subsection 2.4 in [7]. Hereafter, we will apply our mathematically concrete result, that is, Theorem 2.1, to the QW for
the two cases of initial coin state as follows;

(1) Let the initial coin state be ¢y = T[1,0]. According to Theorem 2.1, the weight function of the QW is

21 = +x%2—x)

w(x) = I

Hence, we see

- &l

/ (0 fi (s 1/7/2)dx = g

S

In our previous study [7], we obtained the following expression of the time-averaged limit measure Z.,(x)
(Theorem 2 in [7]):

ﬁoo(x) = ]{,1/ﬁ551ng§1}(x)v(+)(~X; o)+ I{flfsin o<1/v/2) (x)‘)(_)(x; 0),
and

1+ +/2sino

W)= | ————
(x:0) 3424/ 2sino

2
) {1 F 20 (Ge P ap)}

\/_ ) 1 x|
X :(S()(X) + (1 — (S()(X))(z + +/2sin U) (m) },

with 6 = (o4 +0_)/2, 12 = @1 — ¢r. As a result, we derived the coefficient C of the delta function 8y(dx) in
Eq. (1.1) which expresses localization:
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4 R2& 1\ 2
C= w =—4+2x = -] =-.
XX:““(X) AT Z(s) 5

y=I
C—i—/

(2) Next, we consider the initial coin state ¢y = T

Therefore, we have

- S

wx) fx(x; 1/4/2)dx = 1.

Sl

i/x/2,1/+/2]. Theorem 2.1 gives the weight function by

—

20— V2)x2 +2+ 42

> 0)
xr+4
w(x) =
Q+V2)2+2+2
x<0
x2+4

Hence, we get

- S

/ ) fie(x; 1/3/2)dx = §(3 +2).

S

Here, we derived the time-averaged limit measure [z, (x) by Theorem 2 in [7], and as a result, we obtained the
coefficient of the delta function §y(dx) in Eq. (1.1) by

c=yme=g () s (- )26 =50 5)

Thereby, we have

- Sl-

C+ / wx) fx(x; 1/4/2)dx = 1.

Si

Here, we show the numerical results of the probability distribution at time ¢ = 100, 1000, and 10000 in re-scaled
spaces (x/t,tP,(x)) (t = 100, 1000, 10000), where x represents the position of the walker and P,(x) is the probability that
the walker exists on position x at time . We should note that x/ corresponds to the real axis, and 7P;(x) corresponds to
the imaginary axis, respectively. Also, we put the graph of w(x) fi(x; 1/+/2), which is related to absolutely continuous
part of the weak limit measure 1(dx), on the picture at each time. We see that the graph of w(x) fx (x; 1/+/2) is right on
the middle of the probability distribution for each position at each time, which suggests that our result is
mathematically proper. We also emphasize that 77, (x) is symmetric for the origin [7], however, w(x) fx (x; 1/4/2) does
not have an origin symmetry (Figs. 1, 2, 3, 4, 5, 6), which indicates that the weak limit measure represents the
asymmetry of the probability distribution (Figs. 1, 2, 3, 4, 5, 6). Furthermore, regardless of the difference of the initial
coin state, the distributions become asymmetric.

10

=N

I

-1.0 -0.5 b 0.5 1.0

Fig. 1. [@o = T[1,0] case.] Fig. 2. [y = T[i/«/f,. 1 /ﬁ] case.]
Blue line: Probability distribution in a re-scaled space Blue line: Probability distribution in a re-scaled space
(x/100,100Pp(x)) at time 100, Black curve: (x/100,100Pgo(x)) at time 100, Black curve:

w(x) fx(x; 1/3/2). w(x) fi(x; 1/+/2).
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-1.0 -0.5 - 0.5 1.0

Fig. 3. [go = T[1,0] case.]
Green line: Probability distribution in a re-scaled space
(x/1000, 1000Pppo(x)) at time 1000, Black curve:
w)fi(; 1/+/2).
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Fig. 5. [¢o = T[1,0] case.]
Orange line: Probability distribution in a re-scaled space
(x/10000, 10000P9p00(x)) at time 10000, Black curve:
w() fx(x; 1/3/2).

3. Proof of Theorem 2.1
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-1.0 -0.5 0.5 1.0

Fig. 4. [@o = T[i/~/2,1/+/2] case.]
Green line: Probability distribution in a re-scaled space
(x/1000, 1000Pppo(x)) at time 1000, Black curve:
w@)fx(x: 1/3/2).
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-1.0 -0.5 05 1.0

Fig. 6. [@o = "[i/~/2,1/+/2] case.]
Orange line: Probability distribution in a re-scaled space
(x/10000, 10000P19000(x)) at time 10000, Black curve:

w() fx (x5 1//2).

In this section, we focus on the characteristic function of QW, that is,

L Xy .
E[e’éT] :/ gxl/,(x)els"dx, (3.1
x€Z

where gx,/;(x) is the density function of random variable X,/t. In a similar way as Appendix A in [7], we consider how
E[e%/!] can be written when r — co. Here, we should note that to obtain 8x,/1(x) (t — 00) is equivalent to derive
w(x) fx (x; 1/+/2).

Let E,(x) be the weight of all the passages of the walker, which moves left / times and moves right m times till time ¢
[21]:

— [ 1% 2 / '
B0 =D P00 POy - PO
L
where [+ m=1t, —l+m = x, Zi =1, Zj m; =m with [; +m; = 1, I;,m; € {0,1}, and Zy:li,mj lx,| = x. We give
useful concrete expressions of E.(z) = Y. E,(x)z" which play important roles in the proof. Lemma 3.1 is equivalent
to Lemma 2 in [7], which we used to derive the time-averaged limit measure for the two-phase QW with one defect.
Assume that the quantum walker starts from the origin with the initial coin state ¢y = ”[a, 8] with a, 8 € C and

o>+ 1B = 1.
Lemma 3.1. (1) If x =0, we have

2.0 1 1 e
2oRl) = ——=7— = —~— - .
T R0 | 70 1
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2) If |x| = 1, we have

. AP () FO 3
AP [ OL@ 0, _1E30@ o= 1),
= Z
E:(z) =
- Z -
(1(7)(1))|X|71 |:/i(_)(Z)f~(_)(Z) :| [1, 0] E()(Z) (X =< _1)7
where AP (z) = W, () = W Here ff”(z) and fé_)(z) satisfy the following quadratic equations,

respectively;
(J?XH)(Z))Z _ \/2‘61'04,(1 + Zz)f;Jr)(Z) + eZia+Z2 =0,
FO@P = V2e 1+ @) + e 22 = 0.

Since the coefficients of these quadratic equations are independent of the position x, the solutions f)fi)(z) are also
independent of x:

- . 1
(+) — 2 +ioy 2 1— _ .
f;c (Z) \/_e Z ( 2 _ \/Ee:':iﬂif:r(i)(z)>

Hereafter, we will write fx(i)(z) by féi) (z) for simplicity. R
Now, from a simple calculation, we obtain E[¢*X/"] (t — oo) written by the square norm of the residue of E,(z) =
>, Ei(x)7" as follows:

Proposition 3.2. We have
E[7] / ME O Res( Bk : 9 2= O (1 o0) (3:2)
T | — = 7))z = — t— 00), .
e ; e es Diz=¢e o

OeA
where A is the set of the singular points of E(k : z) = D reZ E.(x)e™. Note 0 (k) = 90(k)/ k.

[Proof of Proposition 3.2]

Hereafter, we will explain how Eq. (3.2) is derived, which is a key of the proof of Theorem 2.1. Put w;(k) =
Res(U(k : 2) : z = ?"®) with W,(x) = E,(x)go, where {¢®"®},_, is the set of the singular points of E(k : z). Now we
introduce Lemma 3.3, which plays an important role for the proof;

Lemma 3.3. (1) We have

<v2 0<k<mu/2).

‘ae<+>(k) 30 (k)

k ok
(2) There exists CO e R, such that
dwy(k
‘M <CO (0<k<n/)2).
ok
Noting

'ae<+>(k) WK 2lcosk|
ok ok | J1+coslk’

we obtain (1). Taking into account that the denominator of dw. (k)/dk can not be 0 and the numerator does not diverge,
we get (2), where the expression of dw4(k)/0k is so complicated and lengthy, and we omit it.
By definition, we have

X, 1 o R dk
Ele™™ ]=/ (Wi(k), Wi (k + /1) 5=
0 2

m dk
/ <Z w (k)efl(H»l)b‘(“(k) Z w (k + E/t) —i(t4-1)8" )(k+§/t)> o (33)

/ {Zh‘fz(k)lz e —f<'+1>0<1/f2>+0(1/z>}g

2 30" (k) dk
_I_/ {Z Z w (k)ez(t+1)0“>(k)w (k)e—l(t+1)9( ) (k) oD /1= e—z(l+l)0(l/12) +o(1/nt—. (3.4
0 i 2

Here, by using the Fourier analysis, we have
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- 1
\D,(k)zﬁﬁl r\IJ(k Z) e O<r<1.

Now, we have the following expression by using the residue theorem;

~ 2 . . 1
D) = = Res(W(k:2) 1 2= "))y f ks o) =
p— 27Tl |zZ]=R

t+1
with R > 1. Due to Lemma 3.1, we see
Skin o .N ot [—/T(+)(z)f(§+)(z)(f<§_)(z)a + ﬁ)}
(1 — e* 1D + AP F @) —(FO@a+ P
N e [ e —fy @B ]
(1 — e * 1O + fé%)f}”(@) A9 @@ - 5P @B)

. 1 — P8
1+ P77 @ fg—><z>a +8]
According to [21], we obtain
- __we:tiai R )
9w = === fw —w ™+ Jw - w 2],
T -1y _1e
1 (w)_iﬁ{(w—i-w ) =/ (w + w) 2].

By putting w = Re® (R € Rx), we see that there exist C), C® € R., such that
PP ) ~ CVR?

and

and

A (R ~ CP.

el 0-z®)L]!

1 [ . 4 RdO 27 46
— W(k : Re® : <C<3>/ —  (CY eR.y).
2t )y [\W(k : Re™)]| R = & ( 0)

Thereby, we have

|U(k : Re®®)| ~

_|._
_|._
|

x| —

which leads to

Accordingly, we get

lim — / ks ety R0 _
m — . Ixe —— = U.
; 0 |RezO|t+l

Therefore, we obtain by Eq. (3.5)
\bt(k) — _ ZRes(\i'l(k . Z) f7= eig(l)(k))(eig(’)(k))ftf1 (R N OO),

which also can be obtained by [10] (pp. 264-265).
Using Maclaurin’s expansion for w,,(k + &/f)e~¢+D6"®+E/0  that s,

L (k e T DO k+E/D _ wi(k) + S5
wn(k +&/1e wm(k) + % RS

ENDO et al.

(3.5)

S owy(k) & Fw,,(k) N ')e_,(,+1){9<m)(k)+ £ a0 )(k)+ £ 20 }

and noting Lemma 3.3, we obtain Eq. (3.4). By the Riemann-Lebesgue Theorem, the second term of Eq. (3.4) vanishes

when t — oo, and we get the desired equation.

O

Taking advantage of Eq. (3.2), we give the proof of Theorem 2.1. From now on, we derive the singular points of
E(k : z) and then, compute the residues of Z(k : z) at the singular points. Using Lemma 3.1, we obtain the expression of

E(k : 7) as follows:
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—ik

[69]3

L ok /T(H(z)fo(”(z) e z
("'Z)_{Tﬂwz)[ . T TG | ook e

The first term comes from the positive part of Z.(2), and the second term comes from the negative part of Ex(z),
respectively. In addition, the third term describes localization.

Here, we should remark that if |z| < 1, then |[A®)(z)] < 1. Thus, the infinite series Y (1™ (2)"~'e* and
Zx(/i(’)(z))lxl_le’ik‘ converge. Now, as we see in Appendix A, we have

}[1,0] +1} E0().  (3.6)

A® () = F{sgn(cos O)v2 cos? 6 — 1 + i/2sin b}, (3.7)
~(§i>(ei9) = sgn(cos 0)e" ) (/2|cos O] — V2 cos2 6 — 1}. (3.8)

Expressions (3.7) and (3.8) can also be obtained by the statements just after Eq. (24) in [21]. The principal singular
points in this paper come from

1—* AP () =0, 3.9)
and

1—e*19@ =0. (3.10)
The solutions of Egs. (3.9) and (3.10) satisfy the next conditions. By Eq. (3.9), we have

cosk = —sgn(cos 8 (k))v/2 cos2 0D (k) — 1, (3.11)
sink = +/2 sin 6 (k), (3.12)
and Eq. (3.10) suggests

cosk = sgn(cos 0 (k))y/2 cos? 0 (k) — 1, (3.13)
sink = +/2sin 07 (k). (3.14)

By comparing Eq. (3.2) with Eq. (3.1), we put —30®)(k)/dk = x to compute the RHS of Eq. (3.2) and derive 8x,/1(x)
(t — 00). Then, we derivate Egs. (3.11) and (3.13) with respect to k, and sink, cosk, sin8®(k), and cos (k) are
described as follows:

From Egs. (3.11) and (3.12), we have

cosk = sgn(cos k) cos 0 (k) = —sgn(cos k)

X4 1
JI=22 V20 =2
(3.15)
sin k = sgn(sin , sin = sgn(sin —_
' g T2 ¥ SN0 =)
From Egs. (3.13) and (3.14), we see

cos 07 (k) = sgn(cos k) ————,

X_ 1

_ (3.16)
- (sink) -2 690 (sink) 1—24%
SINn K = Sgn(Ssin sin = Sgn(sin —_—.
g - g 21— 22)

Therefore, we obtain the set of the singular points of é(k : z) as follows:

cos k = sgn(cos k)

P CICIY

with
2
ei0(+)(k) - _ sgn(cos k) + i sgn(sink) 1 - Zx;_ ’
20 =x2) 21— 22)
and
sgn(cos k) 1 —2x2

G0 = 2P isgn(sink) [ ————

V201 —x%)
In the next stage, we derive the residue of é(k; z) at the singular points. At first, substituting the singular points to
Eq. (3.8), we have

2(1 —2)
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/T— 2 T— 2
(1) féﬂ(eia(“(k)):_sgn(cos k)el®" ko) 1-xi ~(§*)(e"9(”("))=—sgn(cos k)el @ k)=o) -3
L ey ] I+ ]

/1 — x2 v 2
1—x i féf)(eif?(”(k)) = sgn(cos k)é’i(g(i)(k)im)g

2) F P (e?®) = son(cos k)@ ®+o+) :
) fy( ) = sgn( ) 5 | T+ |

Noting Lemma 3.1, we see

ik () () 7D
‘ [fO o1 (Z)j|[0,—1]éo(z)=

_ et IP@IP@ |,
1 — eI (2) z T Ao 1 — e*1D(2) |: . (afy @+ B,

and the square norm of residue of the first term of Eq. (3.6) is written as

ik 24 () () ?
Res( ¢ |:f° @4 (Z)i|[0, —118y(2) : z = eig(ﬂ(k))

1-— e”f/T(*)(z) Z
2

~(— i
locfy (@0 + B

Z(+ 0P )N\ ¥ i0) (k
fé )(619 ())/1(4-)(61 ())
ei9(+)(k)

Res 41 iz =0 271
1— ek ID(g) | Ao(e 7 ®)2
In a similar fashion, we can write down the second term of Eq. (3.6) by

:|[1, 0] EO(Z) 7= ei9()(k))

2

eftk
Res<—1 — ek 15)(2) |:f~(§)(z)/i()(z)
2

1 9-)
Res| ———— 1 7=¢""®
(1 — e k1) (2)

Z(4) 0 (k)N 2
x la — BFSP (™02,

2 1
| Ag(e?®)|?

eiG(’)(k)
J?(;—)(eiQ(’)(k))/i(—)(eiO(’) (k))

Thereby, we obtain
23 ; 1 1 ? 1
Al N o 0PN 2 R 10 3 B ¥
||Res(u(k . Z) g=e )” - Res<1 _ eik/'l“(+)(z) -z=e )' |A0(ei9(+)(k))|2
~(+) '9(+) N\ Y '9<+> k 2
|| BTN e w4 g
19<+>(k)
e
1 =) 2 1
+ |Res %:Z:ele ® "*
(1 — e k1 () | A€
) 2
5 e(t9<i>(k)) ot — 'Bf(_i_)(eig(—)(k))'z (3.17)
o @O0y ’ ' |

Henceforth, we will express the items below with respect to x4 or x_, and then substitute the items in Eq. (3.17).
1 ig(+) 1 (=) 2
Res| ——— 7= et@ (k) Res — f7= el@ (k)
(1 _ e’k/l(+)(Z) 1— e"k/l(—)(z)

1
e ——————
| Ag(ei®?®))2”
o |afy (e”"®) 4+ B2 and |a — BF3 ()2,

~ . ~ . 2
/1(+) (el(‘)(+)(k))f0(+) (el9(+)(k))
el‘g(ﬂ(k)

2

° and

2

and

eieH(k)
[ ]
S(Zy BN FH=) o)
A( )(etf) (k))f(g )(619 (k))

1 i) : 1 9=
Res — = = 619 ®) Res _— 1= ele k)
(1 — kNG T [—e#*lO@) *

Let g3 (2) = 1 — e** 1®)(z). Expanding g®)(z) around z = ¢~ ®, we have

2

and

1. Computation of

1 . 1
ReS %:Zzele ®) = —
(1 — e AB(2) 982 (2)

82 el

From Eq. (3.7), we see
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3g*(2) sgn(cos k) i mi _ T—2:2
=+t———¢ sgn(cos k sink) — + i,
0z 2= ®) J1l = x?t X+
which imply
‘Res % 7= e?7® 2 X2
1 — ek 1H)(z) +
Res % cz="® 2 =x.
1 —e*10)(g) -
2. Computation of W: Noting Lemma 3.1, we have for any 6 € R,

[Ro@”)? = 1+ 2%V (@) fy () + 155 @)P 1T )P, (3.18)
where R is the set of real numbers. Hence, substituting the singular points into Eq. (3.18), we obtain
1 B (1+xy)°
[Ao(e® @[> 241 + x2 (1 + cos 20) + sgn(sink cos k)y/T — 242 sin 20}

1 (1—x_)

[Ag(e®®)2 "~ 2(1 + x2 (1 + cos 20) — sgn(sink cos k)y/1 — 2x2 sin 20}

3. Computation of |afy (e ®) + g% and |a — BFS7 (02
Let the initial coin state @y = "[a, B], where o = ae’®', B = be’®> with a,b > 0 and a®> + b> = 1. Taking account of

lofy @)+ B = a1 @O 4 1B + 20t aBfy (),

and
lor = BT V@™ O = ja? — 29t@Bfy Ve O + 18RI Ve O,
we obtain
~ i 1— 2ab . .
Iafé_)(e"’( ) 4 g = s iy V24 [ cos y4 + sgn(sink cosk)y/1 — 2x% siny },
1 + X4+ 1 =+ X4
- e 14+ x_ 2ab . .
| — ﬁf(§+)(e’9( w2 = bzl—x +a*— ;/—a [cos y_ —sgn(sink cosk),/1 — 2x2 sin y_ ],
—x_ —x_

where v, = @1 — o_ and y_ = ¢1 + oy with ¢ = ¢ — 2.
[ 1)@ ®) e eio<+><k>)] ‘ 2

o)
etO (k)

2

4. Computation of and

ei9<*>(k)
/'i(—)(eiQ(’)(k) )fé—)(et@(’)(k))

By a simple calculation, we have

|: /'1“(+)(ei9(+)(k))jc“(g-#)(eiﬁ(“(k))

F0(+)
0K

2
1+x+

2
}N = H P OP 1= > 0),

2
=14 IO O F (702 =

T — (x_ <0).

|: ei9<"(k) :|
~(— i9(—) ~(— i9(—)
A1) (k))fé )(eze ®)
Here, we remark

36 (k)
ok

_—— (3.19)

which imply

|cos k| |cos k| (3.20)
Xy=———, ==, .
- V1 +cos?k V1 +cos?k

Hence, we can regard x; and x_ as a variable x:

_[x+ (x>0,
_{x_ (x < 0).

Combining Eqgs. (3.15) and (3.16) with Eq. (3.20), and noting Eq. (3.19), we get
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d
d_i = T sgn(x) sgn(sink cos k)(1 — V1 — 242,

and therefore, we obtain

dk — —sgn(sin k cos k) fx (x; 1/x/§)ndx (x> 0),
sgn(sin k cos k) fx(x; 1/v/2)mdx ~ (x < 0).

Substituting the items given in 1. to 4. into Eq. (3.17) and combining with Eq. (3.2), we arrive at Theorem 2.1.
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Appendix A

In Appendix A, we consider how f*(z) and 1 are fixed when we focus on the ballistic behavior of the two-phase
QW with one defect. The protocol is similar to that of Appendix C in [9]. According to [7], we have

T (1) — BB 1y 12 () :_weiwi -l =132
A (w) i\/z{(w+w )—yw+w )™ =24 f7(w) NG {(w=—w")+/(w—w")"+2}

By putting w = i(1 — &)e” (¢ € R, |¢| < 1), we consider how lim,_,¢ /(w + w—1)? — 2 can be specified with respect
to 6 depending on the range of cos or sin#. Taking account of |¢] < 1, we have
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AP w) ~ F «/LE {25in6 + 2ie cos O 4 8V 4sin? 6 — 2}, (3.21)

where we put § € R with 8> = 1 [7]. For |[1®)(w)| < 1, Eq. (3.21) suggests that we need to take into consideration the
two cases as follows [7]:
(1) Case of |sinf] > 1//2.
Eq. (3.21) implies

1 2
5 {2sin9+25,/sin29— 1/2} <1,
2sin? 0 + 2sin08,/sin’ 6 — 1/2 < 1.

which leads to

Thereby, we obtain § = —sgn(sin 6).
(2) Case of [sinf| < 1/4/2.
Eq. (3.21) suggests

1 2
5[{2a.:os9+25,/1/2—sin26>} +4sin29] <1,

46? cos? O + 8scos 08,/ 1/2 — sin? 6 < 0.
Hence, we obtain § = —sgn(cos 6).

From the above discussion, we have the square root by [7]

and we see

/ 1
—2 sgn(sin 0),/sin? 6 — 5 (Isin6] > 1//2),
limy/(w+w1)?—2=
e—0 . 1 B )
—2i sgn(cos 6) 5~ sin 6 (sind] < 1/4/2).

In the next stage, we determine concrete expressions of A®)(z) and féi)(z). If we focus on the weak limit theorem for
our two-phase QW, we need to choose the square root so that 1/(1 — e* 1M (2)) and 1 /(1= e~ *19)(2)) have the
singular points, that is, | féi)(z)| # 1. Therefore, we see by Eq. (3.22)

A®)(2) = F{sgn(cos )v2 cos2 6 — 1 + i~/2sin b},
féi)(z) = sgn(cos 0)¢"7) (\/2|cos 6] — V2 cos? 6 — 1},

with z = ¢, which are the desired transcriptions.

(3.22)

(Isin6] < 1/4/2)



