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Abstract

This is a survey of the Ph.D thesis by the author. In the thesis we study the

translating solitons of the mean curvature flow. Although many researchers study

translating solitons in codimension one, there are few references and examples for

higher codimensional case. Here, we mainly consider the mean curvature flow in

arbitrary codimension. Firstly, we obtain non-existence results of Bernstein type

for the translating solitons in higher codimension and the eternal solutions in codi-

mension one. Secondly we provide many new examples of translating solitons in

arbitrary codimension. We will see that these examples have the property called

parallel principal normal. Finally we characterize the complete translating solitons

with parallel principal normal under a certain curvature condition.

1 Introduction

This is a survey of the Ph.D thesis by the author. The main object of the thesis is

translating solitons of the mean curvature flow in arbitrary codimension.

We consider deformations of submanifolds Mn in certain ambient spaces M
n+m

by

their mean curvature vectors. Let F : Mn× [0, T0) → M
n+m

be a one parameter family of

smooth immersions with initial data F0 and the second fundamental form B. The mean
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curvature vector is given by H⃗ := TraceB. Then the mean curvature flow is defined by
⎧
⎨

⎩

∂F

∂t
(p, t) = H⃗(p, t), p ∈ Mn, t ≥ 0,

F (·, 0) = F0.
(1.1)

The mean curvature flow is the most important geometric flow of submanifolds because

it is the gradient flow of the volume functional and minimal submanifolds are stationary

points of this flow. This implies that the mean curvature flow can be used to construct or

find minimal submanifolds. Also, this flow makes a rough initial submanifold into a nice

geometric shape, like standard Euclidean sphere. By observing the limiting submanifolds,

if exists, we can see how the original shape, curvature, topology, etc. change under the

mean curvature flow. In this way, the mean curvature flow is a very strong tool in the

submanifold geometry.

However, in general, the mean curvature flow has finite time singularities where the

norm of the second fundamental form |B| blows up. After a singularity occurs, the

smooth flow no longer continues. One way to overcome this difficulty is to use the surgery

near the singularity. To perform the surgery, we need to know the structure around the

singularities by rescaling.

Singularities of the mean curvature flow are categorized into two types called the type

I and the type II by their blow-up rates of |B|. One says that Mn has a singularity of the

type I if there exists a constant c > 0 such that

max
Mt

|B|2 ≤ c

T0 − t
, ∀t ∈ [0, T0).(1.2)

Otherwise, one calls the singularity to be of the type II. Although the study of the

type I singularities, i.e., of self-shrinkers is developed, the type II singularities are less

known. The second fundamental form near the type I singularity is well controlled by the

definition. On the other hand, the type II singularities are much more difficult to deal

with.

A translating soliton Mn ⊂ Rn+m is a submanifold defined by

H⃗ = T⊥,(1.3)

where T⊥ denotes the normal component of a nonzero constant vector T ∈ Rn+m and H⃗

is the mean curvature vector of Mn. Translating solitons naturally arise near singularities

of the type II after a rescaling. Hence it is important to study the translating solitons

to characterize the type II singularities. Translating solitons are solutions to the mean

curvature flow, which move by translation in the direction of T without changing their

shape. Thus the translating solitons are eternal solutions to the mean curvature flow

which exist on all the time (−∞,∞). Since the mean curvature flow is a parabolic type
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PDE, we can not solve it backward in time. This means that the translating solitons

are highly special solutions to the mean curvature flow, and the geometry of translating

solitons is interesting in itself.

Another important topic is the higher codimensional problem. Although the higher

codimensional mean curvature flow is natural to consider, it is less known because the be-

havior of the second fundamental form becomes more complicated. Nevertheless, the La-

grangian mean curvature flow and the symplectic mean curvature flow in Kähler-Einstein

manifolds attract much attention. An important fact is that the almost calibrated La-

grangian or the symplectic mean curvature flow in a certain class of Kähler-Einstein

manifolds can not develop the type I singularities (see [4], [40]). Therefore, the study of

the type II singularities, especially, of translating solitons is required.

Motivated by these backgrounds, we investigate in this thesis the translating solitons

in arbitrary codimension by using geometric analysis. Our aims in the thesis are:

1. to show non-existence results,

2. to make non-trivial examples,

3. to determine the global shape of the geometric object by its curvature condition.

We give satisfactory answers to these aims through four main results.

2 Bernstein type problem of the translating solitons

Translating solitons have similar properties as minimal submanifolds in the Euclidean

space. Especially, we show a Bernstein type result (non-existence result) for the translat-

ing solitons. In the case of codimension m = 1, Bao-Shi proved the following:

Theorem 2.1 (Bao-Shi [3], 2013). Let Mn ⊂ Rn+1 be an n-dimensional complete

translating soliton. If the image of the Gauss map of Mn lies in a closed ball BSn
Λ of Sn

with radius Λ < π/2, then Mn must be a hyperplane.

We generalize Bao-Shi’s theorem to arbitrary codimension. Let {ei} ⊂ TM be a

positively oriented orthonormal frame. In arbitrary codimensional case, we need the

generalized Gauss map

Mn ∋ p ,→ TpM = e1 ∧ · · · ∧ en ∈ G+
n,m,(2.1)

where G+
n,m is the Grassmannian manifold consisting of positively oriented n-subspaces

in Rn+m. We use the so-called w-function on Mn to study the distribution of the image
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of the Gauss map. Fix a unit n-plane A = a1 ∧ · · · ∧ an in Rn+m and define a function w

on Mn by

w = wA = ⟨e1 ∧ · · · ∧ en, a1 ∧ · · · ∧ an⟩ = det(⟨ei, aj⟩).

If Mn is a graph on an open domain u : Ω ⊂ Rn → Rm, where Rn is spanned by

{a1, . . . , an}, the w-function is always positive. Then the function v = 1/w is just the

coffiecient of the volume element of the graph (see for instance [8], [45]), that is,

v =
√
det(gij) =

√
det
(
δij +

∑

α

∂uα

∂xi

∂uα

∂xj

)
.

Conversely, if wA > 0 on Mn for some A = a1 ∧ · · · ∧ an, then Mn can be written as a

graph at least on some open domain Ω ⊂ Rn = span{a1, · · · , an}.
The condition w > 0 also means that the image of the Gauss map is contained in one

coordinate neighborhood of the Grassmannian manifold if we take the matrix coordinates

on G+
n,m as usual (see for instance [26], p.21, Example 1.51).

We use the maximum principle by a standard analysis of |B| and the w-function. Then

we obtain the following Bernstein type result.

Main Theorem 1 ([23]). Let Mn ⊂ Rn+m, n ≥ 2,m ≥ 1 be an n-dimensional com-

plete translating soliton with flat normal bundle and R be the Euclidean distance from a

fixed point on Mn to a point on Mn. If w = wA is positive for some n-plane A, and it

satisfies the growth condition

v =
1

w
= o(R

1
2 ),

then Mn must be an affine subspace.

The function v represents the slope of the graph. The importance of this theorem

is the growth condition v = o(R
1
2 ). This is optimal because the translating paraboloid

satisfies v ∼ CR
1
2 . Therefore this theorem characterizes the graphic translating soliton in

arbitrary codimension by the slope condition.

Remark 2.2. Recently Xin [44] showed a Bernstein type result for the translating

solitons in arbitrary codimension without flatness of the normal bundle under a stronger

slope condition.

As a direct corollary, we obtain a Bernstein type result for entire graphic minimal

submanifolds (T ≡ 0) with flat normal bundle under the growth condition of the slope.

The classical Bernstein theorem says that there are no non-trivial entire minimal graphs

in R3. This is also true for entire minimal graphs (hypersurfaces) up to in R8 and false

in higher dimensions. In the case of higher codimension, few results are known about

Bernstein type problem. Our result gives a partial answer to this problem.
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Corollary 2.3. An entire graph of a minimal submanifold or a translating soliton

Mn = {(x, u(x))|x ∈ Rn} ⊂ Rn+m given by m functions uα(x1, · · · , xn) with flat normal

bundle satisfying

v =

√
det
(
δij +

∑

α

∂uα

∂xi

∂uα

∂xj

)
= o(R

1
2 ),

where R = (|x|2 + |u(x)|2) 1
2 , must be an affine subspace.

Remark 2.4. For entire graphs of minimal submanifolds with flat normal bundle (not

translating solitons), a better result is known by Smoczyk, Wang and Xin ([36], Theorem

1 and Corollary 1). Their growth condition is v = o(R).

3 Bernstein type problem of eternal solutions to the

mean curvature flow

Next, we show a Bernstein type theorem of eternal solutions to the mean curvature flow.

In general, after rescaling near a singularity of the type II, we obtain eternal solutions

(not necessarily translating solitons). Hence it is natural to consider the eternal solutions

for the characterization of the type II singularities. Although the translating solitons are

time-independent, the eternal solutions are time-dependent. This makes the study of the

eternal solutions difficult.

We mainly use the method of the harmonic map heat flow on noncompact complete

manifolds to show the curvature estimate of eternal solutions (see [37] and [39]). Although

the idea of the proof is similar to Main theorem 1, we essentially need a time-dependent

analysis in this case.

Main Theorem 2 ([24]). Let F : Mn × (−∞,∞) → Rn+1 be a complete eternal

solution to the mean curvature flow. If there exist a positive constant C1 and a nonnegative

constant C2 such that w(p, t) ≥ C1 and |H⃗(p, t)| ≤ C2 for any point in Mn × (−∞,∞),

then Mt = F (Mn, t) must be a hyperplane for any t ∈ (−∞,∞).

This is also a generalization of Bao-Shi’s theorem to space-time since translating soli-

tons satisfiy |H⃗| ≤ |T |.

4 Examples of the translating solitons in arbitrary

codimension

In this section, we consider examples of translating solitons in arbitrary codimension. Few

examples are known even in the hypersurface case. One dimensional translating soliton in
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R2 is known to be only the grim reaper y = − log cosx which lies between two vertical lines

x = ±π
2 (see Fig.1). A trivial generalization of the grim reaper is the product immersion

of the grim reaper and Rn−1 which is called the grim reaper cylinder. The grim reaper

cylinder can be written as a complete graph on a strip region in Rn. In hypersurface case,

we know rotationally symmetric translating solitons called the translating paraboloid and

the translating catenoid. The former is a convex entire graph and grows quadratically at

infinity. The latter is complete, non-convex and non-graphical translating soliton which

is made by the wing-like curves (see Fig.2 and [6]).

Inspired by the construction of rotationally symmetric translating solitons, we con-

struct a lot of new non-trivial examples of translating solitons in arbitrary codimension

by using minimal submanifolds in the sphere.

Figure 1: Two grim reapers

T

T

Figure 2: Wing-like curves

In the following, we always assume n ≥ 2 and m ≥ 1.
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Main Theorem 3 ([25]). Let Nn−1 be any complete minimal submanifold of the unit

sphere Sn+m−2(1) ⊂ Rn+m−1, and r(s) : R+ → R be a function satisfying the ODE

r̈(s) =
(
1 + ṙ(s)2

)
(
1− (n− 1)ṙ(s)

s

)
.(4.1)

Let Mn := R+ ×Nn−1 and define an immersion F : Mn → Rn+m by

F (s, q) :=
(
sq, r(s)

)
∈ Rn+m,(4.2)

where q ∈ Nn−1 ⊂ Sn+m−2(1) ⊂ Rn+m−1 and s ∈ R+. Then a submanifold F (Mn) ⊂
Rn+m is a translating soliton with the direction T = (0, 0, · · · , 1) ∈ Rn+m.

By using this theorem, we construct many non-trivial codimension two complete trans-

lating solitons with flat normal bundle, which are generated from a minimal hypersurface

in the unit sphere Sn+m−2(1) ⊂ Rn+m−1 and the wing-like curve.

Example 4.1. Let r(s) be a solution of (4.1) with n = 3. Then the following immer-

sion is a translating soliton in the direction of T = (0, 0, 0, 0, 1) ∈ R5 with flat normal

bundle.

F (s, x, y) :=

(
s√
2
cos x,

s√
2
sin x,

s√
2
cos y,

s√
2
sin y, r(s)

)
∈ R5,

where (x, y) is a local coordinate of the Clifford torus S1
(

1√
2

)
× S1

(
1√
2

)
⊂ S3(1) ⊂ R4.

Furthermore if we take the wing-like curve as r(s), then the immersion is a codimension

two complete translating soliton with flat normal bundle.

Let ν := H⃗/|H⃗|, (|H⃗| ̸= 0) be the principal normal of an immersion. We say that an

immersion has parallel principal normal (PPN) if

∇⊥ν ≡ 0.(4.3)

We find that examples in Main Theorem 3 have the property PPN.

5 Splitting theorem of the translating soliton

Finally, we characterize the complete translating soliton with PPN. A product immersion

of the grime reaper and a complete minimal submanifold in the Euclidean space is a simple

example having the property PPN. To characterize a translating soliton with PPN, we

use the quantity P := ⟨B, H⃗⟩, that is, the second fundamental form in the direction of H⃗.
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Example 5.1. Let Nn−1 ⊂ Rn+m−2 be a complete minimal submanifold, γ(s) =

{(s, r(s))|r(s) = − log cos s,−π/2 < s < π/2} ⊂ R2 be the grim reaper. Then the

following product immersion

Mn = Nn−1 × γ ⊂ Rn+m−2 × R2 = Rn+m

is a complete translating soliton in the direction of T = (0, · · · , 0, 1) ∈ Rn+m with parallel

principal normal. Moreover this immersion satisfies the condition |P |2 ≡ |H⃗|4 on Mn.

Remark 5.2. In hypersurface case, |P |2 ≡ |H⃗|4 implies |B|2 ≡ |H⃗|2, that is, flatness
of the scalar curvature of Mn.

Main Theorem 4 concerns the converse of this fact. We obtain the following splitting

theorem.

Main Theorem 4 ([25]). A complete translating soliton F : Mn → Rn+m with parallel

principal normal such that |P 2|/|H⃗|4 attains its maximum on Mn can only be the product

immersion

Mn = γ ×Nn−1 ⊂ R2 × Rn+m−2

of the grim reaper γ ⊂ R2 and a complete minimal submanifold Nn−1 ⊂ Rn+m−2.

Sketch of the proof. Let u := ⟨F, T ⟩ be the height function in the direction of T .

The key point of the proof is to show the following relation by using the property PPN:

∆
( |P |2

|H⃗|4
)
=

2

|H⃗|4
∣∣∣∇|H⃗|⊗ P

|H⃗|
− |H⃗|∇

( P

|H⃗|

)∣∣∣
2

(5.1)

−
〈
∇u,∇

( |P |2

|H⃗|4
)〉

− 2

|H⃗|

〈
∇|H⃗|,∇

( |P |2

|H⃗|4
)〉

.

Under our assumption, the strong maximum principle for (5.1) implies that |P |2/|H⃗|4 is

constant. Applying the technique by Huisken in [16] and Smoczyk in [34], we then have

|P |2 = |H⃗|4. Now the distributions D(x) and D⊥(x) of TM defined by

D(x) := {X ∈ TxM |PX = 0},
D⊥(x) := {X ∈ TxM |PX = |H⃗|2X},

so that TxM = D⊥(x)⊕D(x), turn out to be parallel and integrable. Hence we can apply

the de Rham decomposition theorem, and Mn is isometric to a product manifold:

Mn ∼= γ ×Nn−1.
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Moreover we use the lemma by Moore ([30], Section 2, Lemma, p.163) to show that the

immersion F is actually a product immersion:

F = F1 × F2,

where F1 : γ → R2 is the grim reaper and F2 : Nn−1 → Rn+m−2 is a minimal immersion.

Remark 5.3. We use the technique by Huisken [16] for self-shrinkers in codimension

one. Smoczyk [34] developed Huisken’s technique to higher codimensional self-shrinkers

with PPN. Moreover Martin, Savas-Halilaj and Smoczyk [29] used a similar technique

for translating solitons in codimension one. Fortunately their technique is applicable to

translating solitons in higher codimension with PPN.
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