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ABSTRACT

We investigate the properties of non-axisymmetric oscillations of uniformly rotating and
magnetized stars with purely toroidal magnetic field and of non-rotating magnetized stars
with purely poloidal magnetic field, where we use polytropes as background models for the
modal analyses. For the oscillations of rotating stars magnetized with purely toroidal mag-
netic field, we consider the effects of stellar deformation due to the magnetic field. Since
separation of variables is not possible for magnetized or rotating stars, we employ series
expansions of a finite length for the perturbations in terms of spherical harmonic functions.
Solving the oscillation equations as a boundary and eigenvalues problem, we obtain mag-
netically modified normal modes such as g-, f -, p-, r-, and inertial modes for magnetized
stars having purely toroidal fields. In the lowest order, the deviation of the frequencies from
those of non-magnetized stars is proportional to the square of the characteristic Alfvén fre-
quency. We also find the high-frequency modes such as f - and p-modes are strongly affected
by the stellar deformation, although the low-frequency modes such as g-, r-, and inertial
modes are hardly affected by the deformation. For the stars magnetized with purely poloidal
fields, we find two kinds of discrete magnetic modes, that is, stable (oscillatory) magnetic
modes and unstable (monotonically growing) magnetic modes. For isentropic stellar mod-
els, the frequency and growth rate of the magnetic modes are exactly proportional to the
strength of magnetic field BS measured at the stellar surface. The frequency and growth
rate are affected by buoyant force in the interior of the star, and unstable magnetic modes
are stabilized by stable stratification.
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1 Introduction

Neutron stars are classified as a compact object, the central density of which exceeds nuclear
density (ρn ∼ 2.8 × 1014 g cm−3). They are born as a results of type II (gravitational collapse-
type) supernova explosion of massive (∼ 8M�−15M�) stars. The typical radius R and mass M
of neutron stars are R ∼ 10 km and M ∼ 1.4M�, and they are thought to have strong magnetic
fields exceeding about 1012 G at the surface.

The interior of neutron stars is divided into a thin atmosphere, a solid crust (the outer crust
and inner crust), and a fluid core (the outer core and inner core). The thin atmosphere of a
neutron star is made of a hot plasma, and thermal radiations are thought to come through or
from this region (see e.g., Zalvin & Pavlov 2002). Below the thin atmosphere extends the outer
crust down to the neutron drip density ρ = ρND ≈ 4 × 1011 g cm−3, at which neutrons drip out
from atomic nuclei to form a neutron fluid outside the nuclei. Typical thickness of the outer
crust is estimated several hundred meters. The outer crust is composed of degenerate electrons
e− and positively charged ions, which may be characterized by the atomic number Z and mass
number A. In the crust region, ions are crystalized by phase transition to form a Coulomb
lattice. The inner crust extends in the density region ρND

<∼ ρ<∼ ρn/2, and its thickness is about
1 km. In this region, matters are thought to be composed of free electrons, free neutrons, and
neutron rich-atomic nuclei. We note that inverse β-decay dominates β-decay in such a quite high
density region, and the number of neutrons in atomic nuclei increases because of neutronization
due to inverse β-decay. At the bottom of the inner crust, atomic nuclei are dissolved because
of extremely high density and a lattice structure is destroyed, which causes the transition from
the crustal layer to a fluid core. The outer core extends in the density range ρn/2<∼ ρ<∼ 2ρn,
and is composed of neutrons, protons, electrons, and muons (named npeµ composition), and the
number of neutrons dominates that of other particles. All the fermions are strongly degenerate.
In the inner core in which ρ>∼ 2ρn, the composition of the matter in this region is not well
understood. In the inner crust and the fluid outer core, neutrons and protons are thought to
become superfluid and superconductor.

Rotating magnetized neutron stars can be a pulsar. Pulsars are classified, by energy sources
responsible for producing observed pulses, into rotation powered, accretion powered, and mag-
netically powered pulsars. Radio pulsars belong to rotation powered pulsar and they are usually
called simply ‘Pulsar’. Most of observed pulsars are rotation powered radio pulsars, the number
of which amounts to about 1700 as of 2006. Since radio pulsars emits electromagnetic radiation
by transforming a fraction of rotational energy of the neutron star to electromagnetic energy,
the rotation velocity of radio pulsars becomes slower with time. This is the reason why radio
pulsars are classified as ‘rotation powered pulsar’. We note that typical spin periods of radio
pulsars are several ten milliseconds, but there are pulsars rotating at much shorter periods P ≤
(10 milliseconds), which are called millisecond pulsars.

Rotating and magnetized neutron stars in binary systems appear as accretion powered pulsars,
and they emit X-ray radiation and X-ray pulses. The energy source of the X-ray emission is
gravitational energy released during mass accretion to the neutron star from the companion
star. Such neutron stars are called X-ray pulsars. Although binary X-ray sources have two
categories called High Mass X-ray Binaries (HMXBs) and Low Mass X-ray Binaries (LMXBs),
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X-ray pulsars belong to the former. For HMXBs, the companion stars are mostly massive
(M2 ≥ 10M�) O-B stars, while for LMXBs they are mostly dwarf stars (M2 ≤ M�), where M2

means the mass of the companion star. There are ∼100 LMXBs and ∼40 HMXBs discovered as
of 2006.

Magnetically powered pulsars are thought to have extremely strong magnetic fields (B>∼ 1014−
1015 G), and to emit X-ray and/or gamma-ray emissions consuming a part of the huge magnetic
energy as an energy source. These strongly magnetized neutron stars are called magnetars.
Magnetars consist of two subgroups of neutron star objects: Anomalous X-ray Pulsars (AXPs)
and Soft Gamma-ray Repeaters (SGRs). SGRs are characterized by the fact that they emit short
recurrent X/γ-ray bursts in timescales of one second or less. Some SGRs have experienced quite
rare events called giant X/γ-ray flares. The energy scale released by the giant flares is much
larger than that of short bursts (flares). The SGR’s rotation periods are found in the range of
2-11 seconds, which are much longer than those of radio pulsars (∼ several ten milliseconds).
Observed luminosities of soft X ray-flares of magnetars are LX ∼ 1035 erg s−1, which exceeds the
energy generated by spin down of the magnetars. Thus, it is difficult to explain the magnetar’s
γ-ray radiations in terms of the emission mechanism assumed for normal radio pulsars. Further,
there are no evidences that SGRs are in binary systems. From magnetar spin down rates, their
magnetic field strength have been estimated about 1014 − 1015 G. These are background for
us to think that magnetars are neutron stars having extremely strong magnetic fields and emit
γ-ray bursts expending a part of the vast magnetic energy (Magnetar hypothesis; e.g., Duncan &
Thompson 1992). According to early theoretical works, Duncan & Thonmpson (1992) suggested
that if a neutron star born from a type II supernova explosion has sufficiently rapid rotation
speeds at the birth, it is possible to generate very strong magnetic fields exceeding 1015 G
by transforming a part of the kinetic (rotational) energy of the star into a magnetic energy.
Further, since magnetic field lines thread the solid crust region near the stellar surface, there is
a possibility that star-quakes taking place in the solid crust induce short X/γ-ray bursts, and
giant flares might be caused by a large scale restructuring of the magnetic fields.

AXPs are neutron stars thought to possess extremely strong magnetic fields as SGRs do, and
they emit X-ray radiation and pulses. Their spin periods and luminosities are estimated P ∼ 6
s−12 s and LX ∼ 1033−1035 erg s−1, respectively. The emission mechanism of AXPs is different
from that of X-ray pulsars, because there are no evidences that AXPs are in binary systems.
AXPs sometimes show sudden brightening, which gradually dims out within a few months. This
is the reason why they are called ‘Anomalous’.

Only four SGRs are known as of today and some of them are in our galaxy and the Large
Magellanic Cloud. As described above, some SGRs are known to have experienced burst events
called giant flare. Giant flares are so rare that there have so far been only three known giant
flares: March 5, 1979 by SGR 0526-66, August 27, 1998 by SGR 1900+14, and December 27,
2004 by SGR 1806-20. We note that the giant flare detected in December 27, 2004 has the
largest energy scale among the three. Obtaining observation data of the SGR giant flares, some
researchers analyzed the light curves of the giant flares in detail. As a result, they found Quasi
Periodic oscillations (QPOs) in the tail of the X-ray light curves of the giant flares. Israel et
al. (2005) first identified QPO frequencies found in the X-ray light curves of the giant flare of
SGR 1806-20 at 18, 30, and 92.5 Hz. Strohmayer & Watts (2006) identified additional QPO
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frequencies at 150, 625, and 1840 Hz. Analyzing archival data of SGR 1900+14, Strohmayer
& Watts (2005) have succeeded in identifying QPOs in the X-ray giant flare observed in 1998.
QPOs frequencies now identified in the giant flares from two SGRs are 18, 30, 92.5, 150, 625, and
1840 Hz for SGR 1806-20 (Israel et al. 2005; Strohmayer & Watts 2006; Watts & Strohmayer
2006), and 28, 53.5, 84, and 155 Hz for SGR 1900+14 (Strohmayer & Watts 2005). Using Baysian
statistics, Hambaryan et al. (2011) have reanalyzed the data for SGR 1806-20 to identify QPO
frequencies at 16.9, 21.4, 36.8, 59.0, 61.3, and 116.3 Hz. For the giant flare in 1979 from SGR
0526-66, Watts (2011) mentioned in her review paper a report of a QPO at ∼43 Hz, but she also
suggested the difficulty in the frequency analysis in the impulsive phase of the burst. We note
that it is worth mentioning a promising recent attempt to find QPOs in short recurrent bursts
in SGRs. Huppenkothen et al. (2014) have succeeded in identifying candidate signals at 93, 127,
and 260 Hz from J1550-5418, where they used Baysian statistics for the analysis.

Since the discovery of magnetar QPOs, many researchers have suggested that the QPOs might
be associated with global oscillations of neutron stars. Using oscillation modes of the magnetars
it is expected that we can get information concerning the inner structure of the stars employing
the method of aster-seismology. It is interesting to investigate the magnetar QPOs by analyzing
the oscillation modes, not only for astronomy, but also for physics. For example, birefringence
of light in vacuum by strong magnetic fields: light velocity varies depending on polarization in
the same way as calcite for B > Bcr, where Bcr = m2

ec
3/e ∼ 4.4× 1013 G is the critical magnetic

field, and me denotes the electron mass, c is the light velocity, and e denotes the elementary
charge of electron. Other examples are division of photons caused by interaction with strong
magnetic fields, and dependence of scattering cross-section of photons and electrons on magnetic
fields. It is mostly impossible to inspect these physical events in the laboratory on earth, but
understanding magnetar structures, it might be possible to inspect those phenomena.

A variety of oscillation modes are possible for neutron stars (see e.g., McDermott et al. 1988).
For example, we may expect g-, f -, and p-modes, whose restoring forces are buoyant force and
pressure force, respectively. p-modes are high frequency modes and their frequency increases
as the number of radial nodes of the eigenfunction increases, while g-modes are low frequency
modes and their frequency decreases as the number of radial nodes of eigenfunction increases.
We usually find node less f -modes between the g- and p-modes. Since neutron stars have a solid
crust, we may expect additional two kinds of shear modes: spheroidal shear s-modes and toroidal
shear t-modes. These modes are supported by shear stress of the solid crust. If neutron stars
are rotating, rotational modes such as inertial mode and r-mode are also possible, where the
restoring force for the rotational modes is the Coriolis force. For strongly magnetized neutron
stars, we may expect that magnetic modes such as Alfvén modes can play a role in the stars.

Duncan (1998) is the first who proposed the possibility of investigating magnetars using os-
cillation modes as a probe. He suggested that star-quakes frequently arising in SGRs are able
to excite crustal toroidal modes and that in some burst emissions frequencies of the toroidal
modes might be observationally identified. Therefore, the discovery of the QPOs in the X-ray
light curve of SGR 1806-20 is a trigger for us to investigate magnetar QPOs theoretically. In
the early studies of magnetar QPOs, most authors assumed crustal modes confined to the solid
crust region as Duncan (1998) first assumed. Israel et al. (2005) suggested that the QPOs might
be induced by seismic crustal vibrations, associated with low order-l (harmonic degree) torsional
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modes because theoretical estimations of the crustal mode frequencies overlap with the observed
QPOs (e.g., Strohmayer & Watts 2005, 2006; Watts & Strohmayer 2006). For example, Piro
(2005) and Lee (2007) calculated toroidal modes modified by the magnetic field, although they
ignored the effects of the fluid core on the modal properties. For B>∼ 1015 G, since the magnetic
pressure dominates shear modulus in most of the solid crust region, crustal toroidal modes are
not necessarily decoupled from oscillation modes in the fluid core, if the fluid core and solid
crust are magnetically connected with each other by magnetic fields. Since it is conceivable that
extremely strong magnetic fields of magnetars thread both the fluid and solid crust regions, in
order to determine the oscillation spectra of magnetars, we have to consider both of the regions
as cavities for oscillation modes. Employing a toy model, Glampedakis, Samuelsson, & Ander-
sson (2006) calculated global discrete modes propagating in both the fluid core and solid crust
connected by magnetic field lines, and they found that global oscillation modes are easy to be
excited such that both the fluid core and the solid crust oscillate in concert. Levin (2006, 2007)
also calculated global modes using another toy model. He suggested that Alfvén modes in the
fluid core form continuous frequency spectra and the crustal toroidal modes are quickly damped
by resonant absorption in the core, and hence that there exist no discrete modes in strongly
magnetized stars. However, taking account of couplings between the fluid core and the solid
crust by purely poloidal magnetic fields, Lee (2008) and Asai & Lee (2014) carried out normal
mode calculations for axisymmetric toroidal modes and found that there exists discrete toroidal
modes. van Hoven & Levin (2011, 2012) adopted spectral method to calculate the global oscilla-
tion modes, and they found that discrete modes can be excited when the oscillation frequencies
are in the gaps between continuous frequency bands. Sotani et al. (2007) calculate normal modes
for general relativistic magnetized neutron stars assuming a weak magnetic field limit.

It is not easy for us to calculate and analyze the oscillation modes of magnetized stars, the
governing equations of which are in principle given by partial differential equations. The reasons
for the difficulty may be that separation of variables between radial coordinate and angular
coordinates is not possible to express the perturbations, and that the fact that there possibly exist
continuous frequency bands in the frequency spectra makes modal analysis much more difficult
(see e.g., Goedbloed & Poedts 2004). In normal mode analyses, as discussed in this paper, it
is customary to employ series expansions of finite lengths to represent the perturbations and
to reduce the partial differential equations to a finite set of coupled ordinary linear differential
equations for the expansion coefficients. However, this manipulation could be very complicated
when one tries to formulate the oscillation equations and to numerically analyze the oscillation
spectra for various magnetic field configurations. Such difficulty has been a reason why most of
the authors employ MHD simulations to investigate the oscillations of magnetized neutron stars
(e.g., Sotani, Kokkotas & Stergioulas 2008a; Cerdá-Durán et al. 2009; Colaiuda & Kokkotas
2011, 2012; Gabler et al. 2011, 2012, 2013a,b; Lander et al. 2010; Passamonti & Lander 2013,
2014).

As a matter of fact, we do not have any good knowledge about magnetic configurations in
strognly magnetized neutron stars (e.g., Thompson & Duncan 1993, 1996; Thompson, Lyuitikov
& Kulkarni 2002). As shown by core-collapse supernova MHD simulations (e.g., Kotake, Sato
& Takahashi 2006), if the fluid core is rotating differentially, toroidal magnetic fields can be
easily amplified by the winding up of the initial seed poloidal fields even if there are no initial
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toroidal magnetic fields. Thus, it is desirable to carry out modal analyses for various magnetic
field configurations. Most frequently employed configurations for modal analyses are so far those
given by purely poloidal magnetic fields (e.g., Lee 2007, 2008; Sotani et al. 2007, 2008a; Cerdá-
Durán et al. 2009; Colaiuda & Kokkotas 2011; Gabler et al. 2011, 2012; Passamonti & Lander
2013, 2014; Asai & Lee 2014). Only a few studies of normal modes of magnetized stars have been
devoted to purely toroidal magnetic fields (e.g., Lander et al. 2010; Passamonti & Lander 2013)
and to mixed-poloidal and toroidal magnetic fields (e.g., Colaiuda & Kokkotas 2012; Gabler et
al. 2013a).

Most of the numerical studies of the oscillations of magnetized stars have been devoted to
axisymmetric (m = 0) oscillation (especially, toroidal) modes for the case of purely poloidal
magnetic field configurations, where m denotes the azimuthal index of the perturbations (e.g.,
Glampedakis, Samuelsson & Andersson 2006; Levin 2006, 2007; Lee 2008; Asai & Lee 2014; van
Hoven & Levin 2011, 2012; Cerdá-Durán et al. 2009; Coldaiuda & Kokkotas 2011; Gabler et al.
2011, 2012; Sotani et al. 2007, 2008a). For example, Sotani et al. (2009) calculated axisymmetric
(m = 0) polar-Alfvén oscillations (spheroidal mode) and suggested that continuous frequency
spectra are not formed. Further, Colaiuda & Kokkotas (2012) employed a mixed-poloidal and
toroidal magnetic field configuration to calculate axisymmetric oscillation modes to find that
there exists only discrete oscillation modes and that the oscillation spectra are greatly affected
by the toroidal component of the magnetic field. Gabler et al. (2013a) calculated axisymmetric
oscillation modes for various magnetic field configurations (e.g., purely poloidal, purely toroidal,
and mixed-poloidal and toroidal).

There are only a few studies on non-axisymmetric (m 6= 0) oscillation modes of magnetized
stars. Using MHD simulations, Lander et al. (2010) and Passamonti & Lander (2013) investi-
gated non-axisymmetric (m 6= 0) oscillation modes for magnetized stars assuming purely toroidal
magnetic fields, while Lander & Jones (2011b) assumed purely poloidal magnetic fields.

In this paper, we calculate non-axisymmetric (m 6= 0) oscillations by employing normal mode
analysis for magnetized stars both for purely toroidal magnetic field configurations and for purely
poloidal magnetic field configurations. For normal mode analyses for purely toroidal magnetic
field configurations (§3), we calculate magnetically modified non-radial oscillation modes such
as p-, f -, g-modes. Assuming slow rotation, we also investigate inertial modes taking account
of equilibrium deformation due to the magnetic fields. For purely poloidal field (§4), we analyze
magnetic modes only, where we neglect the effects of both the equilibrium deformation and
rotation on the modes because of their very low frequencies. For both cases, we employ polytropes
as back ground neutron star models and ignore the solid crust region, that is, crustal modes.

2 Non-radial oscillations of neutron stars

We assume small amplitude oscillations to carry out normal mode analyses of neutron stars.
Normal mode analyses of neutron stars can be very complicated since we have to take account of
the effects of a solid crust, strong magnetic fields, rotation, and superfluidity (superconductivity).
In addition, since neutron stars are general relativistic objects, we sometime need to treat the
oscillations in general relativistic framework. Before we go into the results discussed in this
paper, it is helpful to describe general aspects of non-radial oscillation of stars.
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The oscillation modes of normal fluid stars are in general classified into p-, f -, and g-modes.
p-modes are high-frequency modes and g-modes are low-frequency modes. The restoring force
for the p-modes is compressibility, and the oscillation frequency increases as the number of radial
nodes of the eigenfunction increases. For g-modes, on the other hand, the restoring force is
buoyancy and the frequency decreases as the number of radial nodes increases. For rotating
stars, there exists rotational modes such as inertial modes and r-modes, which form a subclass
of inertial modes. The restoring force for rotational modes is the Coriolis force. For stars
having a solid crust, there exists sound wave modes propagating in the solid region. For strongly
magnetized stars, there exists Alfvén modes whose frequency is proportional to the strength of
magnetic field.

2.1 normal modes of non-rotating and non-magnetic normal stars

As an example of normal mode analysis of stars, we first derive the oscillation equations of non-
rotating and non-magnetic normal fluid stars in Newtonian gravity. Here, we assume adiabatic
oscillations and ignore the effects of viscosity of the fluid. We treat small amplitude oscillations
using linear perturbation theory. The basic equations of fluid dynamics are given by

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

dv

dt
= −1

ρ
∇p−∇Φ, (2.2)

∇2Φ = 4πGρ, (2.3)

ρT
ds
dt

= ρε−∇ · F , (2.4)

F rad = −λrad∇T, (2.5)

where Φ is the gravitational potential, s is the specific entropy, ε is the energy generation rate, F

is the energy flux, and F rad is the radiative energy flux. In general, we can write F = F rad+F conv

(F conv is the convective energy flux), and

d
dt

=
∂

∂t
+ v · ∇. (2.6)

Assuming adiabatic oscillations and the Cowling approximation (ignoring perturbed gravita-
tional potential δΦ), we linearize the basic equations:

∂δρ

∂t
+ ∇ · (δρv + ρδv) = 0, (2.7)

δρ
dv

dt
+ ρ

(
∂δv

∂t
+ δv · ∇v + v · ∇δv

)
= −∇δp− δρ∇Φ, (2.8)

ρT
∂δs

∂t
+ ρT (δv · ∇)s = 0, (2.9)
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where δ indicates Eulerian perturbations, and we have assumed ds/dt = 0 for adiabatic oscilla-
tions. From the thermodynamic relation

∆s =
(

∂s

∂ ln ρ

)
p

(
∆ρ
ρ

− ∆p
Γ1p

)
= −

(
∆ρ
ρ

− ∆p
Γ1p

)
p

ρT
, (2.10)

we obtain

ρ

Γ1p

(
∂δp

∂t
+ δv · ∇p+ v · ∇δp

)
=
∂δρ

∂t
+ δv · ∇ρ+ v · ∇δp, (2.11)

where ∆ indicates Lagrangian perturbations.
For a physical quantity f , the Eulerian δf and Lagrangian ∆f perturbations are respectively

defined as

δf(r, t) = f(r, t) − f0(r), (2.12)

∆f(r, t) = f [r + ξ(r, t), t] − f0(r), (2.13)

where f(r, t) is the perturbed and f0(r) is the non-perturbed quantity, and ξ is the Lagrangian
displacement vector, and we have

∆f(r, t) = δf(r, t) + ξ · ∇f0(r). (2.14)

Assuming that the time dependence of the perturbations is given as exp(iσt) and that the
hydrostatic equilibrium structure with v = 0 is spherical symmetric, we obtain

δρ+ ∇ · (ρξ) = 0, (2.15)

−σ2ξ +
1
ρ
∇δp− δρ

ρ2
∇p = 0, (2.16)

δp

Γ1p
+

(ξ · ∇)p
Γ1p

=
δρ

ρ
+

(ξ · ∇)ρ
ρ

, (2.17)

where we have used δv = iσξ. We note that

δv = ∆v − (ξ · ∇)v = ∂ξ/∂t+ (v · ∇)ξ − (ξ · ∇)v. (2.18)

We consider the oscillations of a spherical star using spherical polar coordinates (r, θ, φ). For
non-rotating and non-magnetized stars, separation of variables is possible to represent the per-
turbations using a single spherical harmonic function Y m

l (θ, φ). We express the displacement
vector ξ(r, θ, φ) as

ξ(r, θ, φ) = ξr(r)Y m
l (θ, φ)er + ξH(r)∇HY

m
l (θ, φ) + ξT (r)er ×∇HY

m
l (θ, φ), (2.19)

where

∇H = eθ
∂

∂θ
+ eφ

1
sin θ

∂

∂φ
. (2.20)

Note that

er · ∇HY
m
l = ∇HY

m
l · (er ×∇HY

m
l ) = er · (er ×∇HY

m
l ) = 0. (2.21)
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The perturbations of scalar quantities are given by

δp = δp(r)Y m
l (θ, φ), δρ = δρ(r)Y m

l (θ, φ). (2.22)

Substituting these expressions into the linearized equation of motion, we obtain(
−σ2ξr +

1
ρ

dδp
dr

− δρ

ρ2

dp
dr

)
Y m

l er +
(
−σ2ξH +

δp

ρr

)
∇HY

m
l

−σ2ξT er ×∇HY
m
l = 0. (2.23)

From this equation, we can derive the following three relations:

−σ2ξr +
1
ρ

dδp
dr

− δρ

ρ2

dp
dr

= 0, (2.24)

−σ2ξH +
δp

ρr
= 0, (2.25)

σ2ξT = 0. (2.26)

Therefore, we find ξT = 0 for σ 6= 0.
When the displacement vector ξ of a mode is given by

ξ = ξr(r)Y m
l (θ, φ)er + ξH(r)∇HY

m
l (θ, φ) (2.27)

the mode is called spheroidal mode, while the mode is called toroidal mode when the displacement
vector is given by

ξ = ξT (r)er ×∇HY
m
l (θ, φ). (2.28)

For non-rotating fluid stars, spheroidal modes and toroidal modes form separate mode groups,
and ξT = 0 for σ 6= 0. For σ = 0, arbitral ξT is allowed, that is, toroidal modes are degenerated
for σ = 0.

For modes of σ2 6= 0, we obtain the following oscillation equations from the above linearized
equations:

dξr
dr

=
(
g

c2s
− 2
r

)
ξr +

(
L2

l

σ2
− 1
)

δp

Γ1p
, (2.29)

dδp
dr

= ρ(σ2 −N2)ξr −
g

c2s
δp, (2.30)

where N2 and L2
l are respectively the Brunt-Väisälä frequency and Lamb frequency, which are

defined by

N2 = −Ag, L2
l =

l(l + 1)
r2

c2s. (2.31)

Here, A is Schwartzschild discriminant defined by

A =
d ln ρ
dr

− 1
Γ1

d ln p
dr

, (2.32)

and, g and cs are the gravitational acceleration and adiabatic sound velocity defined by

g =
GMr

r2
, c2s =

Γ1p

ρ
, Mr =

∫ r

0

4πr2ρdr, (2.33)
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and the adiabatic exponent Γ1 is given by

Γ1 =
(
∂ ln p
∂ ln ρ

)
ad

. (2.34)

In the interior of the stars, N2 > 0 (N2 < 0) corresponds to radiative (convective) region. The
system of coupled first order linear ordinary differential equations are solved as a boundary and
eigenvalue problem for σ by imposing suitable boundary conditions at the center and the surface
of the stars. We note that p-modes propagate in the regions of σ2 � N2, L2

l , while g-modes
propagate in the regions of σ2 � N2, L2

l .
For adiabatic radial oscillations given by ξ = ξrer, we obtain the following second order linear

ordinary differential equation for ξr:

d
dr

[
Γ1p

1
r2

d
dr

(r2ξr)
]
− 4
r

dp
dr
ξr + σ2ρξr = 0. (2.35)

This differential equation is also solved as boundary and eigenvalue problem for σ2 by imposing
suitable boundary conditions at the center and the surface of the stars. Modes of σ2 < 0 indicate
the dynamical instability of the equilibrium.

2.2 waves propagating in a solid crust

For solid crust regions, equation of motion is given by
dv

dt
=

1
ρ
∇ · τ −∇Φ, (2.36)

and the hydrostatic equilibrium is given by
1
ρ
∇ · τ −∇Φ = 0, (2.37)

where τ denotes the stress tensor and it is given by τ = (τij) = (−pδij) in equilibrium and δij

is Kronecker delta.
For waves propagating in a solid crust, the linearized equation of motion is given by

−σ2ξ − 1
ρ
∇ · δτ +

δρ

ρ2
∇ · τ = 0, (2.38)

where the Lagrangian variation ∆τ is given by

∆τij = (Γ1puij)δij + 2µ
(
uij −

1
3
ullδij

)
, (2.39)

and uij is the strain tensor given by

uij =
1
2

(
∂ξi
∂xj

+
∂ξj
∂xi

)
, (2.40)

and ull = u11 +u22 +u33 = ∇·ξ, and µ is the shear modulus. We note that the relation between
the Lagrangian and Eulerian perturbations ∆τij and δτij is given by

∆τij = δτij + ξ · ∇τ . (2.41)

Note that separation of variables is possible between radial and angular coordinates to represent
the perturbations in terms of a single spherical harmonic function Y m

l (θ, φ) for non-rotating and
non-magnetized stars even for stars having a solid crust region.

There exist spheroidal and toroidal sound wave modes propagating in the solid region.
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2.3 normal modes of rotating stars

For rotating stars, equation of motion is given by

dv

dt
= −1

ρ
∇p−∇Φ − Ω × v, (2.42)

where the angular rotation velocity Ω of the star is along the z-axis:

Ω = (Ω cos θ,−Ωsin θ, 0), (2.43)

and the equilibrium rotation velocity v0 is given by

v0 = Ω × r = (0, 0, rΩ sin θ). (2.44)

The hydrostatic balance is given by

∇p = −ρ∇Φ − ρΩ × (Ω × r). (2.45)

The second term on the right-hand-side is the centrifugal force, which deforms the equilibrium
configuration.

Linearized Euler equation in the co-rotating frame of the fluid is obtained by linearizing the
equation of motion of fluid dynamics:

−σ2ξ + 2iσΩ × ξ +
1
ρ
∇δp− δρ

ρ2
∇p = 0, (2.46)

where the second term on the left-hand-side denotes the Coriolis force term, and we have used

δv =
(
∂

∂t
+ Ω

∂

∂φ

)
ξ = (iω + imΩ)ξ = iσξ, (2.47)

where ω denotes the frequency observed in an inertial frame, and σ = ω +mΩ the frequency in
the co-rotating frame. Because of the Coriolis force term, there exists non-zero toroidal modes
ξT even if σ 6= 0, and ξT is coupled with other two components (spheroidal components) ξr and
ξH .

For rotating stars, there exists rotational modes such as inertial modes and r-modes, which
form a subclass of inertial modes. The restoring force of rotational modes are Coriolis force and
the frequencies are proportional to rotation rate Ω. r-modes are retrograde mode. For an r-mode
associated with a spherical harmonic Y m

l′ with l′ ≥ |m| 6= 0, the frequency ratio κ ≡ σ/Ω tends
to 2m/[l′(l′ + 1)] in the limit of Ω → 0, where l′ and m are the harmonic degree and azimuthal
wavenumber, respectively. The ratio κ of inertial modes is also defined in the limit of Ω → 0,
and its value depends on the azimuthal wavenumber m and on the equilibrium structure, that
is, the polytropic index n when we use polytropes as background models (see e.g., Yoshida &
Lee 2000a,b).

2.4 normal modes of magnetized stars

For magnetized stars, equation of motion is given by

dv

dt
= −1

ρ
∇p−∇Φ +

1
ρ
(j × B), (2.48)
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where the third term of the right-hand-side denotes the Lorentz force and j is the current density.
Under the MHD approximation, the Maxwell equations are given in cgs Gauss units by

∇ · B = 0, ∇× B = 4πj, ∇× E = −1
c

∂B

∂t
, ∇ · E = 4πρe, (2.49)

where ρe is the charge density, and we have ignored the displacement current ∂E/∂t. When we
write the Ohm’s law as

j = σe

(
E +

v

c
× B

)
, (2.50)

where σe is the electric conductivity, assuming ideal MHD so that σe → ∞, for a finite j, we
obtain

E +
v

c
× B = 0. (2.51)

Using the above equations we obtain

dv

dt
= −1

ρ
∇p−∇Φ +

1
4πρ

[(∇× B) × B], (2.52)

and the induction equation given by

∂B

∂t
= ∇× (v × B). (2.53)

Hydrostatic equilibrium of magnetized stars is given by

∇p = −ρ∇Φ +
1
4π

(∇× B) × B. (2.54)

As in the case of rotating stars, the second term on the right-hand-side has the effect of deforming
the equilibrium configuration.

Linearized Euler equation and induction equation are in the Cowling approximation given by

−σ2ξ +
1
ρ
∇δp− δρ

ρ2
∇p− (∇× δB) × B + (∇× B) × δB

4πρ
= 0, (2.55)

and

δB = ∇× (ξ × B), (2.56)

which gives the relation between ξ and δB. There exist non-zero toroidal components even
for σ 6= 0 because of the Lorentz force term as in the case of rotating stars. In particular for
non-axisymmetric (m 6= 0) perturbations, ξT is coupled with ξr and ξH .

In this paper, to calculate normal modes of magnetized stars we will assume purely toroidal
or purely poloidal magnetic fields for equilibrium magnetic field configurations.

To define purely poloidal magnetic fields, we start with the Ampere’s law given by

∇× (∇× A) = 4πJ = −∇2A, (2.57)

from which we obtain

1
r2

∂

∂r

(
r2
∂Aφ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Aφ

∂θ

)
− 1
r2 sin2 θ

Aφ = −4πJφ, (2.58)

where we have assumed that ∇·A = 0 (Lorentz gauge), and that the electric current and vector
potential are given as J(r, θ) = [0, 0, Jφ(r, θ)] and A(r, θ) = [0, 0, Aφ(r, θ)], respectively. We
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carry out separation of variables between radial (r) and angular (θ) coordinates assuming the
following forms

Aφ(r, θ) = rf(r)
∂

∂θ
Pl(cos θ), (2.59)

Jφ(r, θ) = rj(r)
∂

∂θ
Pl(cos θ), (2.60)

where Pl(cos θ) denotes Legendre polynomial of order l. Therefore, we obtain

1
r2

d
dr

[
r2

d
dr

(rf)
]
− l(l + 1)

r
f = −4πrj. (2.61)

When we assume l = 1 for dipole magnetic field, the above ordinary differential equation reduces
to

d2f

dr2
+

4
r

df
dr

= −4πj. (2.62)

This second order ordinary differential equation is Grad-Shafranov equation.
The toroidal current density on the right-hand-side of equation (2.62) is determined by impos-

ing integrability condition on the hydrostatic equation (2.54). The Lorentz force term is given
by

F L = J × B = −(∇× A) × J = Jφ

{[
1
r

∂

∂r
(rAφ)

]
er +

[
1

r sin θ
∂

∂θ
(sin θAφ)

]
eθ

}
.(2.63)

Substituting this Lorentz force term and the expansions of Aφ and Jφ for the order l = 1 into
the hydrostatic equation (2.54), we obtain

∇p
ρ

+ ∇Φ − j

4πρ
∇
(
r2f sin2 θ

)
= 0. (2.64)

If we assume p = p(ρ) and j = j(ρ) ∝ ρ, we can integrate the equation (2.64) to obtain the
following Bernoulli equation∫

dp
ρ

+ Φ − c0
4π
r2f sin2 θ = C, (2.65)

where c0 is an arbitrary constant and C is an integral constant. This is the reason why we use
the toroidal current density j given by j(ρ) = c0ρ.

Purely poloidal magnetic field components are given by B = −∇×A. This relation is reduced
to

Br = −1
r

∂Aφ

∂θ
− cos θ
r sin θ

Aφ, Bθ =
∂Aφ

∂r
+

1
r
Aφ, Bφ = 0, (2.66)

and we obtain

Br = 2f cos θ, Bθ = −
(
r
df
dr

+ 2f
)

sin θ, (2.67)

where P1(cos θ) = cos θ. It is clear that this magnetic field satisfies the Gauss’s law ∇ · B = 0.
For purely toroidal magnetic fields, using integrability condition on the hydrostatic equilibrium

(2.54) to obtain a Bernoulli equation, we determine purely toroidal magnetic field configurations,
that is, if we assume p = p(ρ), Br = Bθ = 0, and Bφ ∝ ρn(r sin θ)2n−1, the hydrostatic
equilibrium equation (2.54) can be integrated. For example, assuming n = 1 and Bφ = kρr sin θ,
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the Lorentz force term reduces to −∇[B2
0/(8πρc)ρ̂x2 sin2 θ], where k = B0/(

√
2ρcR) is a constant,

B0 is the parameter for the strength of magnetic fields, ρc is the central density of the star, and
R is the stellar radius, x = r/R and ρ̂ = ρ/ρc. We thus obtain the following Bernoulli equation∫

dp
ρ

+ Φ +
B2

0

8πρc
ρ̂x2 sin2 θ = C, (2.68)

where C is an integral constant. It is clear Bφ = kρr sin θ satisfies Gauss’s law.
For strongly magnetized stars, in addition to g-, f -, and p-modes expected for normal fluid

stars, there exists Alfvén modes whose frequency is proportional to the strength of magnetic
fields. The magnetic modes appear as discrete modes or as continuous modes that form continu-
ous frequency spectra. It is also important to note that, even without thermal mechanisms that
destabilize the oscillation modes, magnetic modes can be unstable. The existence of unstable
modes means that the equilibrium configuration of the stars is not stable. It is well known that
stars magnetized with purely poloidal or toroidal magnetic fields are unstable, and the magnetic
energy will quickly dissipated by some dissipative processes (e.g., Lasky et al. 2011; Markey &
Tayler 1973; van Assche et al. 1982). For purely toroidal magnetic fields, there are two kinds of
unstable modes: one is for Tayler (kink) instability, especially of m = 1, and another is for Parker
instability of m 6= 0. Tayler instability arises near the polar axis by kink of the magnetic field
lines, and Parker instability is caused by the magnetic buoyancy force. The growth timescales
are the Alfvén timescale R/vA, where vA =

√
B2/(4πρ) is Alfvén velocity. For purely poloidal

magnetic field, the instability mode is mainly described as Tayler (kink) instability.

2.5 series expansions for the perturbations

In general, separation of variables is not possible between radial and angular coordinates to
represent the perturbations for both rotating stars and magnetized stars. In this paper, to
represent the perturbations we use series expansions of the perturbations in terms of spherical
harmonic functions for a given |m| (see §3.1.2 and 4.1.2). For example, the displacement vector
ξ is expanded as

ξ(r, θ, φ) =
∑

l,l′≥|m|

{[
ξ(l)r (r)er + ξ

(l)
H (r)∇H

]
Y m

l (θ, φ) + ξ
(l′)
T (r)er ×∇HY

m
l′ (θ, φ)

}
, (2.69)

where the time-dependence of the displacement ξ is given by the factor exp(iσt). Then, substi-
tuting the expansions into the linearized basic equations such as (2.55), we reduces the linearized
partial differential equations to a system of coupled linear ordinary differential equations for the
expansion coefficients, formally given as

r
d
dr

Y = C(r, σ)Y , (2.70)

Y =
(
ξ(l=|m|)
r , ξ(l=|m|+2)

r , · · · , ξ(l=|m|)
H , ξ

(l=|m|+2)
H , · · · , ξ(l

′=|m|)
T , ξ

(l′=|m|+2)
T , · · ·

)T

, (2.71)

where C is the coefficient matrix. Imposing appropriate boundary conditions at the center and
surface of the stars, we solve the system of differential equations as an eigenvalue problem.
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2.6 oscillation frequency spectra of neutron stars

It may be instructive to mention possible oscillation modes of neutron stars. If we assume non-
rotating and non-magnetized neutron stars with thermally stratified structure in the interior,
we may refer to the results of modal analyses given by e.g., McDermott et al. (1988), who
used for their modal analyses three-component neutron star models composed of a surface fluid
ocean, a solid crust, and a fluid core. They obtained frequency spectra for a rich variety of
oscillation modes, which include spheroidal g-, f , and p-modes propagating in the fluid regions,
and spheroidal s- and toroidal t-modes propagating in the solid crust, which are essentially sound
waves. They also found interfacial modes which have large amplitudes only at the interfaces
between the fluid core and the inner crust and between the outer crust and the surface ocean.

Lee & Strohmayer (1996) calculated normal modes of slowly rotating neutron stars using the
three-component models. For rotating neutron stars, there exists rotational modes in addition
to the oscillation modes discussed above. The restoring force of rotational modes is the Coriolis
force. Using the three-component model, r-modes are separated into the core r-modes and
surface r-modes. The rotational modes have large amplitudes in the fluid regions only (fluid core
and ocean), and have almost no amplitudes in the solid crust region.

If neutron stars have magnetic fields, there exist magnetic modes like Alfvén modes. If both
the fluid core and solid crust are threaded by strong magnetic fields, we need to consider global
oscillation modes (e.g., Lee 2008; Asai & Lee 2014). For example, Asai & Lee (2014) calculate
axisymmetric (m = 0) toroidal modes of the magnetized neutron stars with purely poloidal
magnetic field considering the core-crust coupling due to the magnetic field in general relativistic
framework. They find discrete normal toroidal modes, and the frequencies of the toroidal modes
form distinct mode sequences. The oscillation frequency spectra of global oscillations are quite
different from those of non-magnetized stars.

In this paper, since we use polytropes as background models for modal analyses for simplicity,
we ignore solid crust regions of neutron stars, that is, we do not treat crustal oscillation modes.

3 Normal modes of uniformly rotating stars magnetized

with purely toroidal magnetic fields

In this section, we describe normal modes of uniformly rotating stars magnetized with purely
toroidal magnetic fields. For the normal mode analyses, we take account of the effects of the
deformation of equilibrium configurations due to the purely toroidal magnetic field.

3.1 method of solution

3.1.1 equilibrium model

We assume uniformly rotating polytropes for magnetized rotating stars with purely toroidal
magnetic field. Equilibrium structures of the stars having purely toroidal magnetic field have
been so far obtained by non-perturbative approaches in Newtonian framework by Miketinac
(1973) and in general relativistic framework by Kiuchi & Yoshida (2008) or Frieben & Rezzolla
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(2012). In this paper, we adopt a perturbative approch to calculate the configurations of mag-
netically deformed stars with purely toroidal magnetic field. According to Miketinac (1973),
purely toroidal magnetic field in equilibrium stars is given by (see §2.4)

Br = 0, Bθ = 0, Bφ = kρr sin θ, (3.1)

where k ≡ B0/(
√

2ρcR) is a constant, B0 is a parameter for the strength of magnetic field
in the stars, ρc is the central density of the stars, and R is the stellar radius. Here we use
spherical polar coordinates (r, θ, φ). The absolute value of the toroidal magnetic field is given
by |B| = |Bφ| = (B0/

√
2)ρ̂x sin θ, where x = r/R and ρ̂ = ρ/ρc. We assume fluid velocities in

equilibrium as follows:

vr = 0, vθ = 0, vφ = Ωr sin θ, (3.2)

where Ω denotes the angular velocity of uniformly rotating stars. In this paper, we assume that
the stars are deformed only by toroidal magnetic field, and we ignore the deformation due to the
centrifugal force. By the assumptions (3.1) and (3.2), the induction and continuity equations
are automatically satisfied and need not be considered any further. For toroidal magnetic fields
(3.1), we can write the Lorentz force per unit mass as a potential force:

1
4πρ

(∇× B) × B = −∇
(
B2

0

8πρc
ρ̂x2 sin2 θ

)
. (3.3)

Then, the equilibrium structures of stars are described by the hydrostatic equation, Poisson
equation, and equation of state:

∇p = −ρ∇Ψ, (3.4)

∇2Φ = 4πGρ, (3.5)

p = Kcρ
1+1/n, (3.6)

where n and Kc are the polytropic index and structure constant determined by the stellar mass
and radius, G is the gravitational constant, Φ denotes the gravitational potential, and Ψ is the
effective potential defined by

Ψ = Φ +
1
3
ω2

Aρ̂r
2[1 − P2(cos θ)] − C, (3.7)

where ωA =
√
B2

0/(4πρcR2) is the characteristic Alfvén frequency of the stars and C is a con-
stant. P2(cos θ) = (3 cos2 θ − 1)/2 is Legendre polynomial Pl(cos θ) of order l = 2.

Since the gravitational potential Φ is a physical quantity of order of GM/R, the ratio of the
second term on the right-hand-side of equation (3.7) to Φ is given by ω̄2

A ≡ ω2
A/Ω

2
K, where

ΩK =
√
GM/R3 is the Kepler frequency. For a neutron star with M = 1.4M� and R = 106

cm, we obtain ω̄2
A ∼ 2 × 10−5 for B0 = 1016 G. Therefore, the effects of the magnetic field

on equilibrium configuration are small so long as we assume B0
<∼ 1017 G. In this paper, since

we assume sufficiently weak magnetic fields, we can treat the deformation due to the purely
toroidal magnetic fields as a small perturbation to non-magnetic stars, that is, we treat ω2

A as a
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small parameter, compared to GM/R. In this assumption, ρ̂ in the term proportional to ω̄2
A in

equation (3.7) can be replaced by the density ρ̂0 of the non-magnetic stars. Thus, Ψ satisfies

∇2Ψ = 4πGρ+
1
3
ω2

A

[
r2

d2ρ̂0

dr2
+ 6r

dρ̂0

dr
+ 6ρ̂0 −

(
r2

d2ρ̂0

dr2
+ 6r

dρ̂0

dr

)
P2(cos θ)

]
. (3.8)

From equations (3.4) and (3.6), we can regard ρ as the argument of the function Ψ. If we expand
Ψ(r, θ) as

Ψ(r, θ) = Ψ0(r) − 2R2ω2
A[ψ0(x) + ψ2(x)P2(cos θ)], (3.9)

we can expand ρ(r, θ) as

ρ(r, θ) = ρ0(r) − 2R2ω2
A

dρ0

dΨ0

[ψ0(x) + ψ2(x)P2(cos θ)], (3.10)

where Ψ0(r) = Φ0(r) and ρ0(r) denote the gravitational potential and density of the non-
magnetized stars and they satisfy dp0/dr = −ρ0dΦ0/dr = −ρ0GMr/r

2, Mr =
∫ r

0
4πr2ρ0dr,

and p0 = Kcρ
1+1/n
0 .

Substituting equations (3.9) and (3.10) to equation (3.8), we obtain

R2∇2[ψ0(x) + ψ2(x)P2(cos θ)] = 4πGR2 dρ0

dΨ0

[ψ0(x) + ψ2(x)P2(cos θ)]

+f0(x) + f2(x)P2(cos θ), (3.11)

from which we obtain

1
x2

d
dx

(
x2 dψ0

dx

)
= k(x)ψ0 + f0(x), (3.12)

1
x2

d
dx

(
x2 dψ2

dx

)
=
[
k(x) +

6
x2

]
ψ2 + f2(x), (3.13)

where

f0(x) = −1
6

(
r2

d2ρ̂0

dr2
+ 6r

dρ̂0

dr
+ 6ρ̂0

)
,

f2(x) =
1
6

(
r2

d2ρ̂0

dr2
+ 6r

dρ̂0

dr

)
, (3.14)

k(x) = 4πGR2 dρ0

dΨ0

. (3.15)

To integrate the differential equations (3.12) and (3.13) from the center of the star, we need
to impose regularity conditions at the stellar center. The regularity conditions are obtained
by expanding the functions ψ0(x) and ψ2(x) around x = 0, that is, substituting the following
expansion to equations (3.12) and (3.13).

ψj = xs
∞∑

n=0

(a(j)
n xn) (j = 0 and 2). (3.16)

For x→ 0, since k(x) → k(0), f0(x) → f0(0), and f2(x) → f20x
2, where k(0), f0(0), and f20 are

all constants, the exponent s gives regular solutions if s = j. Assuming the density is independent

18



of Alfvén frequency ωA at x = 0, we obtain the expansion coefficient a(0)
0 = 0 for the function

ψ0. To determine the coefficient a(2)
0 for ψ2, we need to impose the following surface boundary

condition:

3ψ2(1) +
dψ2

dx

∣∣∣∣
x=1

=
1
6

dρ̂
dx

∣∣∣∣
x=1

. (3.17)

We describe the detail of the surface boundary condition in Appendix B.

3.1.2 perturbation equations

To calculate the oscillation modes of magnetically deformed stars, we introduce a parameter a,
which is the quantity that labels the equi-potential surface of Ψ(r, θ) such that Ψ(r, θ) = Ψ0(a),
that is,

Ψ0(a) = Ψ0(r) − 2R2ω2
A[ψ0(x) + ψ2(x)P2(cos θ)]. (3.18)

This equation defines the equi-potential surface as r(a, θ). Assuming that the deviation of the
equi-potential surface r(a, θ) from the spherical surface r = a is small, the function r(a, θ) is
given by

r = a[1 + ε(a, θ)], (3.19)

where ε is a quantity of order of R2ω2
A/Ψ0(R). Substuting equation (3.19) to equation (3.18),

we obtain ε(a, θ) up to order of ω2
A as follows:

ε(a, θ) = α(a) + β(a)P2(cos θ), (3.20)

where

α(a) =
2c1ω̄2

A

x2
ψ0(x), β(a) =

2c1ω̄2
A

x2
ψ2(x), (3.21)

and c1 = (a/R)3[M(a)/M ]. M(a) denotes the mass in the a-constant surface and M = M(R).
Hereafter, we use this parameter a instead of the radial component r of spherical coordinates.

In this new coordinate system (a, θ, φ), the line element is given by

ds2 = (1 + 2ε)(da2 + a2dθ2 + a2 sin2 θdφ2) + 2a
∂ε

∂a
da2 + 2a

∂ε

∂θ
dadθ ≡ gabdx

adxb. (3.22)

Then, the pressure, density, and effective potential of the magnetized stars depend only on the
radial coordinate a. Note that orthogonality between the basis vectors is lost for this coordinate
system.

The oscillation equations governing non-radial oscillations of magnetized rotating stars are
derived by linearizing the basic equations of manetohydrodynamics. As for the effects of rotation,
we only consider those of the Coriolis force and ignore those of the centrifugal force, i.e., of
rotational deformation. Here, we assume the rotational and magnetic axes coincide with each
other. For static and axisymmetric configurations, we can assume the perturbed quantities are
proportioal to exp(iωt + imφ), where ω denotes frequency observed in an inertial frame and
m is the azimuthal wavenumber. Assuming adiabatic oscillations, the oscillation equations for
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magnetized uniformly rotating stars in the coordinate system (a, θ, φ) are (see e.g., Saio 1998;
Lee 1993; Yoshida & Lee 2000a):

−σ2[(1 + 2ε)ξ + aξa∇0ε+ a(ξ · ∇0ε)ea] = −∇0δΦ − 1
ρ
∇0δp+ iσD

+
δρ

ρ

[
dp
da

ea − 1
4π

(∇0 × B) × B

]
+

1
4πρ

[(∇0 × δB) × B + (∇0 × B) × δB] , (3.23)

δρ+ ∇0 · (ρξ) + ρξ · ∇0

(
3ε+ a

∂ε

∂a

)
= 0, (3.24)

δρ

ρ
=

δp

Γ1p
− ξa

a
aA, (3.25)

(δB)i =
1
√
g
εijk ∂

∂xj

(√
gεimkξ

jBm
)
, (3.26)

where σ = ω + mΩ denotes the frequency observed in the co-rotating frame, ξ(a, θ, φ) is the
displacement vector, δ denotes Eulerian perturbation, εijk or εijk are Levi-Civita symbols, g is
a determinant of metric gij , and

∇0 = lim
ε→0

[
ea

∂

∂a
+ eθ

1
a

∂

∂θ
+ eφ

1
a sin θ

∂

∂φ

]
, (3.27)

where ea, eθ, and eφ are the basis vectors corresponding to a-, θ-, and φ-coordinates, respectively.
The term D comes from the Coriolis force term and its components are given as follows (see
e.g., Lee 1993; Yoshida & Lee 2000a):

Da = 2Ω
(

1 + 2ε+ a
∂ε

∂a

)
sin θξφ,

Dθ = 2Ω
(

1 + 2ε+
sin θ
cos θ

∂ε

∂θ

)
cos θξφ,

Dφ = −2Ω
[(

1 + 2ε+ a
∂ε

∂a

)
sin θξa +

(
1 + 2ε+

sin θ
cos θ

∂ε

∂θ

)
cos θξθ

]
. (3.28)

aA is Schwartzschild discriminant defined by

aA =
d ln ρ
d ln a

− 1
Γ1

d ln p
d ln a

, (3.29)

where Γ1 = (∂ ln p/∂ ln ρ)ad. In this paper, we adopt the Cowling approximation for simplicity,
that is, we ignore δΦ.

Because of the Lorentz and Coriolis forces terms in equation (3.23), separation of variables
between radial coordinate (a) and angular coordinates (θ, φ) is not possible to represent the
perturbations. Therefore, to define the perturbations we use finite length expansions in terms
of spherical harmonic functions Y m

l (θ, φ). The displacement vector ξ is given by (see e.g., Lee
2005, 2007)

ξa =
jmax∑
j=1

aSlj (a)Y
m
lj (θ, φ), (3.30)
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ξθ =
jmax∑
j=1

[
aHlj (a)

∂

∂θ
Y m

lj (θ, φ) − iaTl′j
(a)

1
sin θ

∂

∂φ
Y m

l′j
(θ, φ)

]
, (3.31)

ξφ =
jmax∑
j=1

[
aHlj (a)

1
sin θ

∂

∂φ
Y m

lj (θ, φ) + iaTl′j
(a)

∂

∂θ
Y m

l′j
(θ, φ)

]
, (3.32)

and δB is given by

δBa

kρ
=

jmax∑
j=1

iahS
lj (a)Y

m
lj (θ, φ), (3.33)

δBθ

kρ
=

jmax∑
j=1

[
iahH

lj (a)
∂

∂θ
Y m

lj (θ, φ) − ahT
l′j

(a)
1

sin θ
∂

∂φ
Y m

l′j
(θ, φ)

]
, (3.34)

δBφ

kρ
=

jmax∑
j=1

[
iahH

lj (a)
1

sin θ
∂

∂φ
Y m

lj (θ, φ) + ahT
l′j

(a)
∂

∂θ
Y m

l′j
(θ, φ)

]
, (3.35)

where lj = |m| + 2(j − 1), l′j = lj + 1 for even, and lj = |m| + 2j − 1, l′j = lj − 1 for odd
(j = 1, 2, 3, ..., jmax). Eulerian perturbations of the pressure p and density ρ are

δp =
jmax∑
j=1

δplj (a)Y
m
lj (θ, φ), δρ =

jmax∑
j=1

δρlj (a)Y
m
lj (θ, φ). (3.36)

Substituting the expansions (3.30)-(3.36) into the perturbed equations (3.23)-(3.26), we obtain a
system of coupled linear ordinary differential equations for the expansion coefficients Slj (a) and
δplj (a). These equations are called the oscillation equations and integrated within the interior
of the magnetized uniformly rotating stars, see the details given in Appendix A.

To carry out modal analyses of magnetized and uniformly rotation neutron stars, we use
polytropes of the indices n = 1, 1.5, and 3. In Figure 1, we give contour plots of the distributions
of the density and magnetic fields for the three polytropes. As the polytropic index n increases,
the distributions of the density and magnetic fields tend to be confined into the deep interior. The
mass M and radius R we expect for neutrons may be (M,R) = (1.4M�, 106cm) and those we use
for normal stars are (M,R) = (M�, R�), respectively. Thus, for the neutron star model having
B0 = 1016 G, we obtain ω̄A = 4.42 × 10−3, while we obtain ω̄A = 7.39 × 10−4 for the normal
star having B0 = 106 G. For n = 1 polytropic stellar model, we plot the functions α(a)/ω̄2

A and
β(a)/ω̄2

A for a/R in Figure 2. Further, we plot the shapes of magnetically deformed stars for
B0 = 0, 1016, 1018, 3× 1018, and 5× 1018 G for n = 1 polytrope in Figure 3. From Figure 3, we
find that the stellar shape looks oblate (crushed in the z-direction) near the stellar surface (left
panel), and looks prolate (extended in the z-direction) in the interior of the star (right panel).

3.2 numerical results

In this subsection, we discuss the oscillations of uniformly rotating stars magnetized by purely
toroidal fields, using polytropes with the indices n = 1, 1.5, and 3. Polytropes of indices n = 1,
1.5, and 3 can be regarded as simple models of neutron stars and normal stars. For the polytropes,
we estimates the effects of magnetic deformation of the equilibrium on normal modes.
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index n =1, 1.5, and 3, respectively. The outer-most solid circles show stellar surfaces. The solid contours
correspond to B/Bmax = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, and the long-dashed contours to
ρ/ρc = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.

-0.12

-0.08

-0.04

 0

 0.04

 0.08

 0  0.2  0.4  0.6  0.8  1

α’
 a

nd
 β

’

a/R

α’
β’

Figure 2: Functions α′ ≡ α/ω̄2
A and β′ ≡ β/ω̄2

A versus the fractional radius a/R for the n = 1 polytrope.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

z/
R

x/R

BS=0G
BS=1016G
BS=1018G

BS=3*1018G
BS=5*1018G

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

z/
R

x/R

BS=0G
BS=1016G
BS=1018G

BS=3*1018G
BS=5*1018G

Figure 3: Stellar deformation due to purely toroidal magnetic field for surface (x/R = z/R = 1) of the
star (left pannel) and interior (x/R = z/R ∼ 0.5) of the star (right pannel) for the n = 1 polytrope.

22



3.2.1 g-, f-, and p-modes

We first calculate f -modes, and low radial order g- and p-modes for magnetized stars with
purely toroidal magnetic field. In this calculation, we do not take account of the effects of the
stellar rotation. In order to calculate non-radial oscillations for magnetized stars, we assume
that the adiabatic exponent is given by

1
Γ1

=
n

n+ 1
+ γ, (3.37)

where γ is a constant, and we obtain the relation aA = −γ(d ln p/d ln a). In this subsection, we
assume γ = −10−4 for n = 1 and 1.5 polytropes and Γ1 = 5/3, that is, γ = −3/20 for n = 3
polytrope. Since the magnetic terms in the oscillation equations are all proportional to ω̄2

A, the
frequency of the oscillation modes are written as (see, Appendix A , C and Unno et al. 1989)

σ̄ = σ̄0 + Ē2ω̄
2
A + · · · , (3.38)

where σ̄0 denotes the frequency of the non-magnetized stars. Ē2 is a proportional coefficient and
estimated by calculating mode frequencies for two different values of ω̄2

A, for example ω̄2
A = 0

and ω̄2
A ∼ 10−6. Here, the quantities σ̄0 and Ē2 are normalized by the Kepler frequency ΩK of

the stars. Treating Alfvén frequency ω̄2
A as a small parameter, it is also possible to compute the

coefficient Ē2, by using the eigenfunctions of the oscillation mode of the non-magnetized stars.
We describe this method of calculation of Ē2 in the Appendix C.

In Tables 1-3, we tabulated the coefficients Ē2, Ē′
2, and eigenfrequency σ̄0 of f -modes, and

low radial order g-, and p-modes of m = 1, 2, and 3 for n = 1, 1.5, and 3 polytropes. Except for
low frequency g-modes, the two coefficients Ē2 and Ē′

2 show good agreement with each other,
where Ē′

2 is the coefficient Ē2 calculated by using the integration formula (see Appendix C). In
this table, we also tabulate Ē0

2 , which is the coefficient Ē2 calculated by using the integration
formula that neglects deformation effects. Comparing Ē′

2 with Ē0
2 , we find that f - and p-modes

are strongly affected by the deformation of the stars, while g-modes are hardly affected. The
effects of magnetic deformation on the oscillation modes are quite similar to those of rotational
deformation (see e.g., Saio 1981). We note that the frequency of f -mode obtained in this paper
is consistent with that of Lander et al. (2010) so long as Ω/

√
Gρc

<∼ 0.1 (because they consider
second order of the stellar rotation).

Tables 1 and 2 are for the oscillation modes of neutron stars. The eigenfrequency σ̄0 of g-
modes are quite small since |γ| is small, which may be consistent with almost isentropic structure
expected in the cold neutron star. The ratios E2/σ0 of g-modes are larger than those of f - and
p-modes. This means that low frequency g-modes are easy to be affected by the magnetic fields.
The ratios E2/σ0 of g-modes increase as the azimuthal wavenumber m increases, while those of
f - and p-modes are insensitive to m.

Table 3 is for the oscillation modes of a normal star. The magnitudes of the ratios E2/σ0 are
almost the same among g-, f -, and p-modes except for the g-modes of m = 1, for which the
ratios are order of 0.1, which value is much smaller than those for n = 1 and 1.5 polytropes
(γ = −10−4).

In Figure 4, we plot the expansion coefficients Sl1 , Hl1 , and Tl′1
of g1-, f -, and p1-modes of

l = m = 2 for B0 = 1016 G for the polytrope of index n = 1. The first expansion coefficients are
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Table 1: Coefficients E2, E′
2, and Ē0

2 for g-, f -, and p-modes of l = m for the polytropic model with
n = 1 and γ = −10−4 ∗

mode σ̄0 Ē2 Ē′
2 Ē0

2

m = 1

g3 · · · · · · 0.00570 -1.578(+0) -1.490(+0) -1.491(+0)
g2 · · · · · · 0.00770 -2.051(+0) -2.095(+0) -2.095(+0)
g1 · · · · · · 0.01203 -3.003(+0) -3.063(+0) -3.064(+0)
p1 · · · · · · 3.26931 6.162(−1) 6.164(−1) 3.553(−1)
p2 · · · · · · 5.09325 1.113(+0) 1.114(+0) 5.650(−1)
p3 · · · · · · 6.85013 1.550(+0) 1.554(+0) 7.586(−1)

m = 2

g3 · · · · · · 0.00884 3.518(+1) 3.488(+1) 3.487(+1)
g2 · · · · · · 0.01152 2.427(+1) 2.402(+1) 2.402(+1)
g1 · · · · · · 0.01678 1.133(+1) 1.130(+1) 1.130(+1)
f · · · · · · 1.65562 4.107(−1) 4.109(−1) 3.567(−1)
p1 · · · · · · 3.79225 7.099(−1) 7.103(−1) 4.387(−1)
p2 · · · · · · 5.67886 1.173(+0) 1.175(+0) 6.713(−1)
p3 · · · · · · 7.48089 1.605(+0) 1.608(+0) 8.874(−1)

m = 3

g3 · · · · · · 0.01136 7.583(+1) 7.498(+1) 7.498(+1)
g2 · · · · · · 0.01443 5.352(+1) 5.319(+1) 5.319(+1)
g1 · · · · · · 0.02008 2.732(+1) 2.732(+1) 2.731(+1)
f · · · · · · 1.97094 6.696(−1) 6.696(−1) 5.545(−1)
p1 · · · · · · 4.22956 8.280(−1) 8.282(−1) 5.196(−1)
p2 · · · · · · 6.18783 1.272(+0) 1.272(+0) 7.593(−1)
p3 · · · · · · 8.04091 1.701(+0) 1.703(+0) 9.900(−1)

* We use the notation of 1.000 × 10N ≡ 1.000(N).
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Table 2: Coefficients E2, E′
2, and Ē0

2 for g-, f -, and p-modes of l = m for the polytropic model with
n = 1.5 and γ = −10−4 ∗

mode σ̄0 Ē2 Ē′
2 Ē0

2

m = 1

g3 · · · · · · 0.00788 -8.899(−1) -8.120(−1) -8.123(−1)
g2 · · · · · · 0.01057 -1.179(+0) -1.193(+0) -1.193(+0)
g1 · · · · · · 0.01626 -1.797(+0) -1.856(+0) -1.856(+0)
p1 · · · · · · 3.08199 5.763(−1) 5.761(−1) 9.406(−2)
p2 · · · · · · 4.64233 9.672(−1) 9.668(−1) 1.600(−1)
p3 · · · · · · 6.15692 1.329(+0) 1.328(+0) 2.190(−1)

m = 2

g3 · · · · · · 0.01214 2.316(+1) 2.286(+1) 2.286(+1)
g2 · · · · · · 0.01564 1.628(+1) 1.607(+1) 1.607(+1)
g1 · · · · · · 0.02217 8.198(+0) 8.153(+0) 8.152(+0)
f · · · · · · 1.84930 4.027(−1) 4.027(−1) 1.621(−1)
p1 · · · · · · 3.55537 7.093(−1) 7.093(−1) 1.205(−1)
p2 · · · · · · 5.14850 1.073(+0) 1.073(+0) 1.808(−1)
p3 · · · · · · 6.69114 1.429(+0) 1.428(+0) 2.454(−1)

m = 3

g3 · · · · · · 0.01547 4.950(+1) 4.872(+1) 4.872(+1)
g2 · · · · · · 0.01935 3.546(+1) 3.511(+1) 3.511(+1)
g1 · · · · · · 0.02596 1.941(+1) 1.938(+1) 1.938(+1)
f · · · · · · 2.15084 5.640(−1) 5.640(−1) 2.301(−1)
p1 · · · · · · 3.93952 8.393(−1) 8.391(−1) 1.504(−1)
p2 · · · · · · 5.58066 1.192(+0) 1.191(+0) 2.007(−1)
p3 · · · · · · 7.15896 1.544(+0) 1.542(+0) 2.653(−1)

* We use the notation of 1.000 × 10N ≡ 1.000(N).

25



Table 3: Coefficients E2, E′
2, and Ē0

2 for g-, f -, and p-modes of l = m for the polytropic model with
n = 3 and Γ1 = 5/3 ∗

mode σ̄0 Ē2 Ē′
2 Ē0

2

m = 1

g3 · · · · · · 0.88994 -1.088(−3) -7.875(−4) -7.747(−3)
g2 · · · · · · 1.16154 -1.270(−3) -1.079(−3) -9.976(−3)
g1 · · · · · · 1.68082 9.069(−4) 7.333(−4) -1.306(−2)
p1 · · · · · · 3.81006 2.906(−1) 2.905(−1) 2.689(−3)
p2 · · · · · · 5.01208 4.335(−1) 4.331(−1) 2.803(−3)
p3 · · · · · · 6.25522 5.541(−1) 5.538(−1) 3.836(−3)

m = 2

g3 · · · · · · 1.35792 1.948(−1) 1.930(−1) 1.802(−1)
g2 · · · · · · 1.70580 1.502(−1) 1.494(−1) 1.332(−1)
g1 · · · · · · 2.29614 1.103(−1) 1.099(−1) 8.008(−2)
f · · · · · · 3.06379 2.193(−1) 2.194(−1) 1.814(−2)
p1 · · · · · · 4.14666 3.521(−1) 3.521(−1) 1.064(−2)
p2 · · · · · · 5.39097 4.792(−1) 4.788(−1) 7.335(−3)
p3 · · · · · · 6.65382 5.990(−1) 5.978(−1) 6.608(−3)

m = 3

g3 · · · · · · 1.70370 4.161(−1) 4.122(−1) 3.942(−1)
g2 · · · · · · 2.07374 3.245(−1) 3.227(−1) 3.007(−1)
g1 · · · · · · 2.64527 2.338(−1) 2.334(−1) 1.920(−1)
f · · · · · · 3.12498 2.567(−1) 2.566(−1) 3.173(−2)
p1 · · · · · · 4.37567 3.947(−1) 3.946(−1) 1.118(−2)
p2 · · · · · · 5.68481 5.193(−1) 5.189(−1) 8.675(−3)
p3 · · · · · · 6.98164 6.392(−1) 6.383(−1) 8.076(−3)

* We use the notation of 1.000 × 10N ≡ 1.000(N).
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Figure 4: Eigenfunctions of m = 2 even modes for the polytrope with n = 1 and γ = −10−4 for
B0 = 1016 G, where, from left to right panels, the eigenfunctions plotted are those of the g1, f , and
p1 modes. The solid lines, the long dashed lines and the short dashed lines are for the functions xSl1 ,
xHl1 , and xTl1+1 with x = a/R, and the amplitude normalization is given by Sl1 = 1 at the surface,
respectively
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Figure 5: Same as Figure 4 but for the eigenfunctions Sbl1 ≡ kρahS
l /B0 (solid lines), Hbl1 ≡ kρahH

l /B0

(long dashed lines), and Tbl1+1 ≡ kρahT
l′/B0 (short dashed lines).

corresponding to angular degrees l1 and l′1, and they dominate other coefficients of higher degrees
of lj (j > 1). These first expansion coefficients are almost the same as the eigenfunctions of the
modes of the non-magnetized stars, for which separation of variables is possible. According to the
surface boundary condition and algebraic relation in the Appendix A, since Hl1 ' Sl1/σ̄

2 at the
stellar surface for Ω̄ = 0 and ω̄2

A � 1, Hl1 has large amplitudes at the stellar surface under the
normalization condition Sl1(R) = 1 for low frequency (σ̄ � 1) g-modes. We plot the magnetic
perturbations Sbl1 , Hbl1 , and Tbl′1

of g1-, f -, and p1-modes of l = m = 2 for B0 = 1016 G for the
n = 1 polytrope in Figure 5, where Sbl1 ≡ kρahS

l1
/B0, Hbl1 ≡ kρahH

l1
/B0, and Tbl′1

≡ kρahT
l′1
/B0.

For slowly rotating stars, the frequency ω observed in an inertial frame is written as

ω = ω0 +m(C1 − 1)Ω + E2ω̄
2
A + · · · , (3.39)

where C1 is a coefficient related to correction term of the modal frequency affected by slow
rotation. For B0 = 1016 - 1017 G, since ω̄2

A ' 10−5 - 10−3 and E2 ∼ 10, rotational effects
dominate magnetic ones for Ω̄>∼ 10−1.
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3.2.2 rotational modes

Here, we consider the effects of the magnetic field on rotational modes such as inertial mode
and r-mode, for which the restoring force is the Coriolis force and the frequencies are proportional
to Ω. As shown by Yoshida & Lee (2000b), stratification in the interior of the stars strongly
affects the properties of rotational modes. Since we consider only magnetic effects on rotational
modes, we assume isentropic stars (γ = 0). In this assumption, the adiabatic exponent for the
perturbations reduces to Γ1 = 1 + 1/n. In order to describe the effects of the magnetic field on
rotational modes, it is convenient to introduce the frequency ratio κ = σ/Ω, where σ = ω +mΩ
is the frequency observed in the co-rotating frame of the star. For small ω̄2

A (� Ω̄2), we can
write the frequency ratio as

κ = κ0(Ω)
[
1 + η2

ω̄2
A

Ω̄2

]
+ · · · , (3.40)

where the coefficient κ0 is a quantity depending on rotation rate Ω, and η2 reduces to a constant
in the limit of ω̄2

A/Ω̄
2 → 0 (see Appendix C). For uniformly rotating isentropic stars, inertial

mode and r-mode are examined by e.g., Lokitch & Friedman (1999) and Yoshida & Lee (2000a).
r-modes are retrograde mode and have l′ ≥ |m| (m 6= 0), and the frequency ratio κ0 reduces to
2m/[l′(l′ + 1)] for Ω → 0. The ratio κ0 for inertial mode can be defined in the limit of Ω → 0,
and its value depends on azimuthal wavenumber m and polytropic index n (see e.g., Yoshida &
Lee 2000a). We use κ0(0) for labeling inertial mode and r-mode.

Because strongly magnetized stars (magnetars) are known to rotate slowly, we analyze rota-
tional modes of slowly rotating stars. In Table 4, we tabulated the coefficients η2, η′2, and κ0 of
r-modes of l′ = |m| and inertial modes (m = 2 and γ = 0) for the polytropes of n = 1, 1.5, and
3. η′2 denotes the coefficient calculated with the integration formula using the perturbations of
the non-magnetized stars. η2 is calculated by adopting least square method to fitting formula
y = η2x, where x ≡ 1/Ω̄2 and y ≡ E2/σ0. In Table 4, l0 −m = 1 is corresponding to r-mode
and l0 −m ≥ 2 is corresponding to inertial mode (see e.g., Yoshida & Lee 2000a). The parity
of l0 − m is related to even and odd parities of modes. Using κ0, we can write the frequency
of rotational modes as κ = κ0 + κ2Ω̄2. Intercept κ0 of the fitting formula y = κ0 + κ2x is
also obtained by using least square method. From table 4, we find that η2 and η′2 are in good
agreement with each other. It is important to note that the effects of the deformation due to
the toroidal magnetic field on the rotational mode are quite small. This property is similar to
that found for low frequency g-modes. We also note that the r-mode obtained in this paper is
consistent with that of Lander et al. (2010).

In Figure 6, we plot the eigenfunctions of the rotational modes of m = 2 for B0 = 1016 G for
the n = 1 polytrope, where we assume Ω̄ = 0.05 and use the normalization condition Tl′1

(R) = 1
at the stellar surface. In Figure 7, we plot the magnetic perturbations of the rotational modes of
m = 2 for B0 = 1016 G. In Figure 8 and 9, we plot the eigenfunctions and magnetic perturbations
of the rotational modes ofm = 2 forB0 = 106 G for polytropic index n = 3 and γ = 0 (isentropic).
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Table 4: Coefficient η2 of m = 2 rotational modes for isentropic polytropes with the indices n = 1, 1.5,
and 3 ∗

l0 − |m| κ0 η2 η′2

n = 1

1 0.66666 8.324(−1) 8.326(−1)
2 -0.55660 9.105(−1) 9.171(−1)

1.10002 2.398(−1) 2.401(−1)
3 -1.02590 3.304(−1) 3.316(−1)

0.51734 1.784(+0) 1.785(+0)
1.35777 1.402(−1) 1.404(−1)

4 -1.27290 2.481(−1) 2.511(−1)
-0.27533 7.103(+0) 7.100(+0)
0.86296 5.805(−1) 5.820(−1)
1.51956 9.950(−2) 9.957(−2)

n = 1.5

1 0.66666 5.247(−1) 5.244(−1)
2 -0.69650 3.688(−1) 3.696(−1)

1.06257 1.752(−1) 1.753(−1)
3 -1.12782 1.439(−1) 1.443(−1)

0.53564 1.071(+0) 1.069(+0)
1.31001 1.103(−1) 1.104(−1)

4 -1.34198 8.378(−2) 8.382(−2)
-0.36425 2.999(+0) 2.993(+0)
0.85864 3.516(−1) 3.520(−1)
1.47217 8.210(−2) 8.237(−2)

n = 3

1 0.66667 1.329(−1) 1.328(−1)
2 -1.07669 2.505(−2) 2.520(−2)

0.99492 3.902(−2) 3.892(−2)
3 -1.37189 1.849(−2) 1.872(−2)

0.57976 2.620(−1) 2.622(−1)
1.20940 2.680(−2) 2.665(−2)

4 -1.51785 6.058(−3) 6.101(−3)
-0.66228 2.063(−1) 2.064(−1)
0.85853 6.254(−2) 6.253(−2)
1.36256 2.973(−2) 3.023(−2)

* We use the notation of 1.000 × 10N ≡
1.000(N).
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Figure 6: Eigenfunctions of m = 2 rotational modes for the isentropic n = 1 polytrope for B0 = 1016

G: r mode of κ0 = 0.6667 (left), and inertial modes of κ0 = 1.1000 (center) and κ0 = 0.5173 (right).
The solid lines, the long dashed lines, and the short dashed lines are for the functions xSl1 , xHl1 , and
xTl′1

with x = a/R, respectively, and the amplitude normalization is given by max(xTl′1
) = 1.
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Figure 7: Same as Figure 6 but for the eigenfunctions Sbl1 ≡ kρahS
l /B0 (solid lines), Hbl1 ≡ kρahH

l /B0

(long dashed lines), and Tbl′1
≡ kρahT

l′/B0 (short dashed lines).
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Figure 8: Eigenfunctions of m = 2 rotational modes for the isentropic n = 3 polytrope for B0 = 106 G:
r mode of κ0 = 0.6667 (left), and inertial modes of κ0 = 0.9949 (center) and κ0 = 0.5798 (right). The
solid lines, the long dashed lines, and the short dashed lines are for the functions xSl1 , xHl1 , and xTl′1
with x = a/R, respectively, and the amplitude normalization is given by max(xTl′1

) = 1.
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Figure 9: Same as Figure 8 but for the eigenfunctions Sbl1 ≡ kρahS
l /B0 (solid lines), Hbl1 ≡ kρahH

l /B0

(long dashed lines), and Tbl′1
≡ kρahT

l′/B0 (short dashed lines).

3.2.3 magnetic modes

In order to find magnetic modes (which have frequencies comparable with the characteristic
Alfvén frequency of the star) having real frequencies (σ2 > 0), we looked for low frequency modes
for non-rotating stars, but we could not find any of such low frequency magnetic modes. We
do obtain solutions having pure imaginary frequencies (σ2 < 0), but we cannot regard them as
correct magnetic modes because they depend on jmax. We note that we cannot obtain g-modes
either in the low frequency ranges corresponding to frequency ranges expected for magnetic
modes. The function ξ of these modes in the low frequency ranges have discontinuity as a function
of a. This phenomenon may suggest that modes having this discontinuity belong to continuum
bands of frequency spectra (see section 7.4 of Goedbloed & Poedts 2004). The discontinuity of
the function ξ may be associated with the relation AΨ = BΦ, that is, there exist regions in which
the determinant of the matrix A vanishes, where Ψ = (H,T )T , Φ = (y1,y2)T , and A and B

are matrices (see Appendix A). Goedbloed & Poedts (2004) discuss a system in which a second
order differential equation governing magnetic waves becomes singular in a certain frequency
band. Note that the situation we have in our calculation system for low-frequency range is
essentially the same as the second order differential equation assuming anelastic approximation
∇ · (ρξ) ≈ 0.

Our results discussed above are quite different from those obtained by Lander et al. (2010).
They found polar Alfvén and axial Alfvén modes for magnetized rotating star with purely toroidal
magnetic field. They suggest that pure Alfvén mode for non-rotating star or purely inertial mode
for magnetized non-rotating star are replaced by hybrid magneto-inertial mode for magnetized
rotating star (see also Mathis & Brye 2011, 2012). They also suggest that hybrid magneto-
inertial mode reduces to purely inertial mode in the limit of M/T → 0, where M and T are
magnetic energy and kinetic energy of equilibrium model, respectively. The method of solution
of Lander et al. (2010) is MHD simulation following time evolution of linear oscillation modes
and differs from our method (normal mode analysis). At the moment we do not understand why
we can not calculate the magnetic modes found by Lander et al (2010).
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4 Normal magnetic modes of neutron stars magnetized

with purely poloidal magnetic fields

In this section, we discuss low frequency magnetic modes of neutron stars magnetized with
purely poloidal magnetic fields. We no not take account of the effects of rotation and equilibrium
deformation due to the magnetic fields. We use polytropes of indices n = 1 and 1.5 as back ground
models for modal analysis.

4.1 method of solution

4.1.1 equilibrium model

As back ground models for modal analysis of neutron stars, we use polytropes of indices n = 1
and 1.5. We assume the stars are magnetized with purely poloidal fields, and for simplicity we
do not take account of the effects of equilibrium deformation due to the magnetic fields. We do
not consider the effects of rotation either.

The density and pressure of the stars are given by

ρ = ρ0Θn, p = p0Θn+1, (4.1)

where ρ0 and p0 are the central density and pressure of the stars, and n and Θ denote the
polytropic index and Lane-Emden function.

Purely poloidal magnetic fields are given by (see §2.4)

Br = 2f(r) cos θ, Bθ = −
[
r
df(r)

dr
+ 2f(r)

]
sin θ, Bφ = 0. (4.2)

This configuration automatically satisfies ∇ · B = 0. Here we use spherical polar coordinates
(r, θ, φ). The function f(r) satisfies the following Grad-Shafranov equation derived from the
Ampere’s law ∇× B = 4πjφr sin θeφ (see §2.4):

d2f

dr2
+

4
r

df
dr

= −4πjφ, (4.3)

where jφ is related to the toroidal current and need to satisfy integrability condition (see §2.4).
Therefore, we assume jφ = c0ρ, where c0 is a constant determined by outer boundary condition
at stellar surface. The function f(r) behaves near the center of the star as follows:

f(r) ∼ α0 + O(r2), (4.4)

where α0 is another constant determined by the outer boundary condition at the surface of
the star. We assume jφ = 0 in the outside of the star. Thus, exterior solution f (ex) is given
by f (ex) = µb/r

3, where µb denotes magnetic dipole moment. The constants α0 and c0 are
determined by imposing continuity conditions f = f (ex) and df/dr = df (ex)/dr at the stellar
surface. In Figure 10, we plot magnetic field lines for n = 1 and 1.5 polytropes. From Figure 10
we find there are closed field lines in the interior of the stars.
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Figure 10: Magnetic field lines in the polytropic model of index n = 1 (left pannel) and n = 1.5 (right
pannel).

4.1.2 perturbation equations

The basic perturbed equations we employ here are the same as those for stars magnetized with
purely toroidal magnetic fields, except that we take, in equations (3.23)-(3.26), the limits ε→ 0,
a→ r, and D → 0. We then obtain

−σ2ξ = −∇δΦ − 1
ρ
∇δp+

δρ

ρ2

dp
dr

er +
1

4πρ
[(∇× δB) × B + (∇× B) × δB], (4.5)

δρ+ ∇ · (ρξ) = 0, (4.6)

δρ

ρ
=

δp

Γ1p
− ξr

r
rA, (4.7)

δB = ∇× (ξ × B). (4.8)

Since separation of variables between radial coordinate (r) and angular coordinates (θ, φ) is
not possible because of the Lorentz force term, we expand perturbations in terms of spherical
harmonic functions Y m

l (θ, φ). The displacement vector is given by equations (3.30)-(3.32) in the
limit of a→ r, that is (see e.g., Lee 2005, 2007),

ξr =
jmax∑
j=1

rSlj (r)Y
m
lj (θ, φ), (4.9)

ξθ =
jmax∑
j=1

[
rHlj (r)

∂

∂θ
Y m

lj (θ, φ) − irTl′j
(r)

1
sin θ

∂

∂φ
Y m

l′j
(θ, φ)

]
, (4.10)

ξφ =
jmax∑
j=1

[
rHlj (r)

1
sin θ

∂

∂φ
Y m

lj (θ, φ) + irTl′j
(r)

∂

∂θ
Y m

l′j
(θ, φ)

]
, (4.11)

and the magnetic perturbations (3.33) to (3.35) are

δBr =
jmax∑
j=1

rbl′j (r)Y
m
l′j

(θ, φ), (4.12)
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δBθ =
jmax∑
j=1

[
rbHl′j (r)

∂

∂θ
Y m

l′j
(θ, φ) − irbTlj (r)

1
sin θ

∂

∂φ
Y m

lj (θ, φ)
]
, (4.13)

δBφ =
jmax∑
j=1

[
rbHl′j (r)

1
sin θ

∂

∂φ
Y m

l′j
(θ, φ) + irbTlj (r)

∂

∂θ
Y m

lj (θ, φ)
]
. (4.14)

The perturbed density and pressure in (3.36) reduce to in the limit of a→ r:

δp =
jmax∑
j=1

δplj (r)Y
m
lj (θ, φ), δρ =

jmax∑
j=1

δρlj (r)Y
m
lj (θ, φ), (4.15)

where lj = |m| + 2(j − 1) and l′j = lj + 1 for even modes, and lj = |m| + 2j − 1 and l′j = lj − 1
for odd modes (j = 1, 2, 3, ..., jmax).

Substituting expansion forms (4.9)-(4.15) into linearized basic equations (4.5)-(4.8), we obtain
a system of coupled linear ordinary differential equations for the expansion coefficients Slj (r),
Tl′j

(r), bSl′j (r), b
H
l′j

(r), bTlj (r), and rdbHl′j (r)/dr. These equations are solved as a boundary and
eigenvalue problem under the suitable boundary conditions (see Appendix D for the detail). The
oscillation modes are separated into even modes and odd modes. For example, for an even mode,
(ξr, ξφ, δBθ) and (ξθ, δBr, δBφ) are even and odd functions about the equatorial plane for purely
poloidal magnetic fields. Since eigenvalues σ2 are real number for the boundary conditions,
positive value of σ2 > 0 are corresponding to stable oscillation modes with frequencies ±σ, and
negative value of σ2 < 0 are corresponding to unstable monotonically growing modes with growth
rates η =

√
−σ2.

4.2 numerical results

We calculate non-axisymmetric (m 6= 0) magnetic modes for polytropes of indices n = 1 and
1.5, where the frequency of the magnetic modes is proportional to the strength of magnetic field
BS measured at the stellar surface. In contrast to the case of purely toroidal magnetic fields, we
can not find g-, f -, and p-modes, and oscillation modes we can find are magnetic modes only.
We obtain two kinds of magnetic modes, that is, stable oscillatory magnetic modes with σ2 > 0
and unstable monotonically growing magnetic mode with σ2 < 0. For unstable monotonically
growing magnetic modes (σ2 < 0), describing σ = σIi = ±ηi (η is a positive constant), time
dependence of the mods is given by exp(∓ηt). The magnetic modes having time dependence
of exp(ηt) grow monotonically with time. Then, we can regard η as the growth rate, and the
modes with σ2 < 0 are corresponding to magnetic instability. It is well known that magnetized
stars having purely poloidal magnetic fields are unstable and magnetic energies stored in the
equilibrium configuration are quickly dispersed in several ten milliseconds (e.g., Marky & Tayler
1973; van Assche, Goossens & Tayler 1982; Braithwaite 2007; Laskey et al. 2011; Ciolfi &
Rezzolla 2012).
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Figure 11: Eigenfrequency σ of the stable magnetic modes of odd parity for m = 1, 2, 3, and 4 versus
the Alfvén frequency σA for the n = 1 polytrope.

4.2.1 stable magnetic modes

In Figure 11, we plot eigenfrequencies of stable magnetic modes which have no radial nodes of
Sl1 of m = 1, 2, 3, and 4 versus the Alfvén frequency σA, where σA is defined by

σA ≡ BS√
4πρcR2

, (4.16)

where ρc is the central density, R is the radius, and BS = µb/R
3 denotes the strength of magnetic

field measured at the stellar surface. Here, σ and σA are normalized by ΩK =
√
GM/R3 where

M is the mass and G is the gravitational constant. We also assume M = 1.4M� and R = 106 cm
for the polytropes of indices n = 1 and 1.5, and we have σA/ΩK = 4.42× 10−4(BS/1015G). It is
important to note that the eigenfrequencies of magnetic modes obtained in this subsection form
a discrete frequency spectrum, and that the frequencies are proportional to the Alfvén frequency
σA, that is, BS, and that the functions ξ have no discontinuity in the interior of the stars. We
also note that stable magnetic modes are found only for odd parity.

In Table 5, we tabulated eigenfrequency σ̄ = σ/ΩK of stable magnetic modes for the n = 1
and 1.5 polytropes for BS = 1015 G, where we have assumed γ = 0 for 1/Γ1 = n/(n + 1) + γ.
We calculate only magnetic modes that have a few radial nodes of Sl1 for a given azimuthal
wavenumber m. It becomes more difficult to calculate magnetic modes as the number of radial
nodes increases. From Table 5, the eigenfrequencies of magnetic modes for n = 1.5 are larger
than those for n = 1 for a given m and a given number of radial nodes of Sl1 . For a given
m, the frequency decreases as the number of radial nodes of Sl1 increases. This property of
the eigenfrequencies of the magnetic modes means that the magnetic modes are anti-Strumian
and behave in a similar to the axisymmetric toroidal modes calculated by Asai & Lee (2014),
who analised axisymmetric toroidal modes of magnetized neutron stars with purely poloidal
magnetic fields under general relativistic framework. Further, the frequencies of the magnetic
modes increase as m increases.

In Figure 12, we plot the eigenfunctions of the magnetic mode of m = 1 for B0 = 1015 G for
the polytrope of index n = 1, where the number of radial nodes of Sl1 is zero. We find S, H, and
T have large amplitudes in the core, and the horizontal component H and toroidal component
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Table 5: Normalized eigenfrequency σ̄ of the stable magnetic modes of odd parity for BS = 1015 G.

n = 1

m number of radial nodes

0 1 2
1 0.007523 0.007120 0.006954
2 0.007943 0.007464 0.007216
3 0.008174 0.007710 0.007439
4 0.008310 0.007887 0.007618

n = 1.5

m number of radial nodes

0 1 2
1 0.010304 0.009975 0.009817
2 0.010720 0.010247 0.010038
3 0.010961 0.010485 0.010229
4 0.011106 0.010663 0.010397

T show rapid spacial oscillations near the stellar surface, while the radial component S does not.
For isentropic (γ = 0) cases, we can calculate stable magnetic modes even for the field strength
BS ∼ 1012 G.

Assuming φ = 0, the spacial oscillation pattern ξ̂ of the displacement vector ξ is defined by

ξ̂j(r, θ) = ξj(r, θ, φ = 0), (4.17)

where j = r, θ, and φ. The oscillation patterns ξ̂j(r, θ) of a stable magnetic mode are shown
in Figure 13, where the z-axis given by x = 0 is the symmetry axis and we have applied the
amplitude normalization condition given by max(|ξ̂j(r, θ)|) = 1. Since stable magnetic modes
have odd parity, the patterns ξ̂r(r, θ) and ξ̂φ(r, θ) are antisymmetric to the equatorial plane
(z = 0), while ξ̂θ(r, θ) is symmetric. The oscillation patterns have large amplitudes along the
symmetry axis. We find the φ-component of ξ̂ reflects the closed magnetic field lines near the
stellar surface.

In Table 6, we tabulated the ratios |ξ̂max
θ |/|ξ̂max

r | and |ξ̂max
φ |/|ξ̂max

r | of magnetic modes that
have no radial nodes of Sl1 for the n = 1 and 1.5 polytropes for B0 = 1015 G and γ = 0, where
|ξ̂max

j | = max(|ξ̂j(r, θ)|). From Table 6, we find that the ratios |ξ̂max
θ |/|ξ̂max

r | and |ξ̂max
φ |/|ξ̂max

r |
do not strongly depend on the azimuthal wavenumber m, and that ξ̂r and ξ̂θ dominate ξ̂φ. The
pressure perturbation δU ≡ δp(r, θ, φ = 0)/(ρgr) is negligible compared with the displacement
vector. We find the oscillation patterns for the n = 1 polytrope are almost the same as those
for the n = 1.5 polytrope. The ratios |ξ̂max

φ |/|ξ̂max
r | for the polytrope of index n = 1 are slightly

larger than those for the polytrope of index n = 1.5. As the azimuthal index |m| increases, the
amplitudes of oscillation patterns are pushed from the symmetry axis to the envelope region.
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Figure 12: Expansion coefficients xSl, xTl′ , and xHl as a function of x = r/R for an m = 1 stable
magnetic mode of odd parity for the polytrope with n = 1 for BS = 1015 G, where the solid lines, the
long dashed lines, the short dashed lines, and the dotted lines are for the expansion coefficients associated
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the frequency σ̄ ≡ σ/ΩK of the mode is 0.007523.

Figure 13: Spatial oscillation patterns ξ̂r(r, θ) (left), ξ̂θ(r, θ) (middle), and ξ̂φ(r, θ) (right) of the m = 1
stable magnetic mode of Figure 12, where the amplitudes are normalized such that max(|ξ̂j(r, θ)|) = 1.

Table 6: Amplitude ratios between the components of the displacement vector of stable magnetic modes
of odd parity for BS = 1015 G

n = 1

m |ξ̂max
θ |/|ξ̂max

r | |ξ̂max
φ |/|ξ̂max

r | |δUmax|/|ξ̂max
r |

1 1.109 0.322 9.833×10−6

2 0.787 0.304 1.236×10−5

3 1.234 0.366 1.408×10−5

4 1.121 0.396 1.595×10−5

n = 1.5

1 2.552 0.111 6.954×10−6

2 0.897 0.047 3.358×10−6

3 1.124 0.051 5.376×10−6

4 1.365 0.103 7.191×10−6

37



Table 7: Growth rate η̄ ≡ η/ΩK of the monotonically growing magnetic modes of even and odd parities
for BS = 1015 G

n = 1

even parity odd parity
m number of radial nodes m number of radial nodes

1 2 3 1 2 3
1 0.000961 0.000580 0.000405 1
2 0.001557 0.000977 0.000709 2 0.003562
3 0.001964 0.001273 0.000949 3 0.004435 0.002038
4 0.002260 0.001505 0.001144 4 0.004879 0.003088
5 0.002488 0.001695 0.001452 5 0.005147 0.003685 0.002008
6 0.002676 0.001859 0.001452 6 0.005326 0.004086 0.002728
7 0.002852 0.002110 0.001889 7 0.005454 0.004377 0.003209
8 0.003096 0.002616 0.002069 8 0.005548 0.004598 0.003566

n = 1.5

even parity odd parity
m number of radial nodes m number of radial nodes

1 2 3 1 2 3
1 0.000898 0.000430 1
2 0.001601 0.000804 2
3 0.002114 0.001121 3
4 0.002482 0.001386 4 0.006170 0.003683
5 0.002769 0.001618 5 0.006510 0.004506 0.002007
6 0.003328 0.002611 6 0.006734 0.005047 0.003147
7 0.004089 0.002895 7 0.006892 0.005435 0.003849
8 0.004659 0.003053 8 0.007009 0.005727 0.004354

4.2.2 unstable magnetic modes

Unstable magnetic modes are found for both even and odd parities. If we define the growth
rate η > 0 as σ = ±ηi, η is exactly proportional to the strength of magnetic field BS for γ = 0.
In Table 7, we tabulated normalized growth rate η̄ = η/ΩK of unstable magnetic modes for γ = 0
and BS = 1015 G for the polytropes of indices n = 1 and 1.5. We note that there exists unstable
magnetic modes even for weak magnetic field as BS ∼ 1012 G. In Table 7, we find the growth
rates η̄ of unstable magnetic modes of n = 1 and 1.5 polytropes are quite similar to each other.
It becomes difficult to calculate unstable magnetic modes as the number of radial nodes of Sl1

increases, especially for the polytrope of index n = 1.5. Unstable magnetic modes of odd parity
are found only for m ≥ 2 for the n = 1 polytrope, and only for m ≥ 4 for the n = 1.5 polytrope.
For a given m, the growth rate η̄ decreases as the number of radial nodes of Sl1 increases. On the
other hand, the growth rate of unstable modes become larger as the azimuthal index m increases.
Using the normalized growth rate η̄, the growth timescale τg = 1/η is given by

τg = 7.33 × 10−5/η̄ s, (4.18)

where we assume M = 1.4M� and R = 106 cm. Using a characteristic value of η̄ ∼ 10−3, we
obtain the growth timescale as τg ∼ 5 × 10−2 s. This estimate is consistent with the results
obtained by e.g., Laskey et al. (2011) and Ciolfi & Rezzolla (2012).

In Figure 14, we plot the eigenfunctions of an unstable magnetic mode of even parity of m = 1
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Figure 14: Same as Figure 12 but for an m = 1 unstable magnetic mode of even parity with the growth
rate η̄ = 0.00096.

Figure 15: Same as Figure 13 but for the m = 1 unstable magnetic mode of Figure 14.

that has one radial node of Sl1 for BS = 1015 G for the polytrope of index n = 1, where we
normalize the amplitudes as Tl′1

(R) = 1. We find that Sl1 has large amplitudes in the core, while
Tl′1

in the envelope. Hl1 has large amplitudes both in the core and in the envelope. We note
that first components of S, H, and T dominate the other components of higher lj or l′j .

The oscillation patterns ξ̂r(r, θ), ξ̂θ(r, θ), and ξ̂φ(r, θ) of the unstable magnetic mode of m = 1
are shown in Figure 15. Since this unstable mode has even parity, ξ̂r(r, θ) and ξ̂φ(r, θ) are
symmetric about the equatorial surface, and ξ̂θ(r, θ) is antisymmetric. The pattern ξ̂r(r, θ) has
large amplitudes along the equatorial surface, while the θ and φ components of ξ̂ have in the
polar regions. We find that the closed magnetic field lines affects the r component of ξ̂.

In Table 8, we tabulated relative amplitudes |ξ̂max
θ |/|ξ̂max

r | and |ξ̂max
φ |/|ξ̂max

r | of unstable mag-
netic modes for B0 = 1015 G for the polytropes of indices n = 1 and 1.5. From Table 8, we
find that the ratios |ξ̂max

θ |/|ξ̂max
r | and |ξ̂max

φ |/|ξ̂max
r | decrease as the azimuthal wavenumber m

increases, and ξ̂φ(r, θ) dominate the other components of ξ̂. The pressure perturbation is negli-
gible compared with the displacement vector, as in the case of stable magnetic modes. We note
that oscillation patterns of the modes for n = 1 and 1.5 polytropes are almost the same with
each other.

In Figures 16 and 17, we plot the eigenfunctions and spacial oscillation patterns of an unstable
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Table 8: Amplitude ratios between the components of the displacement vector of the unstable magnetic
modes of even parity for BS = 1015 G

n = 1

m |ξ̂max
θ |/|ξ̂max

r | |ξ̂max
φ |/|ξ̂max

r | |δUmax|/|ξ̂max
r |

1 17.05 319.1 3.462×10−4

2 10.95 120.5 3.706×10−4

3 9.183 72.64 3.137×10−4

4 7.996 49.24 2.538×10−4

n = 1.5

1 31.98 685.1 1.471×10−4

2 14.39 159.9 1.166×10−4

3 7.662 63.72 7.266×10−5

4 10.66 69.91 1.082×10−4
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Figure 16: Same as Figure 14 but for an m = 5 oscillatory magnetic modes of odd parity with the
growth rate η̄ = 0.005147.

mode of odd parity of m = 5 that has one radial node of Sl1 for B0 = 1015 G for the polytrope
of index n = 1. The toroidal components Tl′j

of the displacement vector ξ are similar to those
of even parity of m = 1, however the amplitudes of the components Slj and Hlj are confined to
the envelope region in contrast to those of even parity of m = 1. From Figure 17, we find the
amplitudes of the unstable modes of m = 5 are large in envelope region.

4.2.3 discussion

In Figure 18, we plot the frequency σ/σA of a stable magnetic mode of m = 2 and the growth
rate η/σA of an unstable magnetic mode of even parity of m = 2 having no radial nodes of Sl1

for B0 = 1015 G for the polytrope of index n = 1 as a function of
√

|γ|. As |γ| increases, the
frequency σ/σA gradually increases (decreases) for γ < 0 (γ > 0), where we cannot calculate
magnetic modes for

√
|γ|/σA

>∼ 10. On the other hand, the growth rate η/σA decreases (increases)
for γ < 0 (γ > 0) as |γ| increases, where we cannot calculate for

√
|γ|/σA

>∼ 4. For radiative star
(γ < 0), the buoyant force contributes to stabilizing magnetic instability as |γ| increases. We
note the relations between σ/σA and |γ|1/2/σA and between η/σA and |γ|1/2/σA are insensitive
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Figure 17: Same as Figure 15 but for the m = 5 unstable magnetic mode of Figure 16.
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Figure 18: Eigenfrequency σ/σA (left) and the growth rate η/σA (right) of the m = 2 magnetic modes
versus the |γ|1/2/σA for the n = 1 polytrope.

to the strength of the magnetic field where the Brunt-Väisälä frequency N ∝
√
|γ|.

Using a dispersion relation given by Lee (2010) for waves in a magnetized star, we try to
explain the rapid spacial oscillations of eigenfunctions H and T in the stellar surface layer (see
Figure 12). For a non-rotating isentropic star, the dispersion relation is given by

−pq2 cos4 α(Rk)6 + q2 cos2 α
(

2
p

q
+ 1
)
σ̄2(Rk)4

+q
[
β̄2 cos2 α−

(
p

q
+ 1 + cos2 α

)
σ̄2

]
σ̄2(Rk)2

+σ̄2
[
σ̄4 − σ̄2β̄2 + q(RkH)2β̄2 sin2 ψ

]
= 0, (4.19)

where

p =
a2

(RΩK)2
, q =

B2/(4πρ)
(RΩK)2

, β̄ =
g2/a2

Ω2
K

, a = Γ1
p

ρ
,

g =
GMr

r2
, cosα =

k · B
kB

, sinψ =
(k × B)z

kHBH
, (4.20)
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Figure 19: Local wavelengths λ/R = 2π/(Rkz) derived using the dispersion relation (4.19) for the
n = 1 polytrpoe of M = 1.4M� and R = 106cm and for BS = 1015G, where the black lines and red
lines are for cos θ = 0.5 and 0, respectively, and the solid lines, dashed lines, and dotted lines are for
cos α = 0.5, 0.1, and 0.01, respectively. Here, we assume σ̄2 = 10−5 (left) and σ̄2 = 10−4 (right).

and k = |K| and B = |B|. Using local Cartesian coordinates (x, y, z) and assuming z, x,
and y directions are along r, θ, and φ directions, respectively, we obtain Bz = 2f cos θ, By =
−(2f + rdf/dr) sin θ, kH =

√
k2

x + k2
y, BH = |Bx|, and sinψ = −kyBx/(kH |Bx|). Assuming

M = 1.4M�, R = 106 cm, and BS = 1015 G for an n = 1 polytrope, we can calculate the
parameters p, q, β̄2, and a2 as functions of r. For simplicity, we assume kxR = kyR = 1 near
the surface layer for |m| ∼ l ∼ 1. Then solving equation (4.19), we obtain the value of (Rkz)2

for given σ̄2, cos θ, and cosα. In Figure 19, we plot local wavelength λ/R = 2π/(Rkz) for given
parameters σ̄2, cos θ, and cosα. From Figure 19, we find the waves propagating across the field
lines near the stellar surface tend to have short wavelengths. The rapid spacial oscillations of the
eigenfunctions H and T near the stellar surface layer may correspond to the case of cosα ∼ 0.01.
Since we have k·ξ ∼ 0 for low frequency modes, we have |ξz|/|ξH | � 1 for |kz|/kH � 1, and hence
rapid spacial oscillations of the eigenfunction S are not revealed because of small amplitudes of
ξz.

We fail to calculate g-, f -, and p-modes of stars magnetized with purely poloidal magnetic
fields, in contrast to the case of the oscillations of stars with purely toroidal magnetic fields.
Assuming the limit of |B| → 0, the eigensolutions for magnetized stars (for simplicity, we take
γ = 0) are given by

σ = σ0 + O(σ̄2
A), ξ = ξ0 + O(σ̄2

A), δp = δp0 + O(σ̄2
A), δρ = δρ0 + O(σ̄2

A), (4.21)

where σ̄0, ξ0, δp0, and δρ0 are eigenfrequency and eigenfunctions of non-magnetized stars, respec-
tively. It is clear that equations (4.21) are solutions to equations (4.5)-(4.7), and these solutions
satisfy the outer boundary conditions ∆p(R) = 0 in the weak field limit |B| → 0. From equation
(4.8), we obtain

δB

BS
= ∇×

(
ξ0 ×

B

BS

)
+ O(σ̄2

A). (4.22)

However, in general δB/BS cannot satisfy the boundary condition that guarantes δB/BS → 0
for r → ∞. Therefore, equations (4.21) and (4.22) cannot be regarded as eigensolutions for
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magnetized stars in the limit of |B| → 0. In other word, oscillation modes that exist for non-
magnetized stars do not necessarily exist for magnetized stars even if magnetic fields are very
weak. In physical point of view, however, it is reasonable to expect that f - and p-modes exist
even for magnetized stars. This contradiction might be resolved if we admit that in normal
mode analyses the Lorentz force term in equation (4.5) must not vanish even when we take weak
field limit of |B| → 0. This occurs when ∇ × (δB/BS) ∝ σ̄−1

A is satisfied somewhere in the
interior of the stars in the limit of |B| → 0. In this case, δB shows rapid spatial oscillations
in the interior of the star to keep the Lorentz force term finite in the limit of |B| → 0, and
hence eigenfrequencies and eigenfunctions of f - and p-modes of magnetized stars may be slightly
different from those of non-magnetized stars. Usually, it is difficult to properly treat such very
rapid spacial oscillations caused by the term ∇ × (δB/BS) ∝ σ̄−1

A with our numerical code
used in this paper. Interestingly, we can obtain f - and p-like modes if we largely reduce the
number of radial mesh points in the interior of the stars. This reduction of the number of radial
mesh points of the stars are corresponding to averaging rapid spatial oscillations of δB over
length scales much longer than wavelength of the spatial oscillations. In this case, we can avoid
numerical difficulty related to the rapid spatial oscillations of δB, however we cannot regard
these f - and p-like modes calculated as correct normal modes.

5 Conclusion

In this paper, we calculated non-axisymmetric (m 6= 0) oscillation modes for magnetized and
uniformly rotating stars with purely toroidal magnetic fields and for magnetized stars with purely
poloidal magnetic fields. As background models for the modal analyses, we use polytropes and
ignore the solid crust region for simplicity.

For magnetized and uniformly rotating stars having purely toroidal magnetic field, we use
three polytopes of the indices n = 1, 1.5, and 3, and consider the effects of stellar deformation
due to the magnetic field. Assuming no rotation, we calculate non-radial g-, f -, and p-modes,
and we find that the frequency changes caused by the magnetic fields scale with the square of the
characteristic Alfvén frequency ω̄2

A = B2
0/(4πρ0R

2). Assuming uniform rotation, we calculate
rotational modes such as inertial mode and r-mode, and find that the frequency changes of
the rotational modes by the magnetic field scale with the square of the characteristic Alfvén
frequency ω̄2

A. We find that high-frequency modes such as f - and p-modes are strongly affected
by the deformation of the stars due to the magnetic field, although low-frequency modes such as
g- and rotational modes are hardly affected by the stellar deformation. It is important to note
that we fail to obtain jmax-independent magnetic modes for purely toroidal magnetic fields. The
low-frequency modes we obtained in the frequency range of magnetic modes have discontinuity
in the eigenfunctions as a function of r, which may suggest that the frequencies of the modes we
found are in a continuum frequency band.

For magnetized stars having purely poloidal magnetic field, we use two polytropes with poly-
tropic indices n = 1 and 1.5. We ignore the stellar rotation and the equilibrium deformation due
to the magnetic fields. We find stable (oscillatory) magnetic modes (σ2 > 0) of odd parity and
unstable (monotonically growing) magnetic modes (σ2 < 0) of both even and odd parities. The
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frequency σ of stable magnetic mode and the growth rate η of unstable magnetic mode are pro-
portional to the strength of the magnetic field BS measured at the stellar surface (for assuming
γ = 0). The eigenvalue spectra of the stable magnetic modes and unstable magnetic modes are
anti-Strumian and the frequency and the growth rate decrease as the number of radial nodes
of the eigenfunctions increases for a given m. We find non-axisymmetric magnetic modes are
affected by stratification in the interior of the stars. For radiative stars (γ < 0), the frequency of
stable magnetic modes increases as |γ| increases, while for convective stars (γ > 0), the frequency
decreases as |γ| increases. On the other hand, for unstable magnetic modes, the growth rate η
decreases as |γ| increases for γ < 0, and it increases as |γ| increases for γ > 0, which means
that the buoyant force reduces the magnetic instability, but convective instability intensifies the
magnetic instability. The frequency σ of stable magnetic mode and the growth rate η of unstable
magnetic mode increase as the azimuthal wavenumber |m| increases. We note that Lasky et al.
(2011) obtain strong instability of magnetized star with purely poloidal magnetic field especially
for m = 4. It is shown that purely poloidal magnetic fields having closed field lines in the interior
of the star become unstable in the limit of m→ ∞ (see e.g., Markey & Tayler 1973; van Assche
et al. 1982).

For given m and BS, we find only one mode sequence of (stable) magnetic modes, where
we have classified the magnetic modes using the number of radial nodes of the eigenfunctions.
This result is different from that found for axisymmetric (m = 0) toroidal modes of magnetized
neutron stars with purely poloidal magnetic field discussed by Lee (2008) and Asai & Lee (2014),
who obtained several discrete sequences of magnetically modified toroidal modes, whose surface
oscillation patterns are different from each other.

The frequencies of magnetar QPOs observationally identified are order of several ten Hz to
several hundred Hz. These QPO frequencies may be explained by using magnetic modes of
strongly magnetized neutron stars. For example, the eigenfrequencies of magnetic modes are
order of several hundred Hz for BS ∼ 1015 G. For detailed comparisons between the observations
and theoretical predictions, however, we need to take account of various effects such as a solid
crust, magnetic field configurations, superfluidity, and general relativity on the magnetic modes,
which is among future works.

Present analyses are a part of series of our researches on the oscillations of magnetized stars. It
is well known that purely toroidal or poloidal magnetic fields are unstable and magnetic energy
are dissipated quickly. Therefore, it is difficult to observe long-lived magnetic modes as QPOs.
We note that considering stellar rotations, instability of purely poloidal and toroidal magnetic
fields may be weaken (e.g., Lander & Jones 2011a, b). It is thought that mixed poloidal and
toroidal magnetic field such as twisted-torus magnetic field may be stable (e.g., Braithwaite &
Spruit 2004; Yoshida & Eriguchi 2006; Yoshida, Yoshida & Eriguchi 2006; Ciolfi et al. 2009),
that is, such magnetic field configuration may continue to exist for a long time. Thus, it is
interesting to carry out the analysis of stability and examine frequency spectra for magnetized
stars having such magnetic field configurations. For magnetic fields having both poloidal and
toroidal field components, spheroidal and toroidal modes are coupled with each other even for
assuming axisymmetric perturbations, and equatorial-symmetry is lost, which makes it difficult
to analyze the oscillation modes.

We need to consider the effects of the solid crust, superfluidity of neutrons, and superconduc-
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tivity of protons on the oscillation modes as the important properties of cold neutron stars (e.g.,
Andersson, Glampedakis & Samuelsson 2009; Glampedakis, Andersson & Samuelsson 2011). It
is thought that neutrons become superfluid in the inner crust and fluid core, and protons become
superconductor in the fluid core. For example, if the fluid core contains type I superconductor,
magnetic fields are expelled from the core due to Meissner effect, and confined to the solid crust
(e.g., Colaiuda et al. 2008; Sotani et al. 2008b). In this case, it may be reasonable to calculate
magnetically modified toroidal modes confined in the solid crust so long as axisymmetric toroidal
modes are concerned, while for spheroidal modes or coupled spheroidal and toroidal modes, we
need to consider both non-magnetic core and magnetic crust. However, recent analyses of spectra
of timing noise for SGR 1806-20 and SGR 1900+14 suggest the fluid core is type II supercon-
ductor (Arras, Cumming & Thompson 2004). In this case, the fluid core as well as the solid
crust is threaded by magnetic field lines, and frequency spectra of oscillation modes are affected
by superconductivity of the core (e.g., Colaiuda et al. 2008; Sotani et al. 2008b). Examining
oscillation modes of magnetized stars using normal mode analysis taking account of the effects
of superfluidity and superconductivity is our future studies (see e.g., Glampedakis, Andersson &
Samuelsson 2011; Gabler et al. 2013b; Passamonti & Lander 2013, 2014).
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APPENDIX: A Oscillation equations for slowly rotating

stars magnetized with purely toroidal mag-

netic fields

In order to describe the master equations of magnetized uniformly rotating stars with purely
toroidal magnetic field, we introduce following column vectors for expansion coefficients of the
perturbations:

(S)j = Slj , (H)j = Hlj , (T )j = Tl′j
, (hS)j = hS

lj , (hH) = hH
lj ,

(hT )j = hT
l′j
, (y2)j =

δplj

ρag
, (A.1)

where (X)j denotes j-th components of the column vector X, and g = GM(a)/a2 is a grav-
itational acceleration. Perturbed continuity equation (3.24) and a-, θ-, and φ-components of
perturbed Euler equation (3.23) reduce to

a
dS

da
=

{[
VG − 3 − a

dϑ(α)
da

]
I − a

dϑ(β)
da

A0

}
S − VGy2 + [Λ0 + 3ϑ(β)B0]H

+3mϑ(β)Q0T , (A.2)

a
dy2

da
=

[
c1σ̄

2 {[1 + 2η(α)] I + 2η(β)A0} + aAI
]
S

−aA
3

(
2 +

d ln ρ
d ln a

)
ρ̂c1ω̄

2
A (I − A0) S + (1 − aA− U)y2

+
VG

3

(
2 +

d ln ρ
d ln a

)
ρ̂c1ω̄

2
A (I − A0)y2

−{2mc1σ̄Ω̄[1 + α+ η(α)]I + 2mc1σ̄Ω̄[β + η(β)]A0 + 3c1σ̄2βB0}H

−{2c1σ̄Ω̄[1 + α+ η(α)]C0 + 2c1σ̄Ω̄[β + η(β)]A0C0 + 3mc1σ̄2βQ0}T

+
1
2
ρ̂c1ω̄

2
A

{
m

[
a
dhH

da
− hS + 2

(
2 +

d ln ρ
d ln a

)
hH

]

−C0

[
a
dhT

da
+ 2

(
2 +

d ln ρ
d ln a

)
hT

]}
, (A.3)
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−{mν [1 + α+ η(α)] I +mν [β + η(β)]A0 − 3β (2A0 + B0)}S

+aAρ̂
ω̄2

A

σ̄2
(2A0 + B0)S − 1

c1σ̄2
Λ0y2 − ρ̂

ω̄2
A

σ̄2
VG (2A0 + B0) y2

+ [(1 + 2α)Λ0L0 + 2β (A0Λ0 + 3B0) − 2mνβ (I + 6A0)]H

+ [−ν (1 + 2α− 2β)Λ0M1 − 4νβ (A0Λ0M1 + 3Q0B1) + 6mβQ0] T

+
1
2
mρ̂

ω̄2
A

σ̄2

(
2 +

d ln ρ
d ln a

)
hS +mρ̂

ω̄2
A

σ̄2
hH − 1

2
ρ̂
ω̄2

A

σ̄2
Λ0RhT = 0 , (A.4)

{ν [1 + α+ η(α)]Λ1K + ν [β + η(β)] [A1Λ1K − 2Q1(I − A0)]

−3mβQ1}S −maAρ̂
ω̄2

A

σ̄2
Q1S +mρ̂

ω̄2
A

σ̄2
VGQ1y2

+ [−ν(1 + 2α− 2β)Λ1M0 − 4νβ (A1Λ1M0 + 3Q1B0) + 6mβQ1] H

+ [(1 + 2α)Λ1L1 + 2β (A1Λ1 + 3B1) − 2mνβ (I + 6A1)]T

−1
2
ρ̂
ω̄2

A

σ̄2

(
2 +

d ln ρ
d ln a

)
Λ1KhS + ρ̂

ω̄2
A

σ̄2
Λ1M0h

H +
1
2
mρ̂

ω̄2
A

σ̄2
(Λ1 − 2I)hT = 0 . (A.5)

a-, θ-, and φ-components of perturbed induction equation (3.26) reduce to

hS = mS, (A.6)

hH = maAΛ−1
0 S −mVGΛ−1

0 y2 +mH, (A.7)

hT = aAKS − VGKy2 −mT , (A.8)

where

U =
d lnM(a)

d ln a
, VG = − 1

Γ1

d ln p
d ln a

, ϑ(α) = 3α+ a
dα
da

, η(α) = α+ a
dα
da

, (A.9)

ω̄2
A ≡ ωA(GM/R3)1/2 and σ̄ ≡ σ(GM/R3)1/2 are normalized frequency, ωA =

√
B2

0/(4πρ0R2)
is characteristic Alfvén frequency of the star, and ν ≡ 2Ω/σ. The quantities Q0, Q1, C0, C1, K,
M0, M1, Λ0, Λ1, R, L0, L1, A0, A1, B0, and B1 are matrices defined as follows: for even modes,

(Q0)jj = Jm
lj+1, (Q0)j+1,j = Jm

lj+2, (Q1)jj = Jm
lj+1, (Q1)j,j+1 = Jm

lj+2,

(C0)jj = −(lj + 2)Jm
lj+1, (C0)j+1,j = (lj + 1)Jm

lj+2,

(C1)jj = ljJ
m
lj+1, (C1)j,j+1 = −(lj + 3)Jm

lj+2,

(K)jj =
Jm

lj+1

lj + 1
, (K)j,j+1 = −

Jm
lj+2

lj + 2
,

(M0)jj =
lj

lj + 1
Jm

lj+1, (M0)j,j+1 =
lj + 3
lj + 2

Jm
lj+2,

(M1)jj =
lj + 2
lj + 1

Jm
lj+1, (M1)j+1,j =

lj + 1
lj + 2

Jm
lj+2,

(Λ0)jj = lj(lj + 1), (Λ1)jj = (lj + 1)(lj + 2),
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(R)jj = − (lj + 2)(lj − 1)
lj + 1

Jm
lj+1, (R)j+1,j =

(lj + 1)(lj + 4)
lj + 2

Jm
lj+2,

L0 = I −mνΛ−1
0 , L1 = I −mνΛ−1

1 , A0 =
1
2
(3Q0Q1 − I),

A1 =
1
2
(3Q1Q0 − I), B0 = Q0C1, B1 = Q1C0, (A.10)

where lj = |m| + 2j − 2 for j = 1, 2, 3, ...., jmax, and

Jm
lj =

[
(lj +m)(lj −m)
(2lj − 1)(2lj + 1)

]1/2

, (A.11)

and for odd modes,

(Q0)jj = Jm
lj+1, (Q0)j,j+1 = Jm

lj+2, (Q1)jj = Jm
lj+1, (Q1)j+1,j = Jm

lj+2,

(C0)jj = ljJ
m
lj+1, (C0)j,j+1 = −(lj + 3)Jm

lj+2,

(C1)jj = −(lj + 2)Jm
lj+1, (C1)j+1,j = (lj + 1)Jm

lj+2,

(K)jj = −
Jm

lj+1

lj + 1
, (K)j+1,j =

Jm
lj+2

lj + 2
,

(M0)jj =
lj + 2
lj + 1

Jm
lj+1, (M0)j+1,j =

lj + 1
lj + 2

Jm
lj+2,

(M1)jj =
lj

lj + 1
Jm

lj+1, (M1)j,j+1 =
lj + 3
lj + 2

Jm
lj+2,

(Λ0)jj = (lj + 1)(lj + 2), (Λ1)jj = lj(lj + 1),

(R)jj =
lj(lj + 3)
lj + 1

Jm
lj+1, (R)j,j+1 = − lj(lj + 3)

lj + 2
Jm

lj+2,

L0 = I −mνΛ−1
0 , L1 = I −mνΛ−1

1 , A0 =
1
2
(3Q0Q1 − I),

A1 =
1
2
(3Q1Q0 − I), B0 = Q0C1, B1 = Q1C0, (A.12)

where lj = |m| + 2j − 1 for j = 1, 2, 3, ...., jmax.
Eliminating hS , hH , and hT in equations (A.3)-(A.5) using equations (A.6)-(A.8), and elim-

inating H and T using equations (A.4)-(A.5), we obtain coupled first order linear ordinary
differential equations for y1 = S and y2 as follows:

a
d
da

(
y1

y2

)
= F

(
y1

y2

)
, (A.13)

where F is coefficient matrix. Outer boundary condition is given by

−y1 + y2 + ρ̂c1ω̄
2
A

[
1
3

(
1 +

d ln ρ
d ln a

)
(I − A0) S +

1
2
B0 H

+
1
2
mQ0T − 1

2
mhH +

1
2
C0 hT

]
= 0, (A.14)

which means that ∆[p+ |B|2/(8π)] = 0 at stellar surface, where ∆Q denotes Lagrangian pertur-
bation of quantity Q. Inner boundary conditions imposed at the center of the star are regularity
conditions for eigenfunctions y1 and y2 (see Appendix F).
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APPENDIX: B Surface boundary condition for the func-

tion ψ2

In order to determine the function ψ2(x) satisfying the ordinary differential equation (3.13), we
need to impose outer boundary condition on ψ2(x). Assuming difference between stellar suface
r = Rs(R, θ) for the magnetized star and r = R for non-magnetized star is small, we can write

Rs(R, θ) = R[1 + δζ(θ)]. (B.1)

Since we assume ρ(Rs, θ) = 0 and ρ0(R) = 0, we obtain following relation from equation (3.10):

δζ = 2R2ω2
A

dx
dΨ0

[ψ0(1) + ψ2(1)P2(cos θ)]. (B.2)

Using equation (3.7), gravitational potential Φ(r, θ) and its partial differentiation ∂Φ(r, θ)/∂x
are given by

Φ(r, θ) = Ψ0(r) + c0 − 2R2ω2
A [c1,0 + ψ0(x) + ψ2(x)P2(cos θ)]

−1
3
ω2

Ar
2ρ̂ [1 − P2(cos θ)] , (B.3)

∂Φ(r, θ)
∂x

=
∂Ψ0(r)
∂x

− 2R2ω2
A

[
dψ0

dx
(x) +

dψ2

dx
(x)P2(cos θ)

]
−1

3
ω2

A

(
r2
dρ̂

dx
+ 2Rrρ̂

)
[1 − P2(cos θ)] , (B.4)

where we assume constant C in equation (3.7) as C = c0 − 2R2ω2
Ac1,0. Since ρ̂(Rs, θ) =

0, Ψ0(Rs) ≈ Ψ0(R) + (dΨ0/dr)r=RRδζ, and (∂Ψ0(r)/∂r)r=Rs = GM/R2
s ≈ (GM/R2)(1 −

2δζ) for deformed stellar surface, gravitational potential Φ(Rs, θ) and its partial differentiation
∂Φ(Rs, θ)/∂x reduce to

Φ(Rs, θ) = Ψ0(R) + c0 − 2R2ω2
Ac1,0, (B.5)

∂Φ
∂x

(Rs, θ) =
∂Ψ0(R)
∂x

− 2R2ω2
A

[
dψ0

dx
(1) +

dψ2

dx
(1)P2(cos θ)

]
−1

3
ω2

AR
2 dρ̂
dx

[1 − P2(cos θ)] − 4R2ω2
A [ψ0(1) + ψ2(1)P2(cos θ)] , (B.6)

where we use dΨ0/dx = GM/R2 for stellar surface. On the other hand, gravitational potential
and its partial differentiation in the exterior of the star are given by

Φ = −κ0

x
− 2R2ω2

A

[κ1,0

x
+
κ1,2

x3
P2(cos θ)

]
, (B.7)

∂Φ
∂x

=
κ0

x2
+ 2R2ω2

A

[κ1,0

x2
+ 3

κ1,2

x4
P2(cos θ)

]
, (B.8)

and for the stellar surface x = xs ≡ 1 + δζ, they reduce to

Φ = −κ0 − 2R2ω2
A [κ1,0 + κ1,2P2(cos θ)] + κ0δζ, (B.9)

∂Φ
∂x

= κ0 + 2R2ω2
A [κ1,0 + 3κ1,2P2(cos θ)] − 2κ0δζ, (B.10)
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where κ0, κ1,0, and κ1,2 are arbitrary constants. Assuming both Φ and ∂Φ/∂x of the interior
and the exterior of the star connect at the surface of the star, we obtain following relations for
non-perturbed terms:

Ψ0(R) + c0 = −κ0, κ0 =
∂Ψ0(R)
∂x

. (B.11)

Therefore, we obtain

Ψ0(R) = −κ0 = −∂Ψ0(R)
∂x

, c0 = 0. (B.12)

For perturbed terms, we obtain following relations:

−c1,0 = −κ1,0 + ψ0(1), κ1,2 = ψ2(1), (B.13)

κ1,0 = −dψ0

dx
(1) − 1

6
dρ̂

dx
(1), 3κ1,2 = −dψ2

dx
(1) +

1
6
dρ̂

dx
(1). (B.14)

From these relations, unknown constants c1,0 and κ1,0 for ψ0 are determined uniquely by inte-
grating equation (3.12) from center to surface of the star:

κ1,0 = −dψ0

dx
(1) − 1

6
dρ̂

dx
(1), c1,0 = −dψ0

dx
(1) − ψ0(1) − 1

6
dρ̂

dx
(1). (B.15)

On the other hand for ψ2, eliminating constant κ1,2, we obtain

3ψ2(1) +
dψ2

dx
(1) =

1
6
dρ̂

dx
(1), (B.16)

and this equation gives outer boundary condition for ψ2.

APPENDIX: C Frequency changes due to the purely toroidal

magnetic field

Using continuity equation (3.24) and adiabatic relation (3.25), we can write Euler equation
(3.23) as follows:

−σ2[(1 + 2ε) ξ + aξa∇0ε+ a(ξ · ∇0ε)ea] = −∇0χ+ ea
Γ1p

ρ
A

[
∇0 · ξ + ξ · ∇0

(
3ε+ a

∂ε

∂a

)]
+iσD +

(ξ · ∇0 ln ρ+ ∇0 · ξ)
4πρ

(∇0 × B) × B +
1

4πρ
[(∇0 × B) × δB + (∇0 × δB) × B] ,

(C.1)

where χ ≡ δp/ρ. we describe eigenfunctions and eigenfrequency as follows (see e.g., Saio 1981):

ξ = ξ0 + ξ2, (C.2)

χ = χ0 + χ2, (C.3)

σ = σ0 + σ2, (C.4)

where subscripts 0 or 2 mean the quantities of order of ω0
A or ω2

A, respectively. Then, Coriolis
force term D is written as

D = D(0)[ξ0] + D(0)[ξ2] + D(2)[ξ0], (C.5)
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where

D(0)
a [ξ] = 2Ω sin θξφ, D

(0)
θ [ξ] = 2Ω cos θξφ, D

(0)
φ [ξ] = −2Ω

(
sin θξa + cos θξθ

)
,

D(2)
a [ξ] = 2Ω

(
2ε+ a

∂ε

∂a

)
sin θξφ, D

(2)
θ [ξ] = 2Ω

(
2ε+

sin θ
cos θ

∂ε

∂θ

)
cos θξφ,

D
(2)
φ [ξ] = −2Ω

[(
2ε+ a

∂ε

∂a

)
sin θξa +

(
2ε+

sin θ
cos θ

∂ε

∂θ

)
cos θξθ

]
.

Substituting equations (C.2)-(C.5) into equation (C.1) and summarizing the same order of ωA,
we obtain following equation for order of ω0

A:

−σ2
0ξ0 = −∇0χ0 + ea

Γ1p

ρ
A∇0 · ξ0 + iσ0D

(0)[ξ0] . (C.6)

For order of ω2
A, we obtain

−σ2
0ξ2 − 2σ2

0εξ0 − σ2
0aξ

a
0∇0ε− σ2

0(ξ0 · ∇0ε)ea − 2σ0σ2ξ0

= −∇0χ2 + ea
Γ1p

ρ
A

[
∇0 · ξ2 + ξ0 · ∇0

(
3ε+ a

∂ε

∂a

)]
+ iσ0D

(0)[ξ2] + iσ2D
(0)[ξ0]

+iσ0D
(2)[ξ0] +

(ξ0 · ∇0 ln ρ+ ∇0 · ξ0)
4πρ

(∇0 × B) × B

+
1

4πρ
[(∇0 × δB) × B + (∇0 × B) × δB] , (C.7)

where equation (C.6) means the oscillations for the non-magnetized slowly rotating star. Using
ξ0 and ξ2, functions χ0, χ2, and δB are given by

χ0 = −pΓ1

ρ
(∇0 · ξ0 + ξ0 · ∇0 ln ρ− ξ0 · eaA) ,

χ2 = −pΓ1

ρ

{
∇0 · ξ2 + ξ0 · ∇0

(
3ε+ a

∂ε

∂a

)
+ ξ2 · ∇0 ln ρ− ξ2 · eaA

}
,

(δB)i =
1

a2 sin θ
εijk ∂

∂xj

(
a2 sin θ εlmkξ

l
0B

m
)
. (C.8)

Multiplying complex conjugate of displacement vector ξ∗ to equation (C.7) and integrating over
stellar mass, we obtain following integral relation:

−2σ2
0

∫ M

0

ε |ξ0|
2 dMa − σ2

0

∫ M

0

(aξa
0∇0ε) · ξ∗

0dMa − σ2
0

∫ M

0

[(ξ0 · ∇0ε)ea] · ξ∗
0dMa

−2σ0σ2

∫ M

0

|ξ0|
2 dMa =

∫ M

0

χ∗
0 ξ0 · ∇0

(
3ε+ a

∂ε

∂a

)
dMa + iσ0

∫ M

0

D(2)[ξ0] · ξ
∗
0dMa

+iσ2

∫ M

0

D(0)[ξ0] · ξ
∗
0dMa +

1
4π

∫ M

0

1
ρ

(
− ρ

pΓ1
χ0 + ξ0 · eaA

)
[(∇0 × B) × B] · ξ∗

0dMa

+
1
4π

∫ M

0

1
ρ

[(∇0 × δB) × B + (∇0 × B) × δB] · ξ∗
0dMa, (C.9)

where dMa = ρ(a)a2 sin θdadθdφ. Substituting eigenfunctions of expansion forms (3.30)-(3.36)
into equation (C.9) and assuming σ2 = E′

2ω̄
2
A, we can derive following relation for E′

2.

E′
2 = −

[
Ω2

K

4σ0

∫ R

0

f1(a)ρ̂ρa4da+ σ0

∫ R

0

f2(a)ρa4da

+
Ω2

K

2σ0

∫ R

0

1
c1
f3(a)ρa4da+ Ω

∫ R

0

f4(a)ρa4da

]/
WI , (C.10)
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where

WI =
∫ R

0

[
|S|2 + H†Λ0 H + T †Λ1 T

]
ρ a4da

− Ω
σ0

∫ R

0

[
m
(
S†H + H†S + |H|2 + |T |2

)
+ S†C0 T − T †Λ1KS

+H†Λ0M1 T + T †Λ1M0 H

]
ρ a4da , (C.11)

f1(a) = S†

{
ma

dhH

da
−mhS + 2m

(
2 +

d ln ρ
d ln a

)
hH − C0

[
a
dhT

da
+ 2

(
2 +

d ln ρ
d ln a

)
hT

]}

+H†
[
m

(
2 +

d ln ρ
d ln a

)
hS + 2mhH − Λ0RhT

]
+T †

[
−
(

2 +
d ln ρ
d ln a

)
Λ1KhS + 2Λ1M0 hH +m(Λ1 − 2I)hT

]
−2aA

3

(
2 +

d ln ρ
d ln a

)
S† (I − A0)S +

2VG

3

(
2 +

d ln ρ
d ln a

)
S† (I − A0)y2

+2aAH† (2A0 + B0)S − 2VGH† (2A0 + B0)y2 − 2maAT †Q1S + 2mVGT †Q1y2 ,

f2(a) = S† [η(ᾱ)I + η(β̄)A0

]
S + ᾱ

(
H†Λ0 H + T †Λ1 T

)
+ β̄H† (A0Λ0 + 3B0)H

+β̄ T †(A1Λ1 + 3B1)T − 3
2
β̄S†B0 H +

3
2
β̄H† (2A0 + B0) S

+3mβ̄
(
H†Q0 T + T †Q1 H

)
− 3

2
mβ̄

(
S†Q0 T + T †Q1 S

)
,

f3(a) = y2
†
[
a
dϑ(ᾱ)

da
I + a

dϑ(β̄)
da

A0

]
S − 3ϑ(β̄)y2

†B0 H − 3mϑ(β̄)y2
†Q0 T ,

f4(a) = −mS† {[ᾱ+ η(ᾱ)] I + [β̄ + η(β̄)]A0

}
H −mH† {[ᾱ+ η(ᾱ)] I + [β̄ + η(β̄)]A0

}
S

−2mᾱ
(
|H|2 + |T |2

)
− 4β̄ T † (A1Λ1M0 + 3Q1B0) H

−S† {[ᾱ+ η(ᾱ)]C0 + [β̄ + η(β̄)]A0C0

}
T − 2(ᾱ− β̄)H†Λ0M1 T

−2(ᾱ− β̄) T †Λ1M0 H − 2mβ̄H† (I + 6A0)H − 4β̄H† (A0Λ0M1 + 3Q0B1)T

−2mβ̄ T † (I + 6A1) T + [ᾱ+ η(ᾱ)]T †Λ1KS

+ [β + η(β)]T † [A1Λ1K − 2Q1(I − A0)]S . (C.12)

ᾱ ≡ α/ω̄2
A, β̄ ≡ β/ω̄2

A, and ΩK ≡ (GM/R3)1/2. X† denotes Hermitian conjugate of complex
vector X. Magnetic perturbations hS , hH , and hT are given by

hS = mS , (C.13)

hH = maAΛ−1
0 S −mVGΛ−1

0 y2 +mH , (C.14)

hT = aAKS − VGKy2 −mT . (C.15)

For above expression of E′
2, expansion coefficients S, H, T , and y2 denote eigenfunctions of

non-magnetized star even if subscript 0 vanishes.
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Considering inertial modes for eigensolutions of order of ω0
A, we find following relation from

equation (C.10) in the limit of limΩ→0(σ0/Ω) = κ0.

σ2

σ0
→ η′2

Ω̄2
ω̄2

A as Ω̄ → 0, (C.16)

where η′2 is a constant. This constant is given by

η′2 = − lim
Ω̄→0

1
4κ2

0WI

[∫ R

0

f1(a)ρ̂ρa4da+ 2
∫ R

0

1
c1
f3(a)ρa4da

]
. (C.17)

Equation (C.16) suggests that our expression of σ2 of inertial mode is not appropriate for Ω̄2<∼ ω̄2
A.

Therefore, for inertial mode, the condition of ω̄2
A
<∼ Ω̄2<∼ 1 is requried in order to assure the

validity of expression of σ2. For general magnetic field configurations, the expression likely to
equation (C.16) is derived by Morsink & Rezania (2002).

APPENDIX: D Oscillation equations for stars magnetized

with purely poloidal magnetic fields

In order to describe the master equations of oscillations of magnetized stars with purely poloidal
magnetic field, we introduce following column vectors for expansion coefficients of the perturba-
tions:

(S)j = Slj , (H)j = Hlj , (T )j = Tl′j
, (bS)j = bSl′j , (bH)j = bHl′j , (bT )j = bTlj ,

(δU)j =
δplj

ρgr
, (D.1)

where (X)j denotes j-th component of column vector X, and g = GM(r)/r2 is a gravitational
acceleration. Perturbed continuity equation (4.6) and perturbed Euler equation (4.5) reduce to

r
dS

dr
=
(
V

Γ1
− 3
)

S − V

Γ1
δU + Λ0H, (D.2)

−4πp
rf

V r
dδU
dr

+
4πp
rf

V (c1σ̄2 + rA)S +
4πp
rf

V (1 − rA− U)δU

+C0

[
(df + 2)r

dbH

dr
− (df + 2)bS + (d2f + 6df + 4)bH

]

+m

[
(df + 2)r

dbT

dr
+ (d2f + 6df + 4)bT

]
= 0, (D.3)

V

Γ1
δU =

V

Γ1
c1σ̄

2(df + 2)A−1
1 B1S − V

Γ1
mc1σ̄

2(A−1
1 + Λ−1

0 A−1
1 Λ1)T +

{
V

Γ1
c1σ̄

2 r

2f
A−1

1

+
rf

2πΓ1p

[
(d2f + 4df)Λ−1

0 B0 − Λ−1
0 A0 +

1
2
m2(d2f + 4df + 2)Λ−1

0 A−1
1

]}
bS

+
rf

πΓ1p
(Λ−1

0 A0 −m2Λ−1
0 A−1

1 )bH +
rf

2πΓ1p
m

[
1
2
(df + 2)I + 2Λ−1

0

dfΛ−1
0 A−1

1 B1Λ0 + Λ−1
0 A−1

1 C̃1

]
bT +

rf

2πΓ1p
Λ−1

0 A0L0r
dbH

dr
, (D.4)
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A1r
dbT

dr
= −2πp

rf
V c1σ̄

2Λ1T +
1
2
m(d2f + 4df + 2)bS − 2mbH +

(
dfB1Λ0 + C̃1

)
bT

−mrdbH

dr
. (D.5)

Substituting δU given by equation (D.4) into equation (D.3), we obtain

L0r
d
dr

(
r
dbH

dr

)
=

2πp
rf

V
(
c1σ̄

2 + rA
)
A−1

0 Λ0S +
4πp
rf

mV c1σ̄
2A−1

0 A−1
1 Λ1T

+
{
− 1

2
(df + 2)A−1

0 C̃0 − (dρ− rA+ 4) I

+
[
−d3f + d2f (dρ− rA− 4) + 4df (dρ− rA+ 1)

]
A−1

0 B0

−1
2
[
d3f − d2f(dρ− 4) − 2df(2dρ+ 1) − 2(dρ+ 2)

]
m2A−1

0 A−1
1

}
bS

+
[
(df + 1)A−1

0 C̃0 + Λ1 + 2A−1
0 B0Λ1 + 2(dρ− rA)I

−1
2
(d2f + 4df + 2)m2A−1

0 A−1
1 Λ̃1 − (d2f + 2df + 2dρ)m2A−1

0 A−1
1

]
bH

+

{
−m

{
2(df − dρ+ rA+ 1)A−1

0

+
1
2
[−df(dρ+ 2) + (df + 2)rA− 2(dρ+ 1)]A−1

0 Λ0

}
−m

[
(d2f − dρdf + 2df)A−1

0 A−1
1 B1Λ0 + (df − dρ+ 1)A−1

0 A−1
1 C̃1

]}
bT

+
[
1
2
(df + 2)A−1

0 C̃0 + (dρ− rA− 1)I +m2(df − dρ+ 3)A−1
0 A−1

1

]
r
dbH

dr

−2πp
rf

(2 + rA)V c1σ̄2A−1
0 Λ0H

−2πp
rf

V c1σ̄
2A−1

0 Λ0r
dH

dr
+

2πp
rf

mV c1σ̄
2A−1

0 A−1
1 Λ1r

dT

dr

−m
[
1
2
(df + 2)A−1

0 A−1
1 C̃1 + (df + rA+ 2)A−1

0

]
r
dbT

dr
. (D.6)

Perturbed induction equation (4.8) and perturbed magnetic Gauss’s law reduce to

H = (df + 2)A−1
1 B1S −mA−1

1 T +
r

2f
A−1

1 bS , (D.7)

L0r
dT

dr
= −m

[
d2f +

(
2 +

V

Γ1

)
df − 2

(
1 − V

Γ1

)](
A−1

0 A−1
1 B1 +

1
2
A−1

0

)
S

+(df + 2)
(
m2A−1

0 A−1
1 +

1
2
A−1

0 C̃0

)
T − r

2f
mA−1

0 A−1
1 Λ1b

H

+
r

2f
A−1

0 Λ0b
T −m (df + 2)

(
A−1

0 +
1
2
A−1

0 A−1
1 C̃1

)
H

+m (df + 2)
(

A−1
0 A−1

1 B1 +
1
2
A−1

0

)
V

Γ1
δU , (D.8)
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L1r
dH

dr
=

[
d2f +

(
2 +

V

Γ1

)
df − 2

(
1 − V

Γ1

)](
A−1

1 B1 +
1
2
m2A−1

1 A−1
0

)
S

−m (df + 2)
(

A−1
1 +

1
2
A−1

1 A−1
0 C̃0

)
T +

r

2f
A−1

1 Λ1b
H

− r

2f
mA−1

1 A−1
0 Λ0b

T + (df + 2)
(
m2A−1

1 A−1
0 +

1
2
A−1

1 C̃1

)
H

− (df + 2)
(

A−1
1 B1 +

1
2
m2A−1

1 A−1
0

)
V

Γ1
δU , (D.9)

r
dbS

dr
= −3bS + Λ1b

H , (D.10)

where

V = −d ln p
d ln r

, c1 =
M

M(r)

( r
R

)3

, dρ =
d ln ρ
d ln r

, df =
d ln f
d ln r

, d2f =
r2

f

d2f

dr2
, d3f =

r3

f

d3f

dr3
,

(D.11)

and σ̄ ≡ σ/(GM/R3)1/2. The quantities A0, A1, B0, B1, C̃0, C̃1, Λ̃0, Λ̃1, L0, and L1 are matrices
defined by

A0 = C0 + Q0Λ1, A1 = C1 + Q1Λ0, B0 = Q0 +
1
2
C0, B1 = Q1 +

1
2
C1,

C̃0 = C0(Λ1 − 2I), C̃1 = C1(Λ0 − 2I), Λ̃0 = Λ0 − 2I, Λ̃1 = Λ1 − 2I,

L0 = I −m2A−1
0 A−1

1 , L1 = I −m2A−1
1 A−1

0 . (D.12)

Matrices Q0, Q1, C0, C1, Λ0, and Λ1 are defined as follows: for even modes,

(Q0)jj = Jm
lj+1, (Q0)j+1,j = Jm

lj+2, (Q1)jj = Jm
lj+1, (Q1)j,j+1 = Jm

lj+2,

(C0)jj = −(lj + 2)Jm
lj+1, (C0)j+1,j = (lj + 1)Jm

lj+2,

(C1)jj = ljJ
m
lj+1, (C1)j,j+1 = −(lj + 3)Jm

lj+2,

(Λ0)jj = lj(lj + 1), (Λ1)jj = (lj + 1)(lj + 2), (D.13)

where lj = |m| + 2j − 2 for j = 1, 2, 3, ...., jmax, and

Jm
lj =

[
(lj +m)(lj −m)
(2lj − 1)(2lj + 1)

]1/2

, (D.14)

and for odd modes,

(Q0)jj = Jm
lj+1, (Q0)j,j+1 = Jm

lj+2, (Q1)jj = Jm
lj+1, (Q1)j+1,j = Jm

lj+2,

(C0)jj = ljJ
m
lj+1, (C0)j,j+1 = −(lj + 3)Jm

lj+2,

(C1)jj = −(lj + 2)Jm
lj+1, (C1)j+1,j = (lj + 1)Jm

lj+2,
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(Λ0)jj = (lj + 1)(lj + 2), (Λ1)jj = lj(lj + 1), (D.15)

where lj = |m| + 2j − 1 for j = 1, 2, 3, ...., jmax.
From above equations, we find non-axisymmetric oscillations of magnetized star having purely

poloidal magnetic field reduce to the system of 6jmax coupled linear ordinary differential equa-
tions. Here, we choose column vectors S, T , bS , bH , bT , and rdbH/dr as dependent variables.
If we define dimensionless vector variables as follows:

y1 = S, y2 = T , y3 = hS , y4 = hH , y5 = hT , y6 = r
d
dr

hH , (D.16)

where hi ≡ [R/f(0)]bi (i = S,H, T ), the master equations are formaly written by

r
dy1

dr
= F11y1 + Λ0H − V

Γ1
δU

= (F11 − E11 + Λ0E21)y1 + (−E12 + Λ0E22)y2 + (−E13 + Λ0E23)y3

−E14y4 − E15y5 − E16y6, (D.17)

r
dy2

dr
= F21y1 + F22y2 + F24y4 + F25y5 + G21

V

Γ1
δU + G22H

= (F21 + G21E11 + G22E21)y1 + (F22 + G21E12 + G22E22)y2

+(G21E13 + G22E23)y3 + (F24 + G21E14)y4 + (F25 + G21E15)y5

+G21E16y6, (D.18)

r
dy3

dr
= −3y3 + Λ1y4, (D.19)

r
dy4

dr
= y6, (D.20)

r
dy5

dr
= F52y2 + F53y3 + F54y4 + F55y5 + F56y6, (D.21)

r
dy6

dr
= F61y1 + F62y2 + F63y3 + F64y4 + F65y5 + F66y6

+G62H + G63r
dH

dr
+ G64r

dy2

dr
+ G65r

dy5

dr
= [F61 + G62E21 + G63(E31 + E37E21 + E38E11) + G64(F21 + G21E11 + G22E21)]y1

+ [F62 + G62E22 + G63(E32 + E37E22 + E38E12) + G64(F22 + G21E12 + G22E22) + G65F52] y2

+ [F63 + G62E23 + G63(E37E23 + E38E13) + G64(G21E13 + G22E23) + G65F53] y3

+ [F64 + G63(E34 + E38E14) + G64(F24 + G21E14) + G65F54] y4

+ [F65 + G63(E35 + E38E15) + G64(F25 + G21E15) + G65F55] y5

+(F66 + G63E38E16 + G64G21E16 + G65F56) y6,

(D.22)

and algebraic relations are given by

V

Γ1
δU = E11y1 + E12y2 + E13y3 + E14y4 + E15y5 + E16y6, (D.23)
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H = E21y1 + E22y2 + E23y3, (D.24)

r
dH

dr
= E31y1 + E32y2 + E34y4 + E35y5 + E37H + E38

V

Γ1
δU

= (E31 + E37E21 + E38E11)y1 + (E32 + E37E22 + E38E12)y2

+(E37E23 + E38E13)y3 + (E34 + E38E14)y4

+(E35 + E38E15)y5 + E38E16y6. (D.25)

The coefficient matrices used in equations (D.17)-(D.25) are defined by

E11 = VGc1σ̄
2 (df + 2)A−1

1 B1, E12 = −mVGc1σ̄
2
(
A−1

1 + Λ−1
0 A−1

1 Λ1

)
,

E13 =
x

2f̂
VGc1σ̄

2A−1
1 +

f̂

2ρ̂x
VGc1ω̄

2
A

[ (
d2f + 4df

)
Λ−1

0 B0 − Λ−1
0 A0

+
1
2
m2
(
d2f + 4df + 2

)
Λ−1

0 A−1
1

]
,

E14 =
f̂

ρ̂x
VGc1ω̄

2
A

(
Λ−1

0 A0 −m2Λ−1
0 A−1

1

)
,

E15 =
f̂

2ρ̂x
VGc1ω̄

2
Am

[
1
2

(df + 2) I + 2Λ−1
0 + dfΛ−1

0 A−1
1 B1Λ0 + Λ−1

0 A−1
1 C̃1

]
,

E16 =
f̂

2ρ̂x
VGc1ω̄

2
AΛ−1

0 A0L0,

E21 = (df + 2)A−1
1 B1, E22 = −mA−1

1 , E23 =
x

2f̂
A−1

1 ,

E31 =
[
d2f + (2 + VG) df − 2 (1 − VG)

]
L−1

1

(
A−1

1 B1 +
1
2
m2A−1

1 A−1
0

)
,

E32 = −m (df + 2)L−1
1

(
A−1

1 +
1
2
A−1

1 A−1
0 C̃0

)
, E34 =

x

2f̂
L−1

1 A−1
1 Λ1,

E35 = − x

2f̂
mL−1

1 A−1
1 A−1

0 Λ0, E37 = (df + 2)L−1
1

(
m2A−1

1 A−1
0 +

1
2
A−1

1 C̃1

)
,

E38 = − (df + 2)L−1
1

(
A−1

1 B1 +
1
2
m2A−1

1 A−1
0

)
, (D.26)

F11 = (VG − 3) I,

F21 = −m
[
d2f + (2 + VG) df − 2 (1 − VG)

]
L−1

0

(
A−1

0 A−1
1 B1 +

1
2
A−1

0

)
,

F22 = (df + 2)L−1
0

(
m2A−1

0 A−1
1 +

1
2
A−1

0 C̃0

)
, F24 = − x

2f̂
mL−1

0 A−1
0 A−1

1 Λ1,
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F25 =
x

2f̂
L−1

0 A−1
0 Λ0, F52 = −2

ρ̂x

f̂

σ̄2

ω̄2
A

A−1
1 Λ1, F53 =

1
2
(
d2f + 4df + 2

)
mA−1

1 ,

F54 = −2mA−1
1 , F55 = A−1

1

(
dfB1Λ0 + C̃1

)
, F56 = −mA−1

1 ,

F61 = 2
ρ̂x

f̂

1
c1ω̄2

A

(
c1σ̄

2 + rA
)
L−1

0 A−1
0 Λ0, F62 = 4

ρ̂x

f̂

σ̄2

ω̄2
A

mL−1
0 A−1

0 A−1
1 Λ1,

F63 = L−1
0

{
− 1

2
(df + 2)A−1

0 C̃0 − (dρ+ 4 − rA) I

+
[
−d3f + d2f (dρ− 4 − rA) + 4df (dρ+ 1 − rA)

]
A−1

0 B0

−1
2
[
d3f − d2f (dρ− 4) − 2df (1 + 2dρ) − 2 (2 + dρ)

]
m2A−1

0 A−1
1

}
,

F64 = L−1
0

[
(df + 1)A−1

0 C̃0 + Λ1 + 2A−1
0 B0Λ1 + 2 (dρ− rA) I

−1
2
(
d2f + 4df + 2

)
m2A−1

0 A−1
1 Λ̃1 −

(
d2f + 2df + 2dρ

)
m2A−1

0 A−1
1

]
,

F65 = L−1
0

{
−m

{
2 (df − dρ+ 1 + rA)A−1

0

+
1
2

[−df (dρ+ 2) + (df + 2) rA− 2 (dρ+ 1)]A−1
0 Λ0

}
−m

[(
d2f − dρdf + 2df

)
A−1

0 A−1
1 B1Λ0 + (df − dρ+ 1)A−1

0 A−1
1 C̃1

]}
,

F66 = L−1
0

[
1
2

(df + 2)A−1
0 C̃0 + (dρ− 1 − rA) I + (df − dρ+ 3)m2A−1

0 A−1
1

]
, (D.27)

G21 = m (df + 2)L−1
0

(
A−1

0 A−1
1 B1 +

1
2
A−1

0

)
,

G22 = −m (df + 2)L−1
0

(
A−1

0 +
1
2
A−1

0 A−1
1 C̃1

)
,

G62 = −2
ρ̂x

f̂

σ̄2

ω̄2
A

(2 + rA)L−1
0 A−1

0 Λ0, G63 = −2
ρ̂x

f̂

σ̄2

ω̄2
A

L−1
0 A−1

0 Λ0,

G64 = 2
ρ̂x

f̂

σ̄2

ω̄2
A

mL−1
0 A−1

0 A−1
1 Λ1,

G65 = −mL−1
0

[
1
2

(df + 2)A−1
0 A−1

1 C̃1 + (df + 2 + rA)A−1
0

]
, (D.28)

where

VG =
V

Γ1
, x =

r

R
, f̂ =

f(r)
f(0)

, ρ̂ =
ρ(r)
ρ(0)

, ω2
A =

f2(0)
πρ(0)R2

, β =
f2(0)
4πp

. (D.29)

60



Using equations (D.17)-(D.25), we can formaly summarize the master equations as follows:

r
d
dr



y1

y2

y3

y4

y5

y6


= M



y1

y2

y3

y4

y5

y6


, (D.30)

where M is a coefficient matrix. We assume that there is no electric current, that is vacuum at
outside of the star. Then, we can treat magnetic perturbations of exterior of the star as potential
fields, which become regular at r → ∞, and we can write

δBex = ∇

 ∞∑
l=|m|

Alr
−l−1Y m

l

 , (D.31)

where subscript ’ex’ denotes the quantity of the exterior of the star. Assuming no surface current
at the stellar surface, we find [[∆B]] = [[δB]] = 0, and from equation (D.31) we can derive

hS + L+hH = 0, hT = 0, for r = R (D.32)

in assumption of [[B]] = 0 at the stellar surface, where (L+)ij = (l′j + 1)δij and [[Q]] ≡
limε→0[Q(R−ε)−Q(R+ε)] (ε > 0). ∆Q and δQ denote Langrangian and Eulerian perturbatoins
of the quantity Q, respectively. In addition to above conditions, we generaly use outer boundary
condition of [[∆{p+ |B|2/(8π)}]] = 0 at the surface of the star. Then, using [[∆B]] = [[δB]] = 0
and [[B]] = 0 at the surface of the star, above condition [[∆{p + |B|2/(8π)}]] = 0 reduces to
∆p = 0. Using vector variables, this condition is rewritten by

δU − y1 = 0. (D.33)

The inner boundary conditions imposed at the center of the star are regularity conditions for
the eigenfunctions y1 - y6 (see Appendix F). We use normalization condition as Tl′1

(R) = 1 at
the stellar surface.

APPENDIX: E Relaxation method

For normal mode analyses, we need to solve oscillation equations expressed by coupled lin-
ear ordinary differential equations by boundary and eigen values problem for eigenfrequency σ.
In order to solve this problem numerically, we usually carry out relaxation method. In this
Appendix, we briefly explain algorithm of relaxaion method.

First of all, we define n-th order ordinary differential equation as follows:

dnf(x)
dxn

= Λf(x), (E.1)

where Λ is a constant. This ordinary differential equation is rewrited as n coupled linear ordinary
differential equations system, that is,

d
dx

Y = CY , (E.2)
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where Y = (y1, y2, y3, ...)T (for example, y1 = f(x), y2 = df/dx, and y3 = d2f/dx2,...), and C is
coefficient matrix containing eigenvalue Λ. We assume integral range as 0 ≤ x ≤ 1, and integrate
from x = 0 to x = 1 under suitable boundary conditions.

We divide integral range by N , and define i-th quantities as xi and Ci etc (i = 0, 1, 2, 3, ...., N).
For above coupled ordinary differential equation we carry out integrable discretization as follows:

Y i+1
j − Y i

j

xi+1 − xi
= uCi+1Y

i+1
j + (1 − u)CiY

i
j , (E.3)

where u is an arbitrary constant (0 ≤ u ≤ 1), and we assume u = 0.5. Then, above equation is
written as 

−1 − 0.5Ci
11dx −0.5Ci

12dx −0.5Ci
13dx · · ·

−0.5Ci
21dx −1 − 0.5Ci

22dx −0.5Ci
23dx · · ·

−0.5Ci
31dx −1 − 0.5Ci

32dx −1 − 0.5Ci
33dx · · ·

...
...

...
. . .




yi
1

yi
2

yi
3

...



+


1 − 0.5Ci+1

11 dx −0.5Ci+1
12 dx −0.5Ci+1

13 dx · · ·
−0.5Ci+1

21 dx 1 − 0.5Ci+1
22 dx −0.5Ci+1

23 dx · · ·
−0.5Ci+1

31 dx −0.5Ci+1
32 dx 1 − 0.5Ci+1

33 dx · · ·
...

...
...

. . .




yi+1
1

yi+1
2

yi+1
3

...

 =


0
0
0
...

 , (E.4)

where Cij denotes the ij-components of coefficient matrix C, and dx ≡ xi+1−xi. We summarize
equation (E.4) as following matrix form

TiY i + SiY i+1 = 0. (E.5)

We give boudary conditions at x0(= 0) and xN (= 1) as following forms

L0Y 0 = 0, LNY N = 0, (E.6)

and define normalization condition at xN as

MNY N = 1, (E.7)

where Li (i = 0 and N) and MN are matrices containing boundary and normalization conditions.
Using these relations, we obtain following matrix form

L0 0 0 0 · · · 0

T0 S0 0 0 · · · 0

0 T1 S1 0 · · · 0
...

...
. . .

...
TN−1 SN−1

0 · · · 0 MN





Y 0

Y 1

Y 2

...
Y N−1

Y N


=



0
0
0
0
...
1


. (E.8)

Therefore, we can obtain eigenfunctions Y i by calculating inverse matrix of left-hand side of
equation (E.8).

In order to calculate inverse matrix, we carry out following manupulations. First, we define
small size matrices given by

Q0 ≡

(
L0

TU
0

)
, Qi =

(
SL

i−1

TU
i

)
(1 ≤ i ≤ N − 1), QN =

(
SL

N−1

MN

)
, (E.9)
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Pi =

(
TL

i−1

0

)
(1 ≤ i ≤ N), (E.10)

Ri =

(
0

SU
i

)
(0 ≤ i ≤ N − 1), (E.11)

where subscripts U and L mean upper and lower half of the matrix, respectively. Using these
small matrices, we rewrite equation (E.8) as

Q0 R0 0 0 0 0 · · · 0

P1 Q1 R1 0 0 0 · · · 0

0 P2 Q2 R2 0 0 · · · 0

0 0 P3 Q3 R3 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · PN−1 QN−1 RN−1

0 · · · 0 PN QN





Y 0

Y 1

Y 2

Y 3

...

...
Y N−1

Y N


=



d0

d1

d2

d3

...

...
dN−1

dN


, (E.12)

where di = (0, 0, 0, ...., 0)T (0 ≤ i ≤ N − 1) and dN = (1, 0, 0, ...., 0)T . We calculate inverse
matrix of left-hand side of equation (E.12) using recurrence formula method.

From equation (E.12), we obtain following recurrence formula

Q0Y 0 + R0Y 1 = d0, (E.13)

P1Y 0 + Q1Y 1 + R1Y 2 = d1, (E.14)

...

PN−1Y N−2 + QN−1Y N−1 + RN−1Y N = dN−1, (E.15)

PNY N−1 + QNY N = dN . (E.16)

Using equations (E.13) and (E.14), and eliminating Y 0, we obtain(
Q1 − P1Q

−1
0 R0

)
Y 1 + R1Y 2 = d1 − P1Q

−1
0 d0. (E.17)

We define new matrix Q̃1 ≡ Q1−P1Q
−1
0 R0 and new vector d̃1 ≡ d1−P1Q

−1
0 d0. Then, equation

(E.17) is rewritten by

Q̃1Y 1 + R1Y 2 = d̃1. (E.18)

Therefore, we obtain

Q̃iY i + RiY i+1 = d̃i (0 ≤ i ≤ N − 1). (E.19)

Using equations (E.15) and (E.16), and eliminating Y N−1, we obtain

Y N = Q̃
−1

N d̃N , (E.20)
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where

Q̃0 = Q0, Q̃i = Qi − PiQ̃
−1

i−1Ri−1 (1 ≤ i ≤ N), (E.21)

d̃0 = d0, d̃i = di − PiQ̃
−1

i−1d̃i−1 (1 ≤ i ≤ N). (E.22)

Using equations (E.19) and (E.20), we obtain Y i (0 ≤ i ≤ N − 1)

Y i = Q̃
−1

i d̃i − Q̃
−1

i RiY i+1 (0 ≤ i ≤ N − 1). (E.23)

At this point, we obtain eigenfunctions Y i (0 ≤ i ≤ N), however, we do not use boundary
condition LNY N = 0 (we use normalization condition instead). Thus, eigenfunctions obtained
up to this point is not necessarily satisfied with the boundary condition at xN . In order to
obtain eigensolution which is satisfied with boundary condition at xN , we use constant Λ as a
parameter. First, we define following function

D(Λ) = Y N (x = 1; Λ). (E.24)

We need to look for Λ satisfying D(Λ) = 0. For equation (E.24), we assume Λ = Λ0 + δΛ and
expand D(Λ) up to order of δΛ1, that is,

D(Λ0 + δΛ) ≈ D(Λ0) +
dD
dΛ

∣∣∣∣
Λ=Λ0

δΛ = 0, (E.25)

where Λ0 is an initial guess value and δΛ is small deviation from true value. From euqtion (E.25),
we find

δΛ = −

(
dD
dΛ

∣∣∣∣
Λ=Λ0

)−1

D(Λ0). (E.26)

In our numerical code, we carry out

Λ0 + δΛ = Λ0 −

(
dD
dΛ

∣∣∣∣
Λ=Λ0

)−1

D(Λ0) → Λ0 (E.27)

and calculate δΛ repeatedly until |D(Λ0 + δΛ)| < ε for small parameter ε. Here, dD/dΛ is
estimated by

dD
dΛ

∣∣∣∣
Λ=Λ0

=
D(Λ0 + ∆) −D(Λ0)

∆
, (E.28)

where ∆ is a small parameter.
Finally, we can obtain eigenfunctions Y i satisfying boundary conditions at x0 and xN and

normalization condition, and corresponding eigenvalue Λ.

APPENDIX: F Inner mechanical boundary conditions

In this Appendix we briefly discuss inner boundary conditions imposed at center of the star.
Now master equations of magnetized stars are summarized as

a
d
da

Y = FY
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for purely toroidal magnetic field, and

r
d
dr

Y = MY (F.1)

for purely poloidal magnetic field.
To determine regularity conditions of eigenfunctions, we generally assume following form near

the center of the star

Y = rγY 0, (F.2)

where γ is arbitrary constant, and Y 0 is constant vector near the center of the star. For examples,
substituting (F.2) into (F.1), we obtain

MY 0 = γY 0. (F.3)

This relation means γ is eigenvalue of matrix M, and Y 0 is corresponding to eigen vector near
the center of the star. Therefore, we need to solve following characteristic equation to determine
γ and Y 0

|M − γI| = 0. (F.4)

Since all eigenvectors obtained from above relation become linear independent basis vetors, re-
spectively, we can express eigen solutions near the center of the star as follows:

Y =
N∑

i=1

air
γiY i

0, (F.5)

where γi and Y i
0 denote i-th eigenvalue and eigenvector (i = 1, 2, 3, ..., N), and ai is constant.

We note that N = 2jmax for purely toroidal magentic field, and N = 6jmax for purely poloidal
magnetic field. For regularity conditions, we select M positive eigenvalues (γi ≥ 0), and in
general, we can obtain M = N/2 positive eigenvalues. Now we classified expression (F.5) into
explessions of upper half and lower half as

Y U =
M∑
i=1

air
γiY U

0i ≡ Ua, (F.6)

Y L =
M∑
i=1

air
γiY L

0i ≡ La, (F.7)

where U = (Y U
01,Y

U
02, ...,Y

U
0M ) and L = (Y L

01,Y
L
02, ...,Y

L
0M ) are matrices composed by upper

half and lower half of the eigen vectors corresponding eigenvalues γi, and a = (a1r
γ1 , a2r

γ2 , ..., aMrγM )T .
Subscripts U and L denote upper half and lower half of eigenfunctions Y , respectively, that is,
Y U = (y1)T and Y L = (y2)T for purely toroidal magnetic field, and while Y U = (y1,y2,y3)T

and Y L = (y4,y5,y6)T for purely poloidal magnetic field. Thus, we obtain following relation as
inner boundary conditions

U−1Y U − L−1Y L = 0. (F.8)
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