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Abstract 

 

The imaging resolution of the terahertz (THz) radiation is restricted approximately to the wavelength (λ) of the THz due to 

the diffraction limit. The subwavelength objects can be imaged by using the artificial structures called the hyperbolic 

metamaterials (HMMs). The cylindrical HMMs or the hyperlens can magnify the subwavelength objects into the far-field 

image, and also focus the far-field light into the subwavelength spot. Here, we develop the analytical solutions of the 

hyperlens made by alternating metal/dielectric layers with finite dielectric constants. The analytical solutions are consistent 

with the FDTD, but they are about three order faster than the FDTD. As the dielectric constant of the metals becomes 

infinitely large in the THz band, the new HMMs made by stacked grating/dielectric layers have been proposed. Thanks to the 

spoof surface plasmons of the grating, we can analytically demonstrate the subwavelength imaging of the array of slits with 

size 1 μm and the separation distance 5 μm at the THz frequency about 1 THz (λ=300 μm) over the long distance 33 mm. 

The effective parameters at this frequency show that the structures are type-II HMMs. Therefore, the stacked 

grating/dielectric layers can be used to make the hyperlens for the THz. The analytical solutions may also lead to the novel 

two-dimensional subwavelength imaging devices by replacing the grating with the hole array.       

 

Keywords : terahertz, diffraction limit, subwavelength imaging, hyperbolic metamaterials, hyperlens, gratings, spoof surface 

plasmons     

 

1. Introduction  

The terahertz (THz, 1 THz=1012 1/s) radiation locates in 

between the microwave and the infrared radiation. The 

emergence of THz sources and detectors leads to many 

applications of the THz in our daily life such as non-

invasive food quality control, homeland security, and 

biomedical imaging. However, the THz needs to go 

beyond the diffraction limit if we want to use it to image 

the objects smaller than the wavelength (λ) of the THz. 

The diffraction limit results from the lost of the near-

fields or evanescent waves which carry fine details of the 

objects without propagating to the far-field region. The 

diffraction limit can be overcome by the hyperbolic 

media (HMs) that allow the propagation of the 

evanescent waves via their hyperbolic equi-frequency 

contour (EFC). The HMs can be artificially made by 

alternating negative and positive dielectric constant 

layers. These structures are called the hyperbolic 

metamaterials (HMMs). The HMMs are type-I or type-II 

if the major axis of the hyperbolic EFC is parallel to the 

normal component of the wavevector, or the tangential 

component of the wavevector, respectively. The negative 

dielectric constant layers are usually the noble metals that 

can support the surface plasmons (SPs) on their surfaces. 

The cylindrical HMMs or the hyperlens can be made by 

bending the HMMs into the cylindrical shape. The 

subwavelength objects placed inside the core of the 

hyperlens are magnified into the far-field region by the 

conservation of the angular momentum of light if the 

hyperlens is properly designed. However, the finite 

difference time domain (FDTD) method as 

conventionally employed to optimize the hyperlens is 

time-consuming and inaccurate when the hyperlens 

becomes much more smaller than the λ of the THz.   

    In this study, the analytical solutions (AN) of the 

cylindrical HMMs made by alternating metal/dielectric 

layers with the finite dielectric constants have been 

developed [1]. As the dielectric constant of the metals 

becomes infinitely large in the THz band, we develop 

new HMMs for the THz by employing the spoof surface 

plasmons (SSPs) on the metallic grating surfaces. We 

analytically demonstrate the subwavelength imaging of 

the new HMMs and compare the results with the 

effective medium model. The THz cylindrical HMMs can 

be realized by bending these structures into the 

cylindrical shape. The analytical solutions also lead to the 

realizations of the ultra-sensitive subwavelength-film 

sensors, and the THz subwavelength focusing [2].                            
 

 

2. Results  

     2.1 Cylindrical HMM (Hyperlens)  

    The hyperlens is made by the N number of concentric 

cylindrical layers (CCLs) as schematically drawn in Fig. 

1(a). The hyperlens can work in two processes : the 

magnifying process and the focusing process. In the 

magnifying process, the subwavelength objects which are 

placed inside the core of the hyperlens are modelled as 

the collection of point sources as indicated by the blue 

circles. In the focusing process, the subwavelength 

apertures which couple the incident light in the outer 

region to the large wavevector waves of the hyperlens are 

modelled as the collection of point sources as indicated        

 

 

 

 

 

 

Fig. 1. (a) Schematic view of the cylindrical HMM (hyperlens). 
(b) . Schematic view of the new HMM for the THz with the 

testing object
0 1 mh   and 

0 5 mp  .       

 

by the red circles. The electromagnetic fields in both 

processes are obtained by solving the inhomogeneous 

Helmholtz's equation with the Green's function analysis. 

We check the AN with the FDTD by using the finite and 

negative dielectric constant of Ag in the UV band that is -

3.11+0.123i at λ=368 nm. We use the Al2O3 with 

dielectric constant 3.2 so that the alternating Ag/Al2O3 

CCLs form the type-I HMM according to the traditional 

effective medium approximation. The core and the outer 

regions are defined as air, the innermost radius is 100 nm, 

the thickness of each CCL is 10 nm, and the number of 

CCLs is 10. In the magnifying process, the two point 

sources are placed in the core, on the innermost curve, 

and at the azimuthal angles 57.05  and 122.95 so that 

the sources are separated by the angular distance / 3.2 . 

In the focusing process, the two point sources are put in 

the outer region, on the outermost curve, and at the 

azimuthal angles 45  and 135 . The intensity profiles 

obtained by the AN and the FDTD are compared in Fig. 

2(a) for the magnifying process and Fig. 2(b) for the 

focusing process. We see that the FDTD profiles 

approach the AN profiles by increasing the FDTD 

resolutions from 2 pix/nm to 4 pix/nm. This means that 
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the AN are consistent with the FDTD with high 

resolution. The FDTD profiles with the resolutions 2 

pix/nm and 4 pix/nm. take 4 hours and 2 days, 

respectively, to compute, while the AN profiles take only 

a few minute to obtain. This means that the AN are about 

three order faster than the FDTD simulation. 

 

2.2 New HMMs for the THz 

     In the THz band, we employ the SSPs on the metallic 

grating surfaces to build the new HMMs by staking the 

grating/dielectric layers as schematically shown in Fig. 

1(b). The subwavelength imaging using these structures 

can be analytically demonstrated by introducing another 

grating in front of the structures as     indicated by the red 

grating. With the assumptions that the metals      

 

 

 

            

 

 

 

Fig. 2. (a) Intensity profiles along the curve ρ=185 nm of the 

magnifying process. (b) Intensity profiles along the curve ρ=100 
nm of the focusing process.     

 

are perfect electric conductors which is valid for the THz 

and lower frequency bands and the slit width is much 

more smaller than the λ, the AN of these structures can 

be derived by applying the coupled-mode analysis and 

the transfer matrix method. After checking the solutions 

with the FDTD using simple parameters, we then apply 

the AN to the deep-subwavelength HMM. Each grating 

comprising the HMM has the period 1 μm, the slit width 

0.2 μm, and the slit height 150 μm. The SSPs at the edges 

of the first Brillouin zone of the grating are at the 

frequency about 0.997 THz. The electric field of these 

SSPs is localized on the grating surfaces with the decay 

length 144 nm. The distance between the object and the 

HMM is optimized as 100 nm to obtain large amplitude 

of the electric field behind the grating due to the 

excitation of the quasi-waveguide resonance (QWR) 

inside the air gap between the object and the first grating 

of the HMM at the frequency only 4 GHz lower than that 

of the SSPs. The number of gratings in the HMM is 

N=220, the gratings are separated by air with the 

optimized separation distance 80 nm so that L=33,017.52 

μm, and then we obtain the amplitude of the electric field 

as shown in Fig. 3 (a)-(c) for w0 =1-3 μm, respectively. 

We obtain the sharp images in all cases, and the 

differences in the field distributions indicate that these 

signals come from the objects.      

 

 

 

 

 

 
Fig. 3. The |E|/E0 at the frequency 0.997 THz behind the HMM 

over the distance 2 μm for (a) w0 =1 μm, (b) w0 =2 μm, and (c) 

w0 =3 μm.  

 

The full width at half maximums of the |E|/E0 at the 

distance 0.398 μm away from the  interface of the HMM 

are 1.346 μm, 2.778 μm, and 3.260 μm for w0=1-3 μm, 

respectively. The effective parameters of this structure 

are 
 eff 38.95 10x

   , 
 eff 31.94 10y   , and 

 eff 57.47 10z
  , which indicate that this structure is 

type-II HMM. The critical angle of the Poynting vector 

0.1229c    with respect to the y-axis of this HMM 

indicates that the central image at x=0 does not really 

come from the object at x=0, but it comes from two 

objects located at 70 mx   , and the same 

consideration explains the images at 5 mx  . The 

effect of the oblique propagation of the optical energy 

can be more clearly seen in the N=10 and N=14 HMMs 

when the images are not perfectly focused. Fig. 4(a)-(c) 

show the |E|/E0 distributions over two unit cells along the 

x-axis and 2 μm behind the end interfaces of the N=10 

HMM, N=14 HMM, and N=16 HMM, respectively, for 

the object with size one micron. The images are out of 

focus in the N=10 HMM and N=14 HMM, but they are 

sharply focused in the N=16 HMM. Consider the peak 

positions of the |E|/E0  profile along the end interface of 

the N=10 HMM. The peak positions of the i1 and i2 

images in the positive unit cell (x>0) are located at 

x=1.988 μm and x=3.012 μm, respectively. The critical 

angle of the Poynting vector in this medium is 

0.1152c    according to our effective medium model. 

Therefore, the images of the object at x=0 will be formed 

at the distance ±3.017 μm from the y-axis. This position 

is only 5 nm larger than the position of the i2 image in 

the positive unit cell, and the i1 image in the negative 

unit cell. Therefore, the i2 image in the positive unit cell 

and the i1 image in the negative unit cell come from the 

object at x=0. With the same consideration, the i1 image 

in the positive unit cell comes from the object at x=+5 μm, 

and the i2 image in the negative unit cell comes from the 

object at x=-5 μm. By increasing N, the images are 

formed in the larger distance from the y-axis because of 

the longer length of the HMMs, and perfect focusing is 

obtained at N=16.  Therefore, the subwavelength 

imaging can be satisfyingly explained by the effective 

medium model.                                   

 

 

 

 

 

 
 

Fig. 4 (a) The |E|/E0 at the frequency 0.997 THz behind the 
HMMs over the distance 2 μm for (a) N=10, N=14, and (c) N=16. 

The parameters of the objects are 
0 1 mw  , 

0 1 mh   and 

0 5 mp  .       

 

3. Conclusion 

The new analytical solutions of the cylindrical HMMs 

made by alternating metal/dielectric layers with finite 

dielectric constants which are more efficient than the 

FDTD have been developed. As the dielectric constants 

of the metals are infinite in the THz band, the new 

HMMs made by stacked grating/dielectric layers have 

been proposed for the THz. The subwavelength imaging 

over the long distance 33 mm of one micron size object 

has been analytically demonstrated at the wavelength 

about 300 μm using the new HMM.           
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Chapter 1  

Introduction  

 

1.1 Preface  
 

Scientists had applied lenses to see objects with light beyond the capability of human eyes. The famous 

story was the invention of refracting telescope by Galileo in 17th century which allowed him to observe 

stars and planets 30 times larger than seen by naked eyes [1]. The observation convinced him that earth 

was not the centre of the universe as believed at that time, but just normal planet circulating one star. 

Later in the same century, the lenses also allowed biologists to see microscopic world with light 

microscopes followed by the discovering of cell by Robert Hooke [2]. Although both telescopes and 

microscopes allowed the observations of tiny objects but the limitation of the smallest sizes in which 

these instruments could resolve remained unsolved in this century due to the lack of compelling theory 

of light. The interference phenomenon of light demonstrated in the early 19th century firmly confirmed 

the notion of light. Then, the classical wave theory was applied to analyze the propagation of light 

wave in lens and apertures located far from the source analytically, and the diffraction limit of the 

optical instruments was discovered by Ernst Karl Abbe in 1873, and similar equation by Lord Rayleigh 

in 1879 [3]. This law stated that the minimum distance between two objects in which light can resolve 

was limited approximately by the wavelength of light. The law remained valid, unbeaten, until the 

complete theory of light wave as the electromagnetic waves was formulated by James Clerk Maxwell. 

The equations are now known as the Maxwell's equations which give the correct description of 

classical light containing many photons. The Maxwell's equations had been applied to study light-

matter interaction at nanoscale. We became understand that the diffraction limit was associated with 

the decay of near fields carrying fine information from the objects. With this understanding in mind, 

the diffraction limit was finally beaten in the previous century. Thanks to both the Maxwell's equation 

and advanced photonic technology. There are two main techniques to beat the diffraction limit : (i) 

localized surface plasmons (LSPs) in nanoparticles or scanning probes, and (ii) metamaterials. In this 

section, we describe how these two approaches beat the diffraction limit and explain why using the 

metamaterials is more promising than using the scanning probes. Finally, we discuss the problem that 

we interest in this thesis.   

 Metallic nanoparticles, apertures, edges and tips support the localized oscillations of electronic 

plasma which can be coupled to the external radiation to form quasi-particles called LSPs [4-8]. LSPs 

generated at the probe surface create large electric field enhancement corresponding to the near field 

with high spatial frequencies. The near field generated by LSPs on an nano-aperture surface is the 

earliest structure that can beat the diffraction limit [6]. In this technique, the aperture was prepared by 

coating metallic layer onto a fibre and an metallized aperture was created at the end of the fibre. Then, 

light was sent down a fibre which now became a waveguide, and the near field was created at the 

aperture surface. The aperture was brought close to a sample to allow the near field to interact with the 

sample, then it was raster-scanned over the sample to obtain the image in the far field. The resolution of 

this technique was restricted by the aperture diameter. However, the working wavelength directly 

proportional to the aperture diameter and therefore this aperture-type works only in short wavelength.     
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This technique was followed by aperture-less type which use the tip to create the stronger near field at 

the top apex by allowing it to scatter with the incident light [9-12]. These experiments rely on the 

optical interaction between large near field, which is at the tip apex, and the vibrational modes of 

targeted nano-molecules to enhance the signal. The tip can be regarded as an nano-antenna which 

converts propagating waves into evanescent waves and vice versa. The tip-type scanning near-field 

microscope has been brought from visible region to THz radiation bans (THz, 1 THz=10
12

 Hz)  [13].     

However, the tips as the probes are very fragile, non-reproducible, and invasive to the samples which 

severely prevent its practical use [14]. Therefore, new optical structures which can convert the near 

field into the far field to be detected by a detector are needed.  

 Wherever they come from, the near fields are already here, but they are too weak due to their 

evanescent nature. This is more strict argument than saying that they are completely lost. What we need 

to do is to amplify their signal with negative refraction material if we want to see them. This is the 

concept of the perfect lens proposed by J. B. Pendry and marked the true beginning of metamaterial 

(MMs) research [15]. The negative refraction was first demonstrated in microwave region by R. A. 

Shelby et al. [16]. In their demonstration, the MM comprised periodic array of split ring resonators 

designed to possess, simultaneously, negative effective permeability and metallic rods designed to 

possess effective dielectric at the resonant frequency, and therefore the effective negative index of this 

MM must be chosen as predicted by Veselago [17] resulting in the negative refraction. J. B. Pendry 

also predicted that the subwavelength metallic slab with only negative dielectric constant could also 

magnify the near field signal, and this prediction was confirmed in ultraviolet region by N. Fang et al. 

[18]. The lens with either dielectric constant or magnetic permeability is negative is called superlens 

[18]. By alternating metallic layers and dielectric layers, the effective dielectric constants become 

anisotropic medium whose components of effective dielectric constant tensor have different sign [19-

23]. This metamaterial is called hyperbolic metamaterials (HMMs) following its hyperbolic equi-

frequency contour. The HMMs support the propagation of large k-vectors (corresponding to near field) 

but it doesn't amplify the near field like superlens. Instead, the cylindrical HMMs can magnify small 

objects into larger objects by allowing the near field placed close to this device, inside the inner core, to 

propagate with magnification process into the outer region to be later detected by detector [19,20]. The 

cylindrical HMMs can function in both magnifying and focusing processes [24]. The planar HMMs 

show the potential in subwavelength focusing with flat surface in the optical regime [21]. The high 

ohmic loss in the planar HMMs in visible band can be overcome by working only on the structured 

metallic surface called the metasurfaces which also exhibit hyperbolic equi-frequency contour [25]. 

The hyperbolic material does exist in nature, but currently found only in hexagonal boron nitride (h-

BN) in the mid-infrared band [26-28]. In the THz band, metals behave as perfect electrical conductor 

and graphene was proposed to substitute the metals, but this device has yet experimentally 

demonstrated [29]. The tapered fibre comprising indium rod array embedded in low loss Zeonex 

polymer has been experimentally demonstrated to work as focusing and magnifying THz hyperlens 

over the long distance [30]. Due to the negatively large effective dielectric constant along the fibre axis, 

all transverse components of wavevectors can propagate from one side to another side at the Faby-

Perot resonance. Researchers can achieve the focal spot size about 143 μm at the frequency 75 GHz 
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(λ=4000 μm) in this experiment. The focal spot size is limited by the ratio between sizes of apertures 

on both sides of the tapered fibre and the resonant loss. This structure is promising in biomedical 

imaging as the THz radiation provides non-ionizing radiation in diagnostic. S. J. Oh et al have 

demonstrated using THz radiation to differentiate between brain tumour regions and normal regions in 

reflection-type THz imaging using water-sensitive property of THz [31]. However, the signal to noise 

ratio is poor and image processing technique is employed to obtain useful image. Furthermore, the 

imaging technique cannot study tumour tissues more deeper because of the diffraction limit. The 

resolution of a few microns should be more useful in biomedical imaging with THz radiation.  

 

1.2 Purpose of the study 
 

In this thesis, we develop the analytical solutions of hyperbolic metamaterials (HMMs) to efficiently 

optimize the subwavelength imaging beyond the diffraction limit using the THz radiation. First, the 

analytical solutions of the cylindrical HMMs made by alternating metal/dielectric layers with the finite 

dielectric constants working in both magnifying and focusing processes have been developed based on 

the Green's function analysis and the transfer matrix method. As the dielectric constant of the metals 

becomes infinitely large in the THz radiation band, we develop the new HMMs for the THz radiation. 

The new HMMs are the stacked grating/dielectric layers and the analytical solutions of these structures 

have been developed by applying the coupled-mode analysis and the transfer matrix method.  

 The analytical solutions are much more efficient than the finite difference time domain 

method (FDTD) simulation. The electromagnetic fields in the structures with sizes much more smaller 

than the wavelength of light can be rapidly obtained by using the analytical solutions, while it is 

impossible to obtain these solutions by using the FDTD simulation run on a single PC. Any finite 

dielectric constants of the dielectric layers, real or complex numbers, can be studied by the analytical 

solutions. The mathematical expressions given by the analytical solutions allow us to study the optical 

mechanism in the structures.  

 We show that the analytical solutions of the cylindrical HMMs are three order faster than the 

FDTD simulation. We can analytically demonstrate the THz subwavelength imaging by using the 

stacked gratings/dielectric layers over the long distance about 33 mm at the frequency about 1 THz 

(λ=300 μm). The analytical solutions allow us to study the effective optical properties of the stacked 

grating/dielectric layers. These effective optical properties show that the stacked grating/dielectric 

layers are HMMs, and therefore they can be used to build the cylindrical HMMs. The analytical 

solutions not only close the gap due to the large difference in the length-scale between the wavelength 

of THz light and the subwavelength imaging devices, but they also lead to the novel devices such as the 

subwavelength-film sensing devices.                 
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1.3 Organization  

  
We organize the thesis as follows. In the following section of this chapter, the backgrounds in which 

we will refer to frequently in later chapters will be given. In the chapter 2, we describe the Green's 

function analysis applied to the cylindrical hyperlens made by alternating metal/dielectric layers with 

finite dielectric constants. We will describe how to obtain the HMMs for the THz light using the 

combination between the metallic grating and the dielectric layers in the chapter 3. The coupled-mode 

analysis will be used in this chapter because it gives superb consistency with FDTD simulation in the 

case of only the bare grating whose analytical solutions are already known. By applying the coupled-

mode analysis of the bare grating and the transfer matrix method, the analytical solutions of the 

dielectrics/grating/dielectrics are formulated in the chapter 3. The analytical solutions of these 

structures lead to the new HMMs for the THz light and the novel devices for the subwavelength-film 

sensing. We describe the novel devices for the subwavelength-film sensing in the chapter 3, and the 

new HMMs are described in the chapter 4 and 5. The chapter 4 explains the analytical solutions of the 

stacked grating/dielectric layers as the new HMMs for the THz light. The scheme of the analytical 

demonstration of the subwaveelngth imaging is also introduced in the chapter 4. The long-distance 

subwavelength imaging is analytically demonstrated in this chapter. Lastly, the chapter 5 explains the 

effective medium model of the stacked grating/dielectric layers. The optical properties such as the equi-

frequency contour (EFC), the effective parameters, and the critical angles, of the stacked 

grating/dielectric layers are discussed in this chapter. The thesis is summarized after the chapter 5. The 

analytical solutions are translated into the FORTRAN programming language in order to extract the 

useful physical quantities such as the intensity and field distributions from them. The FORTRAN codes 

of each chapter are provided in the CD-ROM, and the details of the programs are described in the 

appendix.       
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1.4 Backgrounds  
 

1.4.1 Terahertz radiation 

 

The terahertz (THz) radiation lies in the technological gap between the microwave and the infrared 

light as shown in Fig. 1.1 which is shrinking fast thanks to the technological progress of powerful THz 

sources and highly sensitive detectors. It is roughly located at 1-10 THz [32], where 1 THz is 10
12

 Hz 

which is equivalent to the wavelength 300 μm, and to the energy 4.14 meV or 33.3 cm
-1

.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.1. Spectral location of THz in electromagnetic spectrum [32]. 

 

 The THz band is called the gap because its sources and detectors are much less developed than 

its neighbours. The broadband THz radiation pulse is usually generated by transient photocurrents in 

photoconductive antenna which is excited by optical femtosecond laser pulse in terahertz time-domain 

spectroscopy (THz-TDS) [33]. The use of femtosecond laser makes the set up of THz-TDS bulky 

which requires table top experiment. The more compact source is THz quantum cascade laser (THz-

QCL) [34]. THz-QCL yields THz continuous wave with high output power, but it works only at low 

temperature. Therefore, the THz-TDS is more commonly used than the THz-QCL in imaging and 

material characterization because the former can operates at room temperature. Researchers have been 

developing more compact THz source with low cost because of potential applications of THz radiation 

spanning from enhancing communication bandwidth [35], food quality control [36], biomedical 

imaging [31,37], homeland security [38-40], to fundamental science [41]. Especially, the THz light is 

attractive for non-invasive sensing and imaging of biomedical objects, e.g. tumors detection, due to its 

relatively low energy. Recently, S. J. Oh et al have demonstrated using THz light to differentiate 

between brain tumour regions and normal regions in reflection-type THz imaging [31]. The THz is 

sensitive to water content in the tissues. The tumour regions with lower water content reflect more THz 

light than normal regions, and therefore they can be distinguished from normal regions by observing 

reflectance scattered from the samples as shown in Fig. 1.2. However, the THz light is highly absorbed 

by water and this limits the penetration depth into the tissues. The long wavelength of THz light also 

makes low contrast and restricts details in the tissues that can be resolved with THz light. This thesis 

tackles the latter problem by studying new artificial structures that can beat this natural law which 

restricts the imaging resolution. In the next section, we will describe about the origin of this law which 

is known as the diffraction limit. Once we understand where this law comes from, we will give the 

concept of how to go beyond this limit.          
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Fig. 1.2. Brain tumour regions differentiated by THz radiation in THz reflection-type imaging [31]. 

  

 

1.4.2 Diffraction limit  

 

When lens is employed to collect light from an object, the image on the screen appears bigger. For 

simplicity, let's consider a single distant point source as an our object, e.g., a star, and an aperture of 

lens is circular with diameter D. The lens aperture will diffract the incident light coming from the point 

source and focus some part of the diffracted light onto the screen placed at the focal spot behind the 

lens. The focal length of the lens is much larger than the wavelength of light, and only the so called 

"far-fields" can reach the screen. By integrating all the far-fields diffracted from the lens aperture, the 

far-field intensity at distance r  from the centre of the image plane is written as [42] 

                                                                      
 12 /

0
/

f

f

J kar l
I r I

kar l

 
 
  

,                                            (1.1)  

where  0I  is the intensity at the centre of the image plane,  1J x  is first-order Bessel function, 

2 /k   , / 2a D , and fl  is focal length. The intensity is azimuthally symmetric with the brightest 

intensity at the centre. The intensity decreases as the radial distance increases from the centre. By 

looking top-down on two-dimensional plane, the intensity distribution about the centre forms a disk 

surrounded by several narrow dark and bright rings as shown in Fig. 1.3 (a). The central disk is known 

as Airy disk which was first proposed by G. B. Airy (1801-1892). The first dark ring has the radius 

determined by the first zero of  1 / fJ kar l . This radius is equal to  

                                                            
1

1.22 fl
r

D


 .                                                     (1.2) 

If there are two point sources, two Airy disks associated with each point source are created on the 

screen. L. Rayleigh (1841-1919) described that if 
1r  of one Airy disk overlaps with the centre of the 

other Airy disk, then two objects are said to be just resolved as shown in Fig. 1.3 (b) [3]. Therefore, the 

minimum distance  
min

l  between two point sources that can be resolved is defined by the 
1r  given 

by Eq. (2) :  
min

1.22 /fl l D  . This condition is called Rayleigh's criterion and well known as the 

diffraction limit. Two objects separated by distance greater than  
min

l  are clearly resolved, but they 

cannot be resolved if their separation distance is smaller than  
min

l  as shown in Fig. 1.3 (c).  Another 

formula of the diffraction limit is called Abbe's criterion derived by E. A. Abbe (1840-1905) when he 
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was finding the limitation of the optical microscope. The diffraction limit in the Abbe's criterion is 

expressed as [8]  

                                                           
min

0.61
l

NA


  ,                                                  (1.3) 

where sinNA n  is the numerical aperture of the objective lens, n is the background medium of the 

optical set up, and α is the acceptance angle. From both criterions, the resolution is better by reducing 

the focal length and increasing the size of aperture (increasing the numerical aperture). But this 

approach leads to bigger instrument. Another way is to reduce the wavelength of light. But the optical 

energy will also be higher which may ionize the sample. Is there another way to go beyond these 

criterions? We will later describe that there is actually the way to use long wavelength and achieving 

better resolution than that restricted by the diffraction limit. Before describing how to beat the 

diffraction limit, we will explain more why the resolution is limited by the wavelength of light.  

   

 

 

 

 

 

      

 

 

 

 

 
Fig. 1.3. (a) Airy disk of one point source, (b) Two Airy disks are just resolved at the Rayleigh's criterion, (c) Two 

Airy disks are not resolved below the Rayleigh's criterion.   

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 1.4. A simple model used to describe the limitation of relation on wavelength 

 

 

 We consider a distant point source radiating continuous wave with angular frequency ω along 

the y-axis as schematically shown in Fig. 1.4. The electric fields from the point source are collected by 

an infinitely large lens which form an image on the screen. The electric field at the space-time position 

(y,x,t) can be written as the infinitely summation of many electromagnetic field modes, each mode is 

represented by wavevector  ,x yk kk  where xk  is tangential component, and yk  is normal 

component. This can be expressed in terms of an equation as  

                                     , , , exp
x y

x y x y

k k

E x y t E k k i k x k x t   
 


,                                    (1.4) 

r1

(a) (b)

(c)

r1r1

(a) (b)

(c)

source Lens Image

 , ,E x y t
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
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
AIR

y
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where  ,x yE k k  is field amplitude corresponding to the electromagnetic mode  ,x yk kk . The 

tangential component 
xk  contains the resolution of the source, and the normal component 

yk  controls 

the propagation of the image. The 
xk  and 

yk  must satisfy the dispersion relation of the air medium in 

which the source and our optical set up are embedded, that is  

                                           
22 2 /x yk k c  , or  

2 2/y xk c k  .                                 (1.5)                                                      

When /xk c , yk  is real number. This mode can propagate from the source to the screen at which 

we can detect its signal. The electromagnetic waves satisfying this condition are called propagating 

waves or far-field. However, when /xk c , yk  becomes imaginary. We cannot detect the signal of 

this electromagnetic mode on the screen because it rapidly decays from the source due to the 

exponentially decaying function. The electromagnetic waves satisfying to the latter condition are called 

evanescent waves or near-fields. Therefore, the cut-off 
xk  determines the resolution of the infinitely 

large aperture lens. The resolution is defined as  

                                                        
min

2

/
l

c





   .                                                  (1.6) 

Eq. (1.6) shows that the resolution is limited by the wavelength of light even in the case of very large 

lens. The restriction evidently emerges from the lack of evanescent waves on the screen. This is the 

origin of the diffraction limit as derived by L. Rayleigh and E. A. Abbe. The evanescent waves are 

forced to decay because the air medium supports only the propagating waves with small wavevectors. 

In order to overcome the diffraction limit, we need to make new media which allow the propagation of 

large wavevectors. Another approach is to recover the evanescent waves by amplifying their signals. 

These approach rely on the qausi-particles found in metals. These quasi-paticles have large 

wavevectors so they can fulfil our requirement. The quasi-particles are surface plasmons.      

 

 

1.4.3 Plasmons and surface plasmons  

  

Free electrons in bulk metals collectively oscillate (all electrons are described by one unique position 

vector) relative to positive charges when they are driven by some external radiation. The collective 

oscillation has zero momentum, at which the dielectric constant is exactly zero, and it is parallel to the 

propagation direction of light [43]. This state of oscillation is known as plasmon which occurs at 

particular frequency called plasma frequency. The plasma frequency is found by deriving dielectric 

constant function of a metal excited by external light, and then the plasma frequency is obtained by 

forcing dielectric constant to become zero. The dielectric constant model of metals which is well 

consistent with experiment is the Drude model written as a function of angular frequency ω of incident 

light as [44]  

                                                               
 2

0

2

/

/

Ne m

i


 

  
 


 ,                                                           (1.7)                       
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where 
 is dielectric constant of the positive background, N  is electron density, m  is electron mass, 

and  is electron relaxation time. The imaginary part of the dielectric constant arises due to the 

scattering of electrons which introduces damping force /p   into the equation of motion. By 

neglecting this term and restrict 0  , then the angular plasma frequency becomes  

                                                                       
2

0

p

Ne

m


 
 .                                                             (1.8) 

The plasma frequencies of all metals lie in ultraviolet region due to their large electron density. For 

example, the plasma frequencies of gold and silver are 9.03 eV and 9.01 eV, respectively [45]. The 

plasma frequency gives the border between the opacity and the transparency of the metal. If the 

frequency of incident light is lower than the plasma frequency of the metal, the light will decay inside 

the metal as it propagates through the metal because the dielectric constant of the metal is negative 

leading to complex refractive index. The decay length is characterized by the decay of light intensity by 

1/ e  known as skin depth 
d . The skin depth is explicitly written in terms of real part     and 

imaginary part     of the dielectric constant as 

                                                   
2 2

2

4
d




   


    
.                                                   (1.9) 

For example, the skin depths of gold and silver at 1 THz are equal to 61 nm and 55 nm, respectively. If 

a metal slab has thickness larger than its skin depth and the incident light has lower energy than the 

plasma frequency of the metal, then the incident light will be all reflected. But the incident light can 

propagate to the other side of  the metal if it has energy beyond the plasma frequency of the metal 

because the dielectric constant become positive. This is the reason why bulk silver mirrors reflect 

visible light (and lower energy light) and why radio signal is reflected from ionosphere. We plot real 

part and imaginary part of gold dielectric constant in THz band using parameters of Drude model from 

Ref. 45 in Fig. 1.5. The real part and imaginary part of the gold dielectric constant are in the forth order 

and sixth order, respectively, in THz band. The absolute values of both quantities keep rising in lower 

frequency band. The large dielectric constant results in the large conductivity. Therefore, gold 

including other noble metals are considered as perfect electrical conductor (PEC) in the THz and lower 

frequency band. The PEC approximation forces metals to have no losses, and it also eases the 

modelling of metals which we will see in chapter 3 for the case of metallic grating.  

 One may expect that there must be something special occurring at the front interface of a 

metal where it is hit by an incident light which later decays through the metal for frequency of the 

incident light lower than the plasma frequency of the metal. The study of an electromagnetic modes at 

this interface gives rise to new quasi-particles called surface plasmons.  

 The electromagnetic modes of surface plasmons are described by the dispersion relation which 

contains the information of allowed wavevectors parallel to interface between dielectric medium and 

metal at given frequency of the incident light. This dispersion relation can be obtained by considering 

reflection and transmission from the interface excited by transverse-magnetic (TM) polarized light in 

which the magnetic field is perpendicular to the propagation direction.    
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Fig. 1.5. Dielectric constant of gold in THz band obtained from the Drude model.   

 

   

 The magnetic field has only z-component and the electric fields are obtained by the magnetic 

field using Faraday's law in the Maxwell equations (to be described in section 1.4.7). After applying the 

continuities of Hz and Ex , the 0th-order reflection and transmission coefficients of TM-mode are 

written as  

                                               

   

   

 

   0 0

2
,    

d m d

m y d y m y

d m d m

m y d y m y d y

k k k
r t

k k k k

  

   


 

 
,                                        (1.10)                         

where 
d  and 

m  are dielectric constants of dielectric medium and metals, respectively, and 

   
2 2/

j

y j xk c k    is normal component of wavevector in medium j. Notice that 
0r  and 

0t  have 

common denominator. By forcing this denominator to be zero and follow straightforward algebra, the 

well known dispersion relation of SPs is obtained  

                                                                     d m

x

d m

k
c

  

 



.                                                          (1.11) 

xk  satisfying Eq. (1.11) is regarded as SP wavenumber : 
SPk . According the Eq. (1.11), the 

wavenumber of SP deviates from that of the light line as schematically shown in Fig. 1.6 (a). It can be 

seen that the SP has larger wavenumber comparing to the light in vacuum. This means that it is 

evanescent wave or near-field, localized only to the interface of the metal. An intuitive picture of SPs is 

shown in Fig. 1.6 (b) which illustrates the collective oscillation of electron cloud relative to positive 

background at the metallic surface. The SPs are coupled with non-radiating light and these states of 

couplings are known as surface plasmon polaritons (SPPs). Researchers tend to discard the term 

polaritons and use only surface plasmons with the coupling between light and collective oscillations of 

free electrons understood. In this thesis, we will also use only the term surface plasmons or SPs 

hereafter.   
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Fig. 1.6. (a) Schematically drawing of dispersion relation of SPs (solid line) comparing to the light line (dashed 

line). (b) An intuitive picture of SPs showing the collective oscillation of free electrons coupling with light [46].     
  

 Due to the large wavenumber of SPs, they cannot be directly excited by the external radiation. 

The near-field generated by the internal total reflection (ITR) effect on the prism surface is commonly 

used to excite the SPs in optical region as schematically drawn in Fig. 1.7 (a) [47]. Another scheme 

uses the near-field from the sharp edges to excite and to collect the SPs as schematically drawn in 1.7 

(b) [48]. The diffraction grating can also be used to excite the SPs via Bloch-Floquet waves as 

schematically drawn in 1.7 (c) [47]. These methods have one thing in common that is they create large 

wavevector waves to excite the SPs which must already exist on the surface of the metal.   

 Once the SPs are excited on the interface of a metal slab, it seems impossible that the same 

SPs will appear on another interface of the metal. However, T. W. Ebbesen et al showed that the SPs 

could emerge on another side of the metal slab by making hole array on them [49]. The coupling of the 

SPs on two faces of the hole array results in large transmission called extraordinary optical 

transmission (EOT) effect at resonant wavelength larger than lattice constant as shown in Fig. 1.8 (b). 

The wavevectors of the SPs approximately satisfy the following phase matching condition  

                                                          
SP in R k k k ,                                                              (1.12) 

where kSP  is SP wavevector, kin is tangential component of the incident wavevector, and kR  is 

reciprocal lattice vector of the hole array which is ˆ ˆ2 / 2 /R xn a ym a  k  for square lattice where n 

and m are integer, and a is the lattice constant. The complete theory of the EOT effect is the coupled-

mode theory [50] which gives us the clear picture of the coupled-SPs as shown in Fig. 1.8 (c). The EOT 

effect has sparked the interest in subwavelength sensing with THz radiation [51, 52].      

 New electromagnetic modes also appear in metallic nanoparticles such as spherical and 

cylindrical nanoparticles. These modes are known as localized surface plasmons (LSPs) which are 

heavily studied in visible regime due to its potential in ultrasensitive sensing and enhanced 

spectroscopy [53]. The calculation of dispersion relations and electromagnetic fields in these structures 

are complicated because of non-flat boundaries. The incident light must be expanded in terms of 

spherical waves and cylindrical waves for spherical and cylindrical nanoparticles, respectively, and the 

solutions in all regions are expressed in terms of these basis functions. For example, the Mie's theory 
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Fig. 1.7. Some schemes of exciting SPs (a) prism coupling (b) edge coupling, and (c) grating coupling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.8. Extraordinary optical transmission (EOT) effect in hole array. (a) Circular hole array milled in gold film 

with film thickness 260 nm, hole diameter 150 nm, and lattice constant 460 nm, from SEM. (b) Zero-order 

transmission spectra of circular hole array in silver film with film thickness 200 nm, hole diameter 150 nm, and 

lattice constant 600 nm, for TM-mode normal incident light. (c) Calculated |E| at the resonance peak with the 

substrate removed. The |E| is normalized by the amplitude of the incident light [49, 50].      

      

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 
 

Fig. 1.9. Intuitive pictures of LSPs in nanosphere, nanorod, and nanocone [55].  
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gives the full solutions of the electromagnetic fields in the spherical nanoparticles which are expressed 

in terms of the spherical Hankel function of the first kind for the region outside the particle and the 

spherical Bessel function for the region inside the particle [4,54]. Fig. 1.9 shows intuitive pictures of 

LSPs in some widely studied nanoparticles [55].    

 We have seen from this section that new electromagnetic modes emerge if we look at the 

metallic surface, reduce size of the metal, or sculpt the metal into different shape. This concept is 

important for THz radiation band in which the incident light is almost completely reflected and the SPs 

is weakly bound to the metallic surface. In the next section, we will show that by structuring metallic 

surface with cavities, new electromagnetic modes resembling SPs appear. These electromagnetic 

modes are named spoof surface plasmons.             

 

 

1.4.4 Spoof surface plasmons  

 

We explain the spoof surface plasmons or SSPs by considering the metallic surface which is engraved 

by periodic grooves having the same depth (h) as schematically shown in Fig. 1.10 (a). The metal is 

modelled as perfect electrical conductor (PEC) which means that there is no loss inside the metal. We 

define groove width d to be much smaller than wavelength of the incident light so that only the 

fundamental waveguide mode inside each groove is taken into account. Then, the dispersion relation 

obtained by the coupled-mode analysis can be expressed as [50,56]  

                                         
 

 
   2

0
2 2

/
sinc / 2 cot

/
m

m
m

cd
i d k h

p c




 








 ,                                  (1.13)    

where m is an integer representing diffraction order, and 2 /m xk m p    is Bloch wavenumber. The 

left hand side term converges rapidly by increasing diffraction order due to the sinc function. If p  , 

the m=0 order is dominant term and gives good approximation, and then Eq. (1.13) can be reduced to 

more simpler form [57]  

                                                 
 

 0
2 2

/
cot

/ x

c
i k h

c k







.                                           (1.14) 

Both Equations show signs of SSPs, but we will use Eq. (1.13) to accurately obtain their dispersion 

relations and field distributions. Frequencies giving zeros to the real part of the left hand side term in  

Eq. (1.13) for given 
xk  are plotted as a function of 

xk  for various groove depths in 1.10 (b). It can be 

seen that the dispersion relations resemble those of the SPs in optical regime. By increasing the groove 

depths, the dispersion lines of SSPs deviate from the light line in vacuum which is indicated by the 

dashed black line. This means that if the grooves become deeper, the larger wavenumbers they can 

support. These are quasi-particles known as SSPs. The frequencies approach the cavity mode 

/ 2c c h   by increasing wavenumbers as can be from Eq. (1.6) by taking 
xk   . The reflected 

|Re(Hz)| normalized by that of the incident magnetic field  impinging on the groove interface for h=1.0p 

are shown in Fig. 1.11 (a)-(c).  At the frequency 0.86552 THz, the SSP wavenumber is only 0.3 π/p 

which is close to the light line and therefore the field is delocalized above the perforated plane as 

shown in Fig 1.11 (a). As the frequency increase to 1.06777, the SSP wavenumber also increases to     
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Fig. 1.10. (a) Schematic view of PEC plane perforated by periodic grooves with the same depth. The region above 

PEC plane and inside the grooves are defined as air. (b) SSPs dispersion relations of for various groove depths. 

The period is defined as p=50 μm, and the groove width d=0.2p. The black dashed line indicates the light line in 

air.    

 

 

0.4 π/p which is about 1.12 times larger than wavenumber of light in vauum and thus the localization of 

magnetic field from the SSP is seen on the perforated surface as shown in Fig. 1.11 (b).    

 By increasing frequency more to 1.22092 THz, the SSP wavenumber increases to 0.6 π/p 

which is about 1.5 times larger than that of the light line and therefore the more strongly localization is 

seen in Fig. 1.11 (c). This means that we can design SSPs as we want by simply varying the geometry 

of the structure. The SSPs are not only supported by the perforated plane, but also perforated PEC 

cylindrical wires [58]. In this case, the wires are perforated by radial grooves which exhibit the same 

features of SSPs in perforated PEC. For example, the cut-off frequency in this structure is the same as 

that of the perforated PEC plane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.11. The distribution of |Re(Hz)|  normalized that of the incident light impinging on the groove interface for 

the groove depth h=1.0p in which p=50 μm at frequencies (a) f=0.86552 THz, kx=0.3 π/p, (b) f=1.06777 THz, 

kx=0.4 π/p, f=1.22092 THz, kx=0.6 π/p.    

 

 A PEC slab which is cut through by periodic array of square holes support SSPs [59]. The 

effective parameters of this artificial structure are anisotropic which means that electric displacement D 

and magnetic induction B feel different electromagnetic forces in different directions. The effective 

parameters are grouped in 3x3 matrices. The matrices are uniaxial which means that they have non-

zero elements only along the diagonal elements. These matrices are written as  

                                                eff eff

0 0 0 0

0 0 ,    0 0

0 0 0 0

x x

y y

z z
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,                                   (1.15) 
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where 
z z    , and  
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                

            (1.16) 

where a is size of the square hole, d is lattice constant, and ,h h   are dielectric constant and magnetic 

permeability of hole filling material. Notice that ,x y   have exactly the same form as the Drude model 

with the spoof plasma frequency exactly the same as the frequency of the cavity mode. The ,x y   are 

negatively large below the spoof plasma frequency due to the small filling ratio a/d.     

 The SSPs, like SPs in optical regime, are important in subwavelength sensing and imaging in 

THz band.  In the next section, we will describe subwavelength imaging technique which applies SPs 

in a metal to make new lens that can support the propagation of evanescent waves with large 

wavevectors. The new lens is called hyperlens.  

 

 

1.4.5 Hyperbolic medium and hyperlens 

 

In some materials, energy of light can propagate in perpendicular direction to the propagation direction 

of light itself. This phenomenon does not occur in isotropic media such as air and glass, but it can occur 

in anisotropic medium whose equi-frequency contour (EFC) is hyperbolic. The EFC is the plot 

showing the relation between components of wavevectors at particular frequency. Air and glass are 

said to have circular EFC because they satisfy the dispersion relations having circular EFC. Hyperbolic 

medium is said to have hyperbolic EFC because it satisfies the dispersion relation having hyperbolic 

EFC. The hyperbolic medium dose exist in nature but only in the mid-infrared band. A thin hexagonal 

boron nitride (h-BN) has been experimentally demonstrated to exhibit low-loss hyperbolic dispersion in 

frequency range 760-825 cm
-1

 and 1,370-1,610 cm
-1

 due to the coupling of phonons with light [26-28]. 

At the time of writing this thesis, there is no other naturally occurring hyperbolic medium observed by 

experiments. Nevertheless, the hyperbolic medium can be artificially fabricated by simply altering 

negative dielectric constant layers and positive dielectric constant layers. We will explain this artificial 

hyperbolic material after describing the properties of hyperbolic medium.  

 Hyperbolic medium (HM) with hyperbolic EFC requires the opposite signs between dielectric 

constants parallel ( z ) and transversal ( t ) to the propagation direction of light. Therefore, it comes 

with two different types depending on the signs as shown in Fig. 1.12. (a)-(b) that show, respectively, 

type-I HM in which 0, 0t z   , and type-II HM in which the sign is opposite and 0, 0t z   . In 

the type-I HM, zk  is never be zero and therefore the light never reverse its propagation direction by 

reducing the transversal component of the wavevector as denoted by 
tk . However, in the type-II HM, 

the light can reverse the propagation direction by reducing 
tk  because 

zk  is allowed to be zero with the 

small 
tk . Therefore, the type-I HM is required for the magnifying process in which the 

tk  emitted by 

the source can decreases as the electromagnetic wave propagate out from the source.  Both types can 

support large wavevectors, the properties that we have seen in surface plasmons. Therefore, the HM 

can be used to collect large wavevectors scattered from the sub-diffraction objects and send them to the   
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Fig. 1.12. Two types of hyperbolic medium (a) type-I, and (b) type-II [27]. 

 

opposite side, and therefore it can beat the diffraction limit as demonstrated in the mid-infrared 

radiation band  [27]. The energy flow of light inside the HM is described by the group velocity 

g 
k

v , which is the gradient of the angular frequency with respect to wavevectors. Therefore, the 

group velocity is perpendicular to the equi-frequency contour and point into other higher frequency 

contours as also shown in Fig. 1.12 (a) -(b). The group velocity is thus forced to be perpendicular to the 

phase velocity which always points into the same direction as the corresponding wavevector. It can be 

immediately seen that this behaviour cannot occur in the circular dispersion of isotropic medium in 

which group velocity always point into the same direction as phase velocity. The group velocity 

corresponding to large wavevector also points in the specific direction relative to the optical axis (z-

axis). The critical angle of the group velocity 
c  determines the largest angle to which the energy can 

flow which can be explicitly expressed in terms of dielectric constants and the critical angle of large 

wavevectors 
c  as [21]  

                                                          1tan Re / tanc z c   

 .                                                  (1.17) 

The directional propagation inside the HM leads to the subwavelength focusing and it is frequency 

employed to demonstrate the HM.  

 As already described above, the hyperbolic medium is hardly found in nature. But we can 

build hyperbolic metamaterials (HMMs) by simply alternating metal and dielectric layers whose 

thicknesses are much smaller than the wavelength of incident light. In this subwavelength thickness 

regime, the effective dielectric constants of the HMMs can be retrieved by the effective medium 

approximation (EMA)  
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,                         (1.18) 

where 
m  is dielectric constant of the metal, 

d  is dielectric constant of the dielectric, 
m  is thickness 

of the metal, and 
d  is thickness of the dielectric. These effective dielectric constants emerge naturally 
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by imposing the Floquet-Bloch wave along the propagation direction and ,m d    [60]. It can be 

seen from these equations that the effective dielectric constants can have different signs because 

0m   and 0d  . Therefore, we can build both type-I and type-II HMMs by choosing the proper 

metals and dielectric with subwavelength thicknesses. This concept has been used by Z. Jacob et al. 

[19] to design the cylindrical HMMs working in visible band that can capture large wavevectors 

scattered from the objects placed inside the inner core of the cylindrical HMMs to propagate into the 

outer region. The large wavevectors will be transformed into the smaller wavevectors as they propagate 

outward because the orbital angular momentum of light must be conserved, and therefore  they can 

match the low wavevector in air to propagate into the far-field. This is known as the magnification 

process which occurs only in curve space. The cylindrical HMMs has been experimentally 

demonstrated by Z. Liu et al at the ultraviolet wavelength 365 nm as shown in Fig. 1.13 [20], and these 

devices are now known as the cylindrical hyperlens or CHs. The CHs is fabricated by alternating silver 

and alumina layers each with thickness 35 nm onto a quartz substrate. The sub-diffraction-limited 

information from the object inscribed into chromium layer deposited directly to the inner core of the 

CHs are collected by the CHs, being magnified as they propagate outward, and then are collected by 

the conventional lens placed in the far-field. The spatial resolution of 130 nm is achieved in this 

experiment. However, the resolution of these devices is strongly limited by losses in silver layer.           

 

 

 

 

 

 

 

 

 

 

 

    

 

 
Fig. 1.13. The first experimental demonstration of the cylindrical hyperlens metamaterials working in ultraviolet 

band [20]. 

 

 

 In the THz band, the dielectric constant of the metals explodes, and the metals are required to 

be structured into the rod arrays. The rod arrays packed inside the tapered fibre as shown in Fig. 1.14 

(a) has been experimentally demonstrated to show the subwavelength imaging and focusing [30]. The 

rod arrays are made from indium rods embedded in low loss Zeonex polymer. These fibres behave as 

type-I HMMs with z t  , and therefore all tangential components of wavevectors are forced to 

propagate with the same propagation constant  /z tk c  . Then, the EFC of this structure is 

completely flat and the contours are parallel to the transversal axis, and thus the group velocity is 

always parallel to the propagation axis. The fibres work at the Faby-Perot resonances to convey light to 

another side, and their long lengths make them work at low frequency. The experimenters can achieve 

the focal spot size about 143 μm at the frequency 75 GHz (λ=4000 μm) as shown in Fig. 1.14 (b) in the 
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region close to the smaller interface of the tapered fibre whose the larger interface is combined with the 

aperture to create large wavevectors. The focal spot size obtained by this structure is restricted by the 

ratio between two ends of the fibres, and the even small loss of the Zeonex polymer resulting from the 

Faby-Perot resonance.         

       

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 1.14. (a) Schematic view of tapered fibre consisting Indium rods embedded in Zeonex polymer. (b) Intensity 

distribution at the small interface of the tapered fibre with the aperture placed on the large interface [30].  

 

 

 In order to obtain smaller imaging resolution in the scale of a few micron which will be 

practically important in the biomedical imaging, we need smaller HMMs, and we need to optimize the 

electromagnetic fields inside those HMMs and in surrounding media by solving the Maxwell's 

equations. The conventional method which is widely used in academics is the finite difference time 

domain method (FDTD). We review the Maxwell's equations and FDTD simulation in the next section. 

The advantage an disadvantage of the FDTD simulation will be also given.     

 

 

1.4.7 Maxwell's equations and finite difference time domain simulation (FDTD) 

 

The year 2015 is declared by UNESCO to be the international year of light to celebrate some important 

achievements in optics. One of those achievements is the formulation of the electromagnetic theory of 

light by J. C. Maxwell 150 years ago. The equations are known today as the Maxwell's equations to 

honour his name. The Maxwell's equations show that light is composed of electric and magnetic fields 

which induce each other in space and time so that the light can propagate throughout space with the 

constant speed. These equations describe the behaviour of the electromagnetic fields of light, and they 

are expressed compactly as  

                                                     , ,t t D r r ,                                                    (1.19)                              

                                                   , 0t B r ,                                                                       (1.20) 
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where E denotes the electric field, D the electric displacement, H the magnetic field, B magnetic 

induction, J current density, and ρ the charge density. These field quantities are related by the 

constitutive relations   

                                                0 0, , ,    , ,t t t t    D r E r B r H r ,                                   (1.23) 

where 
0  and 

0  are electric permittivity and magnetic permeability in free space, respectively,   and 

  are dielectric constant and magnetic permeability of the medium in which light propagates, 

respectively.   and   are scalar in isotropic medium and tensors in anisotropic medium.  In 

conducting medium, the conduction current density J E  where   is complex optical conductivity. 

After substituting the conduction current into Eq. (1.22) with the time harmonic  exp i t  

dependence, the complex dielectric constant   of the metal is redefined and become related to   via 

the relation  

                                                               
0

i


 


  ,                                                       (1.24) 

where 
 is the background dielectric constant. The complex dielectric constant of a metal is described 

by the Drude's model given in Eq. (1.7) and the complex conductivity of the metal can be obtained by 

applying Eq. (1.7) and (1.24). Therefore, the right hand side of Eq. (1.22) for the metal can be written 

only in terms of the summation between electric displacement associated with complex dielectric 

constant of the metal and the free electric current density.  

 Once the complex electromagnetic fields of light with the time harmonic  exp i t  are 

known by the Maxwell's equations, the energy flow of light is obtained by calculating the time-

averaged Poynting vector S expressed as   

                                                       
1

Re
2

 S E H .                                                         (1.25) 

The real part and imaginary parts of the electromagnetic fields must be taken to calculate the energy 

flow of light, but only the real parts are taken if one considers the propagation direction of light. As in 

the case of hyperlens, these two directions can be different. For any time-dependence electromagnetic 

field, the instantaneous Poynting vector at time t is obtained by  S E H .    

 In order to solve for the electromagnetic fields, the boundary conditions must be given. In the 

open system, the electromagnetic fields radiating from a source must be radiating wave at the far-field. 

In the composite system comprising more than two media, the electromagnetic fields must satisfy the 

boundary conditions at the interfaces between two media. The boundary conditions at the interface 

between two media denoted by i and j are listed as follows  

                                                              
0

i j
E E   ,                                                             (1.26) 

                                                            i j
H H K   ,                                                             (1.27) 

                                                            i j
D D K   ,                                                            (1.28) 

                                                             
0

i j
B B   ,                                                              (1.29)        
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where K is surface current and Kζ is surface charge density. In most case, even in the case of  the metal, 

there are no surface currents and surface charge density because the materials are considered as 

dielectric medium (negative dielectric constant for metal). This is not true if the radiating sources are 

placed directly at the interface. In the case of K= Kζ=0, the tangential components of the electric and 

magnetic fields are continuous. These two conditions will be applied frequently in the analysis of 

subsequent chapters. The remaining two boundary conditions for the normal components are 

automatically satisfied as the normal components of the fields are linked to the tangential components 

of the fields via the Maxwell's equations.  

 Although the boundary conditions have already been given, the Maxwell's equations are still 

hard to solve. The popular method is to solve the Maxwell's equations numerically using the so called 

finite difference time domain method of FDTD.  Consider an isotropic medium with an arbitrary shape 

which is surrounded by air excited by TM-polarized incident light as schematically shown in Fig. 1.15. 

The magnetic field is perpendicular to the plane and therefore has only z component ˆ
zH zH . The 

variation of the magnetic field in space is equivalent to the variation of the electric field in time via Eq. 

(1.22) of the Maxwell's equations, and we have from this equation  

                                        0
ˆ ˆz z

x y

H H
J x J y

t y x
 

    
      

    

E
,                                           (1.30) 

where 
xJ  and yJ  are components of electric current density which generates the incident light. The 

variation of the electric field in space is also equivalent to the variation of the magnetic field in time 

according to Eq. (1.21) of the Maxwell's equations, and we have from this equation  

                                                     0
ˆ

y x
E E

z
t x y

 
 

   
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H
.                                               (1.31) 

Eq. (1.30) and (1.31) gives 3 coupled-equations for all components of the electromagnetic field  
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E EH

t x y
 
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  
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.                                                       (1.34) 

The FDTD method replaces the partial derivatives with the finite difference, and thus the space and 

time coordinates become discretized as shown by red dots in Fig. 1.15 for the discretized space. For 

example, the partial derivative of a function f(x,y,t) with respect to x at the point (x0,y,t) is approximated 

by the finite derivative as 

                               
     

0 , ,

, , / 2, , / 2, ,

x x y t

f x y t f x x y t f x x y t

x x


     


 
,                          (1.35) 

where x  is an interval of the discretized x-coordinate. The similar expressions can be obtained for the 

partial derivative with respect to other coordinates. By substituting the finite differences for all 

components of the electromagnetic fields into Eq. (1.19)-(1.22), the solutions of the electromagnetic 

fields at all discretized points can be obtained by the so called Yee algorithm. The challenge is reduced 
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to the programming implementation to apply the boundary conditions at the boundary between two 

media. In this thesis, we employ the freely-distributed FDTD code called MEEP in this thesis [61]. 

This program is stable and widely used in academics.  

 The FDTD method allows us to witness the time-evolution of the electromagnetic fields in our 

structure. But the accuracy of this method dramatically depends on the chosen intervals. The intervals 

must be varied until the solutions of the electromagnetic fields converge within some degree of 

accuracy. Otherwise, it will give trivial solutions. Therefore, the disadvantages of FDTD simulation are 

time consuming and inaccuracy. It can be said that it is not efficient method. Specifically, in the 

structure whose size much smaller than the working wavelength, FDTD performs very poorly or even 

impossible in the extreme case. Therefore, one must not completely rely on the FDTD simulation in      

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.15.  An isotropic object with an arbitrary shape, which is excited by an TM-polarized incident light, is 

discretized in space and time in FDTD simulation. 

 

the subwavelength regime. Instead, one should look for the analytical solution of the structure of 

interest and use FDTD simulation as theory-validity checking with simple parameters. After that, we 

can use the analytical solution to obtain the electromagnetic fields with extreme parameters in the 

subwavelength scale. Because FDTD simulation is consistent with an experiment, so as the analytical 

solution. The analytical solution give the very efficient tool to optimize our structure.    
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Chapter 2 

 

Analytical solutions of electromagnetic fields in focusing and magnifying 

cylindrical hyperlenses : Green's function approach  

 
The cylindrical hyperlens (CHs) is hyperbolic-dispersion metamaterials supporting the propagation of 

near fields with high spatial frequencies, which are extremely weak in the far-field region in 

conventional dielectric materials, thereby allowing the far-field imaging and the image magnification 

of two-dimensional subwavelength objects beyond the optical diffraction limit (called magnifying 

CHs) [19,20]. The image magnifying process of subwavelength objects results from the angular 

momentum conservation of the cylindrical waves, and it was realized in the CHs made by alternating 

Ag and Al2O3  concentric cylindrical layers (CCLs) in ultraviolet band for the first time [20]. The 

magnifying CHs can be optimized by using the Finite Element simulation (FE) with realizing the 

effective medium approximation [19,20,62,63]. However, the numerical simulations FE or Finite 

Difference Time Domain (FDTD) are time consuming and inaccurate in some cases. The reverse 

process as the magnifying CHs, that is focusing light into the subwavelenth region (focusing CHs), is 

suffered from the total reflection of the incoming light at the interfaces between air and the CHs due to 

the large difference of the wavevectors between these two regions [64]. The plasmonic waveguide 

coupler (PWC) can be used to convert low wavevectors to high wavevectors and vice versa by 

controlling the phase of light for a metamaterial slab [64]. However, the PWC has sophisticated 

structure which is difficult to fabricate. Other approaches use the diffraction grating, double slits and a 

single slit to generate near fields which then can propagate along the cone in specific direction relative 

to the optical axis, and then the interferences of these waves give rise to the subwavelength fringes 

inside the hyperlens slabs [65,21,66]. However, this concept of the sub-wavelength focusing has not 

been demonstrated in the CHs yet. The sub-wavelength slits may be treated as the collections of point 

sources [21,66]. The analytical solutions of light propagation can be obtained if the single point source 

is located inside the homogeneous CHs by using the Green’s function analysis [67]. These solutions are 

obtained by completely neglecting the outermost and innermost interfaces, and thus they are useful for 

investigating the electromagnetic waves in the infinitely large homogeneous anisotropic material. 

However, the anisotropic material with inherently hyperbolic dispersion is hardly found in nature. 

Therefore, the optical metamaterial with hyperbolic dispersion made by alternating metallic and 

insulator layers is more practical in experiment [20]. The solutions in Ref. 67 may be applied to this 

inhomogeneous structure as well if the structure is much smaller than the wavelength of light to be 

satisfied by the effective medium approximation. However, it would be difficult to fabricate the fine 

structure to completely avoid the inhomogeneity in the visible and ultraviolet regions.  

 In this chapter, the Green’s function analysis is revisited and applied to obtain the 

electromagnetic fields in the metamaterial CHs comprising the CCLs for both focusing and magnifying 

processes in which the multiple sources are located outside the CHs and inside the core, respectively. 

These solutions are new efficient tools for the optimizations of the CHs beyond the effective medium 

approximation.  
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 The chapter is organized as follows. The dispersion relations of light propagation in 

anisotropic media for two polarizations are clarified in section 2.1. We will see how to obtain the 

hyperbolic dispersion for each polarization in this section, and why only specific polarization is 

important if metals are chosen to make the CHs. In section 2.2, the Green's function analysis for point 

sources embedded in vacuum is revisited. This section shows the main features of this analytical 

technique which can be applied to solve the inhomogeneous Helmholtz's equation. In section 2.3, the 

Green's function analysis is applied to the CHs in both focusing and magnifying processes. The 

analytical solutions for the focusing process are given first, and then followed by the analytical 

solutions for the magnifying process. In section 2.4, the subwavelength focusing of two point sources 

in the optical band is demonstrated by using the analytical solutions. The results are compared with the 

real structure to validate the point source assumption. In section 2.5, we show the enhancement of the 

magnifying resolution in the UV band by using our analytical solutions. Lastly, the chapter is 

concluded in the section 2.6.  

 
 

2.1 The role of polarization in dispersion relation of anisotropic medium  
 

The electromagnetic waves propagating in anisotropic media are contributed by two states of 

polarizations : transverse magnetic (TM) polarization and transverse electric (TE) polarization. We can 

consider each of them separately because they are independent to each other. The two polarizations are 

more well known as TM-mode and TE-mode. We will show in this section that both TE-mode and TM-

mode can satisfy hyperbolic dispersion. For the TE-mode, the signs of magnetic permeabilities 

associated with two orthogonal axes must be different. For the TM-mode, the signs of the dielectric 

constants associated with two orthogonal axes must be different. This is important to understand why 

we can consider only the TM-mode in subwavelength imaging with noble metals such as gold and 

silver, and the TE-mode is always neglected.  

 2.1.1 Dispersion relation of TE-mode    

 We consider an uniaxial anisotropic medium whose dielectric constants and magnetic 

permeabilities are expressed in terms of tensors as follows  
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0 0 0 0
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.                                           (2.1) 

For the TE-mode, the wavevector k and the magnetic field H lie on the xy-plane : ˆ ˆ
x yk x k y k , 

   ˆ ˆ expx y x yH x H y ik x ik y  H , while the electric field is parallel to the z-axis : ˆ
zE zE . Then, the 

Maxwell's equations for the TE-mode with time-harmonic  exp i t  become  

                                                      0 0z z zk E   ,                                                           (2.2) 

                                    0 0 0x x x y y yk H k H     ,                                                          (2.3)                            

                                               0 0
ˆ ˆ ˆ ˆ

y z x z x x y yk E x k E y H x H y      ,                            (2.4) 

                                           0
ˆ ˆ

x y y x z zk H k H z E z    .                                                 (2.5)                            
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Eq. (2.2) is automatically satisfied because 0zk  . Eq. (2.3) gives the relation between two 

components of the magnetic field. Eq. (2.4) gives us two equations for each coordinate x and y, then we 

can write 
xH  and 

yH  in terms of 
zE   

                                             
0 0

,    
y x

x z y z

x y

k k
H E H E

   
   .                                     (2.6) 

The Eq. (2.3) is automatically satisfied by using 
xH  and 

yH  from Eq. (2.6). We substitute Eq. (2.6) 

into Eq. (2.5) to obtain the dispersion relation of the TE-mode, and we have for 0zE  , the following 

condition must be satisfied  
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0

yx

z

y x

kk
k

 
  ,                                                     (2.7) 

where 
0 /k c  is wavenumber in free space. Eq. (2.7) is the dispersion relation of the TE-mode 

propagating in anisotropic medium. We can immediately see that the medium exhibit the hyperbolic 

dispersion relation if 0, 0, 0x y z      or 0, 0, 0x y z     . The TE-mode with large 

wavevectors are allowed to propagate in such a medium. However, if the medium has the same signs of 

magnetic permeabilities  0, 0x y    but different absolute value, then the medium exhibit the 

elliptical dispersion which cannot support the TE-mode with large wavevector. In the isotropic medium 

in which the magnetic permeabilities are the same, the dispersion relation is circular and therefore 

completely suffers from the diffraction limit. The dispersion relations at a particular frequency which 

are called the equi-frequency contours for these three cases are schematically drawn in Fig. 2.1.   

 

   

  

  

                                                           
  

  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 2.1. Equi-frequency contours of TE-mode calculated by Eq. (2.7) for hyperbolic medium with 

4, 1y x z       denoted by the blue line, elliptical medium with 4, 1y x z      denoted by the green line, 

and isotropic medium with 1y x z      denoted by the red line. 
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 2.1.2 Dispersion relation of TM-mode  

  

 We consider the same anisotropic medium whose dielectric constants and magnetic 

permeabilities are expressed in Eq. (2.1). But for the TM-mode, the electric fields lie on the same plane 

as the wavevector :    ˆ ˆ expx y x yE x E y ik x ik y  E , and the magnetic field is parallel to the z-axis : 

ˆ
zH zH . We can follow the same procedure as the TE-mode, assume the time-harmonic  exp i t  

and list all the Maxwell's equations, which we have  

                                        0 0 0x x x y y yk E k E     ,                                                         (2.8) 

                                                      
0 0z z zk H   ,                                                         (2.9)                            

                                                 0
ˆ ˆ

x y y x z zk E k E z H z   ,                                           (2.10) 

                                                0 0
ˆ ˆ ˆ ˆ

y z x z x x y yk H x k H y E x E y       .                         (2.11)                     

Eq. (2.9) is automatically satisfied because 0zk  . Eq. (2.11) gives two equations for 
xE  and yE  

written in terms of 
zH  which are  

                                                  
0 0

,    
y x

x z y z

x y

k k
E H E H

   


  .                                  (2.12) 

It can be seen that Eq. (2.8) is satisfied by applying 
xE  and yE  given by Eq. (2.12). We can obtain the 

dispersion relation of TM-mode by substituting Eq. (2.12) into Eq. (2.10). For 0zH  , the following 

condition must be satisfied   
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0

yx

z

y x

kk
k

 
  ,                                                            (2.13) 

where 
0 /k c  is wavenumber in free space. The Eq. (2.13) is the dispersion relation of the TM-

mode which is equivalent to that of the TE-mode by swapping the magnetic permeabilities and the 

dielectric constants. We arrive at the similar conclusion as the TE-mode. The TM-mode can satisfy the 

hyperbolic dispersion in a medium with parameters  0, 0, 0x y z      or  0, 0, 0x y z     . 

However, the TM-mode satisfies elliptical dispersion if the signs of dielectric constants are the same 

but having different values. The TM-mode exhibits the circular dispersion if the signs and absolute 

value of dielectric constants are the same. These situations are the same as Fig. 2.1 by swapping 

magnetic permeabilities and dielectric constants.   

 Noble metals such as gold and silver are non-magnetic and have negative dielectric constant 

below their plasma frequency, and thus we are particularly interested in the TM-waves. In the focusing 

process, the TM-waves in hyperbolic medium cannot be directly excited by an external radiation due to 

the large difference between transverse components of their wavevectors and those of air. The incident 

light will be completely reflected back by the hyperbolic medium. Therefore, phase-matching 

structures are required to couple an incident light wave to the TM-waves of the hyperbolic medium. 

The subwavelength metallic apertures (SMAs) such as holes and slits are simple structures for this 

purpose as schematically shown in Fig. 2.2. The SMAs act as secondary sources which generate 
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diffraction waves carrying large wavevectors depending on the aperture size. Then, the diffraction 

waves can excite high-spatial-frequency TM-waves of the hyperbolic medium, and the coupled-waves 

propagate through the medium. As the aperture size becomes smaller, the aperture can be treated as a 

point source. It has been shown by coupled-mode analysis that finite array of slits in perfect electric 

conductor diffracts the same electromagnetic waves as point sources in the limit of slit width much 

smaller than the wavelength of light [56]. Therefore, at the subwavelength aperture regime we can 

model the apertures as point sources. This model allows us to apply the Green's function analysis which 

is powerful technique for the analysis of the Maxwell's equations with the presence of free sources [68]. 

The techniques can be also applied to the magnifying process in which an object is treated as a 

collection of point sources.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.2. Modelling of subwavelength aperture as a point source. 

 

 

2.2 Green's function analysis in two-dimensional vacuum  

 

The Green's function analysis can be employed to solve the Maxwell's equations with sources. By 

including the point sources or line sources, the separation of variables that we are familiar with cannot 

be directly applied. The Green's function analysis gives us tricks to deal with the boundary conditions 

at the positions close the sources so that the separation of variable method is still applicable. Perhaps, 

the best way to illustrate this method is to consider the electromagnetic waves generated by a single 

source embedded in vacuum.  

 The analysis starts with the inhomogeneous Helmholtz's equation as the main equation which 

can be derived from the Maxwell's equations. We work in the two-dimensional cylindrical coordinate 

whose spatial position is described by radial distance   and azimuthal angle   as shown in Fig. 2.3. 

We assert the presence of the fictitious magnetic line source 
MJ  pointing in the z direction, infinitely 

long along the z-axis, and located at the position  ,    to generate the TM-wave. We can then work 

in two dimensions, and the line source appears as the point source on two-dimensional plane.  The 
MJ  

is assumed to have magnitude 0M , and therefore it can be explicitly expressed in the cylindrical 

coordinate as  

                                       0 0
ˆ ˆ /M zM zM               J r r ,                         (2.14) 

CHs

d 

CHs

Ek

Aperture Point source

CHs

d 

CHs

Ek Ek

Aperture Point source
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where   is Dirac delta function. The negative sign in source magnitude is used just for the sake of 

convenience. The Maxwell's equations with the fictitious magnetic point source and the time-harmonic 

 exp i t  read  

                                                             0 D ,                                                       (2.15)                              

                                                             0 B ,                                                       (2.16) 

                                                            
Mi  E B J ,                                                      (2.17) 

                                                           i H D .                                                            (2.18) 

Notice that 
MJ  is added to the right hand side of Eq. (2.17) to generate the variation of electric field 

which then triggers the propagation of electromagnetic wave. Then, we can take curl operator to Eq. 

(2.18) and apply the identity 2 2    H H H H , we have 

                             

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 2.3. Cylindrical coordinate for Green's function analysis.  denotes radial distance, and   denotes azimuthal 

angle. The location of point source is labelled by prime.  

 

 

                                    2 2

0 0 0 0M Mi i i k i           H D H J H J ,                (2.19) 

where 
0 /k c is wavenumber in free space. By considering only the TM-mode : ˆ

zH zH  and using 

the 
MJ  from Eq. (2.14), we finally have the wave equation for 

zH  as follows   

                                                2 2

0 0 0 /zk H i M              .                        (2.20)        

Eq. (2.20) is the inhomogeneous Helmholtz's equation with the fictitious point source. In the two-

dimensional cylindrical coordinate, Eq. (2.20) takes the following form  

                      
2

2

0 0 02 2

1 1
( ) ( ) /zk H i M        

    

    
        

    
.                (2.21) 

Eq. (2.21) is our starting point. The followings are analytical steps for solving the inhomogeneous 

Helmholtz's equation in cylindrical coordinate.   
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 We expand the azimuthal delta function      and the magnetic field in terms of the 

harmonic function as  

                                      
1

( ) exp ,
2 m

im    






                                     (2.22) 

and  

                                      
1

, exp ,
2

z m

m

H R im   






                                  (2.23) 

where m is an integer and  ,mR    is radial function which is yet to be determined. By substituting 

Eq. (2.22) and (2.23) into Eq. (2.21) and apply the orthogonality of the harmonic function, we obtain 

the differential equation for the radial function as follows  

                              
 

             

2 2

0 0 0
( )m

m

dRd
k m R i M

d d
.                        (2.24) 

The problem is now reduced to solving Eq. (2.24) for  ,mR   , and the solution of the magnetic field 

is obtained by substituting the  ,mR    back into Eq. (2.23). At the position   , the right hand 

side of Eq. (2.24) becomes zero and the Eq. (2.24) becomes well known as Bessel equation. Because 

the Bessel equation is second order differential equation, thus the solution is summation of two special 

functions which are called Bessel functions  0mJ k   and Neumann functions  0mY k  . In the far-

field, the combination of these two functions must become the out-going propagating waves. This 

combination gives rise to the new function called Hankel functions of the first kind (because of time-

harmonic  exp i t ) which are defined as 
       1

0 0 0m m mH k J k iY k    .  Therefore, we can write 

the solution in the region    as  

                                   (1)

0, ,  m m mR A H k           ,                                    (2.25) 

where  
m
A  are field coefficients which are yet to be determined by applying boundary condition at 

the source location. In the region   , the field coefficients of the Neumann function  0mY k   

must be forced to become zero because the Neumann functions diverge at the origin. The Bessel 

functions  0mJ k   are finite at the origin, and thus we can write the solution of  ,mR    in terms of 

them within this region as  

                                     0, ,  m m mR B J k           .                                       (2.26)  

We notice that as the radial distance approach the source location from the origin and from the far-field, 

the  ,mR    must be continuous at the source. By taking the this symmetry into account, we expect 

that the solutions of Eq. (2.25) and (2.26) must take the following forms  

                            
   

   

(1)

0 0

(1)

0 0

,      
,

,   

m m m

m

m m m

C J k H k
R

C H k J k

   
 

   

  
  

 
.                                   (2.27) 

The remaining task is to find common constant 
mC  which appears in Eq. (2.27). This can be done by 

substituting  ,mR    from Eq. (2.27) into its original equation with sources written in Eq. (2.24), and 
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then integrate both sides of the equation with respect to   from    to    where 0  . This 

will lead to the following equation  

                             1 (1)

0 0 0( ) ( )m m m m mk C J k H k J k H k i M             ,                            (2.28)      

where primes on the Bessel function and the Hankel function of the first kind denote the derivative 

with respect to their arguments. The term in the curl bracket is called Wronskian of Bessel function and 

the Hankel function of the first kind which is equal to  02 /i k  . Therefore, the coefficient 
mC  

becomes  

                                                             0 0

2
m

M
C


  .                                                                  (2.29) 

Therefore, the radial function has been finally determined by substituting 
mC  from Eq. (2.29) to Eq. 

(2.27). Therefore, the complete solution of the magnetic field is written as     

          

                         
     

     

(1)0 0

0 0

(1)0 0

0 0

exp
4

exp
4

m m

m

z

m m

m

M
J k H k im

H
M

H k J k im


   


   










     


 
     




.                          (2.30) 

The Eq. (2.30) is our general solution of the magnetic field, and the electric field can be obtained from 

this equation via the Maxwell's equations expressed in the cylindrical coordinate as  

                                          
0 0

1 1 1
ˆ ˆ ˆ ˆz zH H

E e E e e e
i i

     
    

 
    

 
E .                    (2.31) 

The calculations of the electromagnetic fields are now very easy because we just have to increase 

number of orders until the fields converge. The calculations are therefore much faster than FDTD 

simulation. However, in the region close to the source, the number of orders required can be very high. 

Therefore, the closed analytical form is needed in this region. The closed form means that we include 

all diffraction orders from minus infinity to plus infinity, packed in one term, without the need of the 

summation. In this simple case, the closed form can be formulated by recalling the mathematical 

theorem called addition theorem [69] which states that  

                                   1 12 2

0 2 cos
im

m m

m

H u u J H u e
 

    






     .                       (2.32)    

Therefore, we have that the solutions in both sides of the source,    and   , including at 

   have exactly the same closed form by applying Eq. (2.32) to Eq. (2.30). The closed form of the 

magnetic field is written as   

                                                1 2 20 0

0 0 2 cos
4

z

M
H H k


           .              (2.33) 

 The Green's function analysis for a single point source can be easily extended in to multiple 

point sources. More point sources can be included in the equation by adding them to the right hand side 

of Eq. (2.17) of the Maxwell's equations, and then the summation over all sources will appear on the 

right hand side of the inhomogeneous Helmholtz's equation. For clarity, we write the inhomogeneous 
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Helmholtz's equation for N multiple point sources, each located at  ,j j   and has magnitude 
jM , 

as follows  

                    
2

2

0 02 2
1

1 1
( ) ( ) /

N

z j j j

j

k H i M        
     

    
        

    
 .             (2.34) 

By following the same procedure as the single point source, the closed form of the magnetic field is 

expressed as  

                                   1 2 20

0 0

1

2 cos
4

N

z j j j j j

j

H M H k


     


       .                        (2.35) 

 We have to check the validity of the arguments of the Green's function analysis given so far 

by comparing with FDTD simulation [61]. For the Green's function analysis, the Bessel function and 

the Hankel function of the first kind are calculated by freely-distributed subroutine [70]. First, we 

compare the case of the single point source. The single point source radiates an continuous wave with 

wavelength λ=368 nm. We put this point source at the location    , 200 nm, /2     . The 

computational cell of the FDTD simulation is surrounded by perfectly matched layer with thickness 4 

times larger than the wavelength of light to prevent the reflection at the boundaries so that light is only 

propagating out from the source. We have to vary the resolutions of the FDTD simulation. In another 

word, we have to change the spatial intervals along x and y axes : x , y . The current version of 

FDTD program defines x y   , thus it generates only square grids. The time interval is automatically 

determined by the spatial interval via the Courant factor S which is defined as /S t x    where the 

speed of light 1c  . In our FDTD simulation, the Courant factor is default value which is equal to 0.5. 

In stead of saying how small x  we use, we will say how large the resolution we use. Then, x  is 

obtained by the inverse of the resolution. For example, if we define the resolution as 5 pix/nm, then the 

spatial interval is 1/5=0.2 nm. Therefore, increasing resolution means decreasing both spatial interval 

and time interval. In Fig. 2.4(a), we plot the intensity distribution of the single point source calculated 

taking into account the maximum number of orders 110. The intensity distribution obtained by the 

FDTD simulation gives the same distribution so that we show only from the analytics. Now we 

compare the intensities from the Green's function analysis and from the FDTD simulation along the 

specific radial line which approaches the source. That line is / 2   or the y-axis. The comparison is 

shown in Fig. 2.4(b). It can be seen that both number of orders 20 and 110 yield the consistent intensity 

profiles with the FDTD simulation in the region relatively far from the source. However, as we 

approach the source (located at 200 nmy  ), there is the great inconsistent between the Green's 

function analysis and the FDTD simulation. This means that higher orders are required in the region 

close to the source, the near field region. In fact, the analytical intensity profile with the maximum 

number of order 110 is consistent with FDTD only in the region whose distance from the source is 

larger than 5 nm. This result also means that TM waves close to the source have large azimuthal 

component of wavevectors k  from the conservation of angular momentum m k  [19]. Then, we 

plot the intensity profile calculated by the closed form which includes all orders in the same figure. It 

can be seen that the intensity profile from the analytical solution is now perfectly consistent with FDTD 
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simulation. In deed, Eq. (2.33) is the exact solution of the magnetic field that the FDTD simulation 

must satisfy by increasing more resolutions.  

 We also plot the field distribution of the two point sources calculated by the Green's function 

analysis in Fig. 2.4(c). The diffraction-limited focal spot can be noticed near the origin because of the 

circular dispersion of the vacuum. Fig. 2.4(d) shows the comparison between the analytical intensity 

profile and the FDTD intensity profile along the curve 100 nm  for the two point sources. It clearly 

shows that the solutions from Green's function analysis are perfectly consistent with those from FDTD 

simulation in the case of multiple point sources. Therefore, the Green's function analysis is useful for 

the optimization of the subwavelength focusing from multiple sources.  

 We are now confident that the Green's function analysis is consistent with the numerical 

method. We will apply the Green's function analysis to the CHs in the next section.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.4. (a) The intensity distribution of the single point source obtained by the Green's function analysis with the 

number of order 110. (b) The intensity profiles of the single point source along the y-axis obtained by the Green's 

function analysis with the number of orders 110 and 20 labelled by the blue and green lines, respectively. The 

intensity profile obtained by the FDTD simulation is indicated by black triangular points. The red line is the 

intensity profile obtained by the Green's function analysis taking into account all orders. (c) The intensity 

distribution of the double point sources obtained by the Green's function analysis with the number of order 110. (d) 

The intensity profiles of the double point sources along the curve 100 nm   obtained by the Green's function 

analysis indicated by red line and FDTD simulation indicated by black circular points. The resolution of FDTD 

simulation is 4 pix/nm.   

 

 

2.3 Green's function analysis of two-dimensional cylindrical hyperlens (CHs) 

 

When point sources are located near the CHs, the electromagnetic fields obtained from the previous 

section are perturbed by the presence of the CHs, and the new field distributions are generated. In the 

source region where the sources are embedded, the electromagnetic fields are the summation between 

the free solutions which are given by Eq. (2.30) without the presence of the CHs and the scattered field 
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caused by the scattering due to the presence of the CHs. The scattered field can be expressed in terms 

of the Hankel function of the first kind if the source region is the outer region, or the Bessel function if 

the source region is the inner region (the core). The electromagnetic fields in other regions can be 

expressed generally as the summation of the Bessel function and the Hankel function of the first kind. 

Then, all field coefficients are determined by applying the continuities of 
zH  and E . We can compute 

intensity distributions and compare our results with the FDTD simulation.   

 

 

 2.3.1 Focusing process  

 

 The schematic view of the CHs in the focusing process is shown in Fig. 2.5. We imagine that 

sources which are created by some subwavelength apertures are located in the outer region of the CHs. 

The CHs collect high-spatial frequency waves from these secondary sources and guide them to the core 

region. If the sources are set up in proper condition, we can obtain the focusing in the core region. The 

focusing is said to be "partial focusing" if the critical angle of the Poynting vector with respect to the 

radial axis is large and the optical energy is split into the light cone. The focusing yields better signal to 

noise ratio and thus increase the imaging resolution.  

 We describe the notations of the focusing CHs as follows. The focusing CHs comprises N 

numbers of non-magnetic concentric cylindrical layers (CCLs) with finite dielectric constant. The 

dielectric constant of the core region is denoted by 
in , the outer region 

out , and each jth-CCL j  

where j=1,2,...,N. Notice that all regions are isotropic. The innermost and outermost radii of the CHs 

are denoted by 
c  and 

N , respectively, while the interfaces between the jth-CCL and (j+1)th-CCL 

are defined as j .  The magnetic point source is located at  ,s s   .    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

Fig. 2.5. Schematic view of focusing CHs with sources located in the outer region 
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 Next, we give the solutions of the electromagnetic fields in each region. Only the 
zH  and E  

will be explicitly written because they are sufficient to determine the field coefficients. The E  can be 

easily obtained from 
zH  using Eq. (2.31).  

 

 Solutions in outer region  

 

 In the outer region, which is our source region in the focusing process, the magnetic field 

 out

zH  is the sum between the free solution 
 out,f

zH  and the scattering solution 
 out,s

zH   

                                                            
     out out,f out,s

z z zH H H  .                                                        (2.36) 

 The free solution 
 out,f

zH  is similar to Eq. (2.30) but now with the dielectric constant 
out  and 

wavenumber out out 0k k . Then, the 
 out,f

zH  is written as  

          

     

     

(1)0 out 0

out out

out,f

(1)0 out 0

out out

exp ,    
4

exp ,    <
4

m s m s s

s m

z

m s m s s

s m

M
J k H k im

H
M

H k J k im

 
     

 
     



 



 


       


 
      

 

 
.             (2.37) 

The summation 
s

 means including only sources which satisfy the condition of radial distance 

relative to the sources which is    or   . In usual case, all sources have the same radial 

distances, and thus this summation means including all the sources available. However, care must be 

taken if the sources locate in different radial distances because there will be the region between the 

sources which satisfy the condition    for some set of sources and    for another set of 

sources. In the latter case, we must perform partial sum over the set of sources which satisfy the 

condition   , and make another partial sum over the set of sources which satisfy the condition 

  , then two functions are summed up to obtain the final free solution for that region. This 

situation would be the case for three-dimensional imaging where the height of the objects are taken into 

account. Hereafter, we define all sources located in the same radial distance but different azimuthal 

angle.   

 The scattering solution 
 out,s

zH  must behave as an outgoing wave in the far-field. Therefore, 

we write it generally as the linear summation of the mth-order Hankel function of the first kind  

                                          
       out,s out 10 out 0

out
2

im

z m m

m

i M
H A H k e  








  ,                                      (2.38) 

where 
 out

mA  are field coefficients to be determined by applying the boundary conditions.  

 The tangential electric field is obtained by Eq. (2.31) and (2.36) and it is written as  

                                                               
     out out,f out,s

E E E    ,                                                      (2.39) 

where  

               

     

     

(1)0 out
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(1)0 out

out out

exp ,    
4
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4
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
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
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
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

 
      

 

 
,             (2.40) 
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and  

                                                        out,f out 10 out

out
2

im

m m

m

M k
E A H k e 

 






  .                                      (2.41) 

 

 

 Solutions in jth-CCL 

 

 In the jth-CCL, the electromagnetic fields experience multiple reflections, and thus both 

Bessel function and Hankel function of the first kind, which are the solutions of the homogeneous 

Helmholtz's equation in the cylindrical coordinate, must be included. The magnetic fields in these 

layers are denoted by their indices  j : 
 j
zH , where j=1,2,...,N. Then, 

 j
zH  can be expressed in the 

general form as  

                                    
            0 0 1

2

jj j j im

z m m j m m j

m

i M
H A H k B J k e 

 
 







  ,                           (2.42) 

where 0j jk k  is wavenumber in this layer, 
 j
mA  and 

 j
mB  are field coefficients to be determined by 

the boundary conditions.  

 The tangential electric field 
 j

E  obtained by Eq. (2.31) and (2.42) is written as  

                                       
            0 1

2

jj j j im

m m j m m j

m

M k
E A H k B J k e 

  






   .                              (2.43) 

 

 

 Solutions in the core region  

 

 In the core region or the inner region, the electromagnetic field must be finite at the origin, and 

thus only the Bessel function, which is the solution of the homogeneous Hemlholtz's equation in 

cylindrical coordinate, is included. The magnetic field 
 in

zH  can be written in the general form as  

                                                  in in0 in 0

in
2

im

z m m

m

i M
H B J k e  








  ,                                            (2.44) 

where 
 in

mB  are field coefficients to be determined by the boundary conditions.  

 The tangential electric field 
 in

E  obtained by Eq. (2.31) and (2.44) is written as  

                                                     
     in in0 in

in
2

im

m m

m

M k
E B J k e 

 






  .                                            (2.45) 

 

 Obtaining field coefficients 

 

 All field coefficients are obtained by applying the continuities of 
zH  and E  at (N+1) number 

of interfaces. Then, there will be 2(N+1) linear equations which can be solved by building up a single 

matrix equation     m m mA x b  for each order m , where [ ]mA  is coefficient matrix,  mx  is field 

coefficient vector, and  mb  is constant vector, and then the LAPACK subroutine [71] can be used to 

solve the matrix equation [24]. There is another method called the transfer matrix method which is 

more elegant than the former method. The transfer matrix method is also easy to implement in the 

program, so we will describe this method as follows.  
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 We apply the boundary conditions by starting at the interface 
N  which is the closest 

interface to the sources. The interface 
N  separates the electromagnetic fields in the Nth-CCL and the 

outer region. We will obtain two linear equations, where one equation is from the continuity of 
zH  and 

another equation is from the continuity of E . Then, the two linear equations can be grouped as the 

matrix equation which relates the field coefficients in the Nth-CCL and the outer region as follows  

                                                          
 

 
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m m
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T ,                                        (2.46) 

where
 F

mI  denotes the excitation from all sources emitting the cylindrical wave with the order m which 

is defined in the focusing process as   

                                                                    F 1
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and the 
 out

mT  is the outer transfer matrix whose matrix elements are written as  
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        
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 Next, we can move on to another interfaces between jth-CCL and (j+1)th-CCL where j=N-

1,N-2,...,1. By applying the continuities of 
zH  and E  at these interfaces, we obtain the matrix 

equations which relate the field coefficients of the jth-CCL and those of the (j+1)th-CCL as follows  

                                                    
 

 

 
 

 

1

, 1

1

j j

j jm m

mj j

m m

A A

B B







   
   

   
   

T .                                                     (2.52) 

The matrix elements of the inter-layer transfer matrix 
 , 1j j

m


T  are similar to those of  

 out

mT . They can 

be obtained by Eq. (2.48)-(2.51) with the substitutions out 1j   , out 1jk k  , N j  , N jk k , 

and N j  .  

 Lastly, we apply the continuities of 
zH  and E  at the interface 

c  which separates the 

electromagnetic fields in the 1st-CCL and the inner region. The matrix equation obtained at this 

interface is written as follows  
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where the matrix elements of the inner transfer matrix 
 in

mT  are given as  
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 By using Eq. (2.46), (2.52), and (2.53), we can write the coefficient 
 in

mB  in terms of the 

coefficient 
 out

mA  and 
 F

mI  as  

                             
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T T T T T S ,                (2.58) 

where 
mS  is the scattering matrix defined as  
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Therefore, we can write the field coefficients 
 in

mB  and 
 out

mA  in terms of the matrix elements of the 

scattering matrix and the excitation parameter by solving Eq. (2.58), then we have  
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and  
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The field coefficients in the Nth-CCL are obtained by 
 out

mA  by using Eq. (2.46), and then these field 

coefficients yield the solutions of the remaining field coefficients via Eq. (2.50). Therefore, all field 

coefficients are completely determined. It is useful to note that the scattering matrix satisfies the 

relation  1
m

m m
 S S  which results from the identity  1

m

m m
 


   where   denotes the Bessel 

function or the Hankel function of the first kind. These relations are required when one implements the 

program because both positive and negative orders must be taken into account.   

 

 The intensity distribution  

 

 From the analytical solutions of the electromagnetic fields, we can compute the time-averaged 

intensity from the time-averaged Poynting vector    1/ 2 Re  S E H . The inner and outer regions 

of the CHs are defined as vacuum. The innermost radius is defined as 100 nm. The CHs is made by 

alternating Ag/insulator CCLs in which the innermost layer is the insulator CCL. The thickness of each 

CCL is 10 nm, the number of CCLs is 10, and thus the outermost radius is 200 nm. Two point sources 

are located at the outermost radius, one is at / 4    and another is at 3 / 4   .  The two point 

sources have the same strength and radiate at the wavelength 368 nm. The dielectric constant of Ag at 

this wavelength from the Drude model with neglecting the size effect is -3.11+0.123i [72]. The 

dielectric constant of the insulator is chosen as 3.2 so that effective dielectric constants from the 
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effective medium approximation are about 72.949 108.444i     and 0.045 0.062i   . The real 

part of the effective dielectric constants from the hyperbolic dispersion with no caustic (type I) [19].  

 Fig. 2.6(a) shows the intensity profiles along the innermost curve 
c   in the inner region 

for different number of orders. It can be seen that the intensity converges quickly as the number of 

order reaches 40. The calculation of the field profile takes less than a minute to compute even in the 

case of high number of orders. Fig. 2.6(b) shows the comparison between the analytical intensity 

profile and the FDTD intensity profiles. It can be seen that the FDTD intensity profiles approach the 

        

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2.6. (a) Analytical intensity profiles along the innermost curve of the focusing CHs with increasing the 

number of orders. The parameters of the CHs can be seen in the main text. (b) Comparison between the analytical 

intensity profile with the number of order 110 and the FDTD intensity profiles with the resolutions 2 and 4 pix/nm.    
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.7. The intensity distribution in focusing CHs. The CHs has the same parameters as Fig. 2.6. 

 

 

analytical intensity profile by increasing the resolutions from 2 pix/nm to 4 pix/nm. The FDTD 

simulations are performed on a single PC computer with the Intel(R) Core(M) i7-3970X CPU @ 

3.50GHz, and the simulation times for 2 and 4 pix/nm are about 4 hours and more than a day, 

respectively. Therefore, we obtain the consistent results with FDTD simulation, but our solutions are 

more efficient than the FDTD simulation.    

 We also notice that the angular locations of the peaks deviate from the angular locations of the 

sources by 2.78 degree. This behaviour can be clearly seen in the intensity distribution in the CHs 

shown in Fig. 2.7. The bright spots between Ag and insulator layers correspond to the surface plasmon 

excitations. The surface plasmons are found to located only within narrow strip. From the deviation 

angle 2.78, the angle of the cone with respect to the radial axis passing through the source becomes 

(a) (b)(a) (b)
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2.77 degree according to simple geometrical consideration. However, the effective medium 

approximation gives the critical angle of the large wavevectors relative to the radial axis denoted as 
c  

equal to 88.65 degree from the condition   Re 0c    where     is defined as follows  [21] 

                                                         
2 2cos sin

 

 

 
 

   



.                                                    (2.62) 

The critical angle of the energy flow 
c  (the Poynting vector) relative to the radial axis is obtained by 

the relation [21]  

                                                            1tan Re / tanc c     .                                               (2.63) 

Then, the 
c   becomes 0.48 degree. Therefore, the analytical solution gives the critical angle of energy 

flow almost 6 times larger than predicted by the simple effective medium approximation. By reducing 

thickness of each CCL and keeping the total number of layers, we expect that the critical angle of the 

energy flow will converge to the value predicted by the effective medium approximation. We reduce 

the thickness of each CCL to 1 nm, and keep all remaining parameters. The intensity profile along the 

innermost curve 
c   in the inner region taking into account the maximum of orders 100 is shown in 

Fig. 2.8. According to this figure, the deviation angle from the radial line passing through the source is 

only 0.12 degree which leads to the critical angle of the energy flow 0.60 degree. The value of the 

critical angle of energy flow obtained by the analytical solution becomes close to that obtained by the 

effective medium approximation which is equal to 0.48 degree. Therefore, the analytical solutions are 

consistent with the FDTD simulation and also yield satisfying results comparing with the effective 

medium approximation.  

 

   

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 2.8. The intensity profile of focusing CHs with ultrathin CCL thickness 1 nm. 
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 2.3.2 Magnifying process  

 

 The schematic view of the CHs in the magnifying process is shown in Fig. 2.9. In this case, 

the sources are located inside the core region. The sources correspond to subwavelength objects that we 

want to magnify to be larger than the diffraction limit so that the conventional microscope can detect 

them in the far-field.  

 In this process, the core region is the source region. The solutions of the electromagnetic fields 

in this process can be obtained by those in the focusing process. The solutions in the outer region will  

now have only the scattering solutions. The contributions from the free solutions will appear in the core 

region, and we write the solutions in this region as the summation between the free and scattering 

solutions. Finally, the solutions inside the jth-CCL, where j=1,2,...,N, are the same as those in the 

focusing process, respectively. The field coefficients in all regions, however, will be modified by 

applying the boundary condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 2.9. Schematic view of magnifying hyperlens with sources located in the core region.   

 

 

 

 Obtaining field coefficients 

 

 We obtain the field coefficients using the transfer matrix method similar to the focusing 

process. We start by imposing the continuities of 
zH  and E  to the innermost interface 

c  which is 

the interface closest to the sources. Then, we can write the matrix equation which relates the field 

coefficients of the core and the 1st-CCL as   

                                                             
 

 

 
 

 

1 in

in

1 M

m m

m

m m

A B

B I

   
   

   
   

T ,                                                            

(2.64) 

where 
 in

mT  is inner transfer matrix for the magnifying process whose matrix elements are defined as  

in
1 2

1N 
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1
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1N 
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and the parameter 
 M

mI  denotes the excitation from all sources emitting the cylindrical wave with the 

order m which is defined in the magnifying process as  

                                                             M

in

12
s

N
im

m m s

s

i
I J k e








  .                                                  (2.69)  

We notice that the excitation parameter in the focusing process is a function of the Hankel function of 

the first kind, while the excitation parameter in the magnifying process is a function of the Bessel 

function.  

 Similarly, the matrix equation obtained by applying the continuities of 
zH  and E  at the 

interface j  is written as     
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where 
 1,j j

m


T  is the inter-layer transfer matrix for the magnifying process whose matrix elements are 

defined as  
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 Lastly, the field coefficients of the outer region are related by the field coefficients of the Nth-

CCL by the following matrix equation     

                                            
   
   

 
 

 

1

outout out

1

out

N
m N m

m m N

mm N

H k A
A

BH k





   
    

     

T ,                                            (2.75) 

where 
 out

mT  is the outer transfer matrix whose matrix elements are defined as follows  
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 Now, we can multiply all transfer matrices together and define the scattering matrix 
mS  as 

follows  

                                                          
       out , 1 2,1 inN N
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S T T T T ,                                                 (2.80) 

 

and the analytical solutions of 
 in

mB  and 
 out

mA  are written in terms of the matrix elements of 
mS  as  
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The remaining field coefficients are automatically obtained from 
 in

mB  and 
 out

mA  by using the transfer 

matrices.  

 

  The intensity distribution 

 

 We use the CHs with the same parameters as those of the focusing process but now with two 

sources located inside the core region at the innermost interface 
c  and with angular distance 

λ/3.2=115 nm between them. That means    1 1, ,57.05c     
 and    2 2, ,122.95c     

. The 

intensity profiles along the curve 185  nm in the outer region obtained by the analytical solutions 

with increasing number of orders are shown in Fig. 2.10(a). It can be seen that the solutions are 

converged at the number of order equal to 40. It must be note that the orders needed for the 

convergence increase as the radial distance of the observational curve approaches that of the sources. 

The analytical intensity profile is compared with the intensity profile obtained from the FDTD 

simulation in Fig. 2.10(b). Two dominant peaks due to the excitation of the surface plasmons are 

consistent between the analytics and FDTD simulation. In the angular region about 90 degree, the 

FDTD intensity profiles deviate from the analytical profile. However, we notice that the FDTD curves 

tend to approach analytical curve by increasing the resolution. Therefore, we expect that the FDTD 

simulation will also be consistent with analytics by increasing more resolution. The simulation time of 

the FDTD simulation with resolution 4 pix/nm is more than a day. If the resolution will be increased 

more, it would take several days to obtain accurate solutions. Therefore, the analytical solutions give 
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highly efficient tool to analyze electromagnetic fields in the magnifying CHs because it takes a few 

minute to compute the intensity profiles.  

    

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2.10. (a) Analytical intensity profiles along the curve 185   nm inside an insulator layer with increasing 

the number of orders from 10 to 50. (b) Comparison between the analytical intensity profile with the number of 

orders 110 indicated by the red line and the intensity profiles obtained by FDTD simulation with resolutions 2 and 

4 pix/nm which are indicated in the figure along the same curve as Fig. (a).       

 

 Next, we plot the analytical intensity distribution within all CCLs of this magnifying CHs in 

Fig. 2.11(a). The intensity distribution obtained by the FDTD simulation yields the same distribution as 

that obtained by the analytic, and thus we show only the analytical intensity distribution. According to 

this figure, the surface plasmons between Ag/Insulator interfaces are weakly excited, and their 

intensities decrease as they propagate outward. This situation is different from the focusing process as 

shown in Fig. 2.7. where the surface plasmon excitations are clearly seen and move to the core without 

decaying. The reason for this difference is the different locations of the sources relative to the first 

interface of excitation. In the case of focusing process, the sources directly excite surface plasmons at 

the interface between the unbound air medium and Ag layer. However, in the case of magnifying 

process, the sources excite the surface plasmons at the interface between insulator and Ag layers which 

is located 10 nm from the sources. Therefore, the surface plasmon excitations in the latter case are 

weaker than the former case. We show the evidence for this explanation by swapping the order of Ag 

and insulator CCLs in the magnifying CHs so that the Ag layer becomes the innermost layer, and then 

the surface plasmons at the interface between the air core and Ag layer are excited by the sources. The 

intensity distribution from this swapped-magnifying CHs is shown in Fig. 2.11(b). It can be seen that 

the intensity envelops appear at the interfaces between Ag and insulator layers which correspond to the 

surface plasmons. However, the intensity still decreases as the radial distance increases. Is it because of 

loss? The answer is yes, but the loss is not the dominant contribution to the decay of surface plasmons 

in the magnifying process. If it was, the surface plasmons in the focusing process would also suffer the 

same fate, but they don't as we have already seen. The main reason for the decrease of intensity as 

radial distance increases is the magnifying mechanism. Let's us neglect the loss in Ag, and then draw 

the intensity distribution in the magnifying CHs with the same parameters as those in Fig. 2.11(b) 

excepting the dielectric constant of Ag (dielectric constant of Ag becomes -3.11). The analytical     

  

(a) (b)(a) (b)
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Fig. 2.11. (a)  Analytical intensity distribution in magnifying CHs with the same parameters as those in Fig. where 

the innermost layer is an insulator. The number of order is 80. (b) Analytical intensity distribution in magnifying 

CHs with the same parameters as Fig. (a) but the order of Ag and insulator layers is swapped so that the innermost 

layer becomes Ag. (c) Analytical intensity distribution in magnifying CHs with the same structure as Fig. (b) but 

the loss in Ag is neglected. (d) Amplitude of real part of magnetic field corresponding to each diffraction order m 

determined at the peak positions of surface plasmons localized along the curves 110   nm and 200   nm.     

 

intensity distribution in this loss-free magnifying CHs is shown in Fig. 2.11(c). The bright spots in this 

figure correspond to the surface plasmons. The intensity of surface plasmons decrease as they 

propagate outward although there is no loss in the CHs. This behaviour can be explained as follows. 

The magnifying process requires the conservation of angular momentum corresponding to each order, 

that is m k , where k  is tangential component of wavevector [19]. Therefore, the high order m  

which contribute to the surface plasmons will have smaller k  as the radial distance  increases. The 

smaller k  is then matched with that of the smaller order m . In this way, the energy from high order is 

transformed into lower order. This results in the decrease of electric field corresponding to the high 

orders which undergo the transformation, and thus the intensity of surface plasmons appear fainter, and 

their sizes become larger. The magnified electromagnetic waves can propagate to the far-field if they 

have k  smaller than wavenumber in the vacuum, but they will be reflected back, undergo reverse-

magnifying process, and interfere with other electromagnetic waves if they have k  larger than 

wavenumber in the vacuum. The interferences generate the dark spots which also appear in Fig. 2.11(c). 

Fig. 2.11(d) shows the contribution of each diffraction order to the magnetic field Hz at the intensity 

peak positions of surface plasmons along the curved 110   nm and 200   nm in Fig. 2.11(c). At 

the peak position of the curve 110   nm which is close to the sources,  some high diffraction modes 

and also small diffraction modes are generated. The high diffraction modes are subjected to the 

magnifying process as the radial distance increase, and thus the magnetic fields corresponding to these 

modes at the peak position of the curve 200  nm are suppressed. Surprisingly, at m=6, the magnetic 

(a) (b)

(c) (d)

(a) (b)

(c) (d)



 44 

field of the curve 200  nm exceeds that of the curve 110   nm. This means that some part of 

energies from high diffraction modes are transformed into this lower order mode. The fundamental 

diffraction mode of the curve 200  nm is also found to be slightly larger than that of the curve 

110   nm which also indicates the transformation of energy into the lower mode.   

 

 2.4 Subwavelength focusing in optical band   

 

We apply the analytical solutions of the focusing CHs to optimize the subwavelength focusing of two 

point sources generated by subwavelength double slits. The focusing CHs comprise alternating 

SiO2/Ag CCLs with the SiO2 layer being the innermost layer. The working wavelength is 465 nm, and 

the dielectric constants of Ag and SiO2 at this wavelength are -7.82+0.247i and 2.1, respectively [8,18]. 

According to the effective medium approximation, the effective dielectric constants become 

5.74 0.0665i    and 2.86 0.124i    . The real part of the effective dielectric constants form 

hyperbolic dispersion with caustic which means that the radial component of wavevectors can change 

sign (type II). The critical angle of the wavevector 
c  obtained by Eq. (2.62) is 54.76 degree, and the 

critical angle of energy flow obtained by applying Eq. (2.63) becomes 35.18 degree. The geometrical 

parameters of the CHs are defined as : inner radius 500c  nm, and thickness of each CCL 2 nm.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.12. (a) The analytical intensity distribution in the focusing CHs with the number of order 220. The angular 

distance between two point sources which are located at the outermost interface is 200 nm. The remaining 

parameters of the CHs can be seen in the main text. (b) The realistic structure comprising subwavelength double 

slits with slit width 10 nm perforated in Ag screen with thickness 465 nm and the same CHs as Fig. (a) without the 

point sources. The double slits are equivalent to the two point sources in Fig. (a). (c) FDTD intensity distribution 

with the resolution 1.5 pix/nm in the structure of Fig. (b). The external radiation is p-polarized light and 

wavelength 465 nm. (d) The intensity profiles along the innermost curve ( 500c  nm) obtained by the analytical 

solutions (red line) for the structure shown in Fig. (a) and the FDTD simulation for the structure shown in Fig. (b) 

and (c) with the resolutions 0.5, 1.0, and 1.5 pix/nm, indicated by the black, green, and blue lines, respectively.      

 

 

The core and outer regions are vacuum. Now, we don't fix the number of CCLs, but we will optimize it 

instead. We will optimize the number of CCLs so that the constructive interference is obtained at the 
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location  , / 2c   in the core region. The angular distance between two point sources is kept as 

200d   nm, and they are always located at the outermost interface. This means that their radial 

distances are changed by varying the number of CCLs, and their azimuthal angles are also changed 

according to the radial distance and the angular separation distance   1 2 1/ 2 / 2 ,Nd           . 

We find that the number of CCLs must be equal to 61 in order to obtain the focal spot at  , / 2c  . 

This condition is also obtained by varying the number of orders. If the number of order is  too small, 

the width of the focal spot is wide and the intensity is weak. However, the width of the focal spot is 

narrower and the intensity increases by increasing the number of orders. The number of orders 160 

leads to the convergence of the intensity profile along the innermost curve, and this analytical intensity 

profile is shown by the red line in Fig. 2.12(d). The intensity distribution with the number of orders 220 

is shown in Fig. 2.12(a) where the directional propagation can be seen. According to Fig. 2.12(d), the 

full width at half maximum (FWHM) of the analytical intensity profile is about 28.6 nm or λ/16.26 

which is much smaller than the wavelength of light. The Poynting vector at the peak position directly 

points to the origin. The intensity peak however suffers the loss in the CHs, and therefore the FWHM is 

limited [21]. The intensity peak is split by changing the number of CCLs because the positions of the 

point sources are shifted simultaneously resulting in the change in direction of energy flow. Therefore, 

we can optimize the parameters such as the innermost radius, the thickness of each CCL, the number of 

CCLs, and the separation distance between two point sources to obtain the focal spot at desired location. 

The structure comprising the thick Ag screen perforated by double slits and the same CHs as Fig. 

2.12(a) is simulated by FDTD simulation to confirm that our analytical solutions can be realized in real 

structure. The structure is shown schematically in Fig. 2.12(b) where the slit width and the Ag screen 

thickness are defined as 10 nm and 465 nm, respectively. The output side of the slits perfectly touch the 

outermost interface of the CHs with the same angular distance as that between the point sources in Fig.  

2.12(a). The far-field excitation with p-polarization and wavelength 465 nm impinges on the whole 

structure so that the slits become secondary sources which behave like point sources able to excite high 

diffraction modes in the CHs to propagate directionally in the CHs as shown in Fig. 2.12(c). The 

intensity profiles along the innermost curve from FDTD simulation with the resolution 0.5, 1.0, and 1.5 

pix/nm are shown by the black, green, and blue lines, respectively, in Fig. 2.12(d). The FDTD 

simulation times are about 30 minutes, 6 hours, and 13 hours for the FDTD resolutions 0.5, 1.0, and 1.5 

pix/nm, respectively, while the calculation time of the analytical intensity profile is in a few minutes 

using the angular interval 0.01 degree. According to Fig. 2.12(d), the FDTD intensity profiles approach 

the analytical intensity profile by increasing the resolutions. This means that our analytical solutions 

yield the most accurate intensity profiles and they are also very efficient because it takes relatively 

short period of time to obtain the results using the analytical solutions.      
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2.5 Enhancement of the magnifying resolution in UV band   

 

After the first experimental demonstration of the CHs made by alternating Ag and Al2O3 at the 

wavelength 365 nm by Z. Liu et al (2007) [20], the magnifying resolution of the CHs working at this 

wavelength is still restricted to 130 nm (λ/2.8) since then [90]. This implies the lack of the efficient 

methods to optimize the magnifying CHs even though the fabrication technology is already available. 

Therefore, it is always said that the magnifying CHs can magnify the "small object" into the far-field 

image, without knowing how really small the object can be. With the advent of our analytical solutions, 

we show in this section that the magnifying resolutions of these CHs can be enhanced by (i) reducing 

the thickness of each CCL and the inner radius of the CHs, and (ii) increasing the number of CCL. The 

CHs can possibly magnify the object with size 20 nm (λ/18) into the far-field. However, this CHs 

requires 1 nm thickness of the CCL and 2000 numbers of the CCL due to the intrinsic loss in the Ag. 

Therefore, another negative dielectric constant material with smaller loss than that of Ag is required if 

we want to magnify the object with size smaller than 20 nm at this wavelength. 

 Here, we describe the optimization method. The testing objects are two point sources 

separated by the subwavelength distance (the distance smaller than λ). In air, the two point sources 

cannot be resolved in the far-field because of the decay of the large wavevector waves which contain 

the information about the subwavelength distance.  However, by putting the two point sources inside 

the core of the CHs and sit on the innermost radius of the CHs, the distance between the two point 

sources, which we call the image, can be enlarged to be larger than λ, and then the image can propagate 

to the far-field. We observe the image on the far-field plane at the radial distance 2λ from the outermost 

interface of the CHs. We vary the inner radius denoted as ρc, the thickness of each CCL denoted as d 

and the number of CCL denoted as N until we obtain the resolved image on the far-field observing 

plane. The inner core is defined as air, and the outer region is defined as the quartz with the dielectric 

constant 2.174. The CHs is made by alternating Ag and Al2O3 CCLs. The dielectric constants of these 

materials at λ=365 nm are -2.4012+0.2488i and 3.217, respectively [20]. They form the type-I 

hyperbolic metamaterials because the tangential component of the dielectric constant is positive that is 

0.4079 0.1244i   , and the normal component of the dielectric constant is negative that is 

16.7786 7.0793i     according to the conventional effective medium approximation. Therefore, 

these medium support the propagation of large wavevetor waves. As the large wavevecor waves 

propagate outward, their tangential component wavevectors shrink due to the conservation of the 

angular momentum m k . Therefore, the near-field image can be transformed into the far-field 

image if the CHs is properly designed.  

 The results of the intensity distributions and the far-field intensity profiles are shown in Fig. 

2.13. We start from the relatively large separation distance (along the x-axis) of the two point sources 

defined as 150 nm (λ/2.43) whose intensity distribution is shown in Fig. 2.13 (a). The white colour 

indicates the large intensity and the black colour indicates the small intensity. The geometry of this 

CHs is optimized as ρc=475 nm, d=30 nm, and N=50. It can be seen that the image is magnified as it 

propagates outward. Fig. 2.13 (b) shows the intensity profile in the far-field plane from this CHs. The 

two point sources are clearly resolved in the far-field.                      
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Fig. 2.13. Intensity distribution in the magnifying hyperlens with two point sources separated by the distance (a) 

150 nm, (c) 100 nm, (e) 50 nm, and (g) 20 nm, along the x-axis. The parameters of the hyperlens are optimized as 

(a) : ρc=475 nm, d=30 nm, N=50; (c) : ρc=400 nm, d=20 nm, N=90 ; (e) : ρc=150 nm, d=5 nm, N=400; (g) : ρc=30 

nm, d=1 nm, N=2000. The intensity profiles at the radial distance 2λ from the outermost interface 
N  of the 

hyperlens (a), (c), (e), and (g), are shown in Fig. (b), (d), (f), and (h), respectively.  2 cosNx      where 

2    . The wavelength λ is 365 nm.  
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The size of the image is 843 nm which is larger than the wavelength and about 5.62 times larger than 

the separation distance between the two point sources. Next, we reduce the separation distance between 

the point sources to 100 nm (λ/3.65). We need to reduce the inner radius to ρc=400 nm and the 

thickness of each CCL to d=20 nm because the point sources generate larger wavevectors or shorter 

effective wavelengths. Moreover, we also need to increase the number of CCL to N=90 in order to 

increase the magnification of the CHs. Fig. 2.13 (c) shows the intensity distribution for the separation 

distance between the point sources 100 nm (λ/3.65). The image can be magnified into the far-field but 

the intensity outside the CHs becomes smaller than the intensity inside the CHs because of higher loss 

in the CHs. Fig. 2.13 (d) shows the intensity profile along the far-field plane from the intensity 

distribution in Fig. 2.13 (c). The two point sources are clearly resolved. The size of the image is 674 

nm which is larger than the wavelength of light and about 6.74 times larger than the distance between 

the two point sources. We can reduce the separation distance between the point sources further to 50 

nm (λ/7.3), and the geometry of the CHs required to resolve these point sources in the far-field is 

ρc=150 nm, d=5 nm, and N=400. The intensity distribution of the 50 nm separation distance (λ/7.3) is 

shown in Fig. 2.13 (e). The image can be magnified into the far-field but the transmitted intensity 

becomes much smaller than the intensity inside the CHs. Fig. 2.13 (f) shows the intensity profile along 

the far-field plane from the intensity distribution in Fig. 2.13 (e). The two point sources are clearly 

resolved in the far-field. The size of the image is 900 nm which is larger than the wavelength of light 

and about 18 times larger than the separation distance between the point sources. Lastly, we reduce the 

separation distance between the point sources to just 20 nm (λ/18.25). We need to reduce the inner 

radius to ρc=30 nm and also the thickness of each CCL to d=1 nm. Moreover, the number of CCL is 

required to be N=2000. The intensity distribution for this case is shown in Fig. 2.13 (g). The image can 

still be magnified into the far-field, but the transmitted intensity is very small comparing to the 

intensity inside the CHs. Fig. 2.13 (h) shows the intensity profile along the far-field plane from the 

intensity distribution in Fig. 2.13 (g). The two point sources are still resolved. The contrast between the 

image signal and the background signal (intensity between two peaks) is poorer than those of the larger 

distances between the point sources. The size of the image is 1706 nm which is larger than the 

wavelength of light and about the 85.3 times larger than the separation distance between the point 

sources. Therefore, we obtain the magnifying resolution λ/18.25. It is obvious that the automatic 

fabrication technique is required to achieve the better magnifying resolution by depositing high number 

of CCL with small thickness. Note that we assume the size-independent dielectric constants of the Ag. 

However, the free electrons can scatter with the interfaces of the structure and thus the additional loss is 

introduced into the dielectric constant [91]. The additional loss may deteriorate the magnifying 

resolution. Therefore, the magnifying resolution of around 20 nm (λ/18.25) may be the highest 

magnifying resolution that can be achieved by using the Ag at this wavelength because we cannot 

reduce the thickness further and the presence of the additional loss due to the size-effect on the 

dielectric constant of the Ag hampers the propagation of the image signal.                                    
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2.6 Conclusion 

 

We have successfully formulated the analytical solutions of electromagnetic fields in focusing and 

magnifying cylindrical hyperlens (CHs) comprising concentric cylindrical layers (CCLs) by applying 

the Green's function analysis. The analytical solutions are consistent with FDTD simulations, but they 

give more accurate results and more efficient than the FDTD simulation. The optimization of the CHs 

that would take several days by using the FDTD simulation becomes only a few minutes by using the 

new analytical theory of the CHs. We have applied the analytical solutions to obtain the subwavelength 

focusing in the optical band and to enhance the magnifying resolution in the UV band. The 

subwavelength focal spot for the visible light about 28 nm (λ/16) is demonstrated by focusing two point 

sources using the focusing CHs comprising alternating SiO2/Ag CCLs. The point sources can be 

realized in the experiment with the subwavelength apertures perforated in thick Ag screen. We have 

obtained the magnifying resolution for the UV light about 20 nm (λ/18) by using the magnifying CHs 

comprising the Al2O3/Ag CCLs. The analytical solutions are general and applicable to any radiation 

band at which the finite negative dielectric constants of the metals are found.      
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Chapter 3 

 

Analytical solutions of dielectrics/grating/dielectrics as hyperbolic metamaterials 

for terahertz radiation  

 
We cannot continue the discussion in the cylindrical hyperlens for terahertz (THz) radiation because 

the metals have positively large imaginary part of the dielectric constant and they become the perfect 

electric conductor or PEC in this radiation band. Then, our analytical solutions which deal with the 

finite dielectric constant of the metals as developed in the previous chapter cannot be applied. The real 

part of the dielectric constant of the metals should not be so negatively large , and the imaginary part of 

the dielectric constant must be vanishingly small. Their negative response should be also tunable over 

wide frequency range by some external stimuli. However, noble metals are the PEC in the THz band 

because they have very high electrical conductivity which make them reflect almost all incident light 

without heat being generated inside them. Thanks to many pioneers who had shown that PEC could 

support the artificial surface plasmons like the natural surface plasmons in visible band just by 

perforating the metals with grooves [73]. These quasi-particles are called spoof surface plasmons 

(SSPs). The discovery opened up the possibility of making good hyperbolic medium for THz radiation 

by structuring metals as rod arrays [30]. We naively expect that by combining such layers of metallic 

rods with dielectric layers, the hyperbolic dispersion would be achieved. We focus on layers of 

rectangular metallic rods which are closely spaced and form a metallic grating with subwavelength slit 

width. In the previous chapter, we have used the slits to couple the incident light to the surface 

plasmons in the cylindrical hyperlens, but we will use the slits as the optical components to create the 

SSPs in this chapter. This model allows us to apply the coupled-mode analysis which is successfully 

applied to study the extraordinary transmission effects (PEC) in the bare PEC grating and the bare hole-

array [50]. We generalize the structure by attaching dielectric layers on both sides of the grating and 

formulate new analytical solutions for this structure. The analytical solutions are the bases for the 

optimization scheme of the subwavelength imaging with the stacked grating/dielectric layers as the 

hyperbolic metamaterials which will be given in the next chapter. The analytical solutions of these 

structures also lead to the realization of the novel devices for the thin-film sensing application which 

we will describe in this chapter.   

 The ability of controlling light in subwavelength scale with the hole array had allowed 

researchers to sense the presences of thin films whose thicknesses are much smaller than the 

wavelength of light [51,52]. However, there is still no limit of how small thickness we can achieve 

using the SSPs generated in the grating. The analytical solutions of the dielectrics/grating/dielectrics 

structurs may lead  to the answer of this problem. Here, we apply the analytical solutions to make 

perfect absorbers (PAs) with ultrahigh Q-factors for thin film subwavelength sensing, and we optimize 

their sensing performances. The physical origins of the ultrahigh Q-factors and the tunability of these 

PAs are explained by Wood's anomalies and excitations of the SSPs. The sensing perfornances can be 

optimized by monitoring the frequency shifts of the resonance peaks and the drops of the absorbance. It 

is found that 2 nm-thick transparent film (n=1.6) can be detected with the PAs which have Q-factor 

equal to 30,267 and grating period 100 μm. The analytical solutions close the gaps between the small 
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thickness of thin film and long wavelength of THz radiation, and provide time-effective tools to 

investigate these structures.        

 The chapter is organized as follows. We express the analytical solutions and compare the 

results with FDTD simulation in section 3.1. In the section 3.2, we explain the properties of SSPs in a 

bare grating. We will understand in this section how to go into deep-subwavelength regime at the THz 

band. The remaining sections devote to the subwavelength sensing application, and the discussion in 

subwavelength imaging will be recovered in the chapter 4 and 5, when we extend the analytical 

solutions to the stacked dielectrics/grating/dielectrics structure. In section 3.3, we introduce the perfect 

absorbers for the purpose of subwavelength sensing. Section 3.4 will give the sensitivities of the perfect 

absorbers as refractive index sensors. The chapter is summarized in the section 3.5.   

 

  

3.1 Analytical solutions of dielectrics/grating/dielectrics metamaterials 

 

 

 

 

  

 

 

     

                    

 

 

 

 

 

Fig. 3.1. Schematic view of the dielectrics/grating/dielectrics structure. The grating is made by perforating 

subwavelength slits on PEC layer. Dielectric layers are attached on both sides of the grating. A whole structure is 

excited by TM-polarized incident light with the amplitude of the incident magnetic field H0 from the input region. 

The relevant parameters are indicated in the figure. The apostrophe on the subscript is used to distinguish the 

parameters of the dielectric layers of the input side from those of the output side.  

 

 

The schematic view of the dielectrics/grating/dielectrics is drawn in Fig. 3.1. The external excitation is 

continuous TM-polarized light with the incident magnetic field polarized along the z-axis  : 

   inc

0
ˆ exp /y xzH ik y ik x i t p  H , where p is period of the grating and H0 is amplitude of the 

magnetic field. The incident light impinges on the whole structure form the input region, and light 

transmits out from the structure in the output region. The M and N number of dielectric layers are 

attached in front of and behind the grating, respectively, and the apostrophes distinguish the dielectric 

layers of the input side from those of the output side. The grating is modelled as PEC cut through by 

subwavelength slits ( w  ). The solutions of the electromagnetic fields in each region are given 

following sections (3.1.1-3.15).  
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 3.1.1. Electromagnetic fields in the input region      

 

 The reflected magnetic field which results from the diffraction by the grating can be expanded 

in terms of the Bloch's basis functions written in real space as  exp /m mx i x p  , where 

2 /m xk m p   , and 0, 1, 2,...m   . The total magnetic field is then the summation of the incident 

magnetic field and the reflected magnetic field which is expressed in Dirac's ket notation as  

                                        in in in in

0 0 0 inexp expz m m m

m

H y H iq y B iq y D     ,                     (3.1)   

where 
 in

mB  are mh-order reflection coefficients,  in 2 2

inm mq k   , and 
in

1

M

j

j

D d 



  is thickness of all 

dielectric layers in front of the grating. The tangential component of the electric field obtained by the 

Maxwell's equations is written as  

              
   

 
           

in

in in in in in0 0

0 0 in

0 in 0 in

1
exp expx m m m m

m

H q
E y iq y q B iq y D 

   


    ,       (3.2) 

where 
in  is dielectric constant of the input region.  

 
 3.1.2. Electromagnetic fields in dielectric layers in front of the grating  

 

 The magnetic field in the dielectric layer j  in front of the grating can be written as the 

summation between the left (-y) and right (+y) travelling waves with the Bloch's basis functions as 

follows 

              
       

      

  1 1
exp exp

j j j j j

z m m m m m
j j

m

H y A iq y D B iq y D 
    

  

                   
 ,        (3.3) 

where 
 j

mA


 and 
 j

mB


 are mth-order field coefficients of right and left travelling waves, respectively, 

  2 2j

m j mq k 


  , and 
1

j

j r

r

D d


 



 . The tangential component of the electric field obtained by the 

Maxwell's equations are expressed as                

         

      

  1 1
0

1
exp exp

j j j j j j

x m m m m m m
j j

mj

E y q A iq y D B iq y D 
 

     

  


                    
 ,  (3.4) 

where j   is dielectric constant of the dielectric layer j .   

 

 3.1.3. Electromagnetic fields in the grating 

 The grating has non-zero magnetic field only inside the slits. The magnetic field in each slit 

can be written in terms of the infinite summation of the waveguide modes. In our assumption, the slit 

width is much smaller than the wavelength of the incident light, and therefore only the fundamental 

waveguide mode, written in real space as 0 1/x w , is taken into account. The remaining modes 

are evanescent waves transferring no energy inside the slit. In this circumstance, the magnetic field is 

homogeneous along the x-axis, and it can be written as  

                                                    s

0 s 0 sexp exp 0zH A ik y B ik y    ,                                        (3.5) 
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where 
0A  and 

0B  are slit's field coefficients for right and left travelling waves, respectively, and 
sk  is 

wavenumber of the material filling the slit. The tangential component of the electric field obtained by 

the Maxwell's equations is written as  

                                       
        s s

0 s 0 s

0 s

exp exp 0x

k
E y A ik y B ik y

 
   ,                                (3.6) 

where 
s  is dielectric constant of material filling the slit. The normal component of the electric field of 

the fundamental mode inside the slit is completely zero. For the reference to the next chapter, we also 

give the magnetic and electric fields including all waveguide modes inside the slit which is located at 

the position 
sx  as follows  

                                      
         s

exp expz y yH y A ig y B ig y
 

 


    
  ,                              (3.7) 

                        
           s

0 s

1
exp expx y y yE y g A ig y B ig y

  

 



 

   
  ,                            (3.8) 

where 0,1,2,...   are waveguide mode numbers,    22

sy xg k g
 
  , 

 
/xg w


 , A  and B  are 

field coefficients for +y and -y travelling waves, respectively, and the waveguide mode in real space is 

expressed as 

                                          s scos / 2 / 2x

C
x g x x w w x x

w

       
 

,                              (3.9) 

where 
0 1C   and 

0 2C  , and   is the Heaviside step function defined as   0, 0x x    and 

  1, 0x x   . The Heaviside step function is included just to make sure that the electromagnetic 

fields are zero outside the slits.   

 

 3.1.4. Electromagnetic fields in dielectric layers behind the grating  

 

 The magnetic field in the dielectric layer j  behind the grating can be written as the 

summation between the left (-y) and right (+y) travelling waves with the Bloch's basis functions as 

follows 

                       
                 1 1exp exp

j j j j j

z m m j m m j m

m

H y A iq y D B iq y D  
       
    ,       (3.10) 

where 
 j
mA  and 

 j
mB  are mth-order field coefficients of right and left travelling waves, respectively, 

  2 2j

m j mq k   , jk  is wavenumber in the dielectric layer j, and 
1

j

j r

r

D h d


  . The tangential 

component of the electric field obtained by the Maxwell's equations is expressed as follows  

                          1 1

0

1
exp exp

j j j j j j

x m m m j m m j m

mj

E y q A iq y D B iq y D 
 

 
        
    ,   (3.11) 

where j  is dielectric constant of the dielectric layer j .    
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 3.1.5. Electromagnetic fields in the output region 

 Similar to the input medium and dielectric layers, the transmitted magnetic field is expanded 

in terms of the Bloch's basis functions. The transmitted has only the right travelling wave, and thus it 

can be written as  

                                                
          out out out

outexpz m m m

m

H y A iq y D   ,                             (3.12)     

where 
 out

mA  are mth-order reflection coefficients,  out 2 2

outm mq k   , 
outk  is wavenumber in the output 

region, and 
out ND D . The tangential component of electric field obtained by the Maxwell's equations 

is written as  

                                       
            out out out out

out

0 out

1
expx m m m m

m

E y q A iq y D 
 

   ,                (3.13) 

where 
out  is dielectric constant of he output medium. 

 

 3.1.6 Determination of field coefficients in all regions  

    

 The idea of obtaining the field coefficients is simple. We can apply the transfer matrix on both 

sides of the grating to transfer the field coefficients of the slits 
0A  and 

0B  into the input and output 

regions via diffraction waves. This process, according to the language of the coupled-mode analysis, is 

the re-radiation of the diffraction waves emitted by slits [56]. After that, the field coefficients will be 

transferred back to the grating again which are then received by the slits. The latter process may be 

regarded as the re-absorption of the diffraction waves by the slits. These two processes keep going on 

due to the multiple reflections inside the structure. Finally, we can obtain the linear equations 

connecting 
0A  and 

0B  from two sides of the grating, and therefore, the all field coefficients are 

automatically determined by the solutions of field coefficients. 

 According to the coupled-mode analysis, it's easier to define new field coefficients of the 

slits : 
 in

0E  and 
 out

0E  which are defined as the complex amplitude of 
 s
xE  at the slit input (y=0) and the 

negative complex amplitude of 
 s
xE  at the slit output (y=h). Then, 

0A  and 
0B  are related to 

 in

0E  and 

 out

0E  via the following relations  

               

     

 

     

 
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0 s 0 0 s 00 s 0 s

0 0

s s s s

exp exp
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2 sin 2 sin

E ik h E E ik h E
A B

k i k h k i k h

        
     

      

.             (3.14) 

 By using the magnetic field and electric fields given in Eq. (3.1)-(3.13) and following the 

procedures given above, the linear equation of the slit's field coefficients 
 in

0E  and 
 out

0E   obtained at 

the output side can be written as  

                                                                 in out out

V 0 s 0 0G E G E   ,                                                (3.15) 

where  V scscG k h  couples two sides of the grating,  scot k h   accounts for the multiple 

reflections inside the slits, and 
 out

sG  takes into account the re-radiation and the re-absorption of the 

diffractions waves by the slits in the output side which is defined as    

                                                      out out 1 2s 1

s

1 s

/ sinc / 2m m m

m

n
G i W Y w p w

n





   ,                                 (3.16) 
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where 
   1 1

1 /m mY k q  is called the admittance, and the 
 out

mW  takes into account the multiple reflection 

of mth-diffraction wave in the output side which is defined as  

                                                                    
   

   

out 22 21

22 21

m m

m m m

S S
W

S S





,                                                         (3.17) 

where 
 m

ijS  is the matrix element of the output scattering matrix defined as  

                                                               
       

out , 1 2,1

m m m m

N N S T T T ,                                                      (3.18) 

where 
 
,

m

i jT  and 
 
out

m
T  are transfer matrices in the output side defined as  
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T ,                                          (3.19) 

                                               
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T ,                                           (3.20)     

where 
   j j

m m jq d  , 
 
,

m

i jr  and 
 
,

m

i jt  are the mth-order reflection and transmission coefficients from the 

medium i to the medium j which are defined for the TM wave as  

                                                  
   
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.                                      (3.21)  

If thickness of dielectric layer is zero, the transfer matrix must be reduced to the identity matrix. In the 

output side, we also can write the mth-order transmission coefficient  in terms of 
 out

0E  as  

                            
 

   

  
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.                      (3.22) 

The field coefficients of the j dielectric layer are connected to the j-1 dielectric layer via the relation 

              1 1

, 1 , 11/
T T

j j m m j j

m m j j j j m mA B t A B
 

  T , therefore all field coefficients of the dielectric layer 

1j   are obtained if the field coefficients of the j=1 are known. The 
 1

mA  and 
 1

mB  are connected to the 

 out

0E  via the following equation  

                                          
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Therefore, all field coefficients will be known if the 
 out

0E  is determined. That means another linear 

equation relating 
 in

0E  and 
 out

0E  must be obtained at the input side.         

 The linear equation connecting 
 in

0E  and 
 out

0E  at the input side is written as    
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where 
   in in

0 0 inq D  ,  0 / sinc / 2xI w p k w   is direct excitation, 
 in

sG  takes into account the re-

radiation and the re-absorption of the diffractions waves by the slits in the input side which is defined 

as    

                                              in in 1 2s 1

s

1 s

/ sinc / 2m m m

m

n
G i W Y w p w

n












  ,                                  (3.26) 

 in

mW  takes into account the multiple reflection of mth-diffraction wave in the input side which is 

defined as  

                                                         
   

   

in 11 12

11 12

m m

m m m

S S
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S S
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.                                                         (3.27)         

The mth-order input transfer matrix is defined as  

                                                                           
in, 2 ,1

m m m

M   S T T .                                                        (3.28) 

The 
 
,

m

i jT  denotes the mth-order input transfer matrix from the medium i to the medium j, which is 

defined as  
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where 
   j j

m m jq d
 

 , and the reflection coefficient is given in Eq. (3.21). The mth-order reflection 

coefficient is expressed in terms of the 
 in

0E  as  
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                                                                                                                                  (3.30)  
where 

0m  is Dirac delta function. The field coefficients of the j  dielectric layer are connected to 

those of the 1j   dielectric layer via the relation 
              1 1

, 1 , 11/
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      T , 

therefore all field coefficients of the dielectric layer 1j   are obtained if the field coefficients of the 

1j   are known. The 
 1

mA


 and 
 1

mB


 are connected to the 
 in

0E  via the following equation  
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Finally, the slit's field coefficients are obtained by solving the Eq. (3.15) and (3.25), then we have  
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where   is the dispersion function which determines the resonances of the structure. The dispersion is 

defined as  
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                                                                in out 2

s s VG G G      .                                               (3.35) 

By substitution 
 in

0E  from Eq. (3.33) into Eq. (3.30), the analytical expression of the mth-order 

reflection coefficient can be explicitly written as follows     
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                                                                                                                                                            (3.36) 

The first term in the curl bracket, the Dirac delta function, is referred to the non-diffraction term 

because it dose not depend on the slit's parameters. The second term in the curl bracket is referred to 

the diffraction term because it does depend on the slit's parameters. By substituting 
 out

0E  from Eq. 

(3.34) into Eq. (3.22), the mth-order transmission coefficient can be explicitly written as follows  
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The transmittance and reflectance are calculated by computing the time-averaged Poynting vector 

parallel to the propagation axis (y-axis) in the far-field and integrate all energy over the unit cell of the 

grating, then the transmittance and reflectance are written as  
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where the function P includes only the propagating diffraction waves.  

 

 3.1.7 Comparison with FDTD simulation  

 

  

 

 

 

 

   

 

   

 

 

 
Fig. 3.2. Schematic view of dielectric/grating/dielectric structure for comparing with FDTD simulation. The 

dielectric layer in front of the grating is high-resistivity silicon (HR-Si), and the dielectric layer behind the grating 

is Teflon. The dielectric constants of HR-Si and Teflon are 11.7 [74], and 2.088 [75], respectively, with the 

imaginary part neglected. The thickness of both layers is defined as 10 μm. The grating has period 100 μm, slit 

width 1 μm, and slit height 1 μm. The slit's filling material is air. The structure is excited by TM-polarized normal 

incident light.   

 

 We check the validity of the analytical solutions by computing the optical spectra of a single 

dielectric/grating/dielectric structure with M=N=1 as schematically shown in Fig. 3.2, and we compare 

the analytical spectra with the spectra obtained by the FDTD simulation. The imaginary part of the 
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dielectric constant of HR-Si is negligible [74]. We also neglect the imaginary part of the dielectric 

constant of Teflon because the complex dielectric constant has to be defined as a function of frequency 

in the FDTD simulation which slow down the calculation. Therefore, we will give the effect of losses 

using the analytical solutions once they are shown to be consistent with the FDTD in the case of no 

losses. Fig. 3.3(a) shows that the FDTD transmission spectra approach the analytical transmission 

spectra by increasing the resolutions. This means that analytical solutions are consistent with the FDTD 

simulation with high resolution. The consistency could be improved by increasing more resolution in 

the FDTD simulation, but this scheme is very time-consuming. The simulation time of FDTD 

simulation with the resolution 10 pix/μm takes 59 hours on a single PC computer with Intel(R) 

Core(M) i7-3970X CPU @3.50 GHz, while the analytical spectra takes only one minute to compute. 

This means that the analytical solutions are 3,540 times faster than the FDTD simulation. Next, let's us 

try to understand the origin of the resonant peaks seen in Fig. 3.3(a) by using the analytical solution. 

The resonant frequencies obtained by the analytical solutions are 2.1325 THz, 2.7676 THz, and 2.8860 

THz, which can be precisely obtained by the resonant condition  Re 0  . The imaginary part of the 

dispersion function determine the amplitude of the spectra. The maximum of diffraction orders leading 

to the converged 
 in

sG  and 
 out

sG  are 97 and 94, respectively, at these resonances. Therefore, the 

accurate positions of the resonances require high diffraction modes.  

  

 

 

                            
 

 

 

  

 

 

 

Fig. 3.3. (a) Analytical and FDTD with resolution 3-10 pix/μm transmission spectra of the structure shown in Fig. 

3.2. The black line is the analytical spectra and the colour lines are the FDTD spectra. (b) Real parts of the 

components of the dispersion function. The black solid line denotes      in out
Re s sG G  

  
 

 and the black 

dashed line denotes 
2Re VG   . The grey and blue circles indicate the resonant positions which are induced by the 

mth-order Wood's anomalies in HR-Si and Teflon layers, respectively, which are also indicated by texts.        

    

The two components of the dispersion function are plotted in Fig. 3.3(b). In the case of a bare grating 

(no dielectric layers), 
   in out

s sG G   and the two components do not cross each other within this 

frequency band. By introducing the dielectric layers, the symmetry between 
 in

sG  and 
 out

sG  is broken. 

In the latter case, the diffraction waves can interfere with the incident light and generate the 

divergences in the 
 in

sG  and 
 out

sG . These divergence are called the Wood's anomaly [89]. At the 

(a) (b)

m=1/Si m=2/Si m=1/

Teflon

(a) (b)

m=1/Si m=2/Si m=1/

Teflon

m=1/Si m=2/Si m=1/

Teflon
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Wood's anomaly, the transmittance is exactly zero because 1/ 0   due to the divergences of the 

coupling parameters 
 in

sG  and 
 out

sG . This means that the Wood's anomalies may be regarded as the 

results of the strong coupling between the waveguide modes in the slits via the diffraction modes 

generating the shot-circuit so that the transmittance is zero. The divergences of  
 in

sG  and 
 out

sG  occur 

due to the interferences between the zeroth-order diffraction mode (non-diffracted wave) and the ±m 

diffraction modes where m is not equal to zero. The Wood's anomalies induce the crossing points 

between the two components of the dispersion function at the frequency higher than their frequencies, 

and thus generate the resonances at which the reflected light becomes out of phase with the incident 

light allowing the light energy to transmit to the far-field. For convenience, we will call the Wood's 

anomaly corresponding to the interference between the zeroth-order diffraction mode and ±m 

diffraction modes that lead to the divergence of 
 in

sG  or 
 out

sG  as mth-order Wood's anomaly. The 

frequency position of the mth-order Wood's anomaly can be obtained by considering the spectrum of 

the amplitude of 
 in

sG  or 
 out

sG . The amplitude of each of these coupling parameters is typically 

smaller than one. The Wood's anomaly will appear as the sharp peak within this spectrum with the 

amplitude of the 
 in

sG  or 
 out

sG  greater than one. Therefore, we can have one condition of the Wood's 

anomaly that the amplitude of 
 in

sG  or 
 out

sG  must be greater than one. We need this condition because 

finding where the amplitude of 
 in

sG  or 
 out

sG  is maximum in the spectrum is difficult to implement in 

the program. Another condition of the Wood's anomaly is that the real part of the coupling parameter 

 in

sG  or 
 out

sG  suddenly changes its sign from positively large value to the negatively large value (and 

vice versa) when the frequency crosses the Wood's anomaly. Therefore, we have two conditions to 

obtain the frequency position of the Wood's anomaly :   in

sRe 0G   and  in

s 1G   (the same 

conditions applied to 
 out

sG ).  Lastly, we take only three diffraction modes to calculate 
 in

sG  or 
 out

sG  

that are the zeroth-order mode and the ±m modes when we look for the frequency position of the mth-

order Wood's anomaly. The resonant frequencies 2.1325 THz and 2.7676 THz are induced by the 1st-

order and 2nd-order Wood's anomalies in the HR-Si, respectively, as indicated in the Fig. 3.3(b). The 

resonant frequency 2.8860 THz is induced by the 1st-order Wood's anomaly in the Teflon layer as 

indicated in Fig. 3.3(b). We can compute the Q-factor defined as Q /f f   for each resonant peak. 

The Q-factors for the resonances at frequencies 2.1325 THz, 2.7676 THz, and 2.8860 THz are 105, 419, 

and 627, respectively. The origin of the high Q-factor can be seen in Fig. 3.3 (b). The Q-factor is 

determined by the respective position between the resonant peak and the Wood's anomaly, i.e., the 

closer to the Wood's anomaly, the stronger variation in the amplitude of the dispersion function and the 

higher Q-factor. Therefore, the Q-factor is tunable by varying thickness of dielectric layer because the 

Wood's anomaly makes blue shift toward the Rayleigh's anomaly at which 2 /k m p  ( 0xk  ) by 

decreasing the thickness of the dielectric layer. For example, by decreasing the thickness of Teflon 

layer from 10 μm to 4 μm, the 1st-order Wood's anomaly in Teflon layer which is contained only in the 

function 
     in out

Re s sG G  
  
 

 makes the blue shift while the function
2Re VG   remains 
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unchanged. Then, the crossing point between these two components indicated by the blue dot in Fig. 

3.3(b) is pushed toward the divergence position of the 1st-order Wood's anomaly. Therefore, the 

spectra is more rapidly change resulting in smaller frequency width and higher Q-factor about 3,985 at 

the new resonant frequency 2.98134 THz for the Teflon layer with the thickness 4 μm.  

 The divergences of 
 in

sG  and 
 out

sG  are caused by the zeros of their denominators. Therefore, 

the physical pictures of the Wood's anomalies can be illuminated by simplifying these denominators. 

Consider the dielectric layer with finite dielectric constant
1 , the corresponding wavenumber 

1k , and 

finite size with thickness d1 which is located behind the grating. The mth-order Wood's anomaly is 

found by including only the zero and ±m diffraction modes in the 
 out

sG , and then the zeros of the 

denominator of the
 out

sG  lead to the following condition  

                                       
         

     

     

 
1 1 1

01 1 1 0 2 2 2

0 1,out 1,out 1,out1 1 1 0m mm mi i i

m mq q q r e r e r e
  

     .                          (3.39) 

Equation (3.39) is satisfied if 
 1

0 0q  , 
 1

0mq  , or 
 1

0mq  . These diffraction waves propagate exactly 

parallel to the tangential axis (x-axis) and they are referred to the nth-order Rayleigh's anomalies, where 

n=0,m,-m. Equation (3.39) is also satisfied if    1
2

1,out1 0nn i
r e


  , where n=0,m,-m, and not confuse this n 

with the refractive index. This is the condition for the Wood's anomalies, and we apparently have three 

Wood's anomalies : 0th-order Wood's anomaly, mth-order Wood's anomaly, and -mth-order Wood's 

anomaly. The condition of the Wood's anomaly can be satisfied if 1 nk   and out nk  , that is the 

nth-order diffraction mode is propagating wave in the dielectric layer but it is evanescent wave in the 

output medium. Notice that the electromagnetic waves at the Wood's anomalies are not propagating 

perfectly parallel to the x-axis unlike those at the Raleigh's anomalies. By imposing these conditions, 

we finally obtain the simplified condition of the nth-order Wood's anomaly as follows  

                                 2 2 2 2 2 2

1 1 1 out out 1WD tan / / 0n n n nd k k k          ,                          (3.40) 

where "WD" stands for "Wood". By giving n as zero, m, or -m, and imposing the conditions 1 nk   

and out nk  , the frequencies of the nth-order Wood's anomalies for all incidence angles obtained by 

Eq. (3.40) are the same as those obtained directly by checking the divergences of 
 out

sG  using the 

aforementioned method. For the dielectric layer located in front of the grating, the WDn
 derived by the 

 in

sG  is the same as Eq. (3.40) if the input and the output regions are the same. However, if these two 

regions are different, the WDn
 of the dielectric layer located in front of the grating can be obtained 

from Eq. (3.40) by replacing 
out in   and 

out ink k .          
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Fig. 3.4. |E|-distributions of dielectric/grating/dielectric structure. (a) At the frequency 2.1325 THz for the 

analytical solutions (ANS) and 2.1130 THz for the FDTD simulation with resolution 10 pix/μm (FDTD:10) . (b) 

At the frequency 2.7676 THz for ANS and 2.7420 THz for FDTD:10. (c) At the frequency 2.8860 THz for ANS 

and 2.883 THz for FDTD:10. The insets show the regions close to the slit.   

 
 We also compare the |E|-distributions at the resonant frequencies obtained by the analytical 

solutions and FDTD simulation as shown in Fig. 3.4. The maximum of order used to calculate the |E|-

distribution in the input region and inside HR-Si layer is the same as that leading to the converged 

 in

sG , and the maximum of order used to calculate the |E|-distribution in the output region and inside 

Teflon layer is the same as that leading to the converged 
 out

sG . The |E|-distributions at 2.1325 THz, 

2.7676 THz are normalized by the maxima of |E|/E0 at the origin (x,y)=(0,0) inside the HR-Si layer 

which are 63 and 85, respectively, while the |E|-distribution at 2.8860 THz is normalized by the |E|/E0 

at (x,y)=(0,h) inside the Teflon layer which is 88.5. The higher electric field at the centre of the slit 

openings is associated with the larger transmittance. The maximum of |E|/E0 on the surface of the HR-

Si at 2.1325 THz is 17.7 at x=±28.10 μm, and that at 2.7676 THz is 22.0 at x=±14.15 μm. The 

maximum of |E|/E0 on the surface of Teflon at 2.886 THz is 36.8 at x=±25.62 μm. We obtain the 

consistent field distributions as those from the FDTD simulation. We observe that the electric field is 

localized on the surface of HR-Si layer in the case of the resonances at the frequencies 2.1325 THz and 

2.7676 THz, but the field becomes localized on the surface of the Teflon layer in the case of the 

resonance at the frequency 2.8860 THz. The localization of the electric field is the characteristic of the 

SSPs. Therefore, these electromagnetic modes correspond to the excitations of the SSPs. We may be 

confused by the appearances of the nodes on the surface of the grating which lead us to think that these 

modes are quasi-waveguide resonances (QWRs) which occur in the dielectric layer sandwiched in 

between the grating and the metallic plane [77]. The best way to characterize the electromagnetic 

modes in any optical structure is to draw or measure the dispersion relation of that structure. That is we 

increase the tangential component of the wavevector and obtain the frequency corresponding to those 

wavevectors. We expect that the light energy will move along the tangential axis by increasing the 

tangential wavevector, and the dispersion will have non-zero slope and thus non-zero group velocity. 

However, if the band is completely flat, it means that the electromagnetic modes are QWRs. They are 

the standing waves formed inside the structure. For our structure, the electromagnetic modes are not the 

QWRs but they are the higher-order SSPs.      

(a)
FDTD:10ANS FDTD:10ANS ANS FDTD:10

(b) (c)(a)
FDTD:10ANS FDTD:10FDTD:10ANS ANS FDTD:10

(b) (c)
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 To clarify this, we replace the Teflon layer by the HR-Si layer, and obtain the dispersion 

relation of the resonant modes of this structure as shown in Fig. 3.5 (a). The red line corresponds to the 

SSPs on the surface of the bare grating whose cut-off frequency is the FP resonance of the slit cavity 

which is about 150 THz for the slit height 1 μm. Therefore, these SSPs are close to the light line within 

this frequency range. The next four colour lines are evidently not flat, and they are the excitations of 

the higher-order SSPs. The dashed colour lines have sharp resonant peaks because they locate very 

close to the Wood's anomalies. The dispersion relation of the Wood's anomalies is shown in Fig. 3.5 (b). 

By increasing 
xk , the mth-order Wood's anomaly is split into the negative dispersion (negative slope) 

and the positive dispersion (positive slope). Therefore, the resonant frequency is also split into the 

negative and positive branches according to the Wood's anomaly. That means the energy is split into 

two part propagating in the different direction on the surface of the HR-Si. Interestingly, the 0th-order 

Wood's anomaly also appear just above the frequencies of the SSPs on the surface of the bare grating. 

Therefore, the SSPs on the surface of the bare grating can be designated as the 0th-order SSPs. Then, 

the electromagnetic modes in the green line are designated as the negative 1st-order SSPs on the HR-Si 

surface. This name is too long. It is more convenient to define the shorthand for these modes as 

  SSPs 1 / HR-Si


 where  
1


 denotes the first-order with the negative dispersion. Similarly, the 

electromagnetic modes in the blue line can be designated as the positive 1st-order SSPs on the HR-Si 

surface with the shorthand   SSPs 1 / HR-Si


 where  
1


 denotes the first-order with the positive 

dispersion. The electromagnetic modes in the cyan and the violet lines can be also designated with the 

shorthand   SSPs 2 / HR-Si


 and   SSPs 2 / HR-Si


, respectively. At the 0xk  , the green and blue 

lines are merged into one mode which we call  SSPs 1/ HR-Si  without the sign, and the cyan and 

violet lines are also merged into one mode which we call  SSPs 2 / HR-Si . Therefore, with this 

notation, the resonant frequencies 2.1325 THz, 2.7676 THz in Fig. 3.3 (a) are the  SSPs 1/ HR-Si  and 

 SSPs 2 / HR-Si , respectively, With the same consideration, the resonant frequency 2.8860 THz is the 

excitation of the 1st-order SSPs on the surface of the Teflon layer denoted as  SSPs 1/ Teflon . Next, 

we discuss more about the meaning of "higher-order" SSPs. There are two points related to the higher-

order SSPs. The first point is that the higher-order SSPs can have 
xk  larger than that of the light in air 

only in the higher-order Brillouin zone of 
xk  corresponding to their orders. For example, within the 

first Brillouin zone, only the 0th-order SSPs of the bare grating lie outside the line cone, and thus only 

the 0th-order SSPs have 
xk  larger than that of light in air. In the second Brillouin zone in which we add 

2 / p  to the 
xk  within the first Brllouin zone, the 1st-order SSPs can lie outside the light cone and 

thus they can have 
xk  larger than that of the light in air. The second point is about the localization of 

the electromagnetic fields. The higher-order SSPs can localize the electromagnetic fields on the surface 

of the structure because the diffraction modes corresponding to their orders decay in air, but they 

propagate inside the structure. For example, the 1st-order SSPs use the decay of the diffraction modes 

1m   in air, and the 2nd-order SSPs use the decay of the diffraction modes 2m  in air. Therefore, 
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the localization length of the electromagnetic field from the surface of the structure due to the higher-

order SSPs depends on the mode order m. The more higher m, the more rapid decay of the 

electromagnetic field.    

 We can now understand why the first two peaks have larger frequency differences between the 

analytical solutions and FDTD simulation than the last peak  as shown in Fig. 3.3(a). The resonant 

frequency of the last peak obtained by FDTD simulation with resolution 10 pix/μm is only 3 GHz 

smaller than that from the analytical solutions. The larger discrepancies of the first and second peaks 

from the FDTD simulation which are 20 GHz and 26 GHz, respectively, are attributed to the low 

resolution of the FDTD simulation in the high dielectric constant HR-Si. The contribution of  higher 

diffraction modes in HR-Si is more significant than that in the Teflon layer with lower dielectric   

                    

 

 

         

 

 

 

 

 

 

Fig 3.5. (a) The dispersion relation of the resonant modes in the HR-Si/grating/HR-Si structure. (b) The dispersion 

relation of the Wood's anomaly in the HR-Si/grating/HR-Si structure. The parameters of the HR-Si layer and the 

grating are the same as those in Fig 3.2.  

 

constant, and therefore the FDTD simulation gives different accuracy for the resonant peak of each 

layer. The |E|-distributions from the analytical solutions are greatly consistent with those from FDTD 

simulation except in the regions near the slit's edges as shown in the insets where the analytical |E|-

distributions are homogeneous inside the slit's cavities but the FDTD |E|-distributions are maximum at 

the slit's edges. According to the FDTD simulation, the |E| at the slit's edges is about two times larger 

than |E| at the centre of the slit's openings. This field enhancement results from the localized surface 

plasmons (LSPs) [53]. There effects can be accounted for by increasing the higher waveguide modes in 

the slit cavity. The higher waveguide modes are evanescent waves within this frequency range [78].  

We notice that the LSPs also contribute to the relatively larger |E| above the dielectric layer especially 

at the  SSPs 1/ Teflon  shown in Fig. 3.4 (c) which is also affirmed by the relatively large difference 

of the transmittance obtained by the analytical solutions and the FDTD simulation at this frequency as 

shown in Fig. 3.3 (a). This means that the higher waveguide modes are required to have more accurate 

transmittance and field distribution when the wavelength is about 104 times larger than the width of the  

slit width. 

 It is important to note that there is no absorption in the system unless the imaginary part of 

dielectric constant (loss) is introduced into the system. The imaginary part of the dielectric constant of 

(a) (b)

m=0

m=0,±2

m=0,±1

(a) (b)

m=0

m=0,±2

m=0,±1
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(a) (b) (c)(a) (b) (c)

Teflon is about 0.01-0.02 in the frequency range 0.5-3.0 THz [75]. According to the analytical 

solutions, the absorbance 1A R T    arising at the resonance frequencies of the  SSPs 1/ HR-Si , 

 SSPs 2 / HR-Si , and  SSPs 1/ Teflon  due to the presence of the imaginary part of the dielectric 

constant of Teflon 0.02 (no loss in HR-Si) are 4.0%, 38.8%, and 70.5%, respectively, as shown in Fig 

3.6 (a). It can be seen that even the small loss of Teflon generates high absorbance in  SSPs 1/ Teflon . 

Note that the inclusion of higher-order waveguide modes in the slit cavity could decrease the 

transmittance of the  SSPs 1/ Teflon  as discussed in the previous section. Therefore, the absorbance at 

this frequency may also decrease by including higher-order waveguide modes within the slit cavity.    

Interestingly, the heat is also generated in the  SSPs 1/ HR-Si  and the  SSPs 2 / HR-Si ,  and the   

 

 

 

 

 

 

 

Fig. 3.6. Absorption spectra of dielectric/grating/dielectric structure. (a) The absorption spectra the due to the 

presence of loss only in Teflon layer where the imaginary part of the dielectric constant of the Teflon is 0.02. (b) 

The absorption spectra due to the presence of loss only in HR-Si where the imaginary part of the dielectric 

constant of the HR-Si is 0.0004. (c) The absorption spectra due to the presence of loss in both Teflon and HR-Si 

with the imaginary part of the dielectric constants from (a) and (b). All spectra are obtained by the analytical 

solutions.   

 

 and the  SSPs 2 / HR-Si  has higher absorbance than that in the  SSPs 1/ HR-Si  because the 

former resonance is closer to the  SSPs 1/ Teflon  and thus more strongly interacts with the 

 SSPs 1/ Teflon  that the latter. The imaginary part of the dielectric constant of the HR-Si is about 

0.0004 in the frequency range 1-2 THz [74]. The presence of this loss in HR-Si (and no loss in Teflon) 

slightly heat the structure.  In this case, the absorbance in the  SSPs 1/ HR-Si ,  SSPs 2 / HR-Si , and 

 SSPs 1/ Teflon  are 0.8%, 3.1%, and 0.9%, respectively, as shown in Fig. 3.6 (b). The absorbance in 

the  SSPs 1/ HR-Si ,  SSPs 2 / HR-Si , and  SSPs 1/ Teflon  due to the presences of losses in both 

HR-Si and Teflon layers are 4.8%, 40.4%, and 70.5%, respectively, as shown in Fig. 3.6 (c). This 

means that the inclusion of loss in HR-Si layer slightly change the optical property of the whole 

structure.   
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3.2 Properties of the spoof surface plasmons (SSPs) in a bare grating  

 

It had been known that the PEC grating has strange effective anisotropic property. Its effective 

propagation constant (normal component of the wavevector) is always equal to the wavenumber of the 

material filling the slit 
sk , and the effective dielectric constant along the x-axis denoted as 

 eff

x  is 

determined just by the dielectric constant of the material filling the slit and the geometry of the grating 

via the relation 
 eff

s / wx p   [79]. Whatever 
xk  presences in the grating, these two conditions must 

be satisfied. The same property was also pointed out before in the perforated PEC plane [57]. These 

conditions are sufficient to determine the zeroth-order reflection and transmission coefficients quite 

accurately in the subwavlength regime p  , and therefore there are no need to consider the 

remaining parameters 
 eff

y  and 
 eff

z . The previous work on the perforated PEC suggested that 

 eff

y    (or 
 eff

y   ) to eliminate 
xk  from the effective propagation constant, and gives 

 eff
/z w p   so that the effective propagation constant is the same as 

sk [57]. This means that the 

perforated PEC and the PEC grating behave as type-I hyperbolic metamaterial (HMMs) with 

completely flat equi-frequency contour (EFC). The grating behaves like PEC along the propagation 

axis, and it behave like an insulator along the tangential axis. However, this model gives up the free-

electron model due to the presence of the SSPs whose dispersion deviates from the light line, just like 

natural surface plasmons in the optical band, and lie below the Fabry-Perot (FP) resonance of the slit 

(
s 2c n h  ) which acts as their artificial plasma frequency. The free-electron model dictates that the 

 eff

x  has to be negative below the FP because the SSPs propagate along the grating interfaces below 

this frequency, but the conventional model as described above always gives the positive 
 eff

x . We 

revisit the effective model of the gratings stacked into multilayers in the chapter 5. We show in the 

chapter 5 that the stacked gratings can have the negative 
 eff

x  in favour to the free-electron model, and 

the 
 eff

y  is finite and always positive. There was the theoretical work suggesting to use the grating as 

endoscope at the FP resonance [80]. However, this work didn't employ the SSPs which lie a little bit 

below the FP. Instead, the authors theoretically excited the grating with structured Gaussian beam 

having closely-spaced two peaks at the FP of the finite size grating, and then the two peaks could 

propagate to the another side of the grating without suffering from the diffraction limit. In our case, we 

will employ the SSPs for the deep-subwavelength imaging instead of the FP resonance. Therefore, we 

discuss the properties of SSPs in this section. The message of this section is that we can use the SSPs in 

a bare grating for deep-subwavelength imaging in THz radiation band if we properly design the grating.     

 We give the definite parameters of the grating for THz radiation, and the reason for this choice 

will become clear shortly. The period of the slit is defined as 1 μm, slit width 0.2 μm, and the slit height 

150 μm. The material filling the slit is defined as air. The input and output media are also air. In this 

case, the parameters 
   in out

s sG G   and the analytical dispersion relation is obtained by the zeros of the 

dispersion function given in Eq. (3.35). Only the real part of the dispersion function is sufficient, and 

the imaginary part determines the amplitude of the spectra. In the case of the homogenized grating 
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using the conventional effective model [79], the dispersion relation is obtained by the zeros of the 

common denominator of zeroth-order reflection and transmission coefficients obtained by simple 

transfer matrix method. Therefore, the difference between the analytical dispersion relation and the 

effective dispersion relation is that the analytical solutions take into account all diffraction modes until 

the parameter 
 in

sG  converged, while the effective dispersion relation takes only m=0 diffraction mode 

for the parameter 
 in

sG  and all modes are neglected. Fig. 3.7 (a) and (b) show the transmission spectra 

and dispersion relations, respectively, comparing between the analytical solution (AN) and the 

conventional effective medium model (EFM). It can be seen that the EFM gives unprecedented 

consistent results with analytical spectra. For example, the analytical transmittance at 1 THz is 99.98%, 

and the effective transmittance at the same frequency is 100.00%, thus only 0.02% difference in 

transmittance. The dispersion relations obtained by two methods are also the same. In both case, the 

SSP dispersion relations are nearly flat. The cut-off frequency is approximately determined by the FP 

that is 2c h  . Therefore, we choose the slit height as 150 so that the SSP frequency is close to 1 THz. 

In this case, we obtain the deep-subwavelength condition 
0xk k .  For example, at the edge of the 

Brillouin zone /xk p , where p is 1 μm, we have 
xk  about 150 times larger than wavenumber in air 

for 1f   THz. Therefore, if we are able to employ the SPPs in this structure, we could go down in the 

scale deep below the wavelength of light.    

               

            

 

  

 

 

 

 

 

 

 

Fig. 3.7. (a) Transmission spectra of a bare grating comparing between analytical solutions and effective medium 

approximation. (b) Dispersion relation of the SSPs in a bare grating. Black dashed line indicates the light line. The 

parameters of the geometry are given in the main text.  

 

 Next, we give typical values of the localization length and the field enhancement of the SSPs 

in the bare grating. Such parameters are important to understand the interaction between the SSPs and 

the objects. We consider the SSP with the largest wavenumber at the edge of the first Brillouin zone 

/xk p  which occurs at the frequency 0.99706 THz according to Fig. 3.7 (b). The |Hz|-distributions 

normalized with the amplitude of the incident evanescent light at y=0  in front of the grating, inside the 

grating, and behind the grating obtained by the analytical solutions are drawn over 7 unit cells as shown 

in Fig. 3.8 (a)-(c), respectively. The localizations of the magnetic fields on both sides of the grating due 

(a) (b)(a) (b)
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to the SSPs are clearly seen in this figure. The  decay length of the magnetic field, which is defined as 

the distance at which the amplitude of the magnetic field decrease by 1/e,  is 225 nm in both interfaces 

of the grating. The magnetic field enhancement is in the second order which is relatively small. This is 

because the magnetic field forms the standing wave inside the slits in the grating with the maximum 

magnetic field reaches the fifth order at the centre of the grating. This leads to the smaller magnetic 

field enhancement at two faces of the gratings. Fig. 3.8 (d)-(e) show the |E|-distributions normalized 

with the amplitude of the incident evanescent light at y=0 in front of the grating, inside the grating, and 

behind the grating, respectively. The electric field is more strongly localized to the interfaces of the 

grating than the magnetic field. The decay length of the electric field is only 144 nm for two interfaces 

of the gratings. The amplitude of the electric field at the interfaces of the grating is in the fifth order 

which is much larger than the magnetic field along these interfaces. The reason for this can be seen in 

the |E|-distribution inside the grating. The electric field forms the standing wave inside the grating but 

with the minimum at the centre of the grating. It shows the maxima on two faces of the grating which 

lead to the higher field enhancement. This means that the electric field is more important than the 

magnetic field. It is necessary to bring the subwavelength objects within the decay length of the electric 

field in order to excite the SSPs in the grating. Therefore, the THz radiation at this frequency can reach 

the nano-scale by using the SSPs in the grating with the aforementioned parameters.            

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8. SSPs in a bare grating. The |Hz|-distributions normalized by the amplitude of the incident magnetic field 

in (a) input region, (b) inside the grating, and (c) behind the grating of the SSP with wavenumber / p  at the 

frequency 0.99706 . The geometry of the grating is the same as Fig. 3.6. The |E|-distributions normalized by the 

amplitude of the incident electric field in (d) input region, (e) grating region, and (f) output region, of the SSP with 

the same wavenumber and frequency are also plotted.   
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3.3 Perfect absorbers for subwavelength sensing  

 

 

 

 

 

 

 

 

 

Fig. 3.9. Two types of perfect absorbers (PAs). (a) Back-PAs : the dielectric layer 2 is defined as PEC, and the 

dielectric layer 1 is defined as absorbing spacer, and the slit is filled with air. (b) Front-PAs: the dielectric layer 1 

is defined as PEC, the slit is filled with absorbing material, and the dielectric layer 1  flats the surface of grating.       

 

We first consider the perfect absorbers (PAs) proposed by A. P. Hibbins and J.R. Samples [77] as 

schematically shown in Fig. 3.9 (a). We will call these PAs as back-PAs since the heat is generated in 

the spacer behind the grating. Although the back-PAs have been widely investigated since then, there is 

no report of the exact formula of the absorbance to the best of our knowledge. The 

dielectrics/grating/dielectrics structure equivalent to the back-PAs is grating/spacer/PEC (M=0,N=2). In 

our case, the slit is filled with air. The thickness of PEC layer becomes irrelevant, and the transmittance 

is always zero. Therefore, the absorbance is only determined by the reflectance by A=1-R. The 

functions 
 in

mW  and 
 out

mW  become one and   1

1cot mi q d , respectively. Notice that if 
1 0d  , we obtain 

the SSPs on the perforated PEC surface. For 
1 0d  , the QWRs are induced inside the spacer (their 

dispersions are completely flat) by the Wood's anomaly whose frequency is determined by the 

condition   1

1sin 0mq d    

                                                      

22

W

,

1 1

1

2 4

x

m j

kc m j
f

n p d

  
     

   
,                                                (3.41) 

where m,j=0,±1,±2,.... For j=0, the Wood's anomaly is identical to the Rayleigh's anomaly. The spacer 

must have small but non-zero imaginary part, otherwise light will be totally reflected. We choose the 

low-loss Zeonex polymer previously used in the metamaterial fibre as the spacer [30]. By assuming 

that the dielectric constant of Zeonex is non-dispersive and equal to 2.3104+0.002i, the frequency can 

be scaled by the period of the grating which is chosen as the length scale. The unit of frequency in this 

scalable is c/p. The slit height is defined as 0.01p so that the dispersion of the SSPs of a bare grating 

(no dielectric layers) is close to the light line which means that the electromagnetic field is delocalized 

in front of and behind the bare grating. However, the electromagnetic field can be localized inside the 

spacer due to the QWRs. Fig. 3.10 (a) shows that the nearly 100% absorbance of the 1st-QWR and 3rd-

QWR can be achieved by optimizing the spacer thickness as 
45 10 p  and 

31.4 10 p , respectively. 

The 1st-QWR and 3rd-QWR are the standing waves which have one node and three nodes of the 

amplitude of the electric field on the metallic part of the grating, respectively. Fig. 3.10 (b) shows the 
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amplitude of the electric field inside the spacer normalized by the amplitude of the incident electric 

field for the 1st-QWR in the back-PA with 4

1 5 10d p  . The amplitude of the electric field is three 

orders larger than the amplitude of the incident electric field, and one node is clearly seen between the 

two slits. The large amplitude of the electric field is due to the strong excitation of the surface charges  

on the metallic part of the grating surface which give the strong net dipole moment that can be coupled 

with the normal incident light [81]. Fig. 3.10 (c) also shows the amplitude of the electric field inside the 

spacer normalized by the amplitude of the incident electric field for the 3rd-QWR in the back-PA with 

3

1 1.4 10d p  . The electric field is weaker than the former case, and three nodes are clearly seen 

between the two slits. The even-order QWRs have zero net dipole moments on the metallic part of the 

grating surface at the normal incidence, and thus they can be excited only by the oblique incidence 

where 0xk   [81]. The Q-factors (f/Δf) for the 1st-QWR and the 3rd-QWR with the optimized 

thickness  are 573 and 738, respectively. By further increasing the spacer thickness to 3

1 8.0 10d p  , 

both resonant peaks make red shift, the corresponding absorbance and Q-factors drop, as shown in Fig. 

3.10 (a). In this sense, the back-PA is mechanically tunable.   

 

  

 

           

 

 

 

 
Fig. 3.10. Analytical absorption spectra and |E|-distributions of back-PAs. (a) Absorption spectra of three back-

PAs with different spacer thickness indicated in the figure. The resonant frequencies of the 1st-QWR of the 

4

1 5 10d p   and the 3rd-QWR of the 3

1 1.4 10d p   are 0.33278 c/p and 0.98970 c/p, respectively. (b) 

Normalized |E|-distribution inside the spacer at the 1st-QWR of the 4

1 5 10d p  . (c) Normalized |E|-distribution 

inside the spacer at the 3rd-QWR of the 3

1 1.4 10d p  . The green arrows indicate the directions of electric fields 

which also imply the distribution of surface charges on the metallic part of the grating. The |E|-distribution is 

between the centre of two slits and covers only one unit cell. The slit height and slit width are 0.02p.    

 

 For sensing application we are interested in changes of the resonant peak, e.g., frequency shift 

due to the presence of a thin film. Therefore, it is important to consider the |E|-distribution in the input 

region at the resonant frequency. Fig. 3.11 shows the |E|-distribution normalized by the amplitude of 

the incident electric field at the 3rd-QWR in front of the grating of the back-PAs with the optimized 

thickness 3

1 1.4 10d   . It is found the normalized |E| is strongly localized to the slit's opening at 

x(p)=-1, 0 1 with the full width at half maximum (FWHM) along the y-axis equal to 0.008p and the 

maximum of the normalized |E| is 5.8 times weaker than that inside the spacer. However, the |E| 

between two slits is delocalized with the FWHM along the y-axis equal to 0.881p and the maximum of 

the normalized |E| only 13. This makes the back-PAs insensitive to the presence of the thin film located 
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just next to the grating. Furthermore, the back-PA is not really flat sensor, and thus it is not convenient 

to serve as the platform for characterizing subwavelength films.  

 In order to bring the large field enhancement to the front side of the grating, we introduce a 

flat front-PAs as schematically shown in Fig. 3.9 (b). The dielectrics/grating/dielectrics structure in Fig. 

3.1 equivalent to the front-PAs is dielectric/grating/PEC (M=1,N=1). The grating/PEC now becomes 

the perforated PEC plane. The slit is filled with absorbing material which we define as Zeonex polymer. 

The dielectric layer in front of the grating is defined as HR-Si with no loss. Therefore, heat is generated 

only inside the slit. The dispersion relation of the front-PAs is identical to that of the SSPs : 

 in

s 0G    . The cut-off frequency of the SSPs excited on the surface of the perforated PEC plane  

with the approximation p   and w   is determined by the condition  scos 0k h   which leads 

to the cut-off frequency   s2 1 / 4cf c j n h   where j=1,2,3,... [57]. These SSPs may be considered as 

the odd-order SSPs because of the odd integer 2j-1 in the numerator of the cut-off frequency. The 

Fabry-Perot (FP) inside the slit cavity also leads to the excitation of the SSPs below its frequency, and 

the cut-off frequency due to the FP is determined by the condition  ssin 0k h   which leads to another 

cut-off frequency 
s2 / 4cf c j n h  where j=1,2,3,... . These SSPs may be considered as the even-order 

SSPs because of the even integer 2j in the numerator of the cut-off frequency. Therefore, we can tune 

the frequency of SSPs by changing the slit height. In our case, we store the heat at the frequency below 

the Fabry-Perot resonance (FP) inside the slit cavity which is the cut-off frequency of the second-order 

SSPs on the grating surface. That means the heat is stored in some part of the SSPs on the surface of 

the perforated PEC plane. Then, these SSPs are excited by the first-order SSPs on the surface of the 

finite size HR-Si layer as denoted by  SSPs 1/ HR-Si . Therefore, we have two types of SSPs play role 

in the front-PAs, different from the back-PAs which have only the QWRs.         

 

 

 

 

 

 

 

 

   

 

 

  

 

 

 

 

 
Fig. 3.11. Analytical normalized |E|-distribution in font of the grating of the back-PAs. The back-PAs has 

3

1 1.4 10d    and the resonant frequency is at the 3rd-QWR as shown in Fig. 3.10 (a). The normalized |E|-

distribution covers two unit cells along the x-axis.     
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 Fig. 3.12 (a) shows sharp and nearly perfect absorption peaks of front-PAs with HR-Si 

thicknesses 
1 0.03 ,0.056 ,0.10d p p p  and optimized slit heights 0.300 ,0.342 ,0.465h p p p , 

respectively. The smaller absorption peaks correspond to the excitations of higher-order SSPs on the 

surface of the HR-Si. The Q-factors of the 
1 0.03 ,0.056 ,0.10d p p p   front-PAs are 30,267, 10,115, 

and 3,505, respectively. The ultrahigh Q-factors of the front-PAs are induced by two divergences in the 

dispersion function that are the divergences of the Wood's anomaly and the divergences of the Fabry-

Perot (FP) in the slit' cavity. For example, Fig. 3.12 (b) shows the components of the dispersion 

function of the 
1 0.10d p   front-PA. The divergence of 

 in

sG  as indicated by red solid line 

corresponds to the mth-order Wood's anomaly as also indicated in the figure, the divergence of   as 

indicated by the red dashed line corresponds to the Faby-Perot resonance, and the crossing point as 

indicated by solid circle marks the resonant frequency. The Q-factors of the front-PAs are higher than 

those of the previous back-PAs because of the more rapidly changes of dispersion function as a 

function of frequency around the resonant frequency. The ultrahigh Q-factor leads to the large electric 

field enhancement at the air/HR-Si interface. Fig. 3.12 (c) shows the |E|-distribution normalized  by the 

amplitude of the incident electric field at the resonant frequency of the optimized 
1 0.10d p   front-PA 

in front of the grating. The bright spots at the air/HR-Si interface has the electric field enhancement 

about 88.8 with the FWHM of the electric field along the y-axis about 0.151p.  The decay of |E| results 

from the decay of Ey of the m=±1 diffraction modes in air as shown in Fig. 3.12 (d). The blobs seen 

inside the HR-Si in Fig. 3.12 (c) are due to the localization of the Ex of the m=±1 diffraction modes 

from the air/HR-Si interface as shown in Fig. 3.12 (e). These electromagnetic fields are evanescent 

waves which do not propagate to the far-field. Fig. 3.13 also shows the |E|-distributions at the resonant 

frequencies for the other two front-PAs. It can be seen that, by reducing the HR-Si thickness, the 

electric field enhancement is larger, but the FWHM of the electric field along the y-axis is longer. 

Therefore, by reducing the thickness of the HR-Si, the maximum of |E| is larger along with higher Q-

factor, but the electric field becomes more delocalized along the y-axis. This behaviour suggests the 

optimized thickness of the HR-Si layer which yields the largest sensitivity to the resonant peak due to 

the presence of a thin layer next to the HR-Si layer. The sensitivities of the front-PAs as the 

subwavelength film sensor  is given in the next section.      

 

3.4 Sensitivities of perfect absorbers as subwavelength film sensors  
 

The presence of a thin layer 2ʹ with thickness d2ʹ=0.01p causes red shifts of the resonant peaks of the 

front-PAs as shown in Fig. 3.14 (b) for d1ʹ=0.056p, h=0.342p front-PA. The frequency shifts from the 

front-PAs are apparently larger than those from the back-PA which is also shown in Fig. 3.14 (a). The 

sensitivity is usually defined as the slope of the frequency shift curve as a function of sample refractive 

index n2ʹ. We then numerically compute the sensitivities of three front-PAs as a function of n2ʹ  with 

fixed thickness d2ʹ=0.01p, and the results are shown in Fig. 3.14 (c). We find that the sensitivities of all 

front-PAs are not constant but behave like upturned curves having the maximum values at n2ʹ close to 1 

and making broad dips over small ranges of n2ʹ.  For small n2ʹ close to 1, the d1ʹ=0.056p front-PA yields 

the highest sensitivity although its field enhancement is smaller than that of d1ʹ=0.03p front-PA. The 
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sensitivity of d1ʹ=0.056p front-PA at n2ʹ=1.6 (photoresist) is about 0.0167 (c/p)/RIU (RIU: refractive 

index unit). Therefore, if p=100 µm, the sample’s thickness becomes d2ʹ=1 µm, and the sensitivity of 

d1ʹ=0.056p=5.6 µm front-PA is equal to 50 GHz/RIU which is 5 times larger than that obtained by the 

Fano resonance in non-flat asymmetric split ring metamaterial [82]. 

 Although the behaviours seen in Fig. 3.14 (c) can be expected to be described in terms of |E| 

and FWHM along the y-axis as mentioned in the previous section, but we find that it is much more 

easier to describe these results by using the first-order Wood’s anomaly whose frequency is determined 

for the case of no sample. Indeed, the red shift due to the presence of the thin film 2ʹ results from the 

red shift of the first-order Wood’s anomaly due to the change of the denominator of  in

1mW 
. We find 

similar behaviours as Fig. 3.14 (c) by monitoring the m=1 Wood’s anomaly frequency which means     

that the first-order Wood’s anomaly can be used to optimize the HR-Si layer thickness d1ʹ giving the 

highest sensitivity in terms of the frequency shift. This scheme is much more convenient than the direct 

use of the resonant frequency which takes into account all diffraction modes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12.  Analytical absorption spectra and normalized |E|-distribution of  front-PAs. (a) Absorption spectra of 

three front-PAs with different thicknesses of HR-Si layer as indicated in the figure. The slit heights are optimized 

as h=0.465p, 0.342p, and 0.300p, for the HR-Si thickness 
1d  =0.10p, 0.056p, and 0.03p, respectively. The slit 

width is fixed as w=0.02p. The nearly perfect absorption peaks for the optimized 
1d  =0.10p, 0.056p, and 0.03p 

front-PAs are at the frequencies 0.686445 c/p, 0.910399 c/p, and 0.983693 c/p, respectively. (b) Components of 

the dispersion function for the optimized 
1d  =0.10p front-PA. The 

  in
Re sG

 is indicated by red solid line, and 

 Re   is indicated by red dashed line. The solid circle at the crossing point between the two components marks 
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the resonant peak of this front-PA. (c) Normalized |E|-distributions, (d) Normalized real part of Ey , and (e) 

Normalized real part of Ex, in front of the grating at the nearly perfect absorption peaks of (c) the 

optimized
1d  =0.10p front-PA, (d) the optimized 

1d  =0.056p front-PA, and (e) the optimized 
1d  =0.03p front-PA.      

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13.  Analytical normalized |E|-distributions of  front-PAs. (a) The optimized 
1 0.056d p   front-PA at its 

resonant frequency. (b) The optimized 
1 0.03d p  front-PA at its resonant frequency.   

  

 

 

 

 

         

 

 

 

             

 

 

 

 

Fig. 3.14. Sensitivities of front-PAs as subwavelength film sensor. (a) Absorption spectra of the 3

1 1.4 10d p   

back-PA near its 3rd-QWR when the sample layer 1' with thickness 
1 0.01d p  and various refractive indices 

1n  are placed in front of the grating. (b) Absorption spectra of the 
1 0.056 , 0.342d p h p   front-PA near its 

resonant frequency when sample layer 2' with thickness 
2 0.01d p  and various refractive indices 

2n   are placed 

in front of the HR-Si layer. (c) Sensitivities of three front-PAs indicated in the figure as a function of  sample 

refractive index 
2n  . The thickness of the sample is fixed as 

2 0.01d p  . (d) Frequency shifts as a function of HR-

Si thickness obtained by monitoring the spectral position of the Wood's anomaly for the sample with fixed 

refractive index 
2 1.01n    and three values of the sample thicknesses as indicated in the figure. The frequency 

shifts for the sample thickness 
2 0.01d p  are multiplied by the factor 4. (e.f) Absorbance at the original resonant 

(d) (e) (f)
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frequency of three front-PAs indicated in the figure as a function of small variations (e) in sample refractive index 

with fixed sample thickness 
2 0.01d p  , and (d) in sample thickness with fixed refractive index 

2 1.6n   .       

 

Fig. 3.14 (d) shows the frequency shifts of the m=1 Wood’s anomaly as a function of d1ʹ for three 

sample thicknesses with fixed sample refractive index n2ʹ=1.01. The HR-Si layer thickness which yields 

the maximum frequency shifts for sample thicknesses 0.01p, 0.1p, and 0.5p are equal to 0.056p, 0.053p, 

and 0.042p, respectively. Therefore, the thicker the sample, the thinner HR-Si layer is needed to 

provide the largest frequency shift because the field enhancement becomes larger and delocalized by 

increasing the HR-Si thickness.  Note that this approach doesn’t include the effect of γ. But it can be 

seen from Fig. 3.14 (b) that the frequency shifts also depend on the slope of γ. Therefore, the frequency 

shifts obtained by monitoring the first-order Wood’s anomaly slightly decrease by including the non-

zero slope of γ parameter. The frequency shifts shown in Fig. 3.14 (d) are sufficient for thin film 

detections if we monitor the absorbance at the original resonant peak and harness its ultrahigh Q-factor 

and the perfect absorption. Fig. 3.14 (e) shows the absorbance as a function of small variations in 

refractive indices of the sample with the same thickness d2ʹ=0.01p at the original resonant peak of three 

front-PAs. The absorbance of d1ʹ=0.03p, 0.056p, and 0.1p front-PAs decrease 50% by increasing 

refractive indices with an amount 0.69x10
-3

, 1.31x10
-3

, and 5.62x10
-3

 RIU respectively. Although the 

d1ʹ=0.056p front-PA gives the largest frequency shift, but the highest Q-factor of d1ʹ=0.03p front-PA is 

more sensitive by monitoring the absorbance at the original resonant frequency. The change of 

refractive index by 0.69x10
-3

 in this d2ʹ=0.01p film can be detected by observing 50% decrease in the 

absorbance. Fig. 3.14 (f) also shows the absorbance as a function of small variations in sample 

thicknesses with fixed refractive index n2ʹ=1.6 at the original resonant peak. The absorption curves in 

this figure follow the same trends as those in Fig. 3.14 (e). The absorbance of d1ʹ=0.03p, 0.056p, and 

0.1p front-PA decrease 50% by increasing sample thickness by 0.213x10
-4

p, 0.342x10
-4

p, and 

1.137x10
-4

p, respectively. Therefore, the presence of deep-subwavelength film can be detected by the 

front-PA. For example, if p=100 µm, then d1ʹ=0.03p front-PA can detect nanofilm with thickness 2.13 

nm by observing 50% decrease of the absorbance at the original resonant peak of this front-PA which 

is at f=2.94904 THz or λ=101.658 µm. 

 Lastly, we note that the analytical solutions may be applied to the higher frequency region by 

including the surface impedance boundary condition to the surface of the metallic grating [50]. The 

analytical solutions of the dielectrics/grating/dielectrics structure lead to the development of the new 

hyperbolic metamaterials with the stacked grating/dielectric layers as will be described in the chapter 4 

and 5. The analytical solutions developed in this chapter takes into account only the fundamental 

waveguide mode of the slit cavity, and the more rigorous analysis taking into account all waveguides 

are given in the chapter 4 which can be applied to this chapter. The analytical solutions are valid only 

for the one-dimensional grating, but they can be easily extended into two-dimensional structures such 

as the rectangular hole array [52], and the spherical hole array [49], by changing the waveguide modes 

and modify the coupling parameters. The finite number of slits and holes can be also realized by 

replacing the summation of the discrete diffraction waves with the integration of the continuous 

diffraction waves [56].          
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3.5 Conclusion 

In this chapter, we have developed the analytical solutions of the dielectrics/grating/dielectrics 

metamaterials to make new hyperbolic metamaterials for the THz radiation. The analytical solutions 

are consistent with the FDTD simulation, but yield more accurate results and more efficient. The 

resonant peaks in the transmission spectra are studied analytically by the analytical solutions. We have 

found and explained that the Wood's anomalies are the origins of the ultrahigh Q-factors found in the 

resonant peaks corresponding to the excitations of the high-order SSPs on the surface of the dielectric 

layer attached to the grating. This leads us to realize another applications of these structures in the THz 

subwavelength sensing with the ultrahigh-Q factor. We have applied the first-order SSPs in the HR-

Si/grating/PEC structure to make the new perfect absorbers with ultrahigh Q-factors for the 

subwavelength-films sensing. The new scheme for the optimization of the largest frequency shift due to 

the presence of the subwavelength film by using the first-order Wood’s anomaly is introduced. The 

results suggest the target-dependent sensing in which the highest frequency shifts depend on sizes and 

refractive indices of the samples. The sensitivity of our new structure is 5 times larger than the 

sensitivity of the asymmetric split ring metamaterial. We also demonstrated another scheme of 

subwavelength-films sensing by monitoring the drop of the absorbance at the resonant peak of the 

structure. We showed that the presence of nanofilms with size down to a few nanometre can be 

detected by observing the 50% drop of the absorbance at the resonant peak. The analytical solutions 

close the gap of the difficulties in the optimizations of subwavelength dielectrics/gratings/dielectrics 

metamaterials with FDTD simulation and open the new route to the efficient designs of the novel 

devices for both subwavelength imaging and sensing for THz.   
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Chapter 4  

Analytical solutions of stacked grating/dielectric metamaterials for THz 

subwavelength imaging  

 
This chapter extends the analytical solutions of the dielectrics/grating/dielectrics structures developed 

in the previous chapter to the case of stacked grating/dielectric structures in which grating and 

dielectric layers are alternated along the propagation axis. The stacked grating/dielectric structures 

form the effective hyperbolic metamaterials which can be applied to image subwavelength objects in 

THz frequency band. The similar structure to our structure is two layers of hole arrays separated by the 

dielectric layer which is known as the fishnet structure [83]. The fishnet structure has been theoretically 

investigated as an isotropic medium having the same refractive index in all directions. By stacking the 

fishnet structure into multilayered fishnet, the effective refractive index of this metamaterial can be 

negative in the infrared band due to the excitation of magnetic resonance between two layers of hole 

arrays [84]. However,  the single fishnet and multilayered fishnet structures have not yet been applied 

in subwavelength imaging, and only its optical spectra have been investigated [85]. In this chapter, we 

analytically demonstrate the deep-subwavelength imaging of the array of the slits as the object with 

size down to 1 μm for the THz radiation at the wavelength 300 μm by using (i) a bare grating, and (ii) 

stacked grating/dielectric structure. The imaging properties, i.e., imaging resolution, image intensity, 

and optical spectra are given. Unlike the fishnet structures which are considered as the isotropic 

medium, the stacked grating/dielectric structures are regarded as hyperbolic metamaterials, the 

properties hinted by the anisotropic property of the grating. The effective parameters of the stacked 

grating/dielectric hyperbolic metamaterials will be given in the next chapter.  

 The chapter is organized as follows. The analytical solutions of the electromagnetic fields in 

the stacked grating/dielectric structures are given in the section 4.1. We will learn from this section 

how to calculate the electromagnetic fields and optical spectra of the stacked grating/dielectric 

structures. The section 4.2 compares the analytical solutions with the FDTD simulation. The analytical 

demonstration of the deep-subwavelength imaging over a short distance with a bare grating is given in 

the section 4.3, and the deep-subwavelength imaging over the long distance by using the stacked 

grating/dielectric layers is analytically demonstrated in the section 4.4. The chapter is summarized in 

the section 4.5.     
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4.1 Analytical solutions of electromagnetic fields in stacked grating/dielectric structures.  

 

 

 

 

 

 

 

 

 

Fig. 4.1 Schematic view of the stacked grating/dielectric layers with testing object. The characters on top of the 

structure indicate the regions beneath them. The thickness of dielectric layer is denoted by the same character 

which indicates the dielectric region. Location of the grating Dj along the y-axis is denoted by yi , and the location 

of the slit along the x-axis in each grating is denoted by xj. The grating G0 represents the testing object whose unit 

cell is called the superlattice.          

 

The schematic view of the stacked grating/dielectric layers metamaterials is shown in Fig. 4.1. There 

are two main parts in this figure. The first part is an subwavelength object to be imaged to the far-field. 

This object is infinite array of slits in the front grating denoted by G0. The width of the slit 
0w  is the 

size of the object, and the grating period is the distance between the two objects. The second part is the 

lens as indicated by the blue region in this figure. The lens is the metamaterial made by stacked 

grating/dielectric layers. The slit width, slit height and period of the gratings in this lens can be 

different from another grating. The number of slits (or waveguides) within the period p0 of the object 

can be varied. Lastly, the number of stacked grating/dielectric layers is denoted by N. These two parts 

are separated from each other by the dielectric layer with refractive index 
0n  (zero indicates the object 

and does not indicate air) and with thickness D0. The distance D0  plays important role in 

subwavelength imaging, and one should not assume that the object perfectly touches the lens and D0  is 

zero in the first place. Next, we have to solve for the electromagnetic fields in each region similar to the 

previous chapter. It is useful to review the solution in each region again for convenience.  

  

 4.1.1 Electromagnetic fields in all regions  

 We will explain the solutions of the electromagnetic fields in all regions from the input region 

(left) to the output region (right). The solutions of 
 in

zH  and 
 in

xE  in the input region of the stacked 

grating/dielectric structure are the same as Eq. (3.1) and (3.2), respectively, with 
in 0D  . The field 

coefficients for the reflected light is also denoted by the same variable 
 in

mB .  For the grating G0 whose 

slits are considered as subwavelength objects, only the fundamental waveguide mode is excited within 

the slits, and thus the magnetic field in the slit denoted as 
 G0

zH  and the electric field in the slit denoted 

as 
 G0

xE  are the same as Eq. (3.5) and (3.6), respectively. We move quickly to the dielectric layer D0. 

The solutions of magnetic field denoted as 
 D0

zH  and the electric field denoted as 
 D0

xE  in this region 
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are expanded in terms of the Bloch's basis functions, and thus they are expressed in the same forms as 

Eq. (3.10), and (3.11), respectively, with the substitutions
0j   and 

       h

1 0

j

m j mq y D q y D   , 

where 
 h

mq  denotes the normal component of the Bloch wavevectors in the host medium. The field 

coefficients for right and left travelling waves are denoted by 
 D0

mA  and 
 D0

mB , respectively.   

 Next, we enter the lens region. The grating G1 is the closest grating to the subwavelength 

objects. We will relax the assumption about the width of the slit to make the solution more general. We 

will take into account all waveguide modes of the slit as given in Eq. (3.9). But please note that if the 

slit width is comparable to the wavelength of light, the high number of waveguide modes are required 

to determine the electromagnetic fields in all regions accurately, and then this analytical solutions 

become poor choices. The analytical solutions are best applied to the case of the slit with 

subwavelength width because then only the fundamental waveguide mode is used in the calculation 

which makes the method very fast. Anyway, we would not know all of these if we didn't include all 

waveguide modes and try out how slow they are for the case of wide slits. Therefore, let's us include 

them all. We will denote the waveguide mode by the symbol  , and also we define the location of 

waveguide (slit) in the x-direction within the superlattice of the grating G0 by jx . Then, the waveguide 

mode   in the slit located at the location jx  (called j-slit hereafter) of the grating G1 is labelled by 

G1, ,j  .  By using these waveguide modes as the basis functions, the magnetic and electric fields in 

the j-slit of the grating G1 are expressed as  

            
            G1 , ,

1, , 1 1, , 1exp exp G1, ,
j j

z G j y G j y

j

H y C ig y y D ig y y j
 

 


        
    ,  (4.1)      

                     G1 , , ,

1, , 1 1, , 1

0 h

1
exp exp G1, ,

j j j

x y G j y G j y

j

E y g C ig y y D ig y y j
  

 



 

       
    , (4.2)  

where 0,1,2,...  , 
 ,j

xg


,    , ,2 2j j

y h xg k g
 
  . For 0  , the normal component of the electric 

field is not-zero an can be obtained by the magnetic field. The field coefficients of the slits are re-

defined by 
 in

1, ,G jE   and 
 out

1, ,G jE   via the relations given in Eq. (3.14) with the substitutions 
 

s yk g


  and 

s h  . Then, we will solve for the 
 in

1, ,G jE   and 
 out

1, ,G jE   instead by applying the coupled-mode 

analysis.  

 We move to the dielectric layer D1 separating the gratings G1 and G2. The magnetic field 

denoted as 
 G1

zH  and electric field denoted as 
 D1

xE  in this region are also expressed in terms of the 

Bloch's basis functions. Therefore, they have the same form as Eq. (3.10) and (3.11) for the magnetic 

field and electric field, respectively, with the substitutions hj   and 

        h

1 1 1

j

m j mq y D q y y h    . The field coefficients for the right and left travelling waves in this 

region are denoted by 
 D1

mA  and 
 D1

mB , respectively. The magnetic field 
 Di

zH   and electric field 

 Di

xE in the remaining dielectric layers 
1Di

 of the lens also have the same form as those in the 

dielectric layer D1 except the phase factor and the field coefficients. The phase factor for right and left 
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travelling wave becomes 
    h

m i iq y y h  , and the field coefficients for the right and left travelling 

waves are defined as 
 Di

mA  and 
 Di

mB , respectively.     

 The remaining gratings 
1Gi
 of the lens have the magnetic field denoted as 

 Gi

zH  and electric 

field denoted as 
 Gi

xE  with the same form as Eq. (4.1) and (4.2), respectively, except the phase factor 

and the field coefficients. The phase factor of the grating 
1Gi
 becomes 

   y ig y y


  which is defined 

from its location along the y-axis, and the field coefficient for the input and output sides of the grating 

are defined as 
 in

, ,Gi jE   and 
 out

, ,Gi jE  , respectively.  

 The last region is the output region. We have only the transmitted light in this region. The 

magnetic field 
 out

zH  and the electric field 
 out

xE  have the same form as Eq. (3.12) and (3.13), 

respectively. The parameter 
outD  refers to the total length of the structure from the grating G0 to the 

last dielectric layer DN.      

 

 4.1.2 Coupling of electromagnetic fields between two gratings      

 At the first glance, the problem of solving for all field coefficients seems to be very easy. 

Those who know the transfer matrix method may try to homogenize the grating as an effective medium 

and apply the transfer matrix method to the stacked homogenized-grating/dielectric structure. The 

solutions may look simple, but they will be surprised that the results are not consistent with FDTD 

simulation as shown by black dashed line in Fig. 4.3 (a). Then, we are led to think that there is near-

field interaction between the gratings where high diffraction modes play important role. The 

homogenized grating discards those modes and retain only 0m , thus it misses this interaction. This 

section will explain the coupling between two gratings. Once we know this, it becomes easy to connect 

the field coefficients in all regions. We consider two cases. The first case is the dielectric region 

between the grating G0 and the grating G1 which is the region between the object and the lens. The 

second case is the dielectric region between two gratings of the lens.  

 In the first case, we start from the interface 
0y h . The field coefficients of the dielectric 

layer D0 are related to the field coefficients of the grating G0 via the continuties of Hz and Ex  at the 

output interface of the slit in the grating G0. This relation can be written in the matrix notation as  

                                    

 

 

     

      

 

 

G0 0 G0D0 in
V 0s 0s

G0 0 G0D0 out
V 0s 0

0
2

mm

m

mm

G n iYA En

G n iYB E






    
    

         

,                              (4.3) 

where 
   G0

V s 0cscG k h , 
   G0

s 0cot k h  , 
0s 0 s/n n n , 

   0 0

h /m mY k q  is the admittance, and bar on 

the field coefficients of the grating G0 denotes the normalization of the original field coefficients by the 

factor  0 0 0/ /ik H  where 
0H  is the amplitude of the incident magnetic field. The field coefficients 

of the dielectric layer D0  are also related to the field coefficients of the grating G1 by the continuties of 

Hz and Ex  at the input interface of the j-slit in this grating. This relation can be expressed in the matrix 

form as follows      
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     
     

 

 

   

 

 

 

D0 D0 inD0 G1 G1

1, ,, V, ,

0 outD0 0D0 D0
1, ,

exp exp
1, ,

0exp exp

m m G jm j j

m

j G jm mm m

i i EA G
n G j

EB iYi i

 

 

  
 

 

      
      
               

 ,    (4.4)                 

 where 
   D0 D0

0m mq D  ,        G1 , ,

V, , s 1/ g csc g
j j

j y yG k h
 

  , and        G1 , ,

s 1/ cot
j j

y yk g g h
 

  . Then, by 

substituting Eq. (4.3) into (4.4), we obtain two linear equations which relate the fields coefficients 

between the gratings G0 and G1 which are written as  

                  

                   

   

G0 D0 in 0 D0 G0 D0 out

V 0 0s 0

0 in

0s 1, ,

sin 0 cos sin 0

1, , ,

m m m m m m

m G j m

j

G E n Y E

n Y E G j


     

 

 

  
             (4.5) 

and  

 

                   

        

G0 D0 in 0 D0 G0 D0 out

V 0 0s 0

G1 in G1 out

0s , 1, , V, , 1, ,

cos 0 sin cos 0

1, , 1, , .

m m m m m m

j G j m j G j m

j

G E n Y E

n E G j G E G j   


     

    

  

 
           (4.6)  

Let's consider in the case of finite thickness 
0 0D  . In this case, we can divide both sides of the Eq. 

(4.5) by the function   D0
sin m , then it can be seen that the information about the phase of the 

diffraction wave appears only with the admittance 
 0

mY . According to the coupled-mode analysis, these 

terms represent the re-radiation and the re-absorption of the diffraction modes by the waveguide modes 

in the slits [50,56]. The equation is valid for any non-zero diffraction wave, and by multiplying both 

sides of the resulting equation by the fundamental waveguide mode of the slit in grating G0 , Eq. (4.5) 

is transformed into the following equation  

                                            G0 in M G0 out F in

V 0 0|0 0 0| 1, , 1, ,G j G j

j

G E G E G E 


    ,                                (4.7) 

 where the new parameters 
 M

0|0G  and 
 F

0| 1, ,G jG   are defined as  

                                                 
      M 0 D0

0|0 0s cot 0 0m m m m

m

G n Y     ,                                        (4.8) 

                                           
      F 0 D0

0|G1, , 0s csc 0 1, ,j m m m m

m

G n Y G j      .                               (4.9) 

The parameter 
 M

0|0G  describes the multiple reflections of the diffraction modes m  emitted by the 

waveguide mode 0  between the metallic part of the gratings G0  and G1. The reflected diffraction 

mode is then re-absorbed by the fundamental waveguide mode 0  of another slits. The superscript 

"M" stands for the "metal" because this parameter arises inside the spacer when we combine the grating 

with the metallic plane which is the case for the back-perfect absorber shown in the previous chapter. 

The parameter 
 F

0| 1, ,G jG   gives the connection between two gratings. The diffraction modes m  are 

emitted by the waveguide modes 1, ,G j   of the slit in the grating G1 , and then they are re-absorbed 

by the fundamental waveguide mode 0  of the slit in the grating G0. The superscript "F" stands for the 

Fabry-Perot because it diverges at the FP resonance determined by the condition   D0
sin 0m  .    
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 Notice that Eq. (4.7) gives only one linear equation. We can obtain more linear equations by 

considering the Eq. (4.6). First we divide both sides of Eq. (4.6) by   D0
cos m  to bring the information 

about the phase of the diffraction wave to the admittance of the field coefficient 
 out

0E . Then, we can 

subtract the resulting equation from Eq. (4.5) which is divided by the function   D0
sin m . By 

multiplying both sides of the resulting equation by   D0
cos m , taking into account non-zero diffraction 

modes, and multiplying both sides of the resulting equation by the waveguide modes 1, ,G j   of the 

grating G1, then we can obtain another equations which connect two gratings as follows  

 

              

           

F out M G1 in G1 out

1, , |0 0 1, , | 1, , 0s , 1, , 0s V, , 1, ,

M in M in in

1, , | 1, , 1, , 1, , | 1, , 1, , 1, , | 1, , 1, ,                      

G j G j G j j G j j G j

M

G j G j G j G j G j G j G j G j G j

j j j j

G E G n E n G E

G E G E G E

      

        
   



       

      

   

    
. (4.10) 

The parameters 
 M

G  and 
 F

G  are define in Eq. (4.8) and (4.9), respectively. Eq. (4.10) must be 

satisfied by all waveguide modes of the grating G1  in the superlattice (one period of the grating G0). 

Therefore, this equation yield (number of slit)  (number of waveguide modes in each slit) linear 

equations. In this equation, we also include the re-radiation and re-absorption among different location 

of slits and different waveguide modes. If we use only the fundamental waveguide mode, that is 

1, ,0G j , then the last two terms in the right hand side of Eq. (4.10) are zero. If there is only one slit in 

the superlattice located at the position labelled by j=0, and only the fundamental waveguide mode is 

taken, then the last three terms in the right hand side of Eq. (4.10) are zero. It can be seen that this 

equation looks complicated only because we include all waveguide modes, and have many slits inside 

the supperlattice.   

 Eq. (4.7) and (4.10) show us how to connect the two gratings. But care must be taken applying 

these equations. We consider so far the case of finite thickness of the dielectric layer D0 which allows 

us to manipulate the equations by dividing the equations with   D0
sin m . However, we cannot do that 

in the case zero of thickness (the object perfectly touches the lens) because now   D0
sin 0m   and 

  D0
cos 1m    for all diffraction waves. In the latter case, the fundamental waveguide mode 0  of the 

slit in the grating G0 directly excite the waveguide modes 1, ,G j   of slits in the grating G1 which are 

"in contact" with it. This behaviour can be seen by inserting 
 D0

0m   into Eq. (4.5), and then we have 

the following equation  

                                                        out in

0 1, ,1 0 1, ,G j

j

E E G j


  .                                                 (4.11) 

The scalar product in Eq. (4.11) clearly shows the direct excitation between two waveguide modes. The 

same consideration is applied to Eq. (4.6). By inserting the condition 
 D0

0m   into the Eq. (4.6), the 

admittance function disappear, that means there are no the re-radiation and re-absorption processes 

anymore, and the resulting equation reads  

                                    G0 in G0 out G1 in G1 out

V 0 0 0s , 1, , V, , 1, , 0 1, , .j G j j G j

j

G E E n E G E G j   


                  (4.12)     
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 In the second case, we consider the dielectric layer Di
 which separates the grating G i

 and 

1Gi
 of the lens. Note that we preserve the subscript "j" for the location of the slit along the x-axis, and 

we use the subscript "i" to indicate the location of the slit along the y-axis.  By applying similar 

arguments as the previous case, we obtain two equations which connect the two gratings.           

       

   
 

   
 

 
 
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 
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 

2 2

M M M
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j j
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j j s

G G G
G E E E E

n n n

GG
E

n n

     

     
 

  


 


 

 

  

  

 

  

 
    
 
 

  

 

   
 

2 2

2 2

in

1 , ,

0

G i j
j s

E





,      (4.13) 

 and  
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 

     
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 
 

2 2

in

, ,
 

j  

,      (4.14)      

where the indices j2 denotes the location of the slit along the x-axis in the grating 
1Gi
, and the 

2  

denotes the waveguide mode of the slit in the grating 
1Gi
. As we have already said, the equations look 

complicated because we take into account all waveguide modes, and put many slits inside the 

superlattice to image the subwavelength objects. If we use only the fundamental waveguide mode for 

the grating G i
, and this grating has only one slit, then Eq. (4.13) and (4.14) are just similar to the Eq. 

(4.7) and (4.10), respectively. These equations look more simple if only the fundamental waveguide 

mode for both gratings G i
 and 

1Gi
 are taken. In the latter case, the closed form of the total reflection 

and transmission spectra for the stacked grating/dielectric structure can be obtained.  

 We have shown in this section how to connect the field coefficients between two gratings. Our 

remaining task, as usual, is to find the solutions for these field coefficients. We will illustrate the 

technique for computing all field coefficients of gratings which are then used to determine the 

reflectance and  transmittance. 

 

 4.1.3 Determination of all grating field coefficients  

 We show how to obtain all grating field coefficients with simple N=2 stacked 

grating/dielectric structure. The grating G1 and G2 have two slits in the superlattice demoted by j=1,2. 

For simplicity, we take into account only the fundamental waveguide mode in all slits.  Therefore, there 

are 10 unknown grating field coefficients. We can group all grating field coefficients into a vector as 

follows  

               
                    

T
in out in out in out in out in out

0 0 1,1,0 1,1,0 2,1,0 2,1,0 1,2,0 1,2,0 2,2,0 2,2,0G G G G G G G GE E E E E E E E E EE .  (4.15) 
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The first two columns are the field coefficients of the grating G0. The next four columns are the field 

coefficients of the j1 slits in the grating G1 followed by the those in the grating G2. The last four 

columns are the field coefficients of the j2 slits in the the grating G1 followed by the those in the grating 

G2. We solve the vector E  by formulating a single matrix equation AE B where A is the coefficient 

matrix and B is the constant vector, and then perform the partial pivoting.  

 In order the formulate the coefficient matrix A and the constant vector B , it is useful to list 

all equations that we know. We need 10 equations for 10 variables. We use the indices to list all 

equations in the compact form.  

 In the input region, we obtain one linear equation that relates the field coefficients 
 in

0E  and 

 out

0E  as  

                                                       in G0 in G0 out

0 0 s 02sG E G E n I     ,                                          (4.16) 

where  0 / sinc / 2xI w p k w   is the excitation function, and 
 in

sG  is obtained by Eq. (3.26) and can 

be written as follows (the subscript s  is replaced by 0 | 0 ) 

                                             inin 2in

0|0 / sinc / 2m m

ms

n
G i Y w p w

n
  .                                 (4.17) 

We still have 9 more equations to go. In the region between the gratings G0 and G1 , 1 equation is 

obtained by Eq. (4.7), and 2 equations are obtained by Eq. (4.10), written as follows  

                                                
2

G0 in M G0 out F in

V 0 0|0 0 0| 1, ,0 1, ,0

1

G j G j

j

G E G E G E


    ,                               (4.18) 
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F out M G1 in G1 out

1, ,0|0 0 1, ,0| 1, ,0 0s ,0 1, ,0 0s ,0 1, ,0

M in

1, ,0| 1, ,0 1, ,0                       1,2

G j G j G j j G j j G j

G j G j G j

j j

G E G n E n G E

G E j



 



   

 
.                     (4.19)     

In the region between the gratings G1 and G2, 4 equations can be acquired by Eq. (4.13) and (4.14) 

which are expressed as follows       

          
 

   
 

 
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
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 

 
     
 
 

  , (4.20) 

where j=1,2, and  
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n n n

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 

 
     
 
 

  , (4.21) 

where j2=1,2. In the output region, we can obtain 2 equations from Eq. (3.16). But we also need to add 

the re-radiation and re-absorption of the diffraction modes by two slits in the grating G2. These 

equations are written as  

                                                  G2 in out G2 out out out

V,0 2, ,0 2, ,0| 2, ,0 ,0 2, ,0 2, ,0| 2, ,0 2, ,0 0G j G j G j j G j G j G j G j

j j

G E G E G E  



    ,           (4.22) 

where j=1,2, and the parameter 
 out

2, ,0| 2, ,0G j G jG  is generalized from Eq. (3.16) to any waveguide mode 

located at any location in the supper lattice and it is defined as  

  

    
    

 

D2

h,outout h

2, ,0| 2, ,0 D2

h,out

1 exp 2
2, ,0 2, ,0

1 exp 2

m

m
h

G j G j m m mm
ms m

r in
G i Y G j G j

n r i


 



  
  

  

 ,                   (4.23) 
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where the Fresnel reflection coefficient 
 

h ,out

m
r  is given in Eq. (3.21), and 

   D2 D2

2m mq D  . In the case of 

2 0D  , the dielectric layer D2 can be virtually considered as the output medium, the term in the curl 

bracket becomes one, the admittance becomes the admittance of the output medium, and the ratio 

out/ /h s sn n n n .  

 Now, we have 10 equations needed to formulate the coefficient matrix A . The 10 10  matrix 

A  can be decomposed into sub-matrices as follows   

                                                   

     
     
     

11 12 132 2 2 4 2 4

21 22 234 2 4 4 4 4

31 32 334 2 4 4 4 4

  

  

  

 
 

  
 
 

A A A

A A A A

A A A

.                                              (4.23) 

Each sub-matrix of the matrix A  is given as follows  
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G0 G0in

0|0
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

  
 
  

A ,    1 F

0| 1, 1,0

0 0 0 0
   2,3

0 0 0
j

G j

j
G 

 
  
  

A .         (4.24) 

The sub-matrix  1   2,3j j A  are the matrix transpose of 1 jA , and the parameter 
 F

0| 1, 1,0G jG   of the 1 jA    

is changed to 
 F

1, 1,0|0G jG   for the 1jA  (Hermitian operation). Notice that these matrices depend only on 

the properties of the gratings G0 and G1 because they are obtained by Eq. (4.16)-(4.19). The sub-

matrices   2,3jj j A  along the diagonal line of the matrix A are given as follows    

  

     

 
 

 
 

   
   

 

M G1 G1

1, 1,0| 1, 1,0 0s 1,0 0s V, 1,0

M M

G1 G11, 1,0| 1, 1,0 1, 1,0| 1, 1,0

V, 1,0 1,0

0s 0s

M M

G2 G21, 1,0| 1, 1,0 2 1,0| 2, 1,0

1,0 V, 1,0

0 0s

G2

V, 1,0 2, 1,0|

0 0

0

0

0 0

G j G j j j

G j G j G j G j
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2, 1,0 1,0G j j 

 
 
 
 
 
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 
 

,  (4.25) 

where j=2,3. The sub-matrices   2,3jj j A  are symmetric if the filling material of the gratings G0 is 

the same as the material of the dielectric constant D0 : 0 0 1s sn n n   . Finally, the off-diagonal sub-

matrices of the matrix A  are given as follows   
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   

   

 

M
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 

  

A ,                       (4.26)   

and the sub-matrix 32A  is obtained from 23A  by swapping the orders of re-radiation and re-absorption 

of the waveguide mode.   

 Finally, the constant vector B has non-zero element only in the first row. This element is just 

02 sn I  which is the right hand side of Eq. (4.16) representing the excitation by the external radiation. 

Therefore, we can solve for the grating field coefficient vector E  by simple partial pivoting. This can 

be done by hand in the simple case, or by using the LAPACK subroutine [71]. In the special case that 
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there is only one slit in the superlattice of the grating of the N-stacked grating/dielectric structure, the 

closed form of 
 out

,1,0GNE  and 
 in

0E  can be obtained which lead to the analytically closed solutions of the 

dispersion relation, total reflection coefficient, and the total transmission coefficient, as will be given in 

the section 4.1.6. This technique can be extended to any number of  grating/dielectric layer, and any 

number of slits in each grating of the lens. We give the general code in the CD.   

 4.1.4 Reflection and transmission coefficients    

 The mth-order transmission coefficient 
 out

mA is determined by the output field coefficient of 

the grating GN. The relation is written as follows  

                     
 

    
    

   
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A n iY E GN j

r i





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



 ,                               (4.27)  

where the scalar product between the waveguide mode , ,GN j   and the diffraction mode m  is 

given by  
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m m j x j m x j
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w C
GN j i x ig w g w

p
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  

 

   



    
 
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 

,     (4.28) 

where 
GNp  is period of the grating GN, 

0 1C  , 
0 2C  , and 

 ,
/

j

x jg w


 .  

 The mth-order  total reflection coefficient 
 in

mB  is determined by the input field coefficient of 

the grating G0 which is written as  

   
       in in in

0 in 0 0 0/ sinc / 2m m m mB n iY E w p w   ,                                   (4.29) 

where the 
0m  denotes Dirac delta function. The reflectance and transmittance are then obtained by 

applying Eq. (3.36). We can also know the field distribution and thus the intensity of the image from 

the 
 out

mA . However, the electromagnetic fields of the image are affected by the interaction between the 

objects and the lens, and also between the gratings of the lens. Therefore, it is important to investigate 

the electromagnetic fields between two gratings. This calculation is explained in the next section  

 

 4.1.5 Electromagnetic fields between two gratings 

 One will obtain the wrong electromagnetic fields in the dielectric layer between two gratings 

if he calculates the field coefficients in this layer using the field coefficients only from one grating. The 

electromagnetic fields are the interferences of diffraction waves emitted by the slits from both gratings. 

Therefore, it is necessary to take into account the field coefficients from the two gratings. Let's us 

consider the electromagnetic fields in the dielectric layer D0 between the gratings G0 and G1. At the 

output interface of the slit in the grating D0 that is at y=h0, the continuity of the Ex leads to the 

following relation     

                                                    
   

   
D0 D0

0 out

0 0

0 0

0m m

m m

A B
n iY E

H H
  ,                                               (4.30)    

where the scalar product between the fundamental waveguide mode and the diffraction mode is 

determined by Eq. (4.28) with 00, 0, ,j j GNx w w p p    . At the input interface of the slits in the 

grating G1 that is at y=y1, the continuity of Ex leads to the following relation  
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  
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0 1, ,

0 0

exp exp 1, ,m m
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i i n iY E G j

H H




        ,                  (4.31) 

where the scalar product between the waveguide mode and the diffraction mode is obtained by Eq. 

(4.28). Then, the normalized field coefficients 
 0

0/mA H  and 
 0

0/mB H  are easily obtained from Eq. 

(4.30) and (4.31) as follows  
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Therefore, the field coefficients in the dielectric layer D0 are different from each other only in the phase 

factor for 
 out

0E .  This concept is easily extended into the dielectric layer between two gratings of the 

lens. For completeness, we also give the expressions of the field coefficients 
 D

0/
i

mA H  and 
 D

0/
i

mB H  

between the gratings G i
 and 

1Gi
 as follows  
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 4.1.6 Closed form of dispersion relation, mth-order reflection coefficient, and  

                        mth-order  transmission coefficient  

 We consider the stacked grating/dielectric structures only the lens part without the object. That 

is we neglect the grating G0 and the dielectric layer D0 (see Fig. 4.1). We assume that all gratings has 

the same height equal to h, the same width equal to w, the same period equal to p. Because there is only 

one slit in the superlattice, then the subscript j will be neglected. All slits are located at x=0. The slit 

width is assumed to be much smaller than the wavelength of light, and thus only the fundamental 

waveguide mode 0   is taken. Because all slits have only the fundamental waveguide mode, we also 

neglect the subscript  , and thus the waveguide mode of each grating is denoted as Gi  where 

i=1,2,...,N . The dielectric layer has the same thickness D, and the phase constant for the diffraction 

mode m is denoted by 
m mq D  .  By using simple partial pivoting and mathematical induction, we can 

write the output field coefficient of the grating GN which is denoted as 
 out

GNE , as follows  

                                                      
      

 1
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V

disp

2 1NN
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h

I
E G G
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

,                                            (4.36)     

where  V hcscG k h , 
        F h 2csc / sinc / 2m m m

m

G Y w p w  , and disp  is the dispersion 

function which determines the resonance frequency. The closed form of the dispersion function for the 

case of N=2 is written as  

                                       F 22 2 2

disp in g V g in out in g V VG G G G            
 

,                      (4.37) 

where   in

in G     ,   out

out G     , 
 M

g G    ,  hcot k h  ,   
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        M h 2cot / sinc / 2m m m

m

G Y w p w  . In the case of 2N  , the closed form of the dispersion 

function is written in terms of the recurrence relation as follows  

                                                              
2

disp out V2 1 1 2 1 2N N
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     ,                                         (4.38) 

where j  for  0,1,..., 2 1 1j N    are defined as follows  
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.                                       (4.39) 

The closed form of the mth-order transmission coefficient is obtained by substituting 
 out

GNE  from Eq. 

(4.36) into Eq. (4.27).  

 For the mth-order reflection coefficient, we can also write the closed form of  the input field 

coefficient of the grating 
1G  which is denoted by 

 in

1GE , as follows  

                                                               
 

in 0

1 2 1 1

h disp

2 1
G N

I
E

n
 

  


,                                                 (4.40)   

where the parameter j
  is defined in terms of the recurrence relation as  
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The mth-order total reflection coefficient given in Eq. 4.29  is obtained by substituting 
   in in

0 1GE E  

with the 
 in

1GE  given in Eq. (4.40).   

 These closed forms not only give very fast calculations of the optical spectra, they are also 

useful to study the electromagnetic modes and therefore the effective parameters of the lens.   
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4.2 Comparison between the analytical solutions and FDTD simulation 

 

  

  

 

                                        

  

     

 
Fig. 4.2 Stacked grating/dielectric structures for comparing with FDTD simulation. (a) Only one grating/dielectric 

behind the grating G0. The dielectric layer D1 is neglected. The dielectric layer D0 is the same material as the 

material filling the slit in the grating G1 defined as Zeonex polymer with neglected loss (
h 2.3104  ) [30]. The 

slit in the grating G0 is filled with air. (b) 12 number of  stacked grating/dielectrics behind the grating G0. The slit 

height and slit width for the grating G1 to G12 are the same, and the thickness of all dielectric layers is also the 

same. The parameters of the geometries in two cases are given in the main text.  

 

 

We compare our analytical solutions with the FTD simulations in two cases.  One case is simple 

structure and another case is more complicated structure. The schematic view of the simple structure is 

schematically shown in Fig. 4.2 (a). In this case, there is only one grating/dielectric behind the grating 

G0 and also the dielectric layer D1 is neglected. Furthermore, the grating G1 contains only one slit in the 

superlattice. The input and output media are defined as air. The grating G0 has period 100 μm, slit 

height 1 μm, slit width 1 μm, and the slit is filled with air. The dielectric layer D0 is defined as Zeonex 

polymer with neglected loss which is the same material as that filling the grating G1. We neglect loss 

because the FDTD simulation is time-consuming with the introduction of complex dielectric constant.  

The thickness of the dielectric layer D0 is 10 μm which is the same as the slit height in the grating G1. 

The width of the slit in the grating G1 is defined as 7 μm which is smaller than its height. The whole 

structure is excited by normal incident light with the incident electric field polarized along the x-axis, 

and the incident magnetic field polarized along the z-axis. In the FDTD simulation, the periodic 

boundary condition is applied along the x-axis, and the perfectly matched layers parallel to the x-axis 

are defined in the input and output regions to prevent the back-scattering of light at the far-field coming 

to the structure. The whole structure is excited by broad THz Gaussian pulse, and then the 

transmittance and reflectance are measured on the far-field planes after all light transmitted through the 

transmission plane. Fig. 4.3(a) shows that the analytical transmission spectra as indicated by the blue 

line is almost identical to the that from the FDTD simulation with the resolution 4.5 pix/μm as 

indicated by the red line. However, the transmission spectra of the homogenized-gratings model show 

only one peak due to the excitation of the Fabry-Perot. The reason of a little larger discrepancy at 

higher resonant frequency will become clear shortly. Fig. 4.3(b) gives the |E|-distribution at the lower 

resonant frequency. The analytical field distribution clearly shows the same field distribution from the 

FDTD. The analytical solutions can capture the main features found in the FDTD simulation. The first 

feature is the dark circle between two gratings. This circle arises due to the   phase difference of 

electric dipoles induced on the output interface of the slit G0 and the input interface of the slit G1. In 
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another word, the dipole rotates by 180 degree from the grating G0  to the grating G1. Another feature is 

one dim node on the metallic part of the two gratings. This indicates that the 1st-order quasi-waveguide 

resonance (QWR) is formed between two grating. The resonant frequency is determined by the period 

of the supperlattice, the dielectric constant of the dielectric layer, and also the distance between two 

gratings. Fig. 4.3(c) shows the |E|-distribution at higher resonant frequency. The analytical field 

distribution closely resembles that from the FDTD simulation. In this case, three nodes are formed on 

the metallic part of two gratings. This indicates the excitation of the 3rd-order QWR. The excitation of 

the 3rd-order QWR requires higher diffraction modes and thus the higher FDTD simulation is required 

to capture thses high-k waves. This is the reason why the higher resonant frequency has a little larger 

discrepancy between the analytical spectra and FDTD spectra than the lower resonant frequency.  The 

2nd-order QWR cannot be excited by the normal incident light due to the zero net dipole moments of 

the metallic part of the grating. But they can be excited by the oblique incident light which introduces 

the normal component of the electric field and thus break the symmetry [81].    

(a) (b)
(AN) (FDTD)

(c)

(AN) (FDTD)

(a) (b)
(AN) (FDTD)

(c)

(AN) (FDTD)

(c)

(AN) (FDTD)

 

Fig. 4.3 Comparison with FDTD simulation with simple structure (a) Transmission spectra . The analytical 

resonant peaks are at the frequency 0.7461 THz and 2.3368 THz. Black dashed line is obtained by homogenized 

the grating G0 as 
     1,eff 1,eff

0, /
G G

y s x sk k p w    and the grating G1 as 
     2,eff 2,eff

1, /
G G

y h x hk k p w      

and  (b) The |E|-distribution at the resonant frequency 0.7461 THz. (c) |E|-distribution at the resonant frequency 

2.3368 THz. 
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Next, we compare our analytical solutions with more complicated structure as shown in Fig. 4.2 (b). In 

this case, N=12  and each grating G1 to G12 has 4 slits in the superlattice. The slit width and slit heights 

of these slits are the same which are defined as 10 μm. The period of the gratings G1 to G12  is defined 

as 20 μm. The thickness of the dielectric layers D0 to D12 is the same and equal to 10 μm. They are also 

the same material which is defined as the Zeonex polymer with neglected loss. The period of the 

grating G0 is changed to 80 μm so that it can contain 4 slits in the gratings D0 to D12. The slit width and 

height of the only one slit in the grating G0 are the same as the previous case. The whole structure is 

excited by the normal incident light which is the same excitation configuration as the previous case. In  

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Comparison with FDTD simulation with complicated structure. (a) Transmission spectra of the 

complicated structure obtained by the analytical solutions with increasing the number of waveguide modes from 1 

to 3. The number of waveguide mode 1 means only the fundamental mode is used. (b) Comparison between the 

analytical and FDTD transmission spectra of the complicated structure.  

 

 

this structure, the slit width of the lens is only a half of the period of the lens. Therefore, it is necessary 

to increase the number of waveguide modes until the analytical spectra converges. Fig. 4.4 (a) shows 

the dependence of the analytical transmission spectra on the number of waveguide modes as indicated 

in the figure. It can be seen that the analytical spectra converges as the number of waveguide modes 

equal to 3. Fig. 4.3 (b) shows the comparison between the analytical transmission spectra with the 

number of waveguide mode equal to 3 and the FDTD simulation with resolution 4.5 pix/μm. Both 

methods consistently give various peaks. However, all peaks calculated by the FDTD simulation lie in 

the lower frequencies than those obtained by the analytical solution. We expect that the FDTD spectra 

will approach our analytical spectra by increasing more resolution because it will be able to capture 

high-k waves which contribute to the QWR between the gratings, and thus the resonant energy should 

increase a little more. Note that the FDTD simulation time with this resolution takes 580 min. to 

compute. It means that you have to wait for it for 10 hours, and hope that it will gives you the correct 

spectra. By using the analytical solutions, even with this number of waveguide modes equal to 3, it 

takes only 10 min. to obtain the spectra. Therefore, the analytical solutions given in this chapter yield  

the efficient tools to investigate this structure with various parameters. More importantly, they can be 

applied to the structure working in the deep-subwavelength regime. In the next section, we will apply 

the analytical solutions to demonstrate the deep-subwavelength λ/300 at 1 THz.  

(a) (b)(a) (b)
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4.3 Subwavelength imaging with one grating/dielectric metamaterial   

 

 

 

 

 

 

 

Fig. 4.4 Schematic view of deep-subwavelength imaging at 1 THz with grating/dielectric structure. All dielectric 

layers are defined as air. The objects to be imaged are the slits in the front grating indicated by the red arrow. The 

size of the object 
0w  is 1 μm. The distance between two objects 

0p  is 5 μm, and the thickness of the object 
0h  is 

1 μm. The lens has length h  and the slit width w  indicated in the figure. The period of the lens is 1 μm.   

 

     

In this section, the subwavelength imaging of the object with size 1 μm is demonstrated at the 

frequency close to 1 THz by spoof surface plasmons (SSPs) in one grating/dielectric structure. We have 

shown in the previous chapter that the SSPs can be designed by varying the height of the grating 

because the cut-off frequency of the SSPs is determined by the Fabry-Perot (FP) of the grating. By 

defining the slit height as 150 μm, the FP occurs at 1 THz. By choosing the period of the grating as 1 

μm, the SSPs can have much larger wavenumber comparing to the wavenumber of light in vacuum, 

and thus the condition of deep-subwavelength is achieved. And by defining the slit width as 200 nm, 

this grating can be applied to image subwavelength objects via the SSPs.  

 The schematic view of the subwavelength imaging system is shown in Fig. 4.4. The frequency 

of the SSPs with wavenumber /xk p , where p=1 μm is the period of the lens, is 0.997 THz. The 

objects are the infinite array of subwavelength slits. The size of the object corresponds to the slit width 

which is equal to 1 μm, and the distance between two objects corresponds to the period p0 which is 

defined as 5 μm. The object also has the finite size along the y-axis which corresponds to the slit height 

h0. Our aim is to carry the fine information of the objects which are encoded in the large wavenumber s 

along the x-axis to the detector placed far from the objects. To do this, the lens is brought close to the 

objects, not touch but with some distance apart denoted by the distance d0 , in order to carry the large 

wavenumbers from one side of the lens to another side. The another side of the lens is assumed to have 

a good detector which can visualize the image intensity brought there by the lens.   

 Fig. 4.5 (a) shows the |E| behind the lens for the separation distance between the object and 

the lens is 100 nm. This distance is chosen because it is smaller than the decay length of the amplitude 

of the electric field of the SSPs which is 144 nm for this lens.  The |E|  is normalized by the amplitude 

of the incident light, and the numerical values on the colour bar indicate how large the amplitude of the 

electric field on the image compared with the amplitude of the incident light. The image of the object is 

clearly seen in this figure. The maximum of the electric field amplitude reaches 30.6 times larger than 

the amplitude of the incident electric field! However, the electric field of the image quickly decays 

along the y-axis with the decay length δy, defined as the distance at which the |E|  decreases by 1/e, just 
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122 nm. The resolution of the image is determined by the full width at half maximum (FWHM) of the 

|E| along the output interface of the lens. We found that the resolution is Δx=314 nm, which is even 

sharper than the size of the object. In order to confirm that this is the unique imaging property of this 

lens, we substitute the lens with Si slab with the same thickness as the lens. The Si slab is brought in 

contact with the objects, and the electric field distribution inside the Si slab and behind the Si slab is 

obtained at a single Fabry-Perot resonance of the Si slab 1.1474 THz. The result is shown in Fig. 4.5 

(b). The standing wave is generated inside the Si slab as expected. Behind the Si interface, the 

amplitude of the electric field becomes constant, and there is no sign of the object. In this case, the 

large wavenumbers from the object suffer diffraction limit inside Si slab, and thus they quickly decay 

and unable to reach the image plane.  Therefore, the SSPs in the grating can carry the large 

wavenumber waves of the objects to the image plane without suffering the diffraction limit.   

  

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 Analytical demonstration of deep-subwavelength imaging. (a) The |E|-distribution behind the grating 

acting as subwavelength imaging lens. (b)  The |E|-distribution inside Si slab and behind Si slab which is in 

directly contact with the objects. The Si slab has the same thickness as the grating. The blue dashed line indicates 

the Si interface.  

 

 Next, we consider the effect of the separation distance between the objects and the lens on the 

imaging properties. The |E| distributions for three cases are shown in Fig. 4.6.  By increasing the 

separation distance to 1 μm, two more images appear around the central image. We interpret this result 

as not-resolved because we cannot distinguish these images, and thus the information about the object 

is not known. This can be understood by considering the decay length of the SSPs. The separation 

distance is almost 7 times larger than the decay length of the amplitude of the electric field of the SSPs. 

Therefore, the SSPs are weakly excited and unable to carry large wavenumber of the objects to the 

image plane. By reducing the separation distance, we expect that the image intensity (|E|
2
) should be 

larger because the objects are closer to the lens. Surprisingly, the opposite result is obtained as shown 

in Fig. 4.6 for the 1 nm separation distance. The amplitude of the electric field for the 1 nm separation 

distance is smaller than the 100 nm separation distance, while the resolution and the decay length do 

not dramatically changes.      
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Fig. 4.6 |E|-distributions behind the lens for the separation distances (from left to right) 1 μm, 100 nm, and 1 nm.   

 

 We can understand this behaviour by considering the development of the transmission spectra 

as the separation distance decreases.   

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 The development of transmission spectra as a separation distance between objects and lens decrease from 

1 μm to 10 nm.  

 

Fig. 4.7 shows the transformation of the transmission spectra as the separation distance between objects 

and lens decrease form 1 μm to 10 nm. At the separation distance 1 μm, only the original FP of the lens 

is seen due to the weak interaction between the object and the lens. As the separation distance 

decreases to 500 nm, the sharp dip is observed and the FP starts to split. As the separation distance is 

smaller to 100 nm, we observe new peak between the two split peaks. This peak occurs at the 

frequency 0.993 THz which is 4.0 GHz smaller than the original SSPs. This peak corresponds to the 

QWR between the objects and the lens which will become clear shortly. This position is preferable 

because the original SSPs accept the energy from the QWR, and thus the amplitude of the electric field 

of the image increases. By reducing the separation distance further, all peaks shift to lower frequency. 

The transmittance at the original SSP drastically drop from 99.8% of the 100 nm separation distance to 

28.8% of the 1 nm separation distance. The transmission spectra for the 1 nm separation distance is 

shown in Fig. 4.8 (a).  
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Fig. 4.8. Resonances at 1 nm separation distance. (a) Transmission spectra showing the resonant peaks at 0.552 

THz, 0.755 THz, and 0.944 THz. (b) Normal component of the electric field in the region between the objects and 

the lens at 0.755 THz. The arrows indicate direction of electric field. (c) |E|-distribution behind the lens at the 

frequency 0.552 THz.  

 

The QWR of the 1 nm separation distance is at 0.755 THz which is 0.238 THz lower than the QWR of 

the 100 nm separation distance. The normal component of the electric field Ey at the QWR of the 1 nm 

separation distance is shown in Fig. 4.8(b). The maximum of the Ex is only 5 times larger than the 

amplitude of the incident electric field, while the maximum of Ey reaches 1500. The red colour in the 

figure 4.8 (b) indicates the electric field pointing to the right, while the green colour indicates the field 

pointing to the left. The large Ey induces the surface charges on the metallic part of the grating, which 

then introduce the surface current flowing over the surface of the grating. The current can complete the 

loop by the normal component of the electric field displacement. This current loop is the characteristic 

of the QWR [77,]. At the frequency lower than the QWR, the new mode appears due to the splitting of 

the FP. This mode is the excitation of the new SSPs on the output interface of the lens. The |E|-

distribution behind the lens at this mode is shown in Fig. 4.8 (c). The SSPs is clearly seen to localize on 

the output interface of the lens. The SSPs is close to its cut-off frequency determined by the cavity 

resonance condition  cos 0ck h  , and thus 4 600 mc h    or 0.5 THz.            

 

4.4 Subwavelength imaging over long-distance with stacked grating/dielectric layers 

The straightforward way of conveying the subwavelength image over longer distance is by simply 

increasing the length of the bare grating. However, the rods are required to be electrically connected 

over the long distance, the condition difficult to achieve for the subwavelength rods. As mentioned in 

the Ref. 30, the rods break up when their diameter is about one micron. Therefore, the bare long-length 

grating cannot work in the scale down to a single cell. It is required to be able to break up the bare 

long-length grating into smaller gratings separated by the dielectric layer. This is the stacked 

grating/dielectric layers as schematically shown in Fig. 4.1 with the testing object. The analytical 

solutions allow us to efficiently optimize the structure such as the separation distance between the 

gratings of the lens so that the images appear behind the lens with large number of gratings N. The 

gratings comprising the lens have the same geometry that is grating height h=150 μm, slit width w=0.2 

μm, and the period p=1 μm as the previous section. The dielectric host medium is defined as air that is 
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h 1n  , and thus all slits are filled with air. The thickness of the dielectric layer or the separation 

distance between the gratings of the lens is defined as D. The lens is separated from the object by the 

air gap with the separation distance defined as D0=0.1 μm. The object which is the array of slits has the 

size 1 μm to 4 μm, height 1 μm, and the period 5 μm. Therefore, there are five slits of the lens within 

the superlattice of the object.                        

  

 

 

 

 

 

 

 

Fig. 4.9. |E|/E0 behind the stacked grating/dielectric layers with N=220 and the optimized separation distance 

between gratings 80 nm over the distance 2 μm from the end interface of the lens for the object with size (a) 1 μm, 

(b) 2 μm, and (c) 3 μm. The working frequency is 0.997 THz. Each figure includes two unit cells along the x-axis.       

 

 Fig. 4.9 (a) shows the normalized amplitude of the electric field behind the lens for the object 

with size 1 μm. We obtain the sharp subwavelength image, and the object can be resolved. To confirm 

that this signal really comes from the object, we increase the size of the object to 2 μm and 3 μm while 

keeping the height and the period,  and then check the normalized amplitude of the electric field behind 

the lens for each case. Fig. 4.9 (b) and (c) show the results for the objects with sizes 2 μm and 3 μm, 

respectively. The distribution of the normalized amplitude of the electric field changes by increasing 

the size of the object, and thus confirms that the signal is the energy propagating from the objects. One 

may expect that the central image located around x=0 μm comes directly from the object located 

around x=0. But that is not what happens inside this structure. The object dominantly re-emits the 

Bloch waves with the tangential component 
 eff

0.2 /xk p   where p=1 μm (about 30 times larger 

than wavenumber of light in air), and the effective parameters as discussed in the next chapter leads to 

the critical angle of the Poynting vector  0.1229 0.00002c   


 corresponding to these specific  

wavevectors. This means that the energy does not propagate perfectly parallel to the y-axis, but it rather 

deviates from the y-axis with the small angle c . This critical angle c  may look small, but it can affect 

the image formation in the long length structure such as in our current case. In this case, the total length 

of the lens is  1 33,017.52 mL Nh N D     , and therefore the images will be formed at the 

distance tan 70 mcx L       from the y-axis according to the effective medium model. This 

means that the energy of the central image at around  x=0 really comes from the two objects located at 

70 mx   and at 70 mx   . The separation distance between these two objects is 140 μm. 

Therefore, we can also expect that the energy of the image at around 5 mx   comes from the objects 

(a) (b) (c)(a) (b) (c)
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located at 75 mx   and 65 mx   . And also the energy of the image at around 5 mx    comes 

from the objects located at 65 mx   and 75 mx   .                                       

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10. |E|/E0 along the line parallel to the x-axis at the distance 0.398 μm from the end interface of the stacked 

grating/dielectric layers with N=220 and the optimized separation distance between gratings 80 nm for the object 

with size 1-3 μm as indicated in the figure. The working frequency is 0.997 THz.        

 

 Next, we discuss about the resolution of the images. The focal point in our current structure is 

at the end interface of the structure between the structure and air. However, the amplitude of the 

electric field is not homogeneous at the end interface due to high electric field in the slits. Therefore, 

the detection at longer distance from the end interface is required to obtain the smooth image. 

Unfortunately, the large wavevectors do not propagate in air medium due to the circular equi-frequency 

contour (EFC) of the air. Therefore, the focal length is poorly defined behind the structure. We may 

consider the decay length of the intensity 
I  instead. The intensity decay length can be obtained from 

the tangential component of the wavevector as  eff 2 2

I 01/ 2 xk k    which is 0.796 nm for 

 eff
0.2 /xk p  . The resolution as defined by the full-width-at-half-maximum (FWHM) of the field 

profile along the line parallel to the x-axis at the distance 
I 0.796 m   from the end interface is 

however still  poor. We find that at the distance 
I / 2 0.398 m   gives better resolution, and the field 

profiles at this distance along the line parallel to the x-axis are given in Fig. 4.10. The FWHMs for the 

objects with size 1 μm, 2 μm, and 3 μm are 1.346 μm, 2.778 μm, and 3.260 μm. Therefore, the lens can 

also distinguish the objects with different sizes from 1-3 μm. The object with size 4 μm can be also 

distinguished from the objects with smaller size. However, the nearby objects with the same size as 4 

μm are barely resolved due to the close separation distance between the objects. We can certainly 

resolve the objects with smaller separation distance (and smaller size) by reducing the period and the 

slit width of the lens. The experiment is however would be very challenge.                       
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4.5 Conclusion  

We have developed the analytical solutions of the stacked grating/dielectric structures which are the 

extension of the analytical solutions of the bare grating to make new hyperbolic metamaterials for  

subwavelength imaging with THz radiation. The analytical solutions are consistent with the FDTD 

simulation with simple structure and performs beyond the FDTD simulation in the complicated 

structure. This allows us to apply the analytical solutions to study the imaging of deep-subwavelength 

object at the frequency close to 1 THz (λ=300 μm). We have found that the spoof surface plasmons 

(SSPs) in a bare grating at the frequency around 1 THz can carry the subwavelength image with spatial 

resolution about 314 nm over the distance 150 μm with high electric field enhancement if the objects 

are located at the preferable distance from the grating. At this preferable distance, the electric field of 

the subwavelength image can be much larger than the amplitude of the incident light due to the 

excitation of the quasi-wavegide resonances (QWRs) between the objects and the grating at the 

frequency close to the SSPs. This new information leads to the realization of the analytical 

demonstration of the deep-subwavelength imaging over a long distance about 33 mm by using the 

stacked grating/dielectric layers with the optimized separation distance between the gratings. The 

imaging signals are confirmed by varying sizes of the objects.            
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Chapter 5 

Effective parameters of stacked grating/dielectric metamaterials  

 
The stacked grating/dielectric layers obviously have the property of the hyperbolic metamaterials 

(HMMs) because the large wavevectors from the objects can propagate through this structure over the 

long distance without decaying. But only this argument is not sufficient to confirm that this 

metamaterial is really the HMMs. The only way to convince the others that it is the HMMs is by (i) 

drawing the equi-frequency contour (EFC) of electromagnetic waves propagating inside this structure 

and discuss the type of HMMs, and (ii) obtain the effective parameters of the structure so that we can 

know the critical angle of the Poynting vector. The critical angle of the Poynting vector can be used to 

compare the effective model with the analytical solutions. If we obtain the consistent results, it means 

that the stacked gratings/dielectric structures are really the HMMs. If we don't obtain the consistent 

results, we have to stick with the analytical solutions (because they are consistent with FDTD) and seek 

for the new method of retrieving the EFC and the effective parameters of this structure. Here, we can 

obtain the consistent results and we can firmly state that the stacked gratings/dielectric metamaterials 

are the HMMs. The type of HMMs depend on frequency and the geometry of the structure. Therefore, 

the metallic grating can be considered as the new metal for making the HMMs in the THz band. The 

analytical solutions of the cylindrical hyperlens developed in the chapter 2 may be extended to the THz 

band by replacing the metallic layer with the grating layer.      

 In this chapter, we describe the technique of retrieving the effective parameters of the stacked 

grating/dielectric structures in the section 5.1. By using this technique, we can draw the hyperbolic 

EFC for any number of the stacked grating/dielectric layers and obtain their effective parameters. We 

show the EFC and the effective parameters of N=10 numbers of stacked grating/dielectric layers in the 

section 5.2. In the section 5.3, we compare the image's field distributions obtained by the analytical 

solutions with the effective model. In the section 5.4, we show how the hyperbolic EFC and the 

effective parameters change as the number of the unit cells increases. Finally, the chapter is 

summarized in the section 5.5. 
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5.1 Method of retrieving effective parameters  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 5.1. (a) Schematic of the stacked grating/dielectric layers as the THz hyperbolic metamaterials (THz-HMMs)  

drawn over 4 unit cells along the x-axis. The refractive index of the dielectric layer is labelled by nh, and all slits 

are filled with this material. All gratings have the same height h and slit width w. The number of gratings is 

defined by N. (b) Schematic of the alternating metal/dielectric layers. The number of the unit cell is defined by N .   

 

We retrieve the effective parameters of the stacked grating/dielectric layers as schematically shown in 

Fig. 5.1 by comparing their reflection and transmission coefficients with those of the anisotropic 

medium whose dispersion relation satisfies Eq. (2.13). But now the optical constants become the 

effective parameters which are denoted by 
 eff

x , 
 eff

y , and 
 eff

z . The components of the wavevectors 

are also considered as the effective parameters 
 eff

xk  and 
 eff

yk . Notice that we also include the 

magnetic effect on these structures by allowing 
 eff

1z  . Our tasks are (i) drawing the contour 

between the 
 eff

xk  and 
 eff

yk  at the given frequency called the EFC, and (ii) retrieve the effective 

parameters 
 eff

x , 
 eff

y , and 
 eff

z . There were some papers which outlined the method of effective 

parameters retrieval for the anisotropic media [86,87]. We attempted to use the expressions of the 

refractive index along the y-axis n and the impedance   given in Eq. (12) of Ref. 86, but the 

reflectance and transmittance of the stacked grating/dielectric layers from the analytical solutions 

cannot be reproduced even in the case of the normal incidence. The Ref. 87 gives satisfying results for 

the EFC between the 
 eff

xk  and 
 eff

yk . However, the 
 eff

x  strongly depends on the incident angle in this 

model, and thus we are forced to fit the EFC for the new 
 eff

x  which then affects the effective 

reflection and transmission coefficients. Therefore, the spectra obtained by this model are different 

from the spectra obtained by the analytical solutions.  Here, we describe our simple model which gives 

the unique 
 eff

x  and also the same EFC as that obtained by the Ref. 87. From these information, the 

remaining parameters can be obtained.  

 We start by comparing the 0th-order transmission coefficient of the stacked grating/dielectric 

layer from the analytical solutions and that from the effective medium model. From Eq. (4.36) and 

(4.27), the 0th-order transmission coefficient 
 out

0A  of the stacked grating/dielectric layers shown in Fig. 

5.1 can be written as  
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where 
0 0 / yY k k ,  0 / sinc / 2xs w p k w ,      

 1
F

T 0 h V2 /
NN

N s n G G


  , and the dispersion 

function disp  is given by Eq. (4.38). The 0th-order transmission coefficient t0 of the effective medium 

obtained by applying the boundary conditions of Hz and Ex is written as  

                                          
    

   

     

0 2
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sin cos
2
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y y

y x y

t

k k
k L k L

ik k






 
 


 
 
 

,                                 (5.2) 

where  1L Nh N D    is the total length of the structure. By comparing Eq. (5.1) and (5.2), we 

obtain the first equation of the effective medium model written as follows  

                               

    
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       
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y y
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k k
k L k L iY s N

ik k
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

 
 

   
 
 

.                      (5.3)  

The solutions obtained solely by Eq. (5.3) are not unique, and we need to accompany it with another 

equation from the 0th-order reflection coefficient. From Eq.  (4.29) and (4.40), the 0th-order reflection 

coefficient 
 in

0B  of the stacked grating/dielectric layers can be written as  

                                                                   
   

 
disp 0 0 Rin

0

disp 0 0 R

/ 1

/

iY s N
B

iY s N

 



,                                              (5.4) 

where    R 0 h 2 1 1
2 /

N
N s n

 
   and  2 1 1N  

  is given by Eq. (4.50). The 0th-order reflection 

coefficient r0 of the effective medium obtained by applying the boundary conditions of Hz and Ex is 

written as  
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.                                  (5.5)  

By comparing Eq. (5.4) and (5.5), their denominators give the same condition as Eq. (5.3), and their 

numerators lead to the new condition of the effective medium written as follows  
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.                              (5.6) 

By solving Eq. (5.3) and (5.6), the EFC can be obtained by solving the following equation for 
 eff

yk   

                                                               
  eff 1 2

1 2

1
cos yk L

 

 

,                                                        (5.7) 

where the parameter 
1  and 

2  are defined as follows  

                       in out in out

1 R T 0 0 2 disp 0 0 R 0 0 T 0 0/ 1 / ,  2 / 1 /N N B A iY s N iY s N B A            .  (5.8) 

By substituting Eq. (5.8) into Eq. (5.7), the condition of 
 eff

yk  can be re-written in terms of the 

reflection and transmission coefficients as follows  
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                                                  
   

 

out 2 in 2

eff 0 0

out

0

1
cos

2
y

A B
k L

A

 
 .                                                (5.8) 

This equation gives the condition of 
 eff

yk  for given frequency and 
xk . We may then call 

xk  which 

leads to the physical 
 eff

yk  as 
 eff

xk .  By drawing the contour between the 
 eff

xk  and 
 eff

yk  at the given 

frequency, we obtain the EFC of the structure. The EFC may contain the band gaps at which the 
 eff

yk  

are forbidden to propagate if the amplitude of the right hand side (RHS) of Eq. (5.8) exceeds one. 

Moreover, the EFC may also contain the resonance if the reflection and transmission coefficients are 

infinite which occur when  dispRe 0  . Lastly, for those who write the programming code to solve 

Eq. (5.8), care must be taken to the "very small" imaginary part of the RHS of this equation. In our case, 

if the imaginary part of the RHS of Eq. (5.8) is smaller than 410 , it is lowered to exactly zero and thus 

the RHS becomes just real number.    

 It is useful to check this model by comparing it with the well known effective medium 

approximation (EMA) for the alternating metal/dielectric layers as schematically shown in Fig. 5.1 (b). 

If the thickness of each layer is the same (d1=d2) and small enough comparing to the wavelength of 

light, then the EMA predicts that the effective parameters are independent on the thickness and simply 

given by 
   eff

1 2 / 2x     and 
   eff

1 2 1 22 /y      . By using these effective parameters, the EFC 

from the EMA can be drawn. In our model, the steps are reversed. We don't know the effective 

parameters, but we can draw the EFC by using the condition of the 
 eff

yk  in Eq. (5.8) with the reflection 

and transmission coefficients given as follows  
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,                                                 (5.9) 

where ijS  is matrix element of the scattering matrix S  which is obtained from the transfer matrices as 

follows  

                                                             
1

out 2,1 1,2 2,1 in

N

S T T T T T ,                                                     (5.10) 

where N is the number of the unit cell, and the transfer matrices which are obtained by applying the 

boundary conditions are defined as follows  
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                    (5.11) 

where ,r   and ,t   are 0th-order reflection and transmission coefficients, respectively, from the 

medium   to the medium   which are defined in Eq. (3.21) for the TM wave. From the EFC, we 

then retrieve the effective parameters which will be described shortly. To compare our new model with 

the old EMA, we assume the fictitious dielectric constants as 
1 3    and 

2 4   at the working 

frequency 0.1 THz (3 mm). According to the EMA, this medium is HMMs-I where 
 eff

0.5x   and 

 eff
24y   . Fig. 5.2 (a) shows the EFCs for the layer thickness 20 nm. Our model gives almost 

identical EFC as that from the EMA because the thickness is 150,000 times smaller than the working 
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wavelength. The EFC shows the type-I hyperbolic dispersion as expected. Our model also takes into 

account both layer thickness and finite size of the whole structure. By increasing the thickness to 1 μm, 

the EFC obtained from our model deviates from that obtained from the EMA as shown in Fig. 5.2 (b). 

The angle of the wavevectors with respect to the y-axis becomes larger resulting in smaller angle of the 

Poynting vector with respect to the y-axis.                     

 After retrieving the EFC of the structure, the next step is retrieving the 
 eff

x . From Eq. (5.3) 

and (5.6), the 
 eff

x  can be written in terms of  
 eff

yk  as follows         

                                              
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.                                     (5.12)    

The 
 eff

x  is independent on the sign of 
 eff

yk , and its uniqueness can be checked by varying the 

incident angle. We take into account the causality in order to obtain the 
 eff

x . That is we choose only 

the wavevectors which give the energy flowing out from the front interface (y=0) to the end interface 

(y=L). In another word, only the electromagnetic waves giving the Poynting vector propagating in the 

+y axis direction is taken to retrieve the 
 eff

x . Therefore, it is required to draw at least two EFCs in 

order to check the directions of the Poynting vectors. Let's us try to convert the EFC in Fig. 5.2 (a) to 

the 
 eff

x .  We draw three EFCs in Fig. 5.3 for the alternating metal/dielectric layers with parameters 

the same as those in Fig. 5.2 (a). Notice that the components of wavevectors are not normalized by 
0k  

because we want to compare the EFCs at different frequencies. The anomalies found in each EFC 

occur when  eff

0xk k . The Poynting vector (S) is parallel to the group velocity which is perpendicular 

to the EFC and points to   

  

 

 

 

 

 

 

 

 

Fig. 5.2. EFC of alternating metal/dielectric layers for layer thickness 20 nm (a), and 1 μm (b). The red line is 

obtained by the new model and the black dashed line is obtained by EMA. The number of unit cell is defined as 10 

(total number of layers is 20). The working frequency is 0.1 THz. The dielectric constants of the metal and 

dielectric are fictitious and assumed to be 
2 3    and 

1 4  , respectively, to form HMMs-I.     
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Fig. 5.3. EFCs of alternating metal/dielectric layers at three increasing frequency. The parameters of the structure 

are the same as those in Fig. 5.2 (a).   

 

higher frequency EFC. The direction of the Poynting vector is also indicated in the Fig. 5.3. According 

to this figure, the Poynting vector propagates in +y direction (flowing out from the front interface) for 

positive
 eff

yk , but it propagates in the -y direction (flowing in to the front interface) for the negative 

 eff

yk . Therefore, we choose the former case to retrieve 
 eff

x (and other effective parameters). By 

applying Eq. (5.12) to retrieve 
 eff

x  from 
 eff

yk  given in the EFC in Fig. 5.2 (a), we have 

 eff
0.5000000 0.0000734x i   . The negative imaginary part must be considered as the accuracy of 

this retrieval model. Therefore, this model is accurate to the fourth decimal position. The accuracy does 

not come from the restriction imposed on the imaginary part of the RHS in Eq. (5.8) because the 

accuracy is the same by relaxing this restriction. This means that the accuracy is intrinsic to this model. 

The model is not limited only to the lossless material. We introduce the imaginary part to the metal 

1 3 0.1i     so that the energy of the electromagnetic waves decay from the front interface as it flows 

forward. At the normal incidence, the EFC of this structure can be converted to  eff
0.5000 0.0499x i   .             

 Next, we explain how to obtain the remaining effective parameters. For both types of HMMs, 

the parameter 
 eff

z  can be obtained from 
 eff

yk  and 
 eff

x  by using the relation 

     eff eff eff

0/y x zk k     at the normal incidence. The sign of the 
 eff

z  is dictated by the 
 eff

yk ,
 eff

x  

and type of HMMs. The 
 eff

z  is positive if both 
 eff

yk  and 
 eff

x  are positive, but it becomes negative if 

both 
 eff

yk  and 
 eff

x  are negative. The latter case is referred to the backward travelling wave. The 
 eff

z  

is also positive in type-II HMMs with negative 
 eff

x  because the real part and the imaginary part of 

 eff

yk  must be zero and positive, respectively, so that the electromagnetic waves are not-propagating at 
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(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)

the normal incidence. The last parameter, the 
 eff

y , is however not independent variable, because it is 

completely determined by the EFC, 
 eff

x , and 
 eff

z .  We obtain this parameter by fitting the EFC with 

known 
 eff

x  and 
 eff

z . By fitting 
 eff

y , we don't change the reflection and transmission coefficients 

because the 
 eff

x  and 
 eff

yk  are the same. From the EFC and these effective parameters, the critical 

angle of the Poynting vector can be obtained by Eq. (2.63). Finally, we compare the reflection and 

transmission spectra of N=10 stacked grating/dielectric layers obtained by the analytical solutions and 

the effective medium model for the normal incidence light in Fig. 5.4 (a)-(b), respectively. This 

effective model gives the perfectly identical spectra to those from the analytical solutions. We not only 

map the amplitude of the reflection and transmission coefficients, but their phases are also correctly 

mapped to those of the effective parameters as shown by the real and imaginary parts of these 

coefficients in Fig. 5.4 (c)-(f).    

 

            

   

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4.  (a) Reflection spectra, and (b) transmission spectra of the N=10 stacked grating/dielectric layers 

comparing between the analytical solutions (AN) and the effective medium model (EFM). The dielectric is defined 

as air. The separation distance between grating is 80 nm. The geometrical parameters of the grating are defined as 

p=1 μm, h=150 μm, and w=1 μm. (c) Real part, and (e) imaginary part of the reflection coefficients of the 

reflection spectra in Fig. 5.4 (a). (d) Real part, and (f) imaginary part of the transmission coefficients of the 

transmission spectra in Fig. 5.4(b).        



 105 

5.2 Equi-frequency contour (EFC) and effective parameters of N=10 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.5. (a) Transmission spectrum, and (b) dispersion relation at the normal incidence (kx=0) of the N=10 stacked 

grating/dielectric layers where dielectric medium is defined as air and all slits are filled with air. The distance 

between the gratings is 80 nm. The parameters of the grating is defined as 1 m, 0.2 m, 150 mp w h     .  

 

 

In this section, we use the N=10 stacked grating/dielectric layers, where dielectric medium is defined as 

air and all slits are filled with air, to show the features found in the EFC and the retrieved effective 

parameters of this structure. The critical angle of the Poynting vector in the stacked grating/dielectric 

structure is small and therefore we need the structure with long length in order to observe this 

behaviour and compare this with the analytical solution. The N=10 stacked grating/dielectric layers 

allow us to check the validity of the effective model by comparing the positions of peaks of the 

amplitude of the electric field behind the structure with those obtained by the analytical solutions.     

 

 5.2.1 EFC and type of HMMs     

 Fig. 5.5 (a) shows the 0th-order transmission spectrum at the normal incidence of the N=10 

stacked grating/dielectric layers obtained by the analytical solutions compared with that from the 

effective medium model in the frequency region 0.87-1.01 THz. Two resonant peaks at the frequencies 

0.8979 THz and 0.9989 THz correspond to the 9th-order and 10th-order Fabry-Perot (FP) resonances, 

respectively, of the all-connected gratings with height 10 150 1,500 m  . The 1st-order FP is at 

0.0988 THz (
1 / 2 1,500f c   Hz) and the frequency difference between two FP resonances is about 

0.1 THz.  Just below the 10th-FP resonance, the small band gap is created as shown by the dispersion 

relation in Fig. 5.5 (b) because the 
   eff

Re cos 1yk L  . This band gap has the width only 1.7 GHz and 

the central position of the gap is at about 0.99785 THz. Just above the 9th-FP, the even smaller band 

gap is created. This band gap has the width only 0.2 GHz with the central frequency of the band gap at 

0.8981 THz a little bit higher than the 9th-FP resonance. The width of the band gap can be enlarged by 

increasing the distance between the gratings as shown in Fig. 5.8. Outside this gap, the 
 eff

yk  are 

allowed and become propagating waves. We are reminded that we need to track the history of the phase 

 eff

yk L  from the lower frequency to the higher frequency to correct the phase within the specific 

frequency region. There is the confusion again to where in the band gap we should start adding up the 

(a) (b)(a) (b)
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new phase. Technically, we use the centre of the band gap at which the RHS of Eq. (5.8) reaches the 

maximum or the minimum. The dispersion below the 10th-FP and above the 9th-FP is negative for the 

forward travelling wave (
 eff

0yk  ) that is the frequency decreases by increasing 
 eff

yk , but the 

dispersion is positive for the backward travelling wave  (
 eff

0yk  ) that is the frequency increases by 

increasing 
 eff

yk . Therefore, the phase velocity and the group velocity of this structure have opposite 

signs along the y-axis. We need to choose the backward travelling wave when we retrieve the effective 

parameters due to the causality which will be described shortly. In the frequency below the 9th-FP and 

above the 8th-FP, the signs of the phase and group velocities become the same. Therefore, we need to 

choose the forward travelling wave when we retrieve the effective parameters of this structure in the 

latter case.  

 Next, we discuss about the type of the HMMs. At the frequencies inside the band gap and 

below the resonant frequency 0.9989 THz , this structure behaves as type-II HMMs where the major 

axis is parallel to the tangential component of the wavevector (see Fig. 1.12 (b) for comparison), which 

are the case for 0.997 THz and 0.998 THz as shown in Fig. 5.6. Outside the band gap, the 
 eff

yk  are 

non-zero at 
 eff

0xk  , and thus this structure becomes the type-I HMMs where the major axis is parallel 

to the normal component of the wavevector (see Fig. 1.12 (a) for comparison). The Ponyting vectors 

(which are parallel to the group velocities) have opposite signs as the phase velocities in both types. 

The negative phase velocities with respect to the group velocities have been directly measured in the 

hexagonal boron nitride (h-BN) which shows the hyperbolic dispersion in the mid-infrared band by 

using s-SNOM combined with time-domain interferometry [26]. We need to choose the backward 

travelling waves in order to retrieve the effective parameters of this structure because their energy 

propagate out from the front interface of the structure (y=0). Fig. 5.6 shows only the small portion of 

the EFC within the first Brillouin zone in order to explain the type of each EFC. We extend the EFC at 

the frequency 0.997 THz       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6. EFCs of the N=10 stacked grating/dielectric layers at four frequencies. The parameters of the structure are 

the same as those in Fig. 5.5.  The length of the structure is defined by L which is 1500.72 μm for this structure. 

The arrows schematically indicate the directions of the Poynting vectors which are perpendicular to the EFCs 

pointing to the higher frequency.  
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to the edges of the first Brillouin zone of 
 eff

xk , and the result is shown in Fig. 5.7 (a). We observe the 

band gap formations when 
 eff

yk  approach  1 / L  and zero. This occurs when the amplitude of the 

  eff
cos yk L , as determined by the RHS of Eq. (5.8), exceeds one as shown in Fig. 5.7 (b). The centres 

of the first band gaps are at about 
   eff

0.336 /xk p  .  At these positions, the 
 eff

yk  complete one 

period from the positive to negative 
 eff

xk . This region is referred to the zeroth-order 
 eff

yk .  Beyond 

this region, the 
 eff

yk  become the first-order that is we need to sum the number 2 / L  to the 
 eff

yk  

which lie beyond the first band gaps and below the second band gaps at which 
 eff

yk  complete another 

period at 
   eff

1 /yk L  . The sign of 
 eff

yk  is chosen according to the slope of 
 eff

yk  with respect to 

 eff

xk  in the EFC. If the slope is positive, we add the 2 / L . If the slope is negative, we add the 

2 / L . The order-corrected EFC is shown in Fig. 5.7 (c) where the flat regions are referred to the 

band gaps. This structure contain up to the first order 
 eff

yk . The higher orders will appear in the longer 

structure because higher order FP resonances are excited. If the interested wavevectors lie only within 

the region of the zeroth-order 
 eff

yk , it's sufficient to use only the zeroth-order wavevectors to fit for the 

 eff

y . However, if the interested wavevectors lie outside the zeroth-order region, it is required to take 

higher order wavevectors to fit for  the
 eff

y . Then, the order-correction is needed in the latter case.              

 We also discuss the effect of the separation distance between the gratings on the EFCs of this 

structure. Fig. 5.8 (a) shows the effect of the separation distance between the gratings on the 

transmission spectra. The 9th-FP resonances strongly shift to the lower frequency by increasing the 

separation distance while the 10th-FP resonances make slightly redshift from the original position. This 

implies that the 9th-FP is sensitive to the interaction between the gratings while the 10th-FP depends 

only on the property of the grating. Indeed, the 10th-FP is the 1st-FP of the bare grating with h=150 μm 

comprising the structure. Moreover, we also observe the drop of the transmittance between the two 

resonant peaks as the separation distance increases. This implies the transformation of 
 eff

yk  from the 

propagating waves to the non-propagating wave at the normal incidence. The flat band of the low 

transmittance is wider by increasing the separation distance. Fig. 5.8 (b) shows the effect of the 

separation distance between the gratings on the dispersion relation. The band gaps between the 9th-FP 

and 10th-FP are obviously wider by increasing the separation distances which is the result of the drop 

of the transmittance and also the wider band of the low transmittance. Fig. 5.8 (b) indicates that the 

EFC can transform from type-I HMMS to type II-HMMs as a result of the wider band gap. For 

example,  at the frequency 0.95 THz, this structure behaves as type-I HMMs for the separation 

distances 0.08 μm and 1.00 μm because it lies outside the band gap. As the separation distance increase 

to 2.00 μm and 3.00 μm , this frequency becomes appear inside the band gap, and thus the structure 

transforms to the type-II HMMs. These transformations of the EFCs are clearly shown in Fig. 5.8 (d) at 

the frequency 0.95 THz. For the separation distances 0.08 μm and 1.00 μm, 
 eff

yk  are propagating 
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(a) (b)

(c)

(a) (b)

(c)

waves at 
 eff

0xk  , and the major axis is parallel to the 
 eff

yk . Therefore, the structure is type-I HMMs 

for these separation distances.    

 

 

 

 

 

 

 

 

 

 

 

 

                    

 

 

 

 

 

 

Fig. 5.7. (a) EFC over the first Brillouin zone of the 
 eff

xk , (b) the RHS of Eq. (5.8) as a function of 
 eff

xk  , and (c) 

the order-corrected EFC over the first Brillouin zone of the 
 eff

xk , for the N=10 stacked grating/dielectric layers at 

frequency 0.997 THz. The parameters of the structure are the same as those in Fig. 5.5.       

 

However, for the separation distances 2.00 μm and 3.00 μm, 
 eff

0yk   at 
 eff

0xk   which means that 

they are not-propagating, and the major axis is parallel to the 
 eff

xk . Therefore, the structure is type-II 

HMMs with these separation distances. The band gap plays important role in the transformation from 

one type of the HMMs to another type of HMMs, and thus we discuss it in more detail. The band gap is 

not neither originated by an individual coupling parameter nor the dispersion function alone, but it 

occurs when the amplitude of the RHS of Eq. (5.8) exceeds one, that is when 

      out in 2 out2

0 0 0Re 1 / 2 1A B A   
 

. Therefore, the band gap is originated by the effective model itself. 

We impose the condition that the 
 eff

yk  exist, and it must satisfy the condition in Eq. (5.8). However, 

when the amplitude of   eff
cos yk L  exceeds one as shown in Fig. 5.8 (c), the real part of the 

 eff

yk  

becomes zero and the imaginary part is positive (we select the positive due to the causality). That 

means the electromagnetic waves decay inside the structure, they are not the propagating waves. Fig. 

5.8 (c) clearly shows that the frequency region where the amplitude of   eff
cos yk L  exceeds one is 
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wider by increasing the separation distance. The centre of the band gap is determined by the peak of the 

amplitude of   eff
cos yk L  , and it shifts to lower frequency by increasing the separation distance.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8. (a) Transmission spectra, (b) dispersion relation, (c)   eff
cos yk L  as a function of frequency, and (d) 

EFCs at the frequency 0.95 THz, of the N=10 stacked grating/dielectric layers for four separation distances 

between the gratings as indicated in the figures. The structure is excited by the TM incident light with the normal 

incidence. The parameters of the structure are the same as those in Fig. 5.5.           
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 5.2.2 The causality    

 

 

 

 

 

 

 

 

 

 

Fig. 5.9. The schematic for the discussion of the causality. Description of the figure is given in the main text. 

 

 The causality is the principle of cause and effect. In optics, it means that we cannot have light 

energy if we don't create light. We discuss this principle in more detail in this section to apply it to 

retrieve the effective parameters. Consider two semi-infinite media whose interfaces are met at the y=0 

plane (xz-plane) as shown in Fig. 5.9.  The medium in the region 0y   is defined as air while the 

medium in the region 0y   is defined as the HMMs-I. We generate the transverse-magnetic (TM) 

light at the point A, where the magnetic field is parallel to the z-axis and electric fields are parallel to 

the xy-plane, close to the interface y=0, and then beam the light onto this interface. The incident light is 

evanescent wave with 
0xk k . Therefore, it can couple to large wavevector of the HMMs-I and then 

propagate through the HMMs-I. The Maxwell's equations allow the propagation of the forward 

travelling wave in which 
 eff

0yk   and the backward travelling wave in which 
 eff

0yk   

simultaneously. They can exist only if the causality is satisfied. Suppose we can place the detector 

inside the HMM-I and detect light at the position B. The light energy that we receive at this position 

must come from the interface y=0  as indicated by the blue arrow. Therefore, the component of the 

Poynting vector along the y-axis must be positive, that is the group velocity must be positive. The y-

component of the time-averaged Poynting vector in the HMM-I (and also HMM-II) can be expressed 

as                       

                                                               

 

 

 
eff

2
T

eff

02

y

zy

x

k
H

 
S ,                                                     (5.13) 

where 
 T

zH  denotes the amplitude of the forward or backward travelling wave (T stands for 

transmitted). Therefore, the forward travelling wave requires the positive 
 eff

x  while the backward 

travelling wave requires the negative 
 eff

x  so that the energy is propagating out from the interface. 

This is what we mean by the causality here. If we chose the positive 
 eff

x  for the backward travelling 

wave, we would obtain the energy propagating into the interface. The same fate would occur if we 

chose the negative 
 eff

x  for the forward travelling wave. In both latter cases, the light is fast-light or 

superluminal [88], which is non-physical in our structure.         
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 5.2.3 The effective parameters 

   

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 5.10. (a) 
 eff

x of the N=10 stacked grating/air layers at different incident angles indicated in the figure. (b) 

 eff

z  of the N=10 stacked grating/air layers at the normal incident angle. The parameters of the structure are the 

same as those in Fig. 5.5.           

 

 

 Fig. 5.10 (a) shows the 
 eff

x  as a function of frequency for different incident angles. The 

 eff

x  does not change by varying the incident angles which means that they are uniquely determined. 

Moreover, the 
 eff

x  is independent on the sign of the 
 eff

yk  according to Eq. (5.12).   The 
 eff

x  is zero 

at the frequency within the narrow frequency band [0.9987,0.9988] where its sign is changed. This 

position is very close to the FP which is at 0.9989 THz. Therefore, the 
 eff

x  is  negative below the FP, 

but it  become positive above the FP. This means that the FP is the artificial plasma frequency of this 

structure in the view of the free electron model (Drude's model). The negative response along the x-axis 

is due to the excitation of the spoof surface plasmons (SSPs) propagating slowly along the interface of 

the grating with height h=150 μm. Above the FP, the large wavevectors are no loner supported, and 

thus there are no neither type-I nor type-II HMMs because there are no more SSPs within this 

frequency band. Fig. 5.10 (b) shows the 
 eff

z  as a function of frequency obtained from the 
 eff

yk  and 

 eff

x  at the normal incidence. We are reminded that we restrict the condition of the sign on 
 eff

z  in 

such a way that it satisfies the EFC and the causality at each frequency. The 
 eff

z  has similar 

behaviour as the 
 eff

x , but the zero position is different. The zero of 
 eff

z  lies in the narrow frequency 

band [0.9969,0.9970] where 
 eff

z  changes its sign. This position is not the same as FP, but it locates 

very close to the low-energy-side edge of the band gap below the FP. Therefore, it is determined by the 

frequency position where the HMMs change type or the 
 eff

yk  at the normal incidence transforms from 

the propagating wave to non-propagating wave and vice versa.      

 Because we will compare the analytical solutions working at the frequency f=0.997 THz with 

our effective medium model, we also fit the EFC at the frequency f=0.997 THz as shown in Fig. 5.7 (a) 

for the 
 eff

y . We take into account only the  zeroth-order 
 eff

yk  which are below the first band gap at 

(a) (b)(a) (b)
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   eff
0.336 /xk p  .  At the frequency f=0.997 THz, we know from Fig. 5.10 (a) and (b), 

respectively, that 
 eff 38.6786 10x

    and 
 eff 52.9027 10z

  . Then, by applying the non-linear 

least square method, we obtain the fitted 
 eff 32.1384 10y   . Therefore,  the retrieved 

 eff

y  is 

positively large number and we obtain the HMMs-II in which the major axis is along the 
 eff

xk . The 

fitted EFC at f=0.997 THz is shown by the black dashed line in Fig. 5.11 using this fitted 
 eff

y . We 

obtain the identical result as the original EFC within the zeroth-order EFC.  

 Lastly, we can obtain the critical angle of the Poynting vector with respect to the y-axis which 

is denoted by 
c . The concept of the critical angle in the HMMs comes from the EMA as it predicts 

that the infinitely large wavevectors can be supported by the HMMs. Then, all infinitely large 

wavevectors can propagate only in specific direction with respect to the y-axis because of the 

hyperbolic dispersion. Therefore, they propagate with the critical angle with respect to the y-axis which 

is given by Eq. (2.62). This behaviour forces the Ponyting vector to also propagate with the critical 

angle 
c  with respect to the y-axis. The two directions are different in the hyperbolic medium. In our 

structure, however, the large wavevectors are limited, and thus the angles of the large wavevectors with 

respect to the y-axis are not constant. Note that even the small difference in the propagation directions 

of the wavevectors can give the large difference in the positions of the images if the structure has long 

length comparing to the working wavelength. Therefore, the critical angle loose its meaning here. 

However, the term critical angle is already familiar to us. Then, we may still use this term with caution 

that it strictly refers to the "specific" large wavevector. We are reminded that the "large" is much larger 

than the wavenumber of light in air. We explain more about the trem "specific". Our testing object in 

the previous chapter is the slit array with the period 5 μm which is five times longer than the period of 

the slit of the lens. The object then emits many diffraction waves, but the most dominant terms with 

large wavevectors are the 1m   diffraction modes. Therefore, the "specific" large wavevectors are 

 eff
0.2 /xk p   where 1 mp   is the period of the slit of the lens. From Fig. 5.7 (a), the critical 

angle of this wavevector is ±89.8843˚. Then, by applying Eq. (2.63) with   and   replaced by 
 eff

x  

and 
 eff

y , respectively, we obtain the critical of the Poynting vector as 0.1152c    . In the next 

section, we will show that this critical angle predict the position of the image only 5 nm difference 

from the image position obtained by the analytical solutions. Therefore, this model gives the correct 

EFC and effective parameters. We will also show the dependence of the length of the lens on the image 

position. All results obtained by the analytical solutions can be explained by the effective model.   
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Fig. 5.11. The back dashed line shows the fitted EFC at f=0.997 THz using the effective 

parameters
 eff 38.6786 10x

   , 
 eff 52.9027 10z

  , and fitted 
 eff 32.1384 10y   . The red solid line is the 

original EFC within the first-order. 

 

 

 

5.3 Comparison with analytical solutions  

 

In Fig. 5.12 (a), we show the schematic of the subwavelength imaging over the long distance by using 

the stacked grating/air layers as the lens. The number of the gratings is defined by N. We will change N, 

and then check the normalized amplitude of the electric filed |E|/E0 behind the end interface of the lens. 

The subwavelength object is the array of the slits which is the same as the previous chapter. Fig. 5.6 (b) 

shows the |E|/E0  for N=10 drawn over two unit cells along the x-axis. We observe two images labelled 

by i1 and i2 in each unit cells. The positions of the i1 and i2 images along the end interface of the lens 

and in the positive unit cell (x>0) are at x=1.988 μm and 3.012 μm, respectively. The origins of these 

peaks can be understood by the critical angle of the Poynting vector 
c  obtained in the previous section. 

The effective medium model gives that 0.1152c    . Therefore, the energy from the object located at 

the origin (x=0) will form the image at the distance tan cx L   from the y-axis, where L is total 

length of the lens. For N=10, L=1500.72 μm, and therefore 3.017 mx  . This distance is only 5 nm 

larger than the position of the i2 image. Therefore, the i2 image in the positive unit cell (x>0) must 

come from the object at the origin and so as the i1 image in the negative unit cell (x<0). The i1 image 

in the positive unit cell (x>0) must come from the nearby objects and so as the i2 image in the negative 

unit cell (x<0). As the number of grating increase to N=14, the positions of the images shift to new 

positions as shown in Fig. 5.6(c). Now, the positions of the i1 and i2 in the positive unit cell (x>0) are 

at x=1.013 μm and 3.987 μm, respectively. The total length of the lens for N=16 is 2101.04 μm, and 

therefore the effective medium model predicts that the image of the object at the origin (x=0) will form 

the image at the new distance 4.224x   μm from the y-axis by using the same critical angle. This 
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distance is close to the position of the i2 image in the positive unit cell (x>0) . Therefore, the i2 image 

in the positive unit cell (x>0) must come from the object at the origin and so as the i1 image in the 

negative unit cell (x<0). This situation is just the same as the previous case. The difference between the 

image position predicted by the effective model and that obtained by the analytical solution is larger 

than the previous case due to the interference of the pulses of two images which is not accounted for by 

the effective medium model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.12. (a) Schematic view of the subwavelength imaging with the stacked grating/air layers. The number of 

grating is defined by N. All white regions are referred to air. The object as indicated by blue colour has size w0=1 

μm and the separation distance 5 μm. The red region indicates the observational region of the images formed 

behind the lens. (b)-(d) Normalized |E| for N=10 (b), N=14 (c), and N=16 (d), over the distance 2 μm from the end 

interface of the lens. The figures are drawn over two unit cells along the x-axis. The frequency is at f=0.997 THz.   

 

 

In the last case, the N=16 and L=2401.2 μm, the positions of the peaks are at 0 and 5 μm. The effective 

medium model with the same critical angle predicts that the image of the object at the origin will form 

at the distance 4.891 μm from the y-axis which is close to the distance between the object.                    

Therefore, the image at the center must be formed by the focusing of the energy from the nearby 

objects ( 5x    μm) of the object at the origin. The images in the rim are formed by the objects at the 

origin and the objects at the positions 10x   μm. Therefore, the analytical solutions are well agreed 

with the effective medium.            
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5.4 Equi-frequency contour (EFC) and effective parameters of different N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.13. (a) EFCs at the working frequency f=0.997 THz for different number of gratings N. (b) The same EFCs 

as Fig. 5.13 (a) but the y-axis is in the unit of the wavenumber of light in air k0.    

 

 

This section explains the effect of the number of grating layers N on the EFCs and the effective 

parameters. We start from the EFCs and then the effective parameters. Note that we show only in the 

case of the separation distance between the grating is  80 nm (the same separation distance as the 

section 5.3) and also only at the frequency 0.997 THz. The result is valid for any frequency which 

show the hyperbolic dispersion.       

 Fig. 5.13 (a) shows the EFCs  of the stacked grating/dielectric layers from N=2 to N=10 

number of gratings. The unit of the 
 eff

xk  is / p  where 1 mp  . It is about 150 times larger than 

the wavenumber of light in air k0 at this frequency. Therefore, the EFC of light in air is just a tiny circle 

from 
 eff

1/150 /xk p   to 
 eff

1/150 /xk p  . The unit of 
 eff

yk  is / L  where L  is length of the 

lens which is varied according to N  as  150 0.08 1  mL N N     where 150 μm is the height of the 

grating and 0.08 μm is the separation distance between the gratings. To be able to compare the EFCs of 

different N, we also plot the same EFCs with 
 eff

yk  in the unit of k0 in Fig. 5.13 (b).  For N=2, there are 

no band gaps within the first Brillouin zone of the 
 eff

xk . According to Fig. 5.13 (b), the 
 eff

yk  are 

relatively small comparing to those in another N. We also observe that the 
 eff

yk  are constant near the 

edges of the first Brillouin zone of the 
 eff

xk . Therefore, the large wavevectors in this structure send the 

energy parallel to the y-axis. As N increase to 4, we see similar EFC as that of the N=2, but the 
 eff

yk  

positively and negatively increase as shown in Fig. 5.13 (b). This means that direction of the energy 

propagation deviates from the y-axis by increasing the length of the lens. The 
 eff

yk  approach / L  

by increasing more grating layers, and we see the first band gaps appear when N=6. The 
 eff

xk  centres 

of the band gaps positively and negatively decrease by increasing N. Interestingly the critical angle of 

the specifically large wavevectors with respect to the y-axis within the first order of 
 eff

yk  converges as 

the number of N increases. Therefore, the critical angle of the Poynting vector also converges as N 

increases. By further increasing N, the number of narrow band gaps within the first Brillouin zone of 

(a) (b)(a) (b)
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 eff

xk  increases because higher order FP resonances are excited, and thus higher order 
 eff

yk  appear 

within the first Brillouin zone of 
 eff

xk  as shown for N=40 in Fig. 5.14 (a) as an example. There are up 

to five orders of 
 eff

yk  in this EFC. The order-corrected EFC of this figure is shown in Fig. 5.14 (b). 

The EFC shows the smooth curves because of narrow band gaps. We need to be aware that there are 

electromagnetic waves in Fig. 5.14 (b) which are not allowed to propagate inside the structure, and 

these electromagnetic waves can be seen in Fig. 5.14(a). Note that 
 eff

0.2 /xk p   are propagating 

waves with the first-order 
 eff

0.5545 /yk L  . The critical angle of the propagation direction of these 

waves is ±89.8780˚ which is slightly smaller than that of the N=10.    

 

 

 

 

 

 

 

 

 

 

Fig. 5.14. (a) EFCs at the working frequency f=0.997 THz for N=40 without the order correction. (b) The same 

EFCs as Fig. 5.14 (a) but with the order correction.   

 

 Next, we show the results of the effect of N on 
 eff

x . Before discussing those results, it is 

helpful to understand the negative and positive 
 eff

x  which are found in the spectrum first. This 

understanding will aid the discussion of the effect of N on 
 eff

x .  In Fig. 5.15 (a), we show the 
 eff

x  of 

the N=2 stacked grating/dielectric layer from 0.1-2.8 THz. It covers five FP resonances of the all-

connected gratings as indicated in the figure. The frequency difference is determined by / 2f c L   

where L  is length of the all-connected gratings, and thus the frequency difference of this structure is 

about 0.5 THz because 300 mL   . We have either positive 
 eff

x  or negative 
 eff

x  depending on the 

FP resonance. The negative 
 eff

x  occur only below the even-order FP resonances, while the 

positive
 eff

x  occur only below the odd-order FP resonances. Moreover, the negative 
 eff

x  diverge 

close to the odd-order FP resonances. These behaviours can be understood from Eq. (5.12) which is 

used to compute the 
 eff

x . Fig. 5.15 (b) shows the numerator and denominator of the 
 eff

x  as a 

function of frequency taking into account only the backward travelling waves   eff
0yk   due to the 

causality. This figure clearly shows that the negative and positive 
 eff

x  are originated by the / 2  out 

of phase between the numerator as indicated  by the red line and the denominator as indicated by the 

(a) (b)(a) (b)
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blue. They have different signs only in the second and fourth quadrants which lie below the even-order 

FP resonances, and thus the negative 
 eff

x  occur only below the even-order FP resonances. However, 

they have the same signs in the first and third quadrants which lie below the odd-order FP resonances, 

and thus the 
 eff

x  are positive below the odd-order FP resonances. The divergences of 
 eff

x , however, 

are not clearly seen in this figure. The divergence occurs when the denominator of 
 eff

x  is zero (or 

close to zero) which is at the FP resonance satisfying the condition   eff
sin 0yk L  , that is 

 eff

yk L j  

where j  is an integer. However, we see the divergences of 
 eff

x  only near the odd-order FP 

resonances, not the even-order FP resonances. This is because the frequency at the even-order FP 

resonance coincides with the zero of the numerator that is 
       eff eff

2Re / cos 0y y yi k k k L   , 

and thus 
 eff

x  does not diverge and becomes zero at this frequency. This condition occurs when 

 eff
0yk   at the even-order FP resonance. At the odd-order FP resonance, the 

 eff
/yk p   and the 

numerator of the 
 eff

x  is not zero, and the 
 eff

x  diverges.                                  

  

 

 

 

 

 

 

 

 

 

Fig. 5.15. (a) 
 eff

x  as a function of frequency of N=2 stacked grating/dielectric layers whose grating parameters 

are the same as those in Fig. 5.5. The FP resonant frequencies of the all-connected gratings with length 

150 300 mL N     are indicated in the figure. (b) Numerator (red line) and denominator (blue line) of 
 eff

x  

from Eq. (5.12) which is used to compute 
 eff

x  in Fig. 5.15 (a).           

 

 Now we can show the results of 
 eff

x  as N increases. Fig. 5.16 (a) shows that the increasing of 

N affects the 
 eff

x  due to the excitations of higher order FP resonances. Only the negative 
 eff

x  below 

the frequency about 1 THz and above its one-order-lower FP resonance are approximately constant. 

For example, the FP resonance at the frequency about 1 THz is the 40th-order FP resonance of the all-

connected gratings N=40, and the one-order-lower FP resonance of this structure is the 39th-order 

which is at the frequency about 0.975 THz. This frequency range is narrower by further increasing N 

because the frequency difference  between the FP resonances decrease. Therefore, we can estimate this 

region by considering the frequency difference between the FP resonances. For example, if N=250, 

(a)

f1 f2 f3 f4 f5

(b)(a)

f1 f2 f3 f4 f5

(a)

f1 f2 f3 f4 f5

(b)
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then 37.5 mmL  , and thus / 2 0.004 THzf c L   . Therefore, the negative 
 eff

x  of this structure 

in the narrow frequency range [0.9947,0.9987] THz are the same as the converged negative 
 eff

x  in the 

structures with shorter length (0.9987 THz is the FP resonance). Fig. 5.16 (b) shows the 
 eff

x  as a 

function of N at the working frequency 0.997 THz. The 
 eff

x  converges by increasing N at this 

frequency. The 
 eff

x  is converged at N=70 with the value 
 eff 38.95 10x

    with the error 0.01%. 

The reason that we stop at N=70 is that each parameter disp , 
TN , and 

RN  obtained by the closed-

form solutions become extremely large and it cannot be handled by the computer. This problem is 

called the overflow problem. Fortunately, the ratios T disp/N   and R disp/N   are finite. Therefore, this 

problem can be solved by calculating the 0th-order reflection and transmission coefficients from the 

single matrix equation with the LAPACK subroutine (partial-pivoting method).                                   

 

 

 

 

 

 

 

 

 

 

Fig. 5.16. (a) 
 eff

x  as a function of frequency of the stacked grating/dielectric layers with four different N 

indicated in the figure. The grating parameters are the same as those in Fig. 5.5. (b) 
 eff

x  as a function of N at 

0.997 THz.   

 

 Next, we show the results of the effect of N on 
 eff

z  in Fig. 5.17 (a). The behaviour of 
 eff

z  

can be explained in similar manner as 
 eff

x  taking into account that 
 eff

z  is negative if  
 eff

x  and 

 eff

yk  are both negative, but 
 eff

z  is positive if 
 eff

x  is negative and 
 eff

yk  is positive. The frequency 

range in which 
 eff

z  is independent on large N is the same as that of 
 eff

x . Fig. 5.17 (b) shows the 

 eff

z  as a function of N at the working frequency 0.997 THz. For 7N  , 
 eff

z  is negative and the 

structure behaves as type-I HMMs where 
     eff eff eff

0, 0, 0z x y     . For 8N  , 
 eff

z  is positive 

and the structure can behave as type-II HMMs if 
 eff

x  is negative that is 
     eff eff eff

0, 0, 0z x y     . 

The 
 eff

z  is converged at N=70 with the value 
 eff 57.47 10z

   with the error 0.30%.                 

 Next, we show the result of the effect of N on 
 eff

y  at the working frequency 0.997 THz 

which is obtained by fitting the EFC corresponding to each N from 
 eff

0.25 /xk p   to 

(a) (b)(a) (b)
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 eff
0.25 /xk p   covering our target wavevector 

 eff
0.20 /xk p  . The orders of 

 eff

yk  are 

corrected if they are greater than the zero-order 
 eff

yk  within this range of 
 eff

xk . The 
 eff

x  and 
 eff

z  

are taken from Fig. 5.15 (b) and 5.16 (b), respectively. The fitted 
 eff

y  as a function of N is shown in 

Fig. 5.18.  We see that the 
 eff

y  is positive for any N and drops as N increases. The 
 eff

y  is converged 

at N=70 with the value 
 eff 31.94 10y    with the error 0.05%.              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.17. (a) 
 eff

z  as a function of frequency of the stacked grating/dielectric layers with four different N 

indicated in the figure. The grating parameters are the same as those in Fig. 5.5. (b) 
 eff

z  as a function of N at 

0.997 THz.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.18. 
 eff

y  as a function of N at 0.997 THz. The grating parameters are the same as those in Fig. 5.5. 

 

 Lastly, we can also show the effect of N on the critical angle of the propagation direction of 

electromagnetic waves with the wavevectors having specifically the tangential component 

 eff
0.2 /xk p  , which is denoted by c , and the critical angle of the Poynting vectors, which is 

(a) (b)(a) (b)
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(a) (b)(a) (b)

denoted by 
c , corresponding to these electromagnetic waves. These critical angles must be carefully 

calculated. That is the order of the normal component 
 eff

yk  at 
 eff

0.2 /xk p   must be corrected 

considering the presence of the band gaps, and the 
 eff

yk  must be propagating waves (locate outside the 

band gaps). If one didn't take this into account, one would obtain the oscillating critical angles as    

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.19. (a) The critical angle of the propagation direction of the electromagnetic waves with the wavevectors 

having 
 eff

0.2 /xk p   as a function of N at the frequency 0.997 THz. (b) The critical angle of the Poynting 

vector corresponding to the wavevectors with 
 eff

0.2 /xk p   as a function of N at the frequency 0.997 THz. 

The grating parameters are the same as those in Fig. 5.5.  

 

a function of N which are not converged even at N=70. Fig. 5.19 (a) shows that the positive 
c  

decreases by increasing N and become converged at large N. The small peaks at N=32 and N=48 occur 

because the wavevectors are close to the edges of the band gaps. The 
c  is converged at N=70 with the 

value 89.9772 degree with the error 0.00004%. Fig. 5.19 (b) shows that the positive 
c  increases by 

increasing N. It is converged at N=70 with the value 0.1229 degree with the error 0.02%. This means 

that the critical angle of the Poynting vector in the long-length structure dose not perfectly parallel to 

the y-axis, and it can be estimated as 0.1229 degree at the working frequency 0.997 THz within the 

given errors.         
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5.5 Conclusion 

 

We have shown that the stacked grating/dielectric layers are HMMs working in the THz radiation band 

by using the new effective medium model based on the closed-form solutions of the reflection and 

transmission coefficients of these structures. The types of HMMs depend on the frequency and the 

geometry of the structures. The type-I HMMs have 
 eff

0x  , 
 eff

0z  , 
 eff

0y  , and the type-II 

HMMs have 
 eff

0x  , 
 eff

0z  , 
 eff

0y  , both exist below the FP resonance in which the SSPs are 

excited. The Poynting vectors in both structures have opposite sign along the propagation axis as that 

of the phase velocity, and only the backward travelling waves send the energy to the image plane due 

to the causality. The critical angle of the Poynting vectors from the effective medium model can 

satisfyingly explain the formations of the images behind the structures obtained by the analytical 

solutions. We have discussed the effect of the number of gratings N on the EFC and the effective 

parameters. The effective parameters 
 eff

x , 
 eff

y ,
 eff

z , and also the critical angle of the Ponyting 

vector are converged by increasing N  below the FP resonance about 1 THz where 
 eff

x  is negative.   
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Summary  

 

The non-ionizing radiation energy of the terahertz (THz) allows us to explore the microscopic worlds 

without harm if we can go beyond the diffraction limit that restricts the optical resolution to 

approximately the wavelength of the THz light. The diffraction limit is caused by the decay of the 

electromagnetic waves with large wavevectors called the evanescent waves or the near-fields so that 

only the far-fields with small wavevectors exist on the image plane. The hyperbolic metamaterials 

(HMMs) can support the propagation of the near-fields, and they can transform the decaying near-

fields into the propagating far-fields if they are bent into the cylindrical shape called the hyperlens. 

This thesis gives the new structures that behave as the HMMs in the THz radiation band, and we also 

gives the analytical solutions of the hyperlens which can be applied to the new HMMs. Therefore, this 

thesis may lead to the practical structures and the physical limit of the THz hyperlens that can 

transform the near-field signal from the microscopic worlds into the far-field signal that we can detect 

with the conventional instruments. 

 We have organized the thesis in the chronological order. First, we are inspired by the 

invention of the hyperlens in the optical band. Then, we have learned that the FDTD simulation is slow 

and inaccurate when the wavelength is much longer than the size of the hyperlens. We cannot 

definitely work in the nanoscale with the THz if we keep using the FDTD simulation, and therefore we 

develop the new analytical solutions which allow us to efficiently optimize the imaging performance of 

the hyperlens in the chapter 2. We always check the analytical solutions with the FDTD simulation 

using the simple structures, and then we apply the analytical solutions to the structures which are 

impossible to solve with the FDTD. The hyperlens in the chapter 2 are made by alternating metal and 

insulator layers with finite dielectric constants. By giving the finite dielectric constants of the metals, 

we have shown in the chapter 2 that the subwavelength focal spot and the magnifying resolution can be 

optimized. As we try to apply these analytical solutions to the THz band, however, the dielectric 

constants of the metals become infinity because they are highly electrical conducting, and thus the 

transmittance is exactly zero. However, we can imitate the surface plasmons which exist naturally on 

the surface of the metals in the optical band by perforating the metals with holes to create the spoof 

surface plasmons (SSPs). We use the SSPs on the surface of the metallic grating, combine the grating 

with the dielectric layer to form the unit cell, and then stack the unit cell to make the new HMMs for 

the THz. We explain the analytical solutions of the stacked grating/dielectric layers in the chapter 4. 

The analytical solutions allow us to demonstrate the deep-subwavelength imaging, to explain the 

excitations of the quasi-waveguide resonances that can affect the image's intensity, and to show the 

deep-subwavelength imaging over the long distance. Our analytical solutions are general, and they may 

lead to the novel structures. However, these solutions cannot be accomplished without the solutions of 

the simpler structures : dielectrics/grating/dielectrics structures. Therefore, we explain the analytical 

solutions of the dielectrics/grating/dielectrics structures in the chapter 3 before the analytical solutions 

of the stacked grating/dielectric layers in the chapter 4. These analytical solutions also lead to the novel 

structures for subwavelength sensing which rely on the perfect absorption and the ultrahigh Q-factor of 

the SSPs. By monitoring the frequency shift of the resonant peak or the drop of the absorbance, the 
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subwavelength film with film thickness down to a few nanometre can be detected with the THz 

radiation. The chapter 3 is the good example of the novel structure which is realized from our analytical 

solutions. In order to clarify that the stacked grating/dielectric layers are HMMs, we develop new and 

simple effective medium model in the chapter 5 by taking into account the reflection and transmission 

coefficients of these structures. We can draw the contour between the components of effective 

wavevectors, and therefore we can show that the stacked grating/dielectric layers are indeed the HMMs 

in the particular frequency band. The type of HMMs depend on the frequency and the separation 

distance between the gratings. The effective medium model predicts that the direction of the energy 

propagation in these HMMs is bent from the normal axis, and it can satisfyingly explain the image 

formations from the analytical solutions.  

 It is not straightforward to apply the analytical solutions of the hyperlens developed in the 

chapter 2 to the stacked grating/dielectric layers explained in the chapter 4 and 5. Fortunately, it is also 

not too difficult. We need to change the forms of the electromagnetic fields inside the hyperlens by 

considering the hyperlens as the homogeneous hyperbolic medium described by the effective 

parameters given in the chapter 5. The electromagnetic fields in the core region and the outer region 

remain the same. The new field coefficients are then easily obtained by applying the boundary 

conditions on the innermost and the outermost interfaces of the homogenized hyperlens. The 

experiment would be challenge but we encourage the experimenters to pursue these structures as they 

make no loss in the structures and thus allowing the magnification over the long distance.  

 This thesis can be readily extended to the two-dimensional imaging by replacing the grating 

with the circular or rectangular hole arrays. The analytical solutions will not change their forms, and 

only the four coupling parameters : one parameter in the input region, two parameters between the two 

gratings, and one parameter in the output region will change their forms. These coupling parameters are 

determined by the scalar products between the two-dimensional diffraction waves and the waveguide 

modes in the hole arrays. Although the analytical solutions can be extended into the infrared and the 

optical band by taking into account the surface impedance boundary conditions of the metals, but the 

intrinsic loss in the metal will always hamper the magnifying resolution in these radiation bands. 

Therefore, the dielectric structures and metasurfaces may be more suitable than the bulk noble metals 

in the infrared and the optical bands.                 
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Appendix 

 
Here, we explain the computer programs of the analytical solutions used in each chapter. All computer 

programs are written in FORTRAN language which can be simply compiled by the command "gfortran 

file.f90 -o output". Then, the program can be run by the command "./output". All output files are 

written in GNUPLOT formats which are just the column containing the independent and dependent 

variables. The meaning of each column can be seen in the output writing statement which is always 

near the end of the main program, and the meaning of each variable can be seen in the comment of that 

variable in the section of the variable declaration. Note that one file may contain many columns for 

convenience of the author in the analysis. The programs explained in this appendix are given in the 

CD-ROM. All codes can be edited as wishes. But please cite our original paper which is related to that 

computer code if you use the code for your publication. The questions can be sent directly to the author 

via an unofficially e-mail : p_epsilon@yahoo.com.    

 

A1. Chapter 2   

 A1.1 Focusing process  

 The name of the computer program for the focusing hyperlens is "hypfocus.f90".  The input 

variables such as the wavelength, the geometry of the hyperlens, the dielectric constants, and the 

maximum number of order m are defined in the beginning of the main program. The main program also 

contains the section of obtaining field coefficients. All field coefficients are stored in the aj (for the 

Hankel function of the first kind) and bj (for the Bessel function) variables. The ranges of these field 

coefficients and the region in the hyperlens corresponding to them can be seen in the variable 

declaration section. The intensity distribution is obtained by calling the "splane" subroutine, and the 

intensity profile is obtained by calling the "scurve" subroutine. In the optimization process, we usually 

calculate the intensity profiles along the desired curve by calling the "scurve" subroutine. After 

obtaining the sharp focusing, we then obtain the intensity distribution by calling the "splane" 

subroutine in order to accompany our discussion. The output files are declared in the subroutines.            

 A1.2 Magnifying process 

 The name of the computer program for the magnifying hyperlens is "hypmagfy.f90". This 

program has the same structure as the "hypfocus.f90". The only difference is the section of obtaining 

field coefficients. The locations of the point sources in the magnifying process are in the core region 

while the locations of the point sources in the focusing process are in the outer regions. Therefore, the 

scattering parameters in both processes are different as described in the main text.       

  If we use these programs in the extreme cases such as very small thickness of the CCL, vey 

small inner radius, and very large number of the CCL, we need to be very careful about the underflow 

(too small) and overflow (too large) of the special functions and the fields coefficients. Therefore, it is 

better to always check the behaviour of the special functions and the field coefficients within these 

extreme cases.   
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A2. Chapter 3 

The codes in this chapter take only the fundamental waveguide mode of the slit into account. Therefore, 

they are valid in the regime where the slit width is much more smaller than the wavelength of light. 

How small is not addressed in this chapter. More works are needed in order to quantitatively answer 

this problem. As far as we can tell, the smaller the slit width, the sharper the resonant peak. Therefore, 

if one wants to make a structure for broadband sensing, one needs wider slit width (or smaller rod), and 

the analytical solutions in this chapter are definitely not useful unless we can find the truly analytical 

solutions by including all waveguide modes into one single expression.     

 A2.1 Comparison with FDTD simulation  

 The analytical transmission spectrum in Fig. 3.3 (a) is obtained by using the computer 

program "hybridlens_spectra.f90". The reflection and transmission coefficients are computed in the 

main program. At the beginning of the main program, the parameters of the structures are defined, and 

the meaning of each parameter is given by the comment in the variable declaration section. The 

coupling parameters 
 in

sG  and 
 out

sG  are obtained by calling the subroutines "ginf_s_in_1layer_sub" 

and "ginf_s_out_1layer_sub", respectively.    

 The  amplitude of the electric field in Fig. 3.4(a)-(c) is obtained by using the code 

"hybridlens_field.f90". All field components are computed in the main program. The parameters of the 

structure are defined at the beginning of the program.  

 The dispersion relation in Fig. 3.5 is obtained by using the code "hybridlens_disp.f90".  In the 

main program, the user is required to define the parameters of the structure and then the range of the 

interested frequency. After running the program, the user needs to specify the tangential component of 

the wavevector in the unit of / p . Then, the program will find the frequencies within the specified 

frequency range that satisfy the resonant condition that is the dispersion function is zero. The program 

does this by checking the change of the sign of the real part of the dispersion function when the 

frequency increases a little bit. If the program succeeds, both real part and imaginary part of the 

dispersion function will be shown up, and the user can check whether the mode is allowed or not by 

looking at the imaginary part of the dispersion function. The non-allowed mode has zero real-part of 

the dispersion function, but large imaginary-part of the dispersion function. The allowed mode will 

have small numbers of both real and imaginary parts of the dispersion function. When the user 

computes the dispersion relation, we do not encourage to compute it automatically. The computation of 

the dispersion relation should be as careful as possible, and the result should be compared with the far-

field spectra. 

 A2.2 Perfect absorbers for subwavelength sensing  

  The absorption spectra of the back-perfect absorbers (back-PAs) in Fig. 3.10 (a) are obtained 

by using the code "hybridlens_backPA.f90". The structure of this code is exactly the same as the 

"hybridlens_spectra.f90". We only change the 
 in

sG  and 
 out

sG  parameters. Moreover, the reflection 

coefficients will take the new form as defined in the main program. The program computes the 

reflectance from the reflection coefficient, and the absorbance is directly obtained from the reflectance 

via the relation A=1-R because the transmittance is zero.  
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 The electric field distributions inside the spacer between the grating and the metallic plane in 

Fig. 3.10 (a) and (b) are obtained by using the code "hybridlens_backPA_spacer.f90". The electric field 

distribution in front of the grating of the back-PA in Fig. 3.11 is obtained by using the code 

"hybridlens_backPA_input.f90".  

     The absorption spectra of the front-perfect absorbers (front-PAs) in Fig. 3.12 are obtained 

by using the code "hybridlens_frontPA.f90". The structure of this code is exactly the same as 

"hybridlens_backPA.f90" but the 
 out

sG  is infinite for the front-PAs and it can be eliminated from the 

expression of the reflection coefficient. The exact form of the reflection coefficient of the front-PAs is 

given in the main program. The distributions of the electric field in front of the grating of the front-PAs 

in Fig. 3.12(c)-(e) and Fig. 3.13 are obtained by using the code "hybridlens_frontPA_input.f90".  

 A2.3 Sensitivities of perfect absorbers as subwavelength film sensors  

 Fig. 3.14 (b) is obtained by the code "hybridlens_frontPA_sens1.f90". This code is just the 

extension of the code "hybridlens_frontPA.f90" where the 
 in

sG  is changed to the case of M=2 due to 

the presence of the thin film next to the front-PA. Fig. 3.14 (c) is obtained by using the code 

"hybridlens_frontPA_sens2..f90". Fig. 3.14 (d) is obtained by using the code 

"hybridlens_frontPA_sens3..f90" that considers the frequency shift of the Wood's anomaly. Fig. 3.14 

(e) and (f) which show the decrease of the absorbance at the resonant frequency as a function of the 

variation in refractive index and the film thickness, respectively, are obtained by the codes 

"hybridlens_frontPA_sens4.f90" and "hybridlens_frontPA_sens5.f90" , respectively.         

     

A3. Chapter 4 

The analytical solutions developed in this chapter take into account all waveguide modes. However, we 

mostly use the code taking just the zero fundamental waveguide mode because we work in the deep-

subwavelength regime, the slit width is 1,500 times smaller than the working wavelength. Therefore, 

only the fundamental waveguide mode is sufficient in our case.  

 A3.1 Comparison with FDTD simulation 

  Fig. 4.3 (a) can be obtained by both the general code taking into account all waveguide modes 

and by the closed-form code taking into account only the fundamental waveguide mode. The Fig. 4.3 

takes only the fundamental waveguide mode into account, and we obtain the great consistent spectra 

with the FDTD simulation. The name of the general code is "hybridlens_1wvg_gen.f90", and the name 

of the closed-form code is the "hybridlens_1wvg_closed.f90".  These two codes can be applied to only 

the case where the number of the waveguide in the superlattice of the front grating (G0 grating) is one. 

The position of the waveguide within the superlattice can be varied via the variable xj. In the case of 

any number of waveguide inside the superlattice such as in Fig. 4.3, we use the general code namely 

"hybridlens_nwvg_gen.f90" to compute the optical spectra. We always check that the absorbance from 

the analytical solutions has to be zero because there is no loss in the structure.  

 A3.2 Subwavelength imaging with one grating/dielectric metamaterial  

 The electric field behind the grating in Fig. 4.6 is obtained by using the code 

"hybridlens_image_1g_field.f90" taking into account only the fundamental waveguide mode. The 

transmission spectra in Fig. 4.7 (a) is calculated by using the code "hybridlens_image_1g_spectra.f90".  



 127 

The electric field inside the gap between the object (G0) and the grating (G1) in Fig. 4.8 (b) is obtained 

by using the code "hybridlens_image_1g_field_QWR.f90".  

 A3.3 Subwavelength imaging over long-distance with stacked grating/dielectric layers  

 The electric field distributions behind the stacked grating/dielectric layers in Fig. 4.9 are 

obtained by using the code "hybridlens_longimage_field.f90" and their optical spectra can be obtained 

by using the code "hybridlens_longimage_spectra.f90". The field profile in Fig. 4.10 can be easily 

obtained by using the code "hybridlens_longimage_field.f90".  

 

A4. Chapter 5 

Even though the formulae for obtaining the effective parameters look simple, but they require careful 

consideration to obtain the correct results. The correct results mean that they are consistent with the 

analytical solutions, FDTD simulation, or the experiments that one performs. We show in the chapter 5 

that our effective medium model gives the consistent results with the analytical solutions, at least in the 

particular frequency range. Therefore, it is worthy to give the codes for the further consideration in the 

future.  

 A4.1 Method of retrieving effective parameters  

 The code for Fig. 5.2 is given in the file named "efm_fig52.f90". Notice that "efm" stands for 

effective medium model and the word after the underscore refers to the figure in the main text with the 

"." neglected. We use this notation to call all codes in this chapter. The EFC in Fig. 5.3 is obtained by 

using the code "efm_fig53.f90", and the effective reflection and transmission coefficients are obtained 

by using the code "efm_fig54.f90". These codes are very straightforward. First, we obtain the reflection 

and the transmission coefficients of the stacked grating/dielectric layers by using the closed-form 

formulae, and then we convert these coefficients into the effective reflection and transmission 

coefficients by using the effective medium model. The more technical details are referred to the main 

program.       

 A4.2 Method of retrieving effective parameters 

        The code for Fig. 5.5 (b) is given in the file named "efm_fig55b.f90". The EFCs of the N=10 

stacked grating/dielectric layers at some frequencies shown in Fig. 5.6 are obtained by using the code 

named "efm_fig56.f90". This code can be used for any number of grating layer. The order-corrected 

EFC in Fig. 5.7 (c) is obtained by using the code named "efm_fig57c.f90". The effective dielectric 

constant as a function of frequency in Fig. 5.10 (a) is obtained by using the code named 

"efm_fig510a.f90", and the effective magnetic permeability in Fig. 5.10(b) is obtained by using the 

code named "efm_fig510b.f90". These two codes can be applied to any number of grating layer.     
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