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Summary

1.1 Introduction

The thesis is concerned with discrete-time quantum walks on the d-dimensional integer

lattices. The notion of quantum walks was introduced by Y. Aharonov et al. [2] as a

quantum analog of the classical one-dimensional random walks. It was re-discovered in

computer science by several authors, for instance, [1], [5], [28] around 2000 and recently

quantum walks have been intensively studied in connection with quantum computing [4],

[13], [31], [34] and quantum physics [3], [17]. It is known that the long time asymptotic

behaviors of the transition probability of quantum walks on the one-dimensional lattice

are quite different from that of classical random walks. The study of quantum walks on

higher dimensional integer lattices has attracted much attention and explicit computation

of their long time behavior were advanced by many authors intensively in [10], [14], [15],

[24], [30], [35], for instance. In the thesis, we propose a new model to contribute in the

study of quantum walks on higher dimensional integer lattices.

We employ the framework introduced by T. Tate in 2014 [35]. He defined the notion

of a periodic unitary transition operator on the Hilbert space ℓ2(Zd,CD) consisting of

square summable functions on the d-dimensional integer lattice with values in a complex

vector space CD.

Let U be a periodic unitary transition operator on ℓ2(Zd,CD). Every non-negative

integer n and φ ∈ CD with |φ|2CD = 1, the n-step transition probability with initial state φ

and initial position x = 0 is defined by

pn(x;φ) = |(Un(δ0 ⊗ φ))(x)|2CD .

Basic interests lie in asymptotic behaviors of the transition probability pn(x;φ). For ex-

ample, there are following problems.

• To determine the weak-limit distribution of pn(x;φ) as the time n goes to the infinity.

• To investigate the localization of pn(x;φ).
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Here, the transition probability for U with initial state φ ∈ CD with |φ|CD = 1 is said to

be localized at a vertex x ∈ Zd if

lim sup
n→∞

pn(x;φ) > 0.

This phenomenon is one of typical properties for discrete-time quantum walks [15], [16],

[35], [36] which is not seen for usual classical random walks.

The purposes of the thesis are

• to study of limit distributions of discrete-time quantum walks on the d-

dimensional integer lattices.

• to construct discrete-time quantum walks with localization.

1.2 Discrete-time quantum walks on the d-dimensional

integer lattice

In this section, we explain the setting for discrete-time quantum walks on the d-dimensional

integer lattice introduced by T. Tate [35]. Let U be a unitary operator on the Hilbert

space ℓ2(Zd,CD), where D is a positive integer. For f, g ∈ ℓ2(Zd,CD), the inner product

on ℓ2(Zd,CD) is defined by

⟨f, g⟩ =
∑
x∈Zd

⟨f(x), g(x)⟩CD , f, g ∈ ℓ2(Zd,CD), (1.2.1)

where | · |CD and ⟨·, ·⟩CD are the standard norm and the inner product on CD. For each

x ∈ Zd and φ ∈ CD, define δx ⊗ φ ∈ ℓ2(Zd,CD) by

(δx ⊗ φ)(y) =

φ x = y,

0 x ̸= y , y ∈ Zd.

Definition 1.2.1 (Shift operator). For i = 1, 2, · · · , d, the shift operator τi on the Hilbert

space ℓ2(Zd,CD) is defined by

(τif)(x) = f(x− ei) (f ∈ ℓ2(Zd,CD), x ∈ Zd),

where {e1, e2, · · · , ed} denotes the standard basis of Zd over Z.
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For α =
d∑

i=1

αiei ∈ Zd, we define the shift operator τα such as

τα = τα1
1 · · · ταd

d .

Definition 1.2.2 (Periodic unitary transition operator). A unitary operator U on

ℓ2(Zd,CD) is said to be a periodic unitary transition operator if it satisfies the following

two conditions.

(1) There exists a finite set S ⊂ Zd, called the set of steps, such that for any x ∈ Zd,

y ∈ Zd \ (x+ S) and any φ ∈ CD, we have (U(δx ⊗ φ))(y) = 0.

(2) The unitary operator U commutes with the natural action of the abelian group Zd on

ℓ2(Zd,CD), namely for each α ∈ Zd

U ◦ τα = τα ◦ U.

To analyze long time behaviors of quantum walks defined by periodic unitary transition

operators, we use the Fourier transform. Let T d be the d-dimensional torus in Cd defined

by

T d = {z = (z1, . . . , zd) ∈ Cd; |zi| = 1 (i = 1, . . . , d)}.

Let L2(T d,CD) be the Hilbert space consisting of all square integrable functions on T d with

values in CD and νd be the normalized Lebesgue measure on T d; namely

L2(T d,CD) =
{
f : T d −→ CD; ∥f∥2 =

∫
T d

|f(z)|2CD dνd < ∞
}
.

Definition 1.2.3. The Fourier transform of f ∈ L2(T d,CD) is defined by the integral

(Ff)(x) =

∫
T d

zxf(z)dνd(z),

where a lattice point x = (x1, · · · , xd) ∈ Zd and we write zx = zx1
1 · · · zxd

d for a point

z = (z1, · · · , zd) in the complex tours (C \ {0})d.

Then the inverse of the Fourier transform F∗ is given by

(F∗g)(z) =
∑
x∈Zd

g(x)z−x (g ∈ ℓ2(Zd,CD), z ∈ T d).
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Definition 1.2.4. For a periodic unitary transition operator U , we define a unitary oper-

ator U on L2(T d,CD) by the formula

U = F∗UF .

Remark 1.2.1. For any f ∈ L2(T d,CD) and z ∈ T d, we have

(Uf)(z) = Û(z)f(z),

where a D ×D unitary matrix Û(z) is given by

Û(z)φ = U(1⊗ φ)(z).

It is important for us to analyze the eigenvalues of the matrix-valued function Û(z) on

T d. This method was proposed in G.Grimmett-S.Janson-P.F.Scudo [11]. It has a key role

on showing Theorem A, Theorem D and Theorem E.

1.3 Discrete-time quantum walks on the square lattice

To explain Theorem A, let A = (ai,j)i,j=1,2,3,4 be a four-by-four unitary matrix. The matrix

A is decomposed as

A = P1 + P2 + P3 + P4

to define a quantum walk on the square lattice. Here Pi is defined by

Pi =



0 0 0 0
...

...
...

...

ai1 ai2 ai3 ai4
...

...
...

...

0 0 0 0


(i = 1, 2, 3, 4).

Definition 1.3.1 (Quantum walk). A quantum walk on the square lattice with four-state

is described by a unitary operator UA : ℓ2(Z2,C4) → ℓ2(Z2,C4) defined by

UA = P1τ1 + P2τ
−1
1 + P3τ2 + P4τ

−1
2 . (1.3.1)
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The equation (1.3.1) means that a particle moves at each step either one unit to the right

with matrix P1 or one unit to the left with matrix P2 or one unit to the up with matrix P3

or one unit to the down with matrix P4.

Let (Xn, Yn) be a random vector taking values in Z2 with the distribution µ given by

the transition probability µ(A) =
∑

(x,y)∈A pn((x, y);φ), A ⊂ Z2. The joint moments of

two-random variables Xn and Yn is defined by

E[Xα
nY

β
n ] =

∑
(x,y)∈Z2

xαyβpn((x, y);φ).

We have the following limit theorem for the discrete-time quantum walk associated with a

unitary matrix A1

A1 =


0 0 − 1√

2
1√
2

0 0 1√
2

1√
2

1√
2

− 1√
2

0 0

1√
2

1√
2

0 0

 . (1.3.2)

Theorem A ([19]). For any initial state φ = t
(
φ1, φ2, φ3, φ4

)
∈ C4 with

4∑
i=1

|φi|2 = 1,

the following holds.

lim
n→∞

E
[(

Xn

n

)α(
Yn

n

)β]
=

∫ ∞

−∞

∫ ∞

−∞
xα yβ

4χΩ(x, y)

π2(1− 4x2)(1− 4y2)
m(x, y)dxdy,

where

Ω =

{
(x, y);x2 + y2 <

(
1

2

)2
}

and the weight function m(x, y) of the density function is given by

m(x, y) = 1− 2

(
(|φ2|2 − |φ1|2)x+ 2Re(φ2φ1)y

)
− 2

(
(|φ4|2 − |φ3|2)y + 2Re(φ3φ4)x

)
.

The transition probability for this quantum walk is not localized at any point on the

square lattice. A particle diffuses in four directions, right, left, up and down.
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1.4 Alternate quantum walks

1.4.1 Relationships between our quantum walks and alternate

quantum walks

In this subsection, we treat discrete-time quantum walks introduced by C. Di Franco et

al. [9], [10]. It is called alternate quantum walks. We consider relationships between

alternate quantum walks and our quantum walks, that is the quantum walk defined by the

coin matrix A1 given in (1.3.2).

In the standard model of the discrete-time quantum walks on the square lattice, a

particle moves in four directions, right, left, up, down in one step. On the other hand, in

the case of alternate quantum walks, a particle is permitted to move in the x-axis direction

or in the y-axis direction of the square lattice lattice alternately. Namely, at first a particle

moves either one unit to the right or one unit to the left and next moves either one unit

to the up or one unit to the down. A particle moves from the origin to the four sites

(1, 1), (−1, 1), (1,−1) and (−1,−1). A particle repeats this motion on the square lattice.

An alternate quantum walk on the square lattice is defined by a unitary operator on the

Hilbert space ℓ2(Z2,C2).

To explain the set-up of an alternate quantum walk, we consider the Hilbert space

ℓ2(Z2,C2) with the inner product defined by (1.2.1). We denote the shift operator on

ℓ2(Z2,C4) by τi, on ℓ2(Z2,C2) by σi.

Definition 1.4.1 (Shift operator). For f ∈ ℓ2(Z2,C2) and (x, y) ∈ Z2, the shift operators

on the Hilbert space ℓ2(Z2,C2) σ1, σ2 are defined by

(σ1f)(x, y) = f(x− 1, y), (σ2f)(x, y) = f(x, y − 1).

Now, we prepare a two-by-two unitary matrix C in order to define an alternate quantum

walk. Let C = (ci,j)i,j=1,2 be a two-by-two unitary matrix. Decompose the matrix C as

C = Q1 +Q2,
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where Qi is defined by

Q1 =

 c11 c12

0 0

 , Q2 =

 0 0

c21 c22

 . (1.4.1)

By using the shift operators σ1, σ2 and a two-by-two unitary matrix C, we define an

alternate quantum walk on the Hilbert pace ℓ2(Z2,C2).

Definition 1.4.2 (Alternate quantum walk). Alternate quantum walks are described

by the unitary operators WC,1,WC,2 : ℓ
2(Z2,C2) −→ ℓ2(Z2,C2) defined by

WC,1 = (Q1σ2 +Q2σ
−1
2 )(Q1σ1 +Q2σ

−1
1 ), WC,2 = (Q1σ1 +Q2σ

−1
1 )(Q1σ2 +Q2σ

−1
2 ).

Let φH (resp. φV ) ∈ C2 with |φH |C2 = 1 (resp. |φV |C2 = 1) be an initial state of the

alternate quantum walk WC,1 (resp. WC,2). To explain the relationship between alternate

quantum walks and our quantum walks, we take a four-by-four unitary matrix of the form

A =

 0 C1

C2 0

 ,

where 0 is a two-by-two zero matrix and Ci (i = 1, 2) is a two-by-two unitary matrix.

Theorem B ([19]). When C1 = C2 = C, we have the followings.

(1) Suppose that φ3 = φ4 = 0. Let φV = t(φ1, φ2) be a unit vector in C2. The following

holds.

(π1U
2n
A )(δ(0,0) ⊗ φ)(x, y) = W n

C,2(δ(0,0) ⊗ φV )(x, y).

(2) Suppose that φ1 = φ2 = 0. Let φH = t(φ3, φ4) be a unit vector in C2. The following

holds.

(π2U
2n
A )(δ(0,0) ⊗ φ)(x, y) = W n

C,1(δ(0,0) ⊗ φH)(x, y).

Here π1 : C4 −→ C2 (resp. π2 : C4 −→ C2) denotes the orthogonal projection onto the

two-dimensional subspace Cη1 + Cη2 (resp. Cη3 + Cη4) in C4, where {η1, · · · , η4} denotes

the standard basis on C4.
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1.4.2 Alternate quantum walks on the triangular lattice

We discuss discrete-time quantum walks on the triangular lattice. Discrete-time quantum

walks on the triangular lattice are studied in [14], [18] and [20]. We consider alternate quan-

tum walks on the triangular lattice and relationships between quantum walks associated

with the following unitary matrix A2 and alternate quantum walks.

A2 =



0 0 c11 c12 0 0

0 0 c21 c22 0 0

0 0 0 0 c11 c12

0 0 0 0 c21 c22

c11 c12 0 0 0 0

c21 c22 0 0 0 0


.

To explain our result, let us give the notations. Let e1 and e2 be linearly independent

vectors in R2 and we put e3 = −(e1 + e2). We define the triangular lattice G = (V,E) by

V =
{
v = α1e1+α2e2;α1, α2 ∈ Z

}
, E =

{
(v1, v2) ∈ V ×V : v1−v2 ∈ {±e1,±e2,±e3}

}
.

Definition 1.4.3. A discrete-time quantum walk on the triangular lattice is described by

a unitary operator UA2 : ℓ
2(V,C6) −→ ℓ2(V,C6) associated with the matrix A2 defined by

UA2 = P1τ1 + P2τ
−1 + P3τ2 + P4τ

−1
2 + P5τ3 + P6τ

−1
3 ,

where τi is a shift operator on the Hilbert space ℓ2(V,C6) given by

(τif)(v) = f(v − ei) (f ∈ ℓ2(V,C6), v ∈ V ).

Here Pi is defined by

Pi =



0 0 0 0 0 0
...

...
...

...
...

...

ai1 ai2 ai3 ai4 ai5 ai6
...

...
...

...
...

...

0 0 0 0 0 0


(i = 1, 2, 3, 4, 5, 6).
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Definition 1.4.4 (Shift operator). For f ∈ ℓ2(V,C2) and v ∈ V , the shift operators on

the Hilbert space ℓ2(V,C2) σ1, σ2, σ3 are defined by

(σ1f)(v) = f(v − e1), (σ2f)(v) = f(v − e2), (σ3f)(v) = f(v − e3).

By using the shift operators σ1, σ2, σ3 and a two-by-two unitary matrix C given by

(1.4.1), we define alternate quantum walks on the triangular lattice.

Definition 1.4.5 (Alternate quantum walk on the triangular lattice). Alternate

quantum walks are described by the unitary operators WC,1,WC,2,WC,3 : ℓ2(V,C2) −→

ℓ2(V,C2) defined by

WC,1 = (Q1σ2 +Q2σ
−1
2 ) · (Q1σ3 +Q2σ

−1
3 ) · (Q1σ1 +Q2σ

−1
1 ),

WC,2 = (Q1σ3 +Q2σ
−1
3 ) · (Q1σ1 +Q2σ

−1
1 ) · (Q1σ2 +Q2σ

−1
2 ),

WC,3 = (Q1σ1 +Q2σ
−1
1 ) · (Q1σ2 +Q2σ

−1
2 ) · (Q1σ3 +Q2σ

−1
3 ).

Let φW,i ∈ C2 with |φW,i|C2 = 1 (i = 1, 2, 3) be an initial state of an alternate quantum

walk WC,i and φ ∈ C6 with |φ|C6 = 1 be an initial state of the discrete-time quantum walk

UA2 . We can show the following Theorem C in a similar way to prove Theorem B.

Theorem C ([20]).

(1) Suppose that φ3 = φ4 = φ5 = φ6 = 0. Let φW,3 = t(φ1, φ2) be a unit vector in C2.

The following holds.

(π1U
3n
A2
)(δ(0,0) ⊗ φ)(v) = W n

C,3(δ(0,0) ⊗ φW,3)(v).

(2) Suppose that φ1 = φ2 = φ5 = φ6 = 0. Let φW,1 = t(φ3, φ4) be a unit vector in C2.

The following holds.

(π2U
3n
A2
)(δ(0,0) ⊗ φ)(v) = W n

C,1(δ(0,0) ⊗ φW,1)(v).

(3) Suppose that φ1 = φ2 = φ3 = φ4 = 0. Let φW,2 = t(φ5, φ6) be a unit vector in C2.

The following holds.

(π3U
3n
A2
)(δ(0,0) ⊗ φ)(v) = W n

C,2(δ(0,0) ⊗ φW,2)(v).
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Here π1 : C6 −→ C2 (resp. π2, π3 : C6 −→ C2) denotes the orthogonal projection onto the

two-dimensional subspace Cη1+Cη2 (resp. Cη3+Cη4, Cη5+Cη6) in C6, where {η1, · · · , η6}

denotes the standard basis on C6.

1.5 Localization of discrete-time quantum walks on

the integer lattice

In this section, we focus on a localization phenomenon of the transition probability for peri-

odic unitary transition operators. The localization phenomenon is one of typical properties

of the quantum walks which is not seen for usual classical random walks. We investigate

this phenomenon for discrete-time quantum walks on the d-dimensional integer lattices.

The first simulation discovering the localization was reported by T. D. Mackay et al.

[26] by using the Grover walk on the square lattice. A quantum walk defined by the

following D-by-D unitary matrix (coin matrix) G is called the Grover walk.

G = 2ϕϕ∗ − I, ϕ =
1√
D

t(1, 1, · · · , 1). (1.5.1)

This coin matrix is introduced by L. K. Grover in the quantum algorithm [12]. Quantum

algorithms are intensively studied in connection with quantum computing. One of the most

famous quantum algorithms is Grover’s search algorithm. L. K Grover used the above coin

matrix G in Grover’s search algorithm. The discrete-time quantum walk on the square

lattice is used by A. Ambainis-J. Kempe-A. Rivosh [6] in order to improve Grover’s search

algorithm in 2005. The proof of the localization for the Grover walk on the square lattice

was given by N. Inui et al. in 2004 [15].

Theorem 1.5.1 (T. Tate [35], 2014). For a periodic unitary transition operator U on

ℓ2(Zd,CD), we have the following.

(1) U has an eigenvalue ω if and only if the matrix-valued function Û(z) on T d has an

eigenvalue ω for all points z in T d.

(2) U has a localization for an initial state φ ∈ CD at a point x ∈ Zd if and only if

spec(U)p ̸= ∅, where spec(U)p is the set of eigenvalues of U .
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By using Theorem 1.5.1, we can investigate whether or not the discrete-time quantum

walk has a localization.

1.5.1 The general form of the Grover walk

We give the definition of the general form of the Grover walk and a model of discrete-time

quantum walks with localization. In this subsection, we assume that a periodic unitary

transition operator has the following condition (S1) for the set of steps S.

Condition 1.5.1. (S1) α ∈ S =⇒ −α ∈ S.

Let A be a D ×D unitary matrix A satisfied with A2 = I. The Grover matrix (1.5.1)

is the special case of A. We consider the general form of the Grover walks on the d-

dimensional integer lattice. A unitary operator HA : ℓ2(Zd,CD) −→ ℓ2(Zd,CD) is given

by

HA =
∑
α∈S

PαAτ
α, (1.5.2)

where {Pα}α∈S is a spectral resolution on CD.

Since the matrix A is a unitary self-adjoint matrix, the matrix A has the eigenvalue 1

and the eigenvalue −1. Let ε1 (resp. ε−1) be the eigenspace of the eigenvalue 1 (resp. − 1)

of A.

Theorem D ([21]). Let HA be a periodic unitary transition operator given by (1.5.2). If

|Pαϕ|2CD = |P−αϕ|2CD for any ϕ ∈ ε1, the transition probability for the quantum walk defined

by the unitary transition operator HA is localized at some point.

1.5.2 Two-step of the general form of the Grover walk

We treat a discrete-time quantum walk given by a product of two general forms of the

Grover walk. In this subsection, we do not assume the condition (S1) for the set of steps

S. Let A be a D ×D unitary matrix A satisfied with A2 = I.
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Definition 1.5.1. A product of two general forms of the Grover walk UA : ℓ2(Zd,CD) −→

ℓ2(Zd,CD) is given by

UA =

(∑
α∈S

PαAτ
−α

)
·
(∑

α∈S

PαAτ
α

)
,

where {Pα}α∈S is a spectral resolution on CD.

Theorem E ([21]). Let UA be a periodic unitary transition operator given by Definition

1.5.1. If dim ε1 < dim ε−1, the transition probability for the quantum walk defined by the

unitary transition operator UA is localized at some point.

By using Theorem D or Theorem E, we can construct a model of discrete-time quantum

walks with localization.
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