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論文内容要約 

 Recently, the high information processing is required because the amount of information becomes larger 

and larger. To achieve the high speed information processing, the electronic devices become smaller and 

smaller. For such devices, optoelectronics devices which are combined electronics and optics devices are 

developed. However, the scale of semiconductor elements has reached the order of nanoscale, the problems 

appear due to a wave nature and a particulate property of electrons. Recently, the new concept 

semiconductor devices which positively utilize a wave nature and a particulate property of electrons are 

investigated, such as quantum dots (QDs) light emitting diodes (LEDs), laser diodes (LDs), and solar cells. 

Currently, top-down process and bottom-up process are used for the fabrication of semiconductor devices. 

However, the fabrication of high quality nanostructure is difficult by using conventional top-down and 

bottom-up processes. In case of top-down process, it is difficult to fabricate the photomask with the high 

accuracy in lithography process and to etch with high accuracy and without inducing the crystal defects in 

plasma etching. On the other hand, in case of bottom-up process, there are the limitation of growth 

materials and the internal stress of nanostructure. 

In this work, the nanostructures of compound semiconductor were fabricated by using both top-down and 

bottom-up processes. In case of top-down process, GaAs QDs array was fabricated by combining a neutral 

beam (NB) and a bio-template processes. On the other hand, in case of bottom-up process, III-Nitride 

nanowall structures were fabricated by using molecular beam epitaxy (MBE) system and its characteristics 

were investigated. 

At first, GaAs NDs array was fabricated by combining NB and bio-template processes. By using 

bio-template process, the uniform etching mask array was formed on GaAs surface. By using NB process, 

the sample was etched with defect-less. The fabricated nanostructure is called “nanodisks (NDs)” because of 

disk shape QDs. For the fabrication of the high in-plane density, uniformity, and separated NDs array, PEG 

ferritin molecules which are chemically modified with methoxy-polyethylene glycol succinimidyl esters were 



used. The density of PEG ferritin and distance between PEG ferritins can be controlled by changing the 

ionic strength of an ammonium acetate buffer solution. As increasing the ionic strength of buffer solution, 

the density of PEG ferritin was increased and the distance between PEG ferritins was decreased. By using 

PEG ferritin and NB technology, the fabrication of distributed and sub-20-nm GaAs/AlGaAs nano-pillar 

which includes GaAs ND was achieved. The ND has two geometric parameters, thickness and diameter, and 

they are controlled independently. The thickness of ND can be controlled during the deposition of stacked 

layers. The diameter control of ND was investigated by tuning the etching processes. As increasing the 

hydrogen radical treatment time from 10 to 30 min, the diameter was decreased from 18 to 12 nm. During 

NB etching, not only iron cores but also GaAs-oxide worked as the etching masks due to the high etching 

selectivity of GaAs/GaAs-oxide. The photoluminescence (PL) emissions originated from GaAs NDs were 

observed after regrowth and these peak wavelengths of emission spectra were shifted corresponding to the 

diameter of GaAs ND. 

Since QD LEDs and LDs require a thick active layer to obtain large optical gain, the fabrication process of 

three-dimensional (3D) GaAs NDs array was investigated. The surface oxidation state has an effect on the 

fabrication of 3D GaAs NDs array. By using the low temperature oxygen annealing in vacuum, hydrogen 

passivation, and native oxide, the 3D GaAs NDs array was fabricated with the high density (1 × 1011 cm-2) 

and uniformity. By utilizing 3D GaAs NDs array for LEDs, the LED which was operated at room 

temperature was fabricated. 

Secondly, the GaN and AlN nanowall structures were grown on Si (111) substrate by using MBE system. 

The AlN nanowall structures were grown in the N/Al flux ratio from 200 to 550. Increasing the N/Al flux 

ratio, the width of AlN nanowall structures was increased from 60 to 120 nm, while the length of AlN 

nanowall structures was decreased from 470 to 190 nm. From XRD measurement, it was found that the AlN 

nanowall structures consist of the hexagonal AlN crystals grown along c-plane and the AlN nanowall 

structures were grown in the nitrogen-rich growth condition at the expense of the crystal quality. The GaN 

crystals in the various N/Ga flux ratios were also grown on Si (111) substrate. In the high N/Ga flux ratio of 

350, the continuous and dense GaN nanowall structure was grown. As decreasing N/Ga flux ratio, the 

continuity of GaN nanowall was decreased. Finally, at the low N/Ga flux ratio of 50, GaN nanopillars were 

grown. The PL spectra of GaN nanowalls and InGaN multiple quantum wells (MQWs) on GaN nanowalls 

were measured. In case of GaN nanowall, decreasing N/Ga flux ratio, the emission originated from GaN 

near band edge became dominant. Moreover, InGaN MQWs were grown on GaN nanowall in the various 

N/Ga flux ratios. The difference of PL intensities at a low temperature and room temperature was decreased 



while the surface morphology becomes close to the film structure as decreasing N/Ga flux ratios. 

The GaN nanowall based LED was fabricated because the GaN based LEDs is widely investigated. 

Although the emission spectra could not be detected by current injection, the PL emission was observed. It is 

estimated that the injection carriers were lost by the stacking fault in the GaN nanowall layer and the 

Mg-doped GaN layer did not worked as the p-type GaN such as too high Mg concentration. 

In summary, the nanostructures of compound semiconductors were fabricated, GaAs NDs array by top-down 

process and III-Nitride nanowall structures by bottom-up process. The diameter of GaAs NDs was controlled, 

and the PL emission spectra corresponding to the size of GaAs NDs was observed. In addition, the highly 

dense and uniform 3D GaAs NDs array was fabricated and it was utilized for LEDs. The LED operated at 

room temperature. The GaN and AlN nanowall structures were grown on Si substrate and its crystal 

quality was investigated. Decreasing Nitrogen/III-element flux ratio, the qualities of nanowall structures 

were improved. Moreover, InGaN MQWs were grown on GaN nanowalls. As increasing N/Ga flux ratio 

during GaN nanowall growth, the difference of PL intensities at low temperature and room temperature 

became smaller. Furthermore, the fabrication of GaN nanowall based LEDs was achieved although the 

emission by current injection was not observed. The results indicated that the possibility of the fabrication 

GaN nanowall based LEDs. 


