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PREFACE

The human auditory system shows remarkable capabilities. We can perceive

sound over a wide range of frequencies and levels. It is easy for us to concentrate

on one particular sound, say, someone’s voice, while ignoring other sounds that may

be present. We can quickly and accurately identify the position from where sound is

reaching us. These tasks are so natural to us that they appear to be trivial; however,

building a machine with the capabilities of the human auditory system is still out of

reach for modern technology.

Technology, on the other hand, can enhance our lives by providing new

ways of listening. Two classical inventions that achieved this are the phonograph

and the telephone. After their introduction, we were no longer limited to listening

to the sounds of things as they take place around us. Nowadays, we can easily

communicate with people all over the world or listen to some audio content, such as

music, whenever we like.

Telecommunication and sound reproduction systems have been greatly

improved since the early telephones and phonographs. It is still difficult to accurately

measure and later reproduce sounds over the whole listening range in terms of

frequency and level. However, high-quality systems are good enough for most

listeners to be unable to notice any significant degradation. Despite this, there

has been one aspect of sound which technology has been unable to incorporate into

these communication and reproduction systems. The spatial nature of sound.

As pointed out earlier, humans can accurately identify the position where

sound is being produced. This ability is known as sound localization. The process

by which we localize sound is not yet fully understood; however, we know some of

the important factors contributing to it. We listen to sound using two ears. When
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sound arrives from one side, it will reach one ear faster and without encountering

any obstacles. The other ear will listen to the same sound with a slight delay, since

the sound wave had to travel a longer path. Furthermore, the sound level will be

different when sound reaches the second ear since the head acts as an obstacle to

sound propagation. This delay and attenuation of what one ear perceives compared

to the other are called inter-aural differences. They are examples of the fundamental

cues used by humans to localize sounds.

Early attempts to imbue sound recordings with spatial information rely on

the inter-aural cues. Stereo systems, where two loudspeakers are placed at the

front-left and front-right of the listener, have been used in this way. By changing the

relative levels of the left and right channels, it is possible to induce the inter-aural

differences within a certain range. More complex multi-channel systems used in

movie theaters surround the listener with a few loudspeakers and can convey a wider

range of inter-aural differences. However, this is not enough to fool the average

listener into thinking sound is actually coming from any desired direction.

Research on human sound localization eventually led to the introduction of

the Head-Related Transfer Function (HRTF). The HRTF codifies the way in which

sound propagates in the presence of a specific human head. It includes the inter-aural

differences, as well as some frequency-dependent effects caused by the reflection of

sound by the listener’s body, head and pinnae. This detailed representation makes

the HRTF dependent on the specific anatomic details of the listener. Every person

will exhibit a different HRTF that has to be measured. Nevertheless, some attempts

at using the ideas behind the HRTF to convey spatial audio have been made.

Binaural recordings, made by placing microphones in the ears of a dummy head,

are an example. They can be very realistic, but they typically require the use of

headphones. The need to use a fixed dummy head for recording also means that

the perceived accuracy will differ among listeners, depending on how well can the

dummy head match their respective HRTFs.

Until recent years, these were the only options available to record and

reproduce spatial sound information. Technology has now advanced to the point
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where another alternative can be considered: sound field reproduction. A sound

field is the value of the sound pressure at every point in space. A conventional

recording only measures sound at one point using one microphone placed there.

Stereo or multi-channel systems use arrays of microphones to record sound at

two or more points. Recording a sound field, however, would require filling the

space with microphones and simultaneously recording all of that information. Our

understanding of how sound propagates, however, allows us to calculate the sound

field over an empty region from measurements made at a surface enclosing it. The

extremely complex requirement of filling the space with microphones reduces to

lining up microphones over a closed surface. The task is, nevertheless, a difficult

one; however, it is now within the reach of modern technology. A common choice

of surface to sample is the sphere. Its symmetric, compact nature leads to simpler

mathematical expressions. The result of choosing this surface is the technique known

as Ambisonics. Several microphone arrays for Ambisonics, that is, arrays that sample

a spherical surface, have been built and demonstrated successfully.

The capability to record sound field information is not enough to produce

a full communication or reproduction system. The sound field information must be

somehow encoded for transmission or storage. The ability to synthesize sound fields

described by these encodings is also required. These are the main topics covered in

this dissertation.

Unlike previously discussed approaches, sound field reproduction systems

do not consider human sound localization. The argument is that by re-creating an

entire sound field around the listener, the sound pressure perceived by their ears

will be indistinguishable from what they would hear if they were actually at the

recording place. However, simple considerations of the human auditory system can

help reduce the recording system’s size and complexity. This is another important

topic advanced in this thesis.

A critical difference between the research oulined in this dissertation and

that found in previous treatments of sound field reproduction lies in the choice of a

coordinate system. Conventional methods are formulated in spherical coordinates,
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with a single listener assumed to be at the origin. However, this choice of coordinates

makes it difficult to tackle situations where the user is unrestricted or where multiple

users share a reproduction system. This dissertation approaches such scenarios by

considering unconventional, that is, non-spherical geometries.

This dissertation starts by offering a brief introduction to the state of

spatial audio systems. Emphasis is made on sound field reproduction technologies,

particularly the one known as Ambisonics. It is here, in Chapter I, where the

objectives of the present research are detailed.

Chapter II offers a review of the mathematical techniques used to study the

propagation of sound. Readers familiar with the topic can skip this chapter, although

it is intended to serve as a good overview. For those unfamiliar with the field, this

chapter presents the basic requirements to understanding following sections of this

dissertation.

Chapter III starts by reviewing some known results from considering sound

propagation in cylindrical coordinates. Building upon this results, a set of new

mathematical formulas that facilitate the recording of sound field information are

derived. Their distinct feature is that they assume a cylinder, instead of a sphere,

as the boundary surface. These formulas are applied to the problem of recording

sound fields with cylindrical microphone arrays and a new encoding format, called

3D Cylindrical Ambisonics is advanced.

Conventional Ambisonics is explored once again in Chapter IV, where the

results obtained for cylindrical microphone arrays are applied to define a new method

of recording Ambisonics with different horizontal and elevation resolutions. Normally,

Ambisonics will have the same resolution in all directions given the use of a spherical

boundary in its formulation. However, human sound localization does not exhibit

this symmetry. We are more accurate at identifying the direction, in the horizontal

plane, from which sound is reaching us than in estimating the sound’s elevation.

By reducing resolution for elevation while keeping the horizontal resolution, it is

possible to design simpler systems that nevertheless offer a similar performance when

presenting sound to human listeners.
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The problem of synthesizing a sound field from the information recorded by a

microphone array is discussed in Chapter V. This chapter first introduces the existing

methods applied in Ambisonics. These methods require loudspeakers to be aligned

in accordance to the foundations of Ambisonics. That is, sampling all directions

with equal resolution over a sphere. A new method is introduced to allow for the

reproduction of Ambisonics and other sound field recordings even if the geometry of

the reproduction array does not match that of the recording one. Ambisonics can be

reproduced, to some accuracy, with irregular, non-spherical arrays. Recordings made

with cylindrical microphone arrays, similarly, do not require a cylindrical loudspeaker

array.

Two of the main contributions of previous chapters are brought together in

Chapter VI to define a full sound field reproduction system. The proposal uses 3D

Cylindrical Ambisonics in the recording stage and an arbitrarily shaped loudspeaker

array for reproduction. The definition of this system allows for the evaluation of

the proposals considering important features such as the size of the listening region,

where sound fields are reproduced with acceptable accuracy. The interaural cues

perceived by a listener using the proposed system are calculated and compared

with the ones they would perceive if present at the recording place. The effects

of using a finite-length cylinder, which is not a closed surface, as a boundary are also

discussed. Some considerations about microphone distributions on the cylinder and

the possibility of using only half of the cylinder in some applications are presented.

This dissertation is wrapped up in Chapter VII, where the results achieved

are briefly summarized and some conclusions are drawn. This dissertation hopes

to become a pillar for the development of future sound field recording, synthesis,

analysis and reproduction systems which are not constrained by the requirements

of spherical symmetry or limited to a small listening region with the capacity for a

couple of listeners at most.

Some final remarks regarding the implementation of an actual cylindrical

microphone array are reviewed in Appendix A. There, some technical considerations

needed to build a working cylindrical microphone array are discussed.
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CHAPTER I

Introduction

1.1 Motivation

As technology advances, users of multimedia systems have demanded

the evermore realistic presentation of contents. The level of realism of a given

presentation is difficult to quantify. Different users may place their priorities

on different variables to judge realism. Even if only sound information is

considered, some users may focus on the sound source itself and regard clarity as

a most important requirement for realism, while others may consider the listening

environment and deem diffusiveness to be more important. In the end, however, it

should be agreed that, by definition, whatever is heard when present at an actual

scene is its most realistic acoustic representation.

Sound transmission and reproduction systems have made great progress

since the invention of the first devices in the 1870’s [1, 2]. It is still difficult to build

recording and reproduction systems that can match the sensitivity and accuracy of

the human ear over the whole listening range. However, most high-end systems are

good enough that the average user cannot really perceive any distortion caused by

the recording, storage/transmission and reproduction processes.

Despite these advances, one crucial aspect of human auditory perception

1
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has proved to be difficult to incorporate in audio systems: sound localization. Sound

localization is the ability to identify the position in space at which a certain sound

is being originated. In our daily lives, we routinely perform sound localization to

facilitate a variety of tasks. For example, to engage in conversation when someone

suddenly calls out our names or to prevent an accident when machinery is being

operated near us.

There are a number of obstacles when trying to present sound in a way

that can convey the spatial information required for sound localization. The specific

hurdles one would face depend on the strategy being adopted. Two types of approach

can be considered: a listener-centric approach and a sound-centric approach. The

former attempts to convey the spatial cues used by the listener to localize sound;

in essence, to deliver at his two ears the particular sounds he would perceive if

present at the target scene. The latter, sound-centric approach, attempts instead

to re-create the physical variables present at the target auditory scene. It is argued

that reproducing the target acoustic conditions faithfully will convey all of the spatial

cues used by the listener, irrespective of what they could be.

A listener-centric approach requires tuning of the system in accordance to

the particular user. It must also either restrict user movement, or track it so that

the acoustic signals being delivered can be consistently adjusted. Any user tracking

loop will exhibit some delay, which may cause the inconsistent presentation of sound

during heavy user movement.

The sound-centric approach does not have any of the problems of the

listener-centric one. All listener-related phenomenology, such as scattering by the

head and reflections at the pinna, will naturally occur within the re-created acoustic

environment. No motion sensing is required either. On the other hand, measuring
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or calculating the acoustic variables over a large region and then re-creating them

is a difficult task. Some systems of this kind have actually been built and shown a

promising performance. However, they are typically restricted to very small listening

regions.

There is no doubt about the demand for spatial audio systems, those that

can deliver the sound localization cues either directly or by re-creating the acoustic

conditions over some region. Some promising technologies have emerged in an

attempt to meet this demand. An overview of this techniques is presented in the

following sections.

The problem of conveying realistic sound information, including spatial cues,

is still far from solved. This dissertation attempts to contribute towards this final

goal by laying out a series of mathematical techniques and formulas. It is hoped

that the new methods advanced in this dissertation will accelerate the pace at which

truly 3D sound systems reach end-user applications such as teleconferencing and

entertainment.
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1.2 Sound localization

The exact process by which the human auditory system localizes sound is

not yet fully understood. Nevertheless, some of the cues we rely on for this task have

been identified [3]. In this section, a brief review of what we know about the way

in which humans localize sounds is presented. This is a very active research field

and a full account would be beyond the scope of this dissertation. Attention is given

mainly to the results that have been found to be important in the design of spatial

sound presentation systems.

1.2.1 Interaural time and level differences

The interaural level difference (ILD) and interaural time difference (ITD) are

two important cues for sound localization [3]. Figure 1.1 shows a simple illustration

of the phenomenology behind these two cues. A sound source is present at a certain

azimuth from the point of view of the listener. Since the speed of sound is finite (c ≈

343 m
s
at 20 ◦C), sound from the source will reach the ipsilateral ear a few moments

before reaching the contralateral one; a time difference. The path to the ipsilateral

ear is a direct one, free from any obstacles. However, to reach the contralateral side,

sound waves must diffract around the head. The consequence is that the ipsilateral

ear picks up more energy than the contralateral one, creating a level difference.

The two types of interaural difference described complement each other

allowing us to estimate the azimuth angle at which any sound source can be found.

At low frequencies, for which the wavelength of the sound wave is about twice the

size of the listener’s head or larger, diffraction around the head does not significantly

reduce the wave’s energy making ILD useless for localization. However, the difference

in phase between the sounds picked up by both ears makes inferring the azimuth of
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arrival possible; ITD is, therefore, the main cue for localization in the horizontal

plane at low frequencies, below around 800 Hz. At high frequencies, however, the

situation reverses. If the wavelength is shorter than the size of the listener’s head,

starting at around 1.6 kHz, the difference in phase between both ears cannot be used

to identify a unique azimuth for the sound source. However, the effects of diffraction

around the head produce a region of low energy behind it. This is called an acoustic

shadow and one of the two ears, the contralateral one, will be located somewhere

inside of it. The sound source’s azimuth can be inferred from the ILD caused by the

head shadow. At intermediate frequencies, both cues are used to localize sounds.
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Figure 1.1: Interaural time and level differences. The sound from the source reaches the listener’s
right ear after travelling a short and direct path. The same sound wave must travel
a larger distance and diffract around the listener’s head to reach the left ear. Sound
picked up by the ear ipsilateral with the source arrives earlier and appears louder than
that picked by the contralateral ear.
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1.2.2 Cones of confusion

Interaural differences are useful only to identify the azimuth angles of sound

sources with respect to the listener. They cannot be used to fully localize sounds in

3D space. The reason behind this is illustrated in Fig. 1.2, showing what are called

the cones of confusion [4]. Sound sources at different elevations can share the same

interaural differences.

The cones of confusion can be constructed and understood by first

considering a reference axis: the interaural axis. The interaural axis is defined as

the line passing through both ears. This also serves as the axis for two right circular

cones with their apexes located at each of the listener’s ears. For any given pair of

cone apertures the intersection of the two cones will define a circle. The distances

between a sound source lying on this circle and the listener’s ears are given by the

slant heights of the cones; a value that is constant for any point on the circle. This

implies that the paths that sound waves need to travel to reach the ears will have

a fixed length no matter what position the sound source takes on the circle. The

interaural differences, therefore, yield ambiguous results for the exact position of

the sound source; however, this discussion does not consider the effects of acoustic

scattering by the head.

Sound localization in humans is not constrained by the limitations of the

interaural differences. We can easily identify sounds as being in front, behind, above

or below us even if these four points lie on one of the circles described by the cones

of confusion. For this, we rely on different kinds of spatial cues.
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Figure 1.2: Cones of confusion. Interaural differences are constant over any circle that is centered
at and perpendicular to the interaural axis. Sound waves from both sources, above and
below the interaural axis, will travel similar paths to reach the listener’s ears. While
interaural differences exist, they are not enough to determine the position that the
source occupies over the circle.
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1.2.3 Head-related transfer function

Sound waves travelling from their source to our ears will invariably interact

with our bodies before reaching the ear canal and finally the eardrum. The

appearance of an acoustic shadow on the side of the head opposite to the sound

source was discussed above. This, however, is not the only kind of acoustic diffraction

used by humans to localize sound sources.

As sound reaches a listener, it is diffracted around their head and torso and

reflected from their shoulders before arriving at the ears. There, it is once again

scattered, this time by the intricate folds of the pinna. The process leaves a distinct

mark on the sound waves that manage to enter the ear canal. Some frequencies are

amplified while others are attenuated in a complicated manner. The exact details of

the process depend heavily on the anatomy of the listener. However, this filtering

and amplification of select frequencies encodes information about the location of the

sound source.

At a coarse scale, the human head can be approximated by a sphere. This

is enough to explain the head shadow, the interaural differences and gives rise to the

cones of confusion. However, this coarse model is only useful for low frequencies,

where the wavelengths are too large to resolve fine details. Sound interaction with

the pinna, even a simplified one, is enough to break the symmetry condition that

leads to the cones of confusion. The relative distances between the ears and the

sources may remain the same; however, the paths travelled by the sound waves of

previously ambiguous sources are no longer equal.

A way to quantify these effects is by defining sets of acoustic transfer

functions. A transfer function expresses the relationship between one physical

variable at the beginning of a linear process (the input) and an observable of interest
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at its end (the output). To compare the effects of diffraction for sound sources at

different positions, the input should be regarded as sound originated from a given

point in space. The output would be the sound pressure at the ear canal or eardrum,

after the sound waves have interacted with the listener’s body.

In the study of sound localization, it is common to remove the component

due to propagation over the air without obstacles from the transfer function. The

result of doing this is known as the Head-Related Transfer Function (HRTF), and

is illustrated in Fig. 1.3 along with the coarse result of approximating the head as a

sphere, or removing all fine details including the pinna.

The HRTF shown in Fig. 1.3b corresponds to a SAMRAI dummy head, a

mannequin designed by KOKEN to approximate the average features of a Japanese

male. Each horizontal line on the plot represents the magnitudes of one transfer

function, with the input located on the horizontal plane, 1.5 m away from the center

of the head. The output is measured at the mannequin’s right ear, near the 90◦

mark. The ear canal was sealed off during the measurement.

As expected, at low frequencies the HRTF very closely matches the transfer

functions for a rigid sphere. Once the wavelength becomes short enough to resolve

the finer details of the dummy head, some variations in the transfer function are

observed. These regions of amplified or attenuated sound transmission are used by

the auditory system to localize sources.
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(a) Transfer functions for sound propagation onto a rigid sphere.

(b) Transfer functions for sound propagation onto a dummy head.

Figure 1.3: Magnitude of the sound propagation transfer functions showing the effects of acoustic
scattering by (a) a rigid sphere, and (b) a dummy head approximating a human head.
Both models behave similarly at low frequencies. At high frequencies, however, the
effects of fine structures like the pinna have a significant impact on the transfer functions.
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1.2.4 Active listening

There is another way to disambiguate the position of sources that lie on the

circles defined by the cones of confusion. In natural conditions, humans need not

listen to sound while remaining in a fixed position and posture. Slightly rotating the

head is enough to change the interaural axis, making interaural differences sufficient

to differentiate between points of the previously ambiguous circle.

The process of moving while listening to sounds is called active listening [5].

It is known to be carried out by humans during sound localization tasks [6]. A

moving listener introduces a significant challenge for the realistic presentation of

audio imbued with spatial information. Systems must either actively track their

users and adjust the presentation, or they should somehow manage to work for any

possible position the user may be at and with any posture they may decide to adopt.
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Figure 1.4: Panning law dictating the left and right channel levels for a stereo system. By driving a
stereo system with similar signals at different levels for each channel, it is possible
manipulate interaural differences and create the illusion of sound arriving from a
position between the loudspeakers.

1.3 Presenting spatial audio

The term spatial audio is used to refer to any kind of sound that has

been imbued with the spatial information needed for listeners to perform sound

localization. Systems capable of presenting spatial audio will be referred in this

dissertation as Three-Dimensional Virtual Auditory Displays (3D VAD). This section

introduces some well-known and promising 3D VAD design approaches.

1.3.1 Stereo and surround systems

The first attempt to add the spatial component to sound recordings came

in the form of stereophonic sound. A stereo system can hardly be called a VAD,

however, given its limited resolution and range. Nevertheless, they represent a
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turning point in the development of sound presentation technologies.

In a stereo system, two loudspeakers are placed in front of the listener,

typically at 30◦ to the left and right of the center. Driving the loudspeakers

independently will of course lead to sounds being localized at these two positions

in space. However, if the loudspeakers are driven by similar signals, varying the

relative levels of the two channels, it is possible to induce interaural differences that

point to a sound source being somewhere in between the two loudspeakers [7]. This

is known as amplitude panning; Fig. 1.4 shows a typical panning law used to set the

channel levels according to the desired position for the virtual sound source.

The natural extension of stereo are the surround multi-channel audio

systems. Popular configurations are the 5.1-channel and 7.1-channel layouts [8].

These systems extend the range of angles from which sounds can be presented by

surrounding the user with loudspeakers. They are, however, limited to the horizontal

plane and cannot truly convey sounds at any arbitrary position; they can only

manipulate interaural differences, only ILD in most cases.

Multi-channel technologies are still being developed and pushed forward

in consumer applications. A system incorporating elevation by distributing the

loudspeakers on 3 planes of varying height is scheduled to be released with the next

generation of ultra high-definition televisions [9].

1.3.2 Binaural presentation

The realistic presentation of 3D spatial audio contents needs to consider more

than ILD. Our lack of knowledge regarding what are exactly the features of sound

which are important for sound localization makes it difficult to design an optimal

system conveying only what is needed. However, a very realistic presentation can
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Figure 1.5: A loudspeaker array inside an anechoic chamber. The system can be used to measure
the Head-Related Transfer Function. Subjects must sit still at the center of the array
while the loudspeakers present sounds around them. A pair of microphones inside their
ears are user for the actual measurements.

still be achieved by using the entire information available in the HRTF.

The HRTF holds the information about changes to sound as it interacts with

the listener’s head to reach the ear canals. Therefore, it can be used to calculate the

sound pressure that must be reproduced directly at the listener’s ears in order to

convey the illusion of a sound source present at any desired position for which the

HRTF is known. Sounds generated in this way are called binaural audio. Binaural

audio can also be recorded by placing small microphones inside the listener’s or a

dummy head’s ears and directly measuring the sound pressure as sounds reach them

from different places.

Binaural sound presentation can achieve very realistic results. It, however,

presents several drawbacks. The HRTFs must be measured, or binaural recordings

made, for every user of the system since they are heavily dependent on the listener’s
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anatomy. Measuring the HRTF requires specialized equipment like the loudspeaker

array shown in Fig. 1.5. The user must stay still at the center while the loudspeakers

rotate around him/her and present sounds from the positions to be measured, one

by one. This procedure can take several minutes up to a couple of hours and the

user must remain still throughout the whole process.

Listening to binaural audio requires presenting sounds directly at the ears,

which is easier to accomplish using a pair of headphones. The need to wear

headphones is a significant demerit of binaural reproduction. Some attempts have

been made to use loudspeaker-based systems for binaural presentation [10]. They

are usually referred to as transaural systems. Transaural systems make use of inverse

filtering and are very sensitive to changes in the listening conditions for which they

were designed; for this reason, they cannot easily accomodate user movement.

Finally, incorporating active listening into a binaural system requires the

means to continuously track the user and update the HRTF being used accordingly.

This may require the user to affix a tracking sensor to their bodies and there will

be an unavoidable delay between the user’s movement and the adjustment of the

auditory signals.

1.3.3 Sound field reproduction

Binaural sound reproduction is an example of a listener-centric strategy

to convey spatial sound information. This subsection introduces a group of

sound-centric approaches that are collectively known as sound field reproduction.

A sound field refers to the sound pressure observed at all points in space. Sound

field reproduction, therefore, does not attempt to re-create the sound pressure at the

listener’s ears directly. The goal is to reproduce the entire sound field over a region
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large enough for the user to fit. If this is achieved, the diffraction effects encoded in

the HRTF will take place naturally, irrespective of the posture adopted by the user.

A truly realistic 3D sound presentation could be achieved without the need of user

tracking or tedious measurement of the HRTF.

In this subsection, three classes of sound field reproduction systems are

considered. Unfortunately, technological constraints still prevent any of these

methods to be implemented in a way that the entire listening range of humans

is covered faithfully. They all have shown, however, promising results and research

on all of them is active.

The methods are described here in a general way without emphasizing the

mathematical details behind their formulations. Chapter II reviews in greater detail

the wave equation and the results that make sound field reproduction possible,

particularly the Huygens-Fresnel principle and the Kirchhoff-Helmholtz integral

theorem. An exception to this is a technique called Ambisonics, for which a more

formal introduction will be given in a later section of this chapter.

All of the discussed methods consider an important property: sound

propagation is, with very high accuracy, a linear phenomenon. Non-linear effects exist

and are actively studied; however, linear acoustics are a very good approximation to

real-world phenomenology for most applications, particularly those pertaining human

listening. A transfer function for sound propagation can, therefore, be assumed to

exist and comply with the theory of linear systems. This function, called the Green

function, is formally introduced in Chapter II.

1.3.3.1 Wave-field synthesis

Wave Field Synthesis (WFS) is a technique to present 3D sound using

loudspeaker arrays [11]. It works by approximating the sound waves that would
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Figure 1.6: Illustration of a Wave Field Synthesis 3D sound reproduction system. A loudspeaker
array is driven by properly filtered and timed signals so that the spherical waves
produced by them add up into the approximation of a target wavefront. In this case,
the loudspeakers approximate the sound field that would be observed if a source was
present at the indicated position behind them.

be observed for a target sound source using the carefully tuned and timed sound

waves from a fixed set of secondary sources (the loudspeakers). An illustration of

the method is shown in Fig. 1.6.

The technique frequently relies on either a linear or a planar array of

loudspeakers to densely cover all directions inside a segment or patch of space. The

system then drives the loudspeakers so as to reconstruct all sound waves passing

through this region and towards the listener’s side. The driving functions are simply

the sound pressure that would be observed at each loudspeaker position if the target

acoustic scene was actually taking place behind the loudspeaker array.

In terms of computational complexity, it is simple to implement a WFS

loudspeaker driving system. However, building the actual loudspeaker array makes

a major obstacle of WFS evident: spatial aliasing. In WFS, the sound field is

directly sampled in space at the loudspeaker positions. Sound fields, being solutions
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to the wave equation, have an oscillatory nature in both time and space coordinates.

The sampling theorem [12] dictates, therefore, that the average separation between

loudspeakers must be half of the shortest wavelength present or less. If the full

listening range for humans is considered (20 Hz to 20 kHz), a loudspeaker will be

required every 8.5 mm. Modern loudspeaker manufacturing cannot yet produce

loudspeakers small enough to align in such a dense grid while retaining good acoustic

performance, such as a sufficiently high volume.

Despite the problems introduced by spatial alias, research surrounding WFS

is very active. Reproducing sound fields that span the entire listening range may

be out of reach for now; however, less ambitious projects [13] have successfully

demonstrated that WFS is a viable technology for the ultra-realistic presentation

of spatial sound to large audiences.

A more critical issue with WFS systems lies in the need to match specific

recording and reproduction systems. There is no intermediate spatial encoding that

can be used to share the same contents among users of different reproduction arrays.

1.3.3.2 Boundary surface control

Boundary Surface Control (BoSC) is a different type of technology for sound

field reproduction [14]. While WFS can be used to present sounds at some desired

spatial position, BoSC attempts to record the actual sound field at a given location

and to later reproduce it using loudspeakers. A full BoSC system is, therefore,

composed of a microphone and a loudspeaker array. This kind of system is illustrated

in Fig. 1.7.

The linear nature of sound propagation is fully exploited by BoSC, which

can be thought of as a multiple-input and multiple-output (MIMO) control system.

The microphone array is initially placed inside the loudspeaker array to measure the
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Figure 1.7: Illustration of a Boundary Surface Control system. Sound fields are sampled using
a spherical microphone array. The recorded sounds are then used to drive a specific
loudspeaker array so as to re-create the points sampled by the microphones. The result
is an approximation to the original sound field within the region delimited by the control
points.

transfer functions of each loudspeaker to each microphone. The results are condensed

into a matrix which can be used to calculate the expected microphone signals when

the loudspeakers are driven in some specific way.

In a BoSC system, the inverse of the transfer functions matrix is calculated

and used to derive the loudspeaker signals that will most closely re-create a set of

microphone measurements. Afterwards, it is possible to use the microphone array to

record any desired sound field. The sound pressure measurements are then filtered by

the inverse transfer functions; the results are the loudspeaker signals that will most

closely re-create the acoustic conditions under which the recordings were made.

The results of a BoSC system can be as good as the equipment used allows.

Very high levels of realism are possible; however, the formulation of BoSC limits

it to the pairs of microphone and loudspeaker arrays which have been calibrated

in advance. There is no intermediate encoding which captures the sound field

information and allows for its analysis, edition or system-agnostic distribution. BoSC
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is an effective technique which successfully achieves its objectives. However, a more

versatile method which provides a more direct access to the spatial features of sound

fields is also desirable.

1.3.3.3 Ambisonics

The third sound field reproduction technique to be reviewed in this

introduction is called Ambisonics [15]. Ambisonics, as originally defined, did not

attempt to reproduce sound fields directly. It was introduced as a technique to pan

sound sources around the listener using an array of loudspeakers, while keeping the

so-called energy and velocity vectors parallel to each other.

The velocity vector is, in essence, the acoustic intensity observed at the

listening position, typically the center of the loudspeaker array. That is, the

average of all wavevectors that appear in the array’s presentation of a given sound.

Mathematically it is defined by the following set of formulas:

P(k) =
∑

spk

Gspk(k),

Vx(k) =
1

P(k)

∑

spk

Gspk(k) cos(θspk),

Vy(k) =
1

P(k)

∑

spk

Gspk(k) sin(θspk).(1.1)

The symbols in the equation above are: k for the angular wavenumber, P denoting

the total sound pressure at the listening position, Gspk stands for the gain applied

to the loudspeaker of label ”spk”, located at the azimuth angle θspk. The velocity

vector, shown here for the horizontal plane only, has Vx and Vy as its x and y

components, respectively. The summations are carried out over all the loudspeakers

in the array under consideration. A more structured introduction to the notation

used throughout this dissertation is done in Chapter II.
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The energy vector is slightly more complicated; it is defined not as the

average but as the 2-norm of the wavevectors, calculated component by component.

Intuitively, it can be considered as indication of the direction from which most part

of the acoustic energy reaches the listening position. Mathematically, however, it

differs from the velocity vector simply by taking the square of the loudspeaker gains.

The following expressions can be used to calculate the energy vector:

E(k) =
∑

spk

G2
spk(k),

Ex(k) =
1

E(k)

∑

spk

G2
spk(k) cos(θspk),

Ey(k) =
1

E(k)

∑

spk

G2
spk(k) sin(θspk).(1.2)

The magnitude of the energy vector is denoted by E, while its x and y components

are labeled as Ex and Ey, respectively. Once again, these expressions are given only

for the horizontal plane for simplicity. However, they can be readily extended to

three dimensions to also consider elevation.

In his original paper, Gerzon introduced Ambisonics as a way to keep both

energy and velocity vectors parallel, while arguing that attaining this will reproduce

the acoustic intensity in the neighborhood of the listening region [15]. It took three

decades for this result to be incorporated into a sound field reproduction technology

which was given the name of High-Order Ambisonics [16, 17].
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1.4 High-Order Ambisonics for sound field

reproduction

High-Order Ambisonics (HOA) is an extension to the ideas that had been

proposed to record and reproduce Ambisonics. In Ambisonics, an omnidirectional

microphone is coupled with three directional ones, all of them exhibiting a

figure-of-eight polar pattern. Each of the directional microphones corresponds to

one axis in the Cartesian coordinates system. This configuration allows for the

direct measurement of the energy and velocity vectors observed at the measurement

position.

The angular capture patterns of the four microphones used in Ambisonics

correspond to a subset of the special functions referred to as the spherical harmonics.

Figure 1.8 illustrates some of these functions, which have found applications in all

areas of physics where rotation symmetry is somehow present. The mathematical

formula to evaluate the spherical harmonic function of degree n and order m, Ynm,

at the azimuth angle θ and elevation angle ϕ is [18]:

(1.3) Ynm(θ, ϕ) = Nnme
imθPnm (cosϕ) .

The symbol Pnm denotes the associated Legendre polynomial of degree n and order

m. Meanwhile, Nnm is a normalization constant that ensures that the spherical

harmonics are orthonormal. A more in-depth review of the spherical harmonics and

their properties is presented in Chapter II.

The original Ambisonics microphone matches the first four spherical

harmonic functions as follows: the omnidirectional microphone corresponding to the

zeroth-degree spherical harmonic function (n = 0), while the three figure-of-eight

ones are associated with the three first-degree spherical harmonics (n = 1).
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Figure 1.8: The spherical harmonic functions of degrees n = 0, 1 and 2. The functions are plotted
for all orders m corresponding to the degrees shown. The bright lobes indicate regions
where the spherical harmonics take positive values; dark lobes correspond to negative
values. The amplitude of the spherical harmonics is given as the radial coordinate of the
plot. The farther a point is from the center, the greater the amplitude of the spherical
harmonic at that position.

High-Order Ambisonics builds upon this observation by including spherical harmonic

functions of degrees higher than one. It is at this point that an important, and

somehow confusing, convention must be introduced. While mathematicians and

physicists use the term degree and order of the spherical harmonics in a way that it

matches the degree and order of the associated Legendre polynomials, those working

in the field of sound field reproduction usually reverse these terms. The degree of a

given spherical harmonic is called its Ambisonic order. The different terms can prove

confusing if not handled with care. In this dissertation the phrase Ambisonic order
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Figure 1.9: A high-order Ambisonics system. Sound fields are recorded using a spherical microphone
array. The resulting signals are later encoded using the spherical harmonic functions.
The result can later be decoded for reproduction using any surrounding loudspeaker
array with an appropriate high-order Ambisonics decoder. This procedure results in a
region at the center of the loudspeaker array in which reproduction accuracy is highest.
This region is called the sweet spot.

is used as synonymous to the spherical harmonic degree.

1.4.1 The High-Order Ambisonics encoding

Applying the spherical harmonic functions to the problem of recording

spatial sound field information has two significant consequences. First, it makes it

possible to define a sound field recording scheme that has an arbitrarily high spatial

resolution. There is no limit to the maximum Ambisonic order that a hypothetical

system can record. The only restriction is imposed by the resolution of the recording

equipment itself. Another way to state this is to say that the HOA description of

sound fields is scalable. A schematic for such a recording, encoding and reproduction

system appears in Fig. 1.9.

The second property is that, by using the spherical harmonic functions

as a basis to describe the sound field, all references to the specific recording



26

or reproduction systems used vanish. The HOA description of a sound field is

system-agnostic. It is defined exclusively by the spatial features of the sound field

and does not make any reference to how they were measured or how are they to be

used.

A description of the sound field in terms of the spherical harmonic functions

is called its HOA encoding. Arguably, the largest advantage of HOA over

other techniques like WFS or BoSC lies in the definition of this encoding. Its

system-agnostic nature allows any HOA recording to be reproduced using any spatial

audio system, as long as it has what is referred to as a HOA decoder. That is, a filter

or some other method to convert the spherical harmonics description into signals for

the reproduction system’s loudspeakers.

Formally, the HOA encoding is defined by what is called the spherical

harmonic decomposition. It is given by the following equations [19]:

(1.4) Bnm(k) =

∫ π

θ=−π

∫ π/2

ϕ=−π/2

p(k, θ, ϕ)Y∗nm(θ, ϕ) sin(ϕ)dϕdθ.

(1.5) p(k, θ, ϕ) =
∞
∑

n=0

n
∑

m=−n

Bnm(k)Ynm(θ, ϕ).

Equation (1.4) shows the encoding of a sound pressure distribution p as a set

of Ambisonic channels Bnm. The inverse operation, shown in Eq. (1.5), decodes the

coefficients to re-create the sound pressure over a sphere. These expressions use an

infinite number of spherical harmonic functions to ensure the equalities hold. Actual

implementations, however, truncate the the expansion to a given number N , the

Ambisonic order of the system.
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Figure 1.10: A hypothetical teleconference system. Two teams can collaborate at distance using
ultra-realistic sound and video presentation. While not the goal of this dissertation,
it illustrates one of the practical applications where the results achieved during this
research can prove to be useful.

1.5 Research objectives

This dissertation seeks to contribute towards the development of

ultra-realistic systems for the presentation of 3D spatial audio. To this end, a

sound-centric approach, one that focuses on the physical variables pertaining spatial

sound, is adopted. The reasoning behind this choice lies in the large number of

difficulties that listener-centric approaches, such as binaural reproduction, face in

adjusting to individual listeners and coping with phenomena like active listening.

In more specific terms, it is an objective to provide new tools that facilitate

the design and construction of sound field recording and reproduction systems. Sound

field reproduction has shown promising results despite its limited application. It

elegantly sidesteps the issues of listener differences and movement. While it requires

large multi-channel arrays, it is not entirely out of reach for modern technologies.

An overview of the problems tackled in this dissertation and how do they stand in

the frame of present technologies is shown in Fig. 1.11.
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Figure 1.11: Overview of the field of spatial audio. The orange rectangles mark the areas in which
this dissertation introduces innovations.
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The proposal of this dissertation follow the lines of High-Order Ambisonics, a

sound field reproduction technique distinguished for its scalable and system-agnostic

format is considered as a starting point. The HOA format makes it possible to

codify sound field information to any desired accuracy and later reproduce it using

any spatial sound presentation system available. From large loudspeaker arrays to

headphones, all reproduction systems can handle the contents of a HOA recording,

as long as a decoder is built to match the HOA format to the end system.

The origin of HOA’s flexibility and success is also the source of its largest

weakness. Sound field information encoded by the spherical harmonic functions.

In HOA, all directions must be treated equally and sampled with regular angular

resolutions. Sampling is done by calculating or measuring sound waves as they

converge on a fixed observation point. Many applications can work well with, some

may even require, this constraints on the measurement. However, the spherical

harmonic expansion may not be the best choice in many other conceivable scenarios.

One possible situation is exemplified in Fig. 1.10. In this figure, two teams

are collaborating through an ultra-realistic teleconference system. Ideally, the users

should perceive both rooms as if they were merged into a single, large space. For this,

accurate sound localization cues must be conveyed to all participants. Measuring the

sound field from one privileged point as done in HOA will result in a high spatial

resolution for users seated close to this position, and a lower one for those who are

sit farther away. A more appropriate design considers measurements of the sound

field done with equal spatial resolution along an axis which closely follows the seat

positions.

Up to this point, no attempts have been made to modify HOA for use in

this kind of situations. The spherical harmonic decomposition is a very elegant
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mathematical result which makes calculations easy and it is, therefore, hard to

discard. The main objective of this dissertation is to provide an alternate set of

tools which, like the spherical harmonic decomposition in HOA, lead to a scalable

and system-agnostic encoding of sound field information.

The present dissertation does not attempt to build the system shown in

Fig. 1.10. Many of the engineering problems in the building of such a system lie

outside the scope of this research. What this study offers are the mathematical tools

to record, encode and reproduce sound fields after the requirement of a spherical

geometry, imposed by HOA, has been discarded. Nevertheless, some discussion

regarding the practical implementation of a cylindrical microphone array is presented.

Transducer misplacement and self-noise conditions are evaluated.

Recording and encoding of sound fields is not the only focus of this study.

Investigations on the reproduction of HOA and other sound field encodings are also

presented. The focus at this stage lies in trying to facilitate the decoding of the

harmonic expansion coefficients when the target system is a loudspeaker array that

does not match the geometry assumed during the encoding process. The mainstream

adoption of HOA has been significantly hindered by the requirement of a surrounding

array of loudspeakers with regular angular separations. In this dissertation, an

alternative decoding method is introduced that can work even when this regularity

condition is not met.

It is hoped that the results and guidelines laid out in this dissertation will

help expand the areas of application for sound field recording and reproduction

technologies. Sound field reproduction is still limited to research environments,

however, with the proposals advanced here, and the efforts of the many researchers

working in the field, the technology is expected to mature to the point where
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individuals can enjoy ultra-realistic 3D audio contents at their homes.





CHAPTER II

Mathematical modeling of sound

fields

2.1 Overview

The study of the spatial features of sound fields requires the application

of some mathematical techniques that may be unfamiliar to readers of different

backgrounds. The present chapter reviews the most important mathematical basis

upon which the main body of this dissertation stands. Readers familiar with physical

acoustics or with an otherwise solid background on the properties of the Helmholtz

equation can skim through this chapter and continue to the main research body

of this dissertation, starting with Chapter III. While this section attempts to be

an adequate introduction to the topics and results used in following chapters, it is

not intended to replace the more complete treatment of classical results that can be

found in books from authors such as Williams [19] or Teutsch [20].

This chapter starts by reviewing the wave equation and some of its

properties. This analysis will lead to two important results that show why sound field

reproduction is possible: the Huygens-Fresnel principle and the Kirchhoff-Helmholtz

integral theorem. In the process, the sound field will be divided into what are

33
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known as the near and far fields. Discussion will focus on the far field, introducing

a way to characterize sound field information in this region: the spherical harmonic

decomposition.

2.2 The wave equation

Assuming an ideal propagation medium, the sound pressure field p(~r, t) can

be mathematically described, within a source-free region, by the scalar wave equation:

(2.1) �p =

[

∇2 − 1

c2
∂2

∂t2

]

p(~r, t) = 0,

where ~r specifies a spatial point, and t stands for the time coordinate. The constant

c is the speed of sound; its value depends on the atmospheric conditions. Unless

otherwise stated, this dissertation will use the value of c = 343m/s, which corresponds

to air at approximately 20 ◦C. The � operator is known as the d’Alembertian, and

is a generalization of the Laplacian operator, ∇2.

Equation (2.1), in general, describes any oscillatory phenomena in

space-time. No specific spatial coordinates, such as Cartesian or spherical, have

been introduced thus far. The specific choice of coordinates is not done until the

Laplacian is explicitly written.

The first step towards the derivation of the solutions to the wave equation

consists of separating their spatial and temporal components. The wave equation

can be separated using a common multiplicative ansatz. The solutions are assumed

to be of the form:

(2.2) p(~r, t) = ψ(~r)T (t).

Substituting the ansatz into Eq. (2.1) leads to two separate differential equations.

For the temporal component, the resulting equation is that of a simple harmonic
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oscillator:

(2.3)

[

1

c2
· d

2

dt2
+ k2

]

T (t) = 0.

The constant of integration that arises from the separation of variables is

expressed as k2. This choice does not lead to any loss of generality in the solutions

and will result in more manageable mathematical expressions. Furthermore, the

general solutions to the simple harmonic oscillator equation are of the form:

(2.4) T (t) = Aeikc(t−t0),

with A and t0 being two constants of integration. It is seen that the number k is

inversely proportional to the wavelength of the sound wave. This parameter is known

as the angular wavenumber and is associated to the linear frequency of sound, f , by

the relationship k = 2πf/c.

The temporal part of the wave equation is not particularly interesting. It

can be summarized as a change of phase as time progresses. Sound fields, in the

absence of sources, evolve in time by simply having their phases cycle.

On the other hand, the spatial portion of Eq. (2.1) shows a more interesting

behavior. After separation of variables, the spatial components of the sound field are

given by the equation:

(2.5)
[

∇2 + k2
]

ψ(~r) = 0.

This is known as the Helmholtz equation, an eigenvalue problem. The spatial

components of any sound field are eigenfunctions of the Helmholtz operator ∇2+k2.

The research topics presented in this dissertation deal exclusively with the

spatial features of sound fields. The solutions to the temporal part of the wave

equation are, therefore, irrelevant and will be ignored from this point. However, it
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is useful to keep in mind that the time dependency can be inserted into any results

through the application of the evolution operator eikct.

2.3 The Helmholtz equation

Having removed the time dependency from the analysis of sound fields, this

section takes a closer look at the Helmholtz equation, the spatial portion of the wave

equation. To solve the wave equation it is necessary to introduce a set of coordinates

so as to explicitely express the Laplacian.

The Helmholtz equation can be solved by separation of variables through a

multiplicative ansatz in a number of coordinate systems. The appropriate choice

of coordinates depends on the particular problem to be tackled. In acoustics,

particularly when free-field conditions are assumed, it is common to use the spherical

coordinates since sound propagation does not have a priviledged direction. The main

reason for this is that sound propagation is isotropic. However, acoustic problems

with particular boundary conditions may be easier to solve with a different choice of

coordinates.

Expressing the Laplacian explicitely in spherical coordinates leads to the

following form of the Helmholtz equation:

(2.6)
[

1

r2
· ∂
∂r

(

r2
∂

∂r

)

+
1

r2 sin θ
· ∂
∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ
· ∂

2

∂ϕ2
+ k2

]

ψ(r, θ, ϕ) = 0

To solve this equation, the spatial component of the sound field, ψ is assumed

to be of the form:

(2.7) ψ(r, θ, ϕ) = j(r)Y(θ, ϕ).

Substituting this assumption into Eq. (2.6) leads to the following two differential
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equations:

(2.8)

[

d2

dr2
+
2

r

d

dr
+

(

k2 − n

r2

)

]

j(r) = 0,

(2.9)

[

1

sinϕ

∂

∂ϕ

(

sinϕ
∂

∂ϕ

)

+
1

sin2 ϕ

∂2

∂θ2
+ n

]

Y(θ, ϕ) = 0,

where n denotes the new constant of integration.

The equation governing the radial component, Eq. (2.8), is a famous

expression know as the Bessel’s differential equation. Its solutions are the spherical

Bessel functions and can be evaluated using the following formula:

(2.10) jn(kr) =
∞
∑

z=0

(−1)z
z!Γ(z + n+ 1)

(

kr

2

)2z+n

.

In this equation, Γ represents the Gamma function, a generalization of the factorial.

The angular portion can be further separated using the ansatz

(2.11) Y(θ, ϕ) = Θ(θ)Φ(ϕ).

This assumption separates Eq. (2.9) into the following equations:

(2.12)

[

d2

dθ2
+ n2

]

Θ(θ) = 0,

(2.13)

[

n sin2 ϕ+ sinϕ
d

dϕ

(

sinϕ
d

dϕ

)

−m2

]

Φ(ϕ) = 0,

The new separation constant is labeled as m2 since this choice will, once again,

simplify some expressions.

The azimuth angle dependence results in another simple harmonic oscillator.

However, an additional constraint is imposed on the solutions. Since θ is an angular

coordinate, Θ must be a periodic function and, in concrete, it must repeat itself with

a period of 2π. This forces the constant of integration n to take only integer values.
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A second constraint on the constants of integration emerges from the

consideration that the functions Y(θ, ϕ) must be single-valued for elevation angles

ϕ = 0 and ϕ = π. Equation (2.13) constraints the parameter m to lie inside the

interval [−n, n].

It is possible to transform Eq. (2.13) into the Legendre equation by the

change of variable x = cosϕ. Consequently, the solutions to Eq. (2.13) are the

associated Legendre polynomials Pnm(cosϕ) which can be calculated using the

following formula [21]:

(2.14) Pnm(cosϕ) =
(− sinϕ)n
2mm!

[

d

d(cosϕ)

]m+n

(− sin2 ϕ)m.

The solutions to Eq. (2.9) are obtained by multiplying the solutions to

Eqs. (2.12) and (2.13):

(2.15) Ynm(θ, ϕ) = Nnme
inθPnm(cosϕ),

where Nnm denotes a normalization constant.

The functions defined by Eq. (2.15) are known as the spherical harmonic

functions of degree n and order m. One of their most important properties is that

every spherical harmonic function is orthogonal to every other one. They can be

made pairwise orthonormal by choosing the normalization [22]

(2.16) Nnm =

√

(2m+ 1)

4π

(m− n)!

(m+ n)!
.

By putting together these results, the general solutions to Eq. (2.6) are:

(2.17) ψ(r, θ, φ) =
∞
∑

n=0

jn(kr)
n

∑

m=−n

Bnm(k)Ynm(θ, ϕ),

for all wavenumbers k. This result is valid inside any sourceless region. That means

that r must be smaller than the distance to the nearest sound source for any direction.
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As a reminder, the symbol jn stands for the spherical Bessel function of order n, and

Ymn denotes the spherical harmonic function of degree n and orderm. The constants

Bmn(k) characterize the boundary conditions for any particular sound field. They

are enough to describe the field over a region free of sound sources.

2.4 Near and far fields

The solutions to the Helmholtz equation in spherical coordinates are the

product of two special functions: the spherical Bessel functions and the spherical

harmonic functions. The spherical Bessel functions consider only the magnitude

of the position vector, that is, the effects of distance. Meanwhile, the spherical

harmonic functions consider only the direction of said vector. The radial and angular

components are explicitely separate, behaving independently and in different ways.

In this section, the radial component, that is, the spherical Bessel functions, are

considered.

The spherical Bessel functions are closely related to the Bessel functions that

appear in other coordinate systems. The following formula can be used to calculate

one in terms of the other:

(2.18) jn(kr) =

√

π

2kr
Jn+ 1

2
(kr).

The Bessel functions are represented here by the symbol J .

Given the relationship of Eq. (2.18), many of the properties of the Bessel

functions can be directly applied to the spherical Bessel functions after scaling them

and adjusting their order by 1/2.

An important result are the asymptotic forms of the Bessel functions. These

are approximations to the Bessel functions when their arguments are large. The
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asymptotic limit of the Bessel functions is

(2.19) Jn(kr) ≈
1√
2πkr

ei(kr−
nπ

2
−π

4 ).

The Bessel functions approximate oscillatory functions scaled by the square root of

their argument. Additionaly, the phase of these functions is given by the order. The

Bessel functions for orders 1 through 10 are shown in Fig. 2.1. In this figure, the

Bessel functions have been delayed by the order-dependent phase that appears in

their asymptotic forms. As the argument of the Bessel functions becomes larger,

their values become closer to those of Eq. (2.19).

Similarly, the spherical Bessel functions can be approximated, for kr ≫ 1,

as follows:

(2.20) jn(kr) ≈
1

2kr
ei(kr−

nπ

2
−π

2 ).

The oscillatory functions decay linearly with the argument of the spherical Bessel

functions. Besides this, a phase shift of π/2 is the only difference between the

asymptotic forms for both types of Bessel functions.

In the context of sound field analysis, the asymptotic forms of the Bessel

functions lead to what is known as the far-field approximation. The region in

space where the Bessel functions can be approximated as sinusoidals decaying with

distance is called the far field. Removing the complicated Bessel functions and using

a simple gain and delay leads to reduced mathematical expressions and, in practical

applications, simple filtering schemes. Most sound field processing techniques make

use of the far-field approximation.

On the other hand, problems that require a precise treatment of distance

cannot use this approximation. For example, processing sound field data when sound

sources are close to the observation point requires the full use of the Bessel functions.
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Figure 2.1: The Bessel functions of integer orders n = 1 to n = 10 after a phase shifting. The
functions have been delayed according to the phase of their asymptotic limit. The
violet envelope shows the amplitude of said limit. When the argument is small, there
is a large variation in the value of the functions, according to their order. However, for
large arguments, the functions very closely match their asymptotic limit for all orders.
The region where the asymptotic limit is valid is called the far field, while the region
where the Bessel functions differ according to their order is called the near field.

The regions of space where this type of complete analysis is required are called the

near field.

Throughout this dissertation, as is common in the study of sound fields,

most of the problems discussed will first be tackled in the far field before near field

corrections are incorporated to get a general solution.

2.5 High-Order Ambisonics

The previous section discusses the radial part of the solutions to the

Helmholtz equation. In this section, the angular part of the solutions is discussed.

The angular solutions are the spherical harmonic functions of Eq. (2.15). Throughout
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this dissertation, the normalization of Eq. (2.16) will be assumed. This choice leads

to simplified expressions; however, all results can be scaled to match any different

normalization if so is preferred.

The spherical harmonic functions were briefly discussed in Chapter I where

they were used to define High-Order Ambisonics. A figure showing the spherical

harmonics of degrees 0, 1 and 2 is listed in said chapter as Fig. 1.8. In this section, a

more detailed explanation of HOA is presented by properly introducing the spherical

harmonic decomposition.

2.5.1 Properties of the spherical harmonic functions

The spherical harmonics are interesting functions with several useful

properties. Two of them come from the fact that they are the general solutions to

a differential equation, Eq. (2.9). The general solutions to any differential equation

form a functional basis for the domain of its solutions [18]. The members of a basis

of any vector or functional space are orthogonal and their set is complete.

Any pair of spherical harmonic functions must be orthogonal. Furthermore,

if the normalization of Eq. (2.16) is applied in their definition, the spherical harmonics

are orthonormal. This means that they satisfy the following equation:

(2.21)

∫ π

θ=−π

∫ π/2

ϕ=−π/2

Ynm(θ, ϕ) sin(ϕ)Y
∗
n′m′(θ, ϕ) sin(ϕ)dϕdθ = δnn′δmm′ .

The symbol δij is the Kronecker delta, which takes the value of 1 if i = j and 0 for

any other combination of subindices.

Figure 2.2 shows the results of numerical integration for Eq. (2.21) for all

pairs of spherical harmonics of degrees 0 to 7. The result should be the identity

matrix, with ones on the main diagonal and zeros for all other entries. A tolerance of

10−6 was used to carry out the numerical integration. The result is a perfect match
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Figure 2.2: Orthogonality test of the spherical harmonic functions. All the spherical harmonics of
degrees 0 to 7, 64 in total, were used in the numerical integration of the orthogonality
relationship. Integration was carried out with a tolerance of 10−6. The results show no
deviation, outside of the tolerance margin, between the numerical computation and the
Kronecker delta.

of the 64× 64 identity matrix within the tolerance limit.

Orthogonality means that it is impossible to express one spherical harmonic

as the weighted sum of all others. On the other hand, the spherical harmonics are

complete. This means that any function on their domain, the sphere, can be written

as the linear combination of spherical harmonics. The completeness property can be

formalized as follows:

(2.22)
∞
∑

n=0

n
∑

m=−n

Ynm(θ, ϕ)Y
∗
nm(θ

′, ϕ′) = δ(θ − θ′)δ(ϕ− ϕ′).

The distribution δ(x − x′) is the Dirac delta, which is defined as having a value of



44

zero for all arguments except zero, where it is undefined. The area under the Dirac

delta is also defined to be equal to 1. The Dirac delta can be used to sample any

function point by point by shifting it. Therefore, if the spherical harmonic functions

can be combined to form a Dirac delta, they can also reconstruct any function over

the sphere.

The result of evaluating the completeness formula of Eq. (2.22) for all

spherical harmonic functions up to degree n = 100 is shown in Fig. 2.3. The large

peak at the center of the distribution and small values at all other points correspond

well with the Dirac delta. However, some ripples can be observed around the central

peak. These are the effect of truncating the infinite summation of spherical harmonics

at degree 100. Continuing the summation makes the ripples smaller compared to the

peak; however, the never fully disappear since it is impossible to evaluate an infinite

sum.

2.5.2 Spherical harmonic decomposition

The spherical harmonic functions are orthogonal and complete. They define

a basis for all functions on the sphere. In the context of sound field recording and

reproduction, High-Order Ambisonics exploits this property to define a scalable and

system-agnostic encoding of sound fields.

In HOA, the far-field approximation is applied to remove the Bessel functions

from the spatial description of sound fields, the solutions to the Helmholtz equation.

Furthermore, the sound field is sampled only on the surface of a sphere; this

means that the distance attenuation and delay of Eq. (2.20) are the same for all

measurements. They can be treated as a global system delay and gain and, therefore,

ignored in the encoding of the sound field.
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Figure 2.3: Completeness of the spherical harmonic functions. A Dirac delta distribution is
approximated by the spherical harmonics of degree 0 to 100. A large peak at the
origin and near-zero values elsewhere show a good correspondence with the Dirac delta;
however, some ripples are visible near the peak. These are the result of truncating the
summation of spherical harmonics at degree 100; only when all degrees up to infinity
are considered does the distribution equals the Dirac delta.

The sound field measurements used in HOA define a sound pressure

distribution on the sphere. It is, thus, susceptible to being expressed as the linear

combination of spherical harmonic functions.

(2.23) ψ[k,r](θ, ϕ) =
∞
∑

n=0

n
∑

m=−n

B[k,r]
nm Ynm(θ, ϕ).

The superindex [k, r] is used to explicitely note that the results are valid only at a

fixed radius and for a given wavenumber. Nevertheless, the sound field ψ for these

conditions is fully characterized by the expansion coefficients B.
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Figure 2.4: Illustration of the spherical harmonic decomposition. A function on the sphere is
approximated by the sum of low-degree spherical harmonics. The approximation
improves monotonically as more spherical harmonic functions are considered.

Equation (2.23) is known as the spherical harmonic expansion. It is justified

by the completeness property of the spherical harmonic functions. Furthermore, it

is, in essence, the same expression that was introduced in Chapter I as Eq. (1.5);

however, only the spatial components of the sound field are considered here.

The spherical harmonic expansion defines a system-agnostic and scalable

encoding of the sound field. The coefficients B can be calculated for all spherical

harmonics of any degree and order. The summation can be truncated at any value

deemed high enough to ensure the spatial resolution that a given application requires.

However, Eq. (2.23) does not indicate how to measure these expansion coefficients.

The inverse of this expression is needed in order to record actual sound fields.

It is straightforward to invert Eq. (2.23) by using the properties of the

spherical harmonic functions. In concrete, the spherical harmonic Y∗n′m′(θ′, ϕ′) is

multiplied on both sides of the equation. After integrating over the sphere, and

simplifying the expressions using Eqs. (2.21) and (2.22), the result is

(2.24) B[k,r]
nm =

∫ π

θ=−π

∫ π/2

ϕ=−π/2

ψ[k,r](θ, ϕ)Y∗nm(θ, ϕ) sin(ϕ)dϕdθ.
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Recordings of the sound field made on the surface of a sphere can be encoded

as their spherical harmonic expansion using Eq. (2.24). This equation defines

the High-Order Ambisonics encoding of a sound field recorded using a spherical

microphone array.

2.6 Huygens-Fresnel principle

Sound propagation, as described by Eq. (2.1) does not consider the presence

of sound sources. To include them in the analysis it is necessary to consider the

inhomogeneous equation

(2.25) �p = f(~r, t),

where f(~r, t) is any function characterizing the sound sources present. A general

solution to this equation can be given by defining a Green’s function [21]. The

Green’s function is the impulse response of the homogeneous differential equation

being considered, in this case Eq. (2.25).

The Green’s function for an eigenvalue problem, such as Eq. (2.1) or Eq. (2.5)

can be calculated as a series in terms of the eigenfunctions that satisfy it [22]:

(2.26) G(~r, ~r0) =
∞
∑

j=0

ψ∗nm(~r)ψnm(~r0)

λnm
,

where λnm is the eigenvalue associated to the eigenfunction ψnm.

The Green’s functions associated with both, the d’Alembert and Helmholtz

operators, can be stated explicitely as follows [18]:

(2.27) G(~r, ~r0) =
δ(t− |~r−~r0|

c
)

4π|~r − ~r0|
,

for the d’Alembert operator, and

(2.28) G(~r, ~r0) = −
e−ik|~r−~r0|

4π|~r − ~r0|
,
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for the Helmholtz operator.

The Green’s function for both operators depends only on the distance

between the two observation points. The direction in which sound propagates to

reach ~r from ~r0 is not important. This formalizes the fact that sound propagation is

isotropic, that is, sound propagates equally in all directions in space.

Any disturbance f(~r, t) to the homogeneous equations Eq. (2.1) and (2.5)

will propagate in all radial directions from its position of occurrence, causing new

disturbances in other contiguous regions. These will again propagate radially and

all contributions will add up to form the wavefronts corresponding to the original

source f(~r, t). This is known as the Huygens-Fresnel principle [19].

An alternative way to introduce the Huygens-Fresnel principle is by noting

that the wave equation assumes that the propagation medium is linear. The value

of the sound pressure at ~rs caused by a sound source of angular wavnumber k and

complex amplitude U located at ~r0 is given by the Green’s function as:

(2.29) pk(~rs) = U
eik|~rs−~r0|

|~rs − ~r0|
.

The sound pressure at a different, more distant point ~r can be calculated not only

from its distance to ~r0 by using Eq. (2.29), but also from the sound pressure at all

points on a sphere of radius |~r0|. Since the medium is linear, propagation to ~r is

equivalent to the sum of all propagation paths going from ~r0 to this sphere enclosing

the sound source, and then from the sphere’s surface to ~r. The result of carrying out

this process is the formalization of the Huygens-Fresnel principle [19]:

(2.30)

pk(~r) =

[

U
eik|~rs−~r0|

|~rs − ~r0|

]

[

− ik
4π

∫ π

θ=−π

∫ π/2

ϕ=−π/2

eik|~r−~rs|

|~r − ~rs|

(

1 +
~r0 · (~r − ~rs)

|~r0||~r − ~rs|

)

sin(ϕ)dϕdθ

]

.

The angular dependency of the integrand, although not explicitely stated, occurs in
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vector ~rs which, in spherical coordinates, is given by (rs, θ, ϕ).

Equation (2.30) explains why sound field reproduction systems are possible.

The wavefronts corresponding to a given sound source can be produced not only by

said source, but also by a set of secondary sources covering a boundary that fully

separates space into two regions, one containing all sound sources and one containing

all observation points.

2.7 Kirchhoff-Helmholtz integral theorem

The previous section derived an expression for the Huygens-Fresnel principle

by considering a limiting surface and dividing sound propagation into two linear

processes, one inside and one outside this limit. An alternative is to first consider

propagation to all points inside a region of interest R and then onto the observation

point. The result for an arbitrary perturbation f(~r0) can be given in terms of the

Green’s functions as follows [19]:

(2.31) pk(~r) =

∫

R

f(~r0)∇ · ∇G(~r, ~r0) +G(~r, ~r0)∇ · ∇f(~r0)dV.

This result can be simplified by making use of a result known as the second Green’s

identity [18]:

(2.32) pk(~r) =

∮

S

f(~r0)
∂G(~r, ~r0)

∂r̂s
+G(~r, ~r0)

∂f(~r0)

∂r̂s
dS.

The new closed integral is carried out over a surface enclosing the region of interest

R and the result is only valid if all sound sources are located inside this region.

Equation (2.32) is known as the Kirchhoff-Helmholtz integral theorem. It is

equivalent to the Huygens-Fresnel principle introduced in the previous section and,

similarly, it expresses the sound field caused by an arbitrary set of sound sources in

terms of the sound pressure observed on a surface enclosing them.
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The second term in the Kirchhoff-Helmholtz integral contains the derivative

of the sound pressure. This term is sometimes considered problematic to sound field

reproduction applications due to the difficulty to measure the derivative, also known

as the particle velocity. Fortunately, in free field conditions it is possible to ignore this

term by applying a 90-degrees phase shift and a 1/λ weight to all of the secondary

sources. This result arises from comparing Eq. (2.32) and the equivalent Eq. (2.30).

The scaling and phase shift is the result of multiplying by the coefficient ik, as it

appears explicitely in the latter equation.

2.8 Summary

This chapter presented a review of classical results surrounding the wave

equation. The time component of sound fields was shown to be a phase shift and

removed from the analysis due to its simplicity. All results derived later in this

chapter and in upcoming sections of this dissertation are valid at one instant in

time, but can be easily generalized by applying the phase-shifting evolution operator

eikct.

The spatial components of the sound field show a more interesting behavior

governed by the Helmholtz equation. Explicit solutions were derived in spherical

coordinates and used to introduce important concepts such as the near and far fields

and the spherical harmonic decomposition. The latter is the core of High-Order

Ambisonics, a sound field reproduction technique that defines a scalable and

system-agnostic encoding of sound field information.

Two important results in the theory of the wave equation, the

Huygens-Fresnel principle and the Kirchhoff-Helmholtz integral theorem were

introduced. Together, they explain why sound field reproduction, that is, re-creating
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the sound field of an arbitrary sound source using loudspeaker arrays, is possible.

These results form the basis of all sound field reproduction systems discussed in

Chapter I, and those to be presented in the following chapters of this dissertation.



CHAPTER III

Plane wave decomposition of

cylindrical sound pressure

distributions

3.1 Overview

The previous chapter presented the solutions to the Helmholtz equation

in spherical coordinates and used the results to formulate High-Order Ambisonics.

However, the spherical geometry is not always the best choice for sampling a sound

field. In particular, spherical coordinates impose a privileged point, the origin, from

which all observations are made. This may be adequate to present spatial sound to

a single, static listener. On the other hand, if systems to present sounds to a larger

audience, or to allow the listener to move around, are to be designed, a different

choice of coordinates may be more effective.

In this chapter, the cylindrical coordinates are used as a basis to observe

and eventually encode sound fields. The cylindrical geometry does not present a

privileged observation point; rather, it exhibits a privileged axis. This feature makes

it a better choice when presenting spatial sound to a large audience who can be

aligned along said axis.

52
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Figure 3.1: Sound field recording and reproduction systems. (a) Microphones are distributed on
the surface of a rigid cylinder as a set of parallel rings. (b) Sound fields are reproduced
using a loudspeaker array surrounding the listener.
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3.2 Cylindrical microphone and loudspeaker

arrays

Spherical microphone arrays are commonly used to measure sound field

information. Their signals can be encoded by the spherical harmonic decomposition;

this forms the basis for sound field recording and reproduction technologies such

as High-Order Ambisonics (HOA). Cylindrical arrays are a better choice to sample

sound fields over an extended region at a fixed height.

The sound field recording and reproduction system assumed in this chapter

is shown in Fig. 3.1. The microphones are aligned on the surface of a rigid cylinder

of radius Rcyl as equidistant rings and staves. The axis of the cylinder should be

parallel to the region of interest, such as the stage, and would normally lie on the

horizontal plane. The microphones along each stave can be used to infer azimuth

angles of incidence, while the rings can be used to approximate the elevation of

the sound sources. The rigid cylinder acts as a baffle, making it easier to sense

spatial information and, in general, leading to a more robust system. The merits of

cylindrical baffles have been explored in the design of arrays for circular hamonics

beamforming [31], and recording systems that would otherwise require directional

microphones [32].

3.3 The Helmholtz equation in cylindrical

coordinates

The Helmholtz equation in cylindrical coordinates can be written as follows:

(3.1)

[

1

r
· ∂
∂r

(

r
∂

∂r

)

+
1

r2
· ∂

2

∂θ2
+

∂2

∂z2
+ k2

]

ψ(r, θ, z) = 0.
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It can be solved by separation of variables following the same approach used in

Chapter II to find the solutions in spherical coordinates. The ansatz used to separate

the equation into the three spatial coordinates is:

(3.2) ψ(r, θ, z) = J(r) ·Θ(θ) · Z(z).

Applying this ansatz to Eq. (3.1) leads to three separate ordinary differential

equations that can be solved independently.

3.3.1 The radial component

The ordinary differential equation governing the radial component of the

Helmholtz equation in cylindrical coordinates is:

(3.3)

[

d2

dr2
+
1

r

d

dr
+

(

k2r −
n2

r2

)]

J(r) = 0.

The equation above is similar to Eq. (2.8) explored in Chapter II. This is the Bessel

equation and its solutions, the Bessel functions, satisfy important properties such as

the far field approximation, discussed in the previous chapter.

The Bessel functions Jn(krr) should not be confused with the spherical Bessel

functions jn(kr) that result from considering the Helmholtz equation in spherical

coordinates. The two functions are closely related be the formula presented in

Eq. (2.18). However, care must be taken to evaluate the correct functions depending

on the coordinate system used.

The two separation constants n and kr will be referred to as the polar order

and the radial wavenumber, respectively. The polar order is related to the polar angle

and is similar to the Ambisonic order used in High-Order Ambisonics. Meanwhile,

the radial wavenumber is the result of projecting the wavevector onto the radial

coordiante. It is given in terms of the wavenumber k and the azimuthal angle of
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incidence φinc by the following expression:

(3.4) kr = k sin(φinc).

Similarly, one can project the wavevector onto the axial coordinate to obtain the

complementary axial wavenumber given as:

(3.5) kz = k cos(φinc).

Both projections of the wavevector are, of course, related by the identity:

(3.6) k2r + k2z = k2.

In the following sections, these relationships are expressed in terms of a parameter

ξ = sin(φinc), called a damping ratio due to its role in the differential equation for

the axial coordinate.

The encoding of distance along the radial coordinate will be explored in

detail in Chapter VI. For now, the analysis of sound fields in cylindrical coordinates

will assume the far-field approximation introduced in Chapter II and will focus on

the polar and axial coordinates instead.

3.3.2 The polar and axial components

The ansatz of Eq. (3.2) leads to two separate differential equations for the

polar and axial components of the solutions to the Helmholtz equation in cylindrical

coordinates. These two equations are not coupled, as was the case in spherical

coordinates where they define the spherical harmonic fuctions. The solutions along

each coordinate can be expressed separately.

The differential equation governing the solutions along the polar angle is

(3.7)

[

d2

dθ2
+ n2

]

Θ(θ) = 0.
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This is the equation for a simple harmonic oscillator. Its solutions are sinusoidal

waves expressed by the following formula

(3.8) Θ(θ) = Θ0e
±inθ.

Here, Θ0 is a constant of integration and, in general, a complex number. It codifies

the amplitude and phase for the sinusoid of wavenumber n. Unlike the common

solutions to a harmonic oscillator, however, it must be noted that the coordinate

θ, the polar angle, is cyclic. The solutions of Eq. (3.8) must satisfy the constrain

Θ(θ) = Θ(θ±2aπ) for all polar angles θ and natural numbers a. The constrain forces

the parameter n to be a natural number. Due to its similarity to the Ambisonic order

in the spherical case, this parameter will be referred to as the polar order.

Equation (3.8) for all naturals n solves the polar component of the Helmholtz

equation. The remaining component, the axial coordinate, is governed by the

following differential equation:

(3.9)

[

d2

dz2
+

(

k2 − k2r
)

]

Z(z) = 0.

The equation is similar in structure to the one found for the polar angle. However,

the constant gain (k2 − k2r) can take both positive and negative values, unlike the

always-positive n2. This particular differential equation is also well-known since it

describes the dynamics of a damped harmonic oscillator. Its general solutions are

given as follows:

(3.10) Z(z) = Z0e
±iz
√

k2−k2r = Z0e
±ikz
√

1−ξ2 .

The constant of integration Z0 corresponds to the complex amplitude for each of the

waves forming a general solution. Meanwhile, parameter ξ, known as the damping

ratio determines the general behavior of the solutions. This parameter is also present
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in the radial portion of the solutions to the Helmholtz equation, as presented in the

previous subsection.

In the discussion around the radial component of the solutions to the

Helmholtz equation, it was noted that the value of the damping ratio ξ indicates the

relationship between the axial and radial wavenumbers kz and kr. From Eq. (3.10) it

is further apparent that its value can also change the axial solutions from sinusoidals

to exponential functions.

The general solutions to the Helmholtz equation, ignoring the radial

component, are given by the product of Eqs. (3.8) and (3.10). In analogy to the

results obtained in the spherical case, this result will be referred to as the cylindrical

harmonic functions. They are given by the following expression:

(3.11) Z±n,ξ(k; θ, z) = N±n,ξe
±inθ · e±ikz

√
1−ξ2 .

The constant Nn,ξ is an arbitrary normalization constant. Unlike the spherical

harmonics, the cylindrical harmonics depend on the frequency of the sound source

since the wavenumber k appears in the axial-related exponential. Furthermore, the

value of the damping ration ξ determines the general behavior of these functions.

There are three types of spherical harmonics, classified according to their

damping ratios. The polar harmonics occur when ξ = 1. This condition results

in functions that are independent of the axial coordinate. The polar harmonics are

constant along the z−axis. A damping ratio smaller than 1 results in oscillatory

behavior along the axial coordinate. The result in this case is referred to as the axial

harmonics. Finally, when the damping ratio is larger than 1, the resulting damped

harmonics have an exponential behavior along the z−coordinate. Examples for all

three cases are shown in Fig. 3.2. Two variants of the damped harmonics, differing

in their orientations, are shown.
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Figure 3.2: The cylindrical harmonic functions.



60

3.4 Plane-wave decomposition for cylindrical

microphone arrays

A simple way to capture sound field information using microphone arrays

is to consider the set of plane waves, incident from all directions, that would best

explain the observed sound pressure. This is known as the plane-wave decomposition.

This approach has been discussed to some extent in previous research for several

microphone array geometries. In the cylindrical case, a least-squares solution

considering only the polar coordinate has been proposed [23]. A generalization of

this solution to include the axial coordinate is introduced in this section.

The process to compute the plane-wave decomposition consists of finding

weights to represent the microphone measurements as a linear combination of plane

waves F(k, θmic, zmic, θinc, φinc) arriving from all directions. The starting point is to

express the effects that a single, arbitrary plane wave has on the observations made

at the microphone positions. The result of this calculation is given by the following

expression:

F(k, θmic, zmic, θinc, φinc) =
i

π2k sin(φinc)Rcyl

∞
∑

n=−∞

in

H′n(k sin(φinc)Rcyl)
e−in(θinc−θmic)eik cos(φinc)zmic .(3.12)

Here, θinc and φinc determine the direction of incidence. Meanwhile, θmic and zmic are

the polar and axial coordinates for a microphone in the array. The wavenumber is

denoted by k; H′n stands for the first derivative of the Hankel functions of the first

kind and order n.

Equation (3.12) is in the form of a linear combination of the cylindrical

harmonic functions introduced in Eq. (3.11). The harmonics used by this expression

in particular are evaluated at angle θinc − θmic and axial coordinate zmic. The
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cylindrical harmonics are evaluated for all polar orders n and both, positive and

negative, orientations. However, the damping ratio is fixed in this expansion. The

axial-related exponential leads to the following expression:

(3.13)
√

1− ξ2 = cos(φinc).

The cosine function takes values in the interval [−1, 1] which translates into a

damping ratio between 0 and 1. This covers the polar and axial cylindrical harmonics,

but excludes the damped harmonics. From this result it can be concluded that an

arbitrary field that can be expressed as a superposition of plane waves is encoded

exclusively by the polar and axial harmonics. The damped harmonics, therefore,

carry the information that cannot be expressed in terms of superposed plane waves.

This is called the evanescent field.

The plane wave decomposition provides a simple representation of the sound

field. It is scalable and system-agnostic. However, it cannot characterize localized

sound sources such as monopoles. These type of sources require weights that include

an imaginary part; that is, an evanescent field contribution which cannot be encoded

without the damped cylindrical harmonics. In general, information regarding the

distance to the sound sources is partially lost in the plane-wave decomposition since

it ignores the radial coordinate.
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3.5 Summary

This chapter introduces the cylindrical geometry for the design of

microphone and loudspeaker arrays. To this end, the solutions to the Helmholtz

equation are derived in cylindrical coordinates. A significant result found in these

solutions is the set of functions known as the cylindrical harmonics.

The cylindrical harmonic functions will eventually become a crucial building

block for the encoding of sound fields recorded with cylindrical microphone arrays.

In this sense, they are similar in importance to the spherical harmonics which lie at

the core of HOA.

Finally, a least-squares approach to encode the sound fields recorded by

cylindrical microphone arrays is presented. This method works only in the far field;

it does not consider distance information. However, the mathematical techniques

used to define this encoding, known as the plane wave expansion, can be applied to

more complex encodings which include distance information. This will be one of the

main topics of this dissertation and is elaborated in the following chapters.





CHAPTER IV

Mixed-Order Ambisonics for

cylindrical microphone arrays

4.1 Overview

In this chapter, a new proposal is advanced to tackle the problem of efficiently

encoding sound fields recorded with a cylindrical microphone array. The most salient

advantage of the proposal laid out in the following sections is that the encoded sound

field information can be broadcast to multiple users using different reproduction

systems. That is, a system-agnostic encoding format is used. On the listener’s end,

a decoder is applied to generate suitable signals for his specific loudspeaker system.

The proposal introduced here does, however, make use of the spherical

harmonic expansion. The reason for this is its widespread use in sound field

reproduction research. Despite this, the advantages of using a cylindrical microphone

array, in particular the ability to allocate different resolutions for azimuth and

elevation, are throughly exploited. For this purpose, a variation of High-Order

Ambisonics, known as Mixed-Order Ambisonics (MOA) will be applied.

The problem of using cylindrical microphone arrays to record and encode

sound field information without restricting the sound field description to a privileged

64
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Figure 4.1: Schematic of a cylindrical microphone array. The microphones are distributed on the
surface of a cylindrical baffle as a set of equidistant parallel rings. If the array is installed
with the cylinder’s axis in the horizontal plane, the number of microphones per stave
will determine azimuthal resolution, while the number of microphones per ring will set
the resolution for elevation.

observation point will be consider in Chapter VI.

4.2 Sound field recording with cylindrical arrays

Sound field recording and reproduction systems promise to deliver

unprecedented levels of realism and immersion when presenting auditory information.

Their main disadvantage, system complexity, can be ameliorated by an efficient

choice of geometry. Specifically, a cylindrical geometry allows for an independent

control of the horizontal and vertical accuracy when characterizing and rendering

sound fields. The total amount of information to be stored or transmitted can be

reduced, without significantly affecting perceptual quality, by limiting the vertical

resolution.

Systems that employ a cylindrical geometry to capture sound field

information have been proposed in the past [33]. However, current approaches require

a target loudspeaker configuration to be fixed in their formulation. Spatial accuracy

is fixed and all listeners must deploy the same reproduction system to enjoy a given
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broadcast.

The present section provides a brief overview of existing systems and

concludes by listing some of their most salient limitations which the proposal

advanced in this dissertation, outlined in the next section, seeks to overcome.

4.2.1 Existing recording systems

The recording of sound fields using cylindrical microphone arrays has been

explored in the past [34, 23, 32]. All current approaches involve lining up parallel

rings of equidistant microphones over the surface of a rigid cylinder, as shown in

Fig. 4.1. If the cylinder is placed horizontally, the number of microphones per ring

will determine the spatial accuracy for elevation, while the number of rings governs

the recording precision in the horizontal plane.

The microphones are placed over a rigid cylinder to enhance their spatial

accuracy. The cylinder will partially block sound from a given sound source to

contralateral microphones, while the sound field measured by ipsilateral ones remains

mostly unaffected. The scattering effects of a rigid cylinder, including the shadowing

of a sound source, are illustrated in Fig. 4.2.

Use of a scattering body can improve accuracy by magnifying the effects of

the direction of arrival on the sound pressure sensed by the microphones. The end

result is a better use of the microphones’ dynamic range, as well as the suppression of

forbidden frequencies that would arise without the scatterer. However, a side effect

is the distortion of the original sound field. Existing recording systems take this into

account and attempt to remove the scattering effects after the recording has been

made. This is done by modeling the total sound field as a sum of an incident and an

scattered field:
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Figure 4.2: Scattering of a spherical wave by a rigid cylinder. The sound waves are perfectly
reflected as they reach the surface of the cylindrical baffle causing ripples in the
otherwise spherical wavefronts. Sound must diffract around the baffle to reach the
side opposite to the sound source, causing a shadow effect.

(4.1) ψtotal(k, ~r) = ψincident(k, ~r) + ψscattered(k, ~r).

The wavenumber is denoted by the symbol k, while vector ~r determines the

spatial point where the sound field is evaluated.

An estimate of the scattered field ψscattered is calculated to recover the original

sound field ψincident from the recorded one psitotal. This generally assumes the original

field can be characterized as a superposition of plane waves [23, 32]. A simplified

model of a rigid cylinder of infinite length is also used in this stage. The result is the

following expression for the total sound field, measured by the microphones, when

the incident field consists of a plane wave incident from an elevation angle θinc and

azimuth angle φinc:



68

(4.2) ψtotal(k, θ, z) =
i

π2k sinφincRcyl

∞
∑

n=−∞

in

H
(1)′
n (k sinφincRcyl)

ein(θ−θinc)eik sinφincz.

Rcyl stands for the radius of the cylinder, and H
(1)′

n is the derivative of the

Hankel function of order n.

Other systems consider the sound field produced by a monopole source

located outside of the cylinder, at a distance r from its axis [34]. In this case,

the expression for the total field is:

(4.3) ψtotal(k, θ, z) =
1

2π

∞
∑

n=−∞

ein(θ−θinc)

∫ ∞

−∞

−H(1)
n (krrinc)

2πkrRcylH
(1)′
n (krRcyl)

eikz(z−zinc)dkz.

Here, kz and n correspond to the coordinates for the helical wave spectrum

space, while kr denotes the projection of the wavevector onto the radial direction. In

practice, the sum and integral cannot be computed over the full (−∞,∞) intervals.

The cutoffs used for these coordinates can be chosen independently, with higher

cutoffs leading to greater accuracy at the expense of increased system complexity.

The present document will refer to these cutoffs as the angular and axial orders, for n

and kz respectively. The fixed radius of the cylinder constrains the radial component

of the wavevector as kr =
√

k2 − k2z .

Irrespective of the scattering model used, current systems attempt to recover

the helical wave spectrum of the incident field from the expressions above. In the

more general case considering monopole sources, this can be done using the following

equation [34]:

(4.4) Ψ̃incident,n(k, kz) = −
i

2
πkrRcylJn(krRcyl)H

(1)′

n (krRcyl)Ψtotal,n(k, kz).
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4.2.2 Existing reproduction systems

Sound fields recorded using the techniques described above can be

reproduced using loudspeaker arrays. In general, present systems assume a similar

geometry for both the recording and reproduction stages. The task of generating

loudspeaker signals is, therefore, that of projecting the sound pressure field over the

microphone cylinder onto the loudspeaker one.

Once the helical wave spectrum of the original field is known at the

microphone positions, a simple and stable set of filters can be applied to project

it to the loudspeaker ones. The filters were derived in [34] as:

(4.5) F̃n(k, kz) = −
krRcylH

(1)′

n (krRcyl)

RspkH
(1)
n (krRspk)

They depend on the temporal and axial wavenumbers, k and kz, only through

the radial one, kr. The filters are determined exclusively from the radius of the

recording and reproduction cylinders, Rcyl and Rspk, respectively.
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Figure 4.3: A sound field recording, transmission and reproduction system based on the helical
wave spectrum. The sound field is sampled using a cylindrical microphone array. The
spatial Fourier transform of the recordings is calculated and used as an encoding of
the sound field. Reproduction of this encoding requires a set of filters that match the
specific recording and reproduction arrays.
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4.2.3 Limitations of current techniques

Current sound field recording and reproduction systems suffer from several

drawbacks which hinder their practical use. Systems like those outlined in previous

sections can achieve very high accuracies. However, they require a vast number

of microphones, loudspeakers and a corresponding high-data-rate communication

channel between them. One of the reasons for the high system complexity lies in

the way in which the axial coordinate appears in Eq. (4.3). Computing independent

Fourier transforms along the angular and axial coordinates leads to the requirement

of densely packed transducer rings.

A broadcasting system may consider the transmission of the helical wave

spectrum itself. If recorded with sufficient precision, the spectrum fully characterizes

the sound field. The receiver should be able to use such an audio stream with virtually

any reproduction system, as long as they have some way of calculating the sound

field at the positions of their loudspeakers. Such a system is illustrated in Fig. 4.3.

The helical wave spectrum contains a very large amount of information.

The use of cylindrical coordinates allows this kind of system to reduce the elevation

accuracy; however, high horizontal accuracy demands a microphone/loudspeaker

array with a large number of transducer rings, as well as a dense sampling of kz.

A way to sidestep the costly transmission of the full helical wave spectrum

is to generate loudspeaker signals at the recording station itself. This allows the

broadcaster to transmit only the information needed by the listener instead of a

full sound field characterization. Such a system is depicted in Fig. 4.4. The main

disadvantage is the loss of flexibility in the reproduction stage. All users receiving

the broadcast must use loudspeaker arrays of exactly the same size with equal

loudspeaker distributions. Formats based on this paradigm are not future-proof since
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they only preserve the sound field information required by a specific reproduction

system.

A close inspection of the systems outlined above shows that the helical wave

spectrum treats the sound field as a layered object and uses the same amount of

information for each elevation angle. Horizontal accuracy can be modified by adding

or removing transducer rings and consistently adjusting the sampling of kz, i.e. the

axial order. Elevation can be characterized with lower or higher accuracy by changing

the number of transducers per ring and similarly modifying the angular order. It is,

however, impossible to use different axial orders for different elevation angles.

The motivation behind the use of cylindrical coordinates is to reduce the

amount of information spent in characterizing the sound field outside the horizontal

plane. Ideally, the horizontal plane should be described with the highest accuracy,

while other elevations (particularly near the poles) are only roughly approximated.

The helical wave spectrum does not lend itself to these types of encoding.
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Figure 4.4: A sound field recording, transmission and reproduction system broadcasting only the
information needed by a specific loudspeaker array. Recording is done using a cylindrical
microphone array and its signals are matched to a target reproduction system using a
set of wave field reconstruction filters. The result are the loudspeaker signals for the
target array, so no further decoding is needed on the reproduction side.
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Summarizing, existing technologies for sound field recording and

reproduction using cylindrical arrays present the following disadvantages:

 High system complexity: The number of transducer rings required is strongly

related to the temporal frequency of sound sources. High frequencies require

impracticably dense transducer arrays.

 High bandwidth descriptions of sound fields: Storing or transmitting the full

helical wave spectrum is, generally, wasteful. Most reproduction systems cannot

fully use a complete description of the sound field.

 No standard encoding: The helical wave spectrum as recorded by the

microphones or the loudspeaker signals for a target reproduction array are not

system-independent encodings; thus far, no reference systems with a cylindrical

geometry have been proposed.

 System-dependent format that is not future proof (in the case of systems like

that shown in Fig. 4.4): Pre-computing loudspeaker signals to discard unneeded

information leads to a recording that can only be used efficiently by the target

loudspeaker array. Users with different reproduction systems cannot share the

same broadcast, and future devices cannot take advantage of contents stored in

this way.

 Equal resolution for all elevation angles: The helical wave spectrum can be

computed with different axial and angular accuracies. However, the sound field

is characterized with the same accuracy for all elevation angles. A cylindrical

geometry was chosen to emphasize the horizontal plane, where human sound

localization is most accurate, while reducing the amount of data used to encode
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the sound field at different elevations. The helical wave spectrum is not an

efficient choice to achieve this goal.

4.3 Mixed-Order Ambisonic encoding for

cylindrical arrays

This section describes the proposal, an encoder-decoder system for sound

field recording and reproduction systems of cylindrical geometry. The objective of

the proposal is to overcome the drawbacks of existing systems, as outlined in the

previous section. Specifically, the following properties are sought:

 System-independent encoding stage that can work with the signals recorded by

any cylindrical microphone array.

 Scalable operation so that dense transducer arrays can be used optimally, while

coarse ones still deliver acceptable results.

 Low-channel-count encoding allowing for the efficient use of available bandwidth

and storage capacity.

 Future-proof, standard encoding compatible with Ambisonics’ B-format [16]. It

can be readily used with existing loudspeaker arrays and benefit from future

innovations in their construction.

 An efficient characterization of the sound field that is optimized for human

listeners. More resources are used in the horizontal plane, while other elevations

are handled with reduced accuracy.
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4.3.1 System overview

As previously mentioned, the proposed system consists of two components:

an encoder and a decoder. A general view of the proposed system is shown in

Fig. 4.5. Since one of the objectives is to achieve compatibility with present and

future systems, the main innovation resides in the encoder. Its output requires only

minor adjustments to be used with existing Ambisonic decoders [17, 28].

The encoder takes as its input the signals recorded by a cylindrical

microphone array like the one depicted in Fig 4.1. A rigid scattering center, like that

used in other systems [34, 23, 32], is assumed. The output is a partial description

of the sound field as observed by the microphone array. The results of the encoding

process are organized as to provide a coarse approximation in the lowest channels

and finer details in higher ones. This makes the output of the proposed encoder

compatible with B-format Ambisonic systems [16].

The decoder receives the encoder’s output and generates appropriate

loudspeaker signals to re-create the recorded sound field. The nature of the encoded

data simplifies the decoder’s task to simply choosing the appropriate channels and

mapping them into a B-format stream. Any suitable Ambisonic decoder can then be

applied to generate the loudspeaker signals.
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Figure 4.5: Overview of the proposed sound field recording and reproduction system. A cylindrical
microphone array is used to sample the sound field. An encoding stage is used to
generate a Mixed-Order Ambisonic encoding from the cylindrical microphone array
recordings. The recorded sound field can be reproduced using any system capable of
decoding Mixed-Order Ambisonic encodings.



78

Figure 4.6: Block diagram for the proposed system’s encoding stage. A cylindrical microphone
array and a beamforming method is used to sample the sound field over a spherical
measuring grid. The resulting sound pressure distribution is encoded using the spherical
harmonic functions. Since the microphone array has different resolutions for azimuth
and elevation, more horizontal spherical harmonics are used in the encoding. The result
is a Mixed-Order Ambisonics encoding of the sound field.

4.3.2 Encoder

The main innovation introduced in the proposed system resides in the

encoder component. Other systems rely on the helical wave spectrum to characterize

the sound pressure distribution over the microphones grid. The proposal introduces

an additional measuring grid which does not necessarily match the microphones one.

A set of beamformers [19] are used to isolate the sound arriving from each direction

in the measuring grid. These measurements are encoded according to their angles

of arrival using a subset of the spherical harmonic functions. Finally, the encoding

is normalized using the Furse-Malham weighting coefficients [16] to ensure optimal

use of the system’s dynamic range before the signals are broadcasted or recorded. A

block diagram of the encoder is shown in Fig. 4.6.

4.3.2.1 The measuring grid and beamforming

The measuring grid is defined according to the application requirements and

capabilities of the microphone array. An example of such a grid is shown in Fig. 4.7.

The user can indicate the desired horizontal accuracy using a positive
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Figure 4.7: An example of a measuring grid surrounding a cylindrical microphone array. Each of
the black circles represent one direction of incidence to be used in the encoding. The
measuring grid should define a uniform sampling of all directions. It does not need to
match the actual microphone distribution on the cylinder in any way.

integer number, the horizontal Ambisonic order N . This value is also used in the

directional encoding stage and will result in 2N + 1 channels of the encoding being

used exclusively to characterize the horizontal component of the sound field. The

microphone array must be composed of at least N rings, otherwise the user’s input

is ignored and the maximum value N = #rings is used instead.

It is also possible to set a desired total number of channels in the complete

encoding. The value is not strictly obeyed and serves only as a guide to determine

the amount of information used to encode elevation. The mixed Ambisonic order M

is constrained by the number of channels in the encoding according to the following
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expression:

(4.6) #channels =M2 + 2N + 1.

The special case of M = N corresponds to the full-sphere Ambisonic

expansion. In this case both azimuth and elevation components are given equal

importance. Most practical applications of this proposal will use small values for M .

The measuring grid is, for simplicity, defined as an almost uniform sampling

of all directions. The density of the sampling is given by the constrain:

(4.7) #directions > (N + 1)2.

In particular, the proposed system has been evaluated using regular

subdivisions of the icosahedron. Performance may improve slightly by using other

measurement grids, such as Fliege distributions [40] or Lebedev quadratures [41].

The proposed system applies beamforming techniques [19] to isolate the

sound arriving from each direction in the measuring grid. In particular, two kinds

of beamformer are used. The first one relies on the pseudo-inverse of Eq. (4.2). The

beamforming matrices are, therefore:

WLS(k, θmic, zmic, θdir, φdir) =
[

i

π2k sinφdirRcyl

N
∑

n=−N

in

H
(1)′
n (k sinφdirRcyl)

ein(θmic−θdir)eik sinφdirzmic

]+

.(4.8)

The above window typically provides good results; however, computation

may be demanding or numerically unstable if high orders are considered. In such

cases, the proposed system falls back to the following beamformer:
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Wdec(k, θmic, zmic, θdir, φdir) =− iπ2k sinφdirRcyl

N
∑

n=−N

i−nH(1)′

n (k sinφdirRcyl)e
−in(θmic−θdir)e−ik sinφdirzmic .(4.9)

The filters of Eqs. (4.8) and (4.9) are directly applied to the signals recorded

by the microphones. Their formulation already considers, and actually exploits, the

scattering effects of the rigid cylinder. The result is a collection of signals, one for

each direction represented in the measuring grid:

(4.10) Pdir(k) =
∑

mic

W (k, θmic, θdir)ψtotal(k, θmic).

4.3.2.2 Directional encoding and normalization

Previous stages result in a set of more than (N + 1)2 audio signals, each

corresponding to a specific direction in a quasi-regular sampling of the sphere. They

can be encoded using the full set of spherical harmonic functions up to the N -th

degree. However, the present proposal seeks to use higher precision in the horizontal

plane and reduce the amount of information in the complete encoding.

The directional encoding stage of the proposed system considers the

user-provided parameter for mixed-order Ambisonics, M . A directional encoding

matrix C is defined by its elements as follows:

c(n+1)2−n+m,dir = Ynm(θdir, ϕdir) for n < M ,

cM2+2n,dir = Yn,−n(θdir, ϕdir)

cM2+2n+1,dir = Ynn(θdir, ϕdir)











for n > M .(4.11)
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Figure 4.8: Block diagram of a Mixed-Order Ambisonics decoder which can be used with the output
of the proposed encoder for cylindrical microphone arrays. The coefficients that are
missing from a full spherical harmonics expansion are assumed to be zero and a full 3D
High-Order Ambisonics encoding is prepared. This is later processed with any HOA
decoder to produce loudspeaker signals for reproduction.
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The functions Y are the spherical harmonic functions, in this case evaluated

at the directions that appear in the measuring grid. The encoding matrix C has

a total of M2 + 2N + 1 rows and as many columns as there are directions in the

measuring grid. A first encoding of the sound field, according to the user-provided

parameters, can be easily calculated from C:

(4.12) B̃(k) = C [Pdir(k)] .

The final stage performed by the encoder consists on normalizing the signals

B̃. This step is not always necessary, but can prevent artifacts such as clipping or

perceptible quantization noise under some circumstances. Normalization is done by

simply multiplying the corresponding Furse-Malham coefficient [16] by each of the

signals in B̃.

4.3.3 Decoder

The normalized encoding of the sound field, B, produced by the encoder can

be easily reproduced using existing Ambisonic systems. It is important, however, to

consider the fact that the encoder does not produce full-sphere descriptions of sound

fields. An overview of the steps a decoder must follow to use the results of the

proposed encoding system is shown in Fig. 4.8.

The encoded sound field may carry more information than a particular

system is capable of reproducing. This is particularly true given the emphasis that

the proposed encoder may put on the horizontal component of the sound field. A

first step should determine if some channels must be discarded from the encoding.

This can be achieved by evaluating the condition number for the system’s decoder

at the highest orders available. If the system may become numerically unstable,
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high-order channels are discarded.

Secondly, the available channels must be re-arranged in the order expected by

the system’s decoder. If a full-sphere encoding is expected, zero-filling the unavailable

channels can be done without affecting the quality of the reproduction.

The final step is to revert the Furse-Malham normalization by dividing each

remaining channel by the same weights used in the encoding stage. The resulting

set of signals can be run through a conventional Ambisonic decoder to reproduce the

sound field observed by the cylindrical microphone array.

4.4 Summary

A new sound field encoder system for cylindrical microphone arrays was

introduced. Unlike existing systems, the new proposal can flexibly devote most

of the available resources to characterizing the sound field in the horizontal plane.

Furthermore, the output of the encoder can be reproduced using any existing

Ambisonic system with only a few modifications in the decoder system.

The new proposal satisfies the objectives set during its development. In

particular, the encoder and its output are system-independent. This was achieved by

defining a measuring grid which does not necessarily uses the same distribution as the

microphone array. The measuring grid is defined using two parameters provided by

the user, leading to a scalable encoding using considerably less channels than previous

methods, such as those based on the helical wave spectrum. More specifically, the

proposed method results in M2 + 2N + 1 channels, where the linear dependency N

sets the system accuracy in the horizontal plane. The presented system is considered

to be future-proof since it is compatible with the Ambisonic B-format with little

modifications.





CHAPTER V

Decoding generalized Ambisonics

for arbitrary loudspeaker

configurations

5.1 Overview

In this chapter, the focus changes from the recording of sound fields to their

reproduction using loudspeaker arrays. Sound field reproduction systems are limited

by the vast amounts of information present in sound fields. Re-creating an arbitrary

sound field throughout the full listening range (20 Hz to 20 kHz) and inside a volume

large enough for even a single listener would require thousands of independent audio

channels. Practical systems can only approximate the sound field to the extent

allowed by their bandwidth constraints and number of available loudspeakers. While

it is easy to reconstruct sound fields very accurately over small regions, this chapter

emphasize the need to re-create the sound field within a volume large enough for the

user or users of a reproduction system to fit comfortably.

The proposals outlined in this chapter will use High-Order Ambisonics as

a basis since it is a well-known technique for the approximate characterization and

reproduction of sound fields using surrounding loudspeaker arrays [16, 17]. However,

86
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the techniques described are applicable to other cases. For example, in Chapter VI

these techniquies are applied to a different kind of sound field encoding.

The main objective of the reseach presented in this chapter is, therefore, to

develop a method for the decoding of HOA encodings. The proposal will focus on

improving the user’s experience by extending the listening region. The performance

of a standard HOA decoder is compared with that of the proposed method by

evaluating not only the reconstruction error, but also a perceptually meaningful

parameter: the interaural differences.

5.2 Conventional Ambisonic decoders

High-Order Ambisonics defines a scalable format to store and transmit sound

field information. A significant advantage of HOA is that it completely separates the

recording/synthesis stage from the reproduction one. An encoding process generates

HOA descriptions from either microphone signals or sound field simulation results.

Later, a decoder uses these descriptions to calculate proper loudspeaker signals,

considering the peculiarities of the array.

A variety of methods to decode HOA exist. A full review of all these methods

would go beyond the scope of this dissertation; however, two simple ones are outlined

here as a simple introduction to the problem of reproducing HOA encodings.

5.2.1 Projection of the spherical harmonic functions

The basic decoding of HOA data for reproduction using a surrounding

loudspeaker array is achieved by computing a weighed sum of all HOA channels for

each loudspeaker. The problem of decoding HOA reduces to finding the required

weights, that is, a decoding matrix which mixes the HOA channels to produce
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loudspeaker signals.

The simplest way to find the required weights is by applying the spherical

harmonic expansion, Eq. (2.23), directly. The loudspeakers are used to sample

the spherical harmonic functions. This process results in the following loudspeaker

signals p
[k,r]
spk :

(5.1) p
[k,r]
spk =

1

#Loudspeakers

N
∑

n=0

n
∑

m=−n

B[k, r]nmYnm(θspk, ϕspk).

The reciprocal of the number of loudspeakers works as a normalization factor,

ensuring that the encoding and decoding processes do not change the sound level.

However, the simple gain used by the projection decoder is only valid if the

loudspeakers define a truly regular sampling of all directions. This constraint

is impossible to satisfy except for sets of 4, 6, 8, 12 or 20 loudspeakers.

The reason behind this is that the only regular polyhedra in 3D space are

the tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron. Any

loudspeaker distribution, besides those defined by the faces of the platonic solids,

will deviate from a regular sampling of the sphere and will, therefore, introduce

some error in the reproduction when using a projection decoder.

Another limitation of the projection decoder is what gives it its name. The

equality of Eq. (5.1) requires the recording and reproduction arrays to have the exact

same radius. This is made explicit by the superindex [k, r]. When the radii of the

arrays differ, Eq. (5.1) will project the sounds recorded at the microphone array’s

radius onto that of the loudspeaker array. This process will distort sound sources

making them appear smaller or larger, blurring spatial details.

Despite its limitations, the simplicity of the projection decoder makes it an

attractive choice when little processing power is available and reproduction accuracy

is not a major concern.



89

5.2.2 Least-squares approximate solution

A more robust approach to HOA decoding makes use of the least-squares

approximation. The contribution of each loudspeaker towards re-creating a given

spherical harmonic, as seen from the listening position, is calculated and the results

are stacked into what is called a re-encoding matrix.

(5.2) B(k) = Cp(k).

Vector B is the HOA encoding of a given sound field and is assumed to be truncated

at Ambisonic order N . The components of vector p(k) are the loudspeaker signals.

The re-encoding matrix C, therefore, has (N + 1)2 rows and one column for every

loudspeaker in the array. The elements of C are given by the spherical harmonic

functions evaluated in the directions of the loudspeakers, (θspk, ϕspk), as follows:

(5.3) cn2+n+m,spk = Ynm(θspk, ϕspk).

The loudspeaker signals needed to reconstruct a particular HOA-encoded

sound field can be computed by inverting the linear system of Eq. (5.2). For the

re-encoding matrix to be invertible, however, the number of loudspeakers in the

array must match the count of ambisonic channels. In practice, it is desirable to use

larger arrays to improve the reproduction accuracy; this leads to an underdetermined

linear system. It is common to rely on the Moore-Penrose pseudo-inverse to invert

the re-encoding matrix. The decoding equation can be written in terms of the

pseudo-inverse of C, denoted by C+, as [38]

(5.4) p(k) = C+B(k).

If the number of loudspeakers in the array is larger than the number of

ambisonic channels, Eq. (5.4) gives the solution that minimizes the Euclidean norm
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of p(k). If the array has fewer loudspeakers than the number of ambisonic channels,

exact reconstruction becomes impossible in general; however, Eq. (5.4) will result in

the loudspeaker signals minimizing the Euclidean norm of the error vector [37]

(5.5) ǫ(k) = Cp(k)−B(k).

The Moore-Penrose pseudo-inverse is not a continuous operation and, under

some circumstances, can lead to a large reproduction error. Whether or not this is

the case for a given loudspeaker configuration can be determined by calculating the

condition number of its re-encoding matrix.

(5.6) cond(C) = ‖C‖‖C+‖,

where ‖ · ‖ denotes a matrix norm. A large condition number implies that C is

ill-conditioned and least-squares solutions are numerically unstable.

Decoding matrices derived using the pseudo-inverse can result in a reduced

listening region when a large number of loudspeakers is used. The least-squares

solutions provided by the pseudo-inverse for underdetermined systems are those with

minimal Euclidean norm. This means that the reproduced sound field will closely

match the recorded one at a single spatial point but it will quickly vanish away from

this privileged position. Minimizing the Euclidean norm of the loudspeaker signals

does not ensure the best results from the perspective of a human listener who would

benefit instead from a large listening region.

5.3 Optimized decoding for irregular arrays

Decoding of ambisonic data through the pseudo-inverse of a re-encoding

matrix can lead to the drastic amplification of errors when targeting an irregular
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loudspeaker array and a small listening region when a large number of loudspeakers

is used.

In this section, a new HOA decoding method that seeks to overcome the

shortcomings of conventional approaches is introduced. In the proposed method, a

decoding matrix is calculated iteratively so as to stabilize the reproduction around

the privileged point at the center of the listening region. To achieve this, a

constraint on the spatial distribution of the reconstruction error is imposed. While

approaches based on the pseudo-inverse minimize the norm of the loudspeaker

signals, the proposed method attempts to minimizes the radial derivative of the

reconstruction error. This leads to a constrained least-squares problem that can be

solved numerically through iterative methods.

5.3.1 Radial stabilization of the reconstruction error

The proposed decoding method iteratively improves a decoding matrix by

stabilizing the reconstruction around the listening position. To accomplish this,

the decoding gains are perturbated in such a way that the radial derivative of the

reconstruction error is minimized.

The decoding matrix obtained by applying the pseudo-inverse is a good

starting point since it ensures that the reconstruction error at the center of the

listening region is minimal. However, if the re-encoding matrix is ill-conditioned for

a given array, other decoding matrices can be used, such as that from the projection

decoder which is always stable.

Assuming ideal monopole radiators, the reconstruction error at the position

~r can be written as

(5.7) ǫ(k, ~r) = ψ̃(k, ~r)− φ(k, ~r)−
∑

s

N
∑

m=0

m
∑

n=−m

Gs
mn(k)

e−ik|~r−~rs|

|~r − ~rs|
Ymn(θs, ϕs),
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where ψ̃(k, ~r) represents the sound field encoded using HOA, φ(k, ~r) stands for sound

field reproduced by the loudspeaker array when the initial decoding matrix is applied.

The first sum runs over the loudspeakers in the array; the position of the s−th

loudspeaker is given, in spherical coordinates, as ~rs = (rs, θs, ϕs). The gains G
s
mn(k)

are initially set to zero, yielding only the initial approximation.

The proposal is to perturbate the solution of Eq. (5.7) through the gains

Gs
mn(k) in such a way that the listening region is enlarged. The behavior of the

reconstruction error as the listening point moves away from the center of the array

can be described by the radial derivative of Eq. (5.7)

∂

∂r
ǫ(k, ~r) = ∇ǫ(k, ~r) · r̂

= ∇[ψ̃(k, ~r)− φ(k, ~r)] · r̂ −
∑

s

∂

∂r

[

e−ik|~r−~rs|

|~r − ~rs|

] N
∑

m=0

m
∑

n=−m

Gs
mn(k)Ymn(θs, ϕs).

(5.8)

The first term is the radial derivative of the reconstruction error when using the initial

decoding matrix. This term can be regarded as a constant d ≡ ∇[ψ̃(k, ~r)−φ(k, ~r)] · r̂

since it is independent of the choice of gains Gs
mn(k). The radial derivative of the

monopole field can be expressed as:

(5.9)
∂

∂r

[

e−ik|~r−~rs|

|~r − ~rs|

]

= Ds(k)

[

e−ik|~r−~rs|

|~r − ~rs|

]

,

with the operator

(5.10) Ds(k) ≡ −
|~r| − |~rs| cos(~r, ~rs)

|~r − ~rs|

(

1

|~r − ~rs|
+ ik

)

.

Using these definitions, Eq. (5.8) can be rewritten as

(5.11)
∂

∂r
ǫ(k, ~r) = d−

∑

s

N
∑

m=0

m
∑

n=−m

[

Ds(k)
e−ik|~r−~rs|

|~r − ~rs|
Ymn(θs, ϕs)

]

Gs
mn(k).

By taking the norm of Eq. (5.11), it is possible to impose the following

constraint on the radial derivative of the reconstruction error:

(5.12)

∣

∣

∣

∣

∂

∂r
ǫ(k, ~r)

∣

∣

∣

∣

= ‖L ·G− d‖ ≤ ρ.
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Here, ρ is some threshold limiting the permissible variation of the reconstruction

error. The entries of G are the loudspeaker gains Gs
mn(k), while the entries of the

operator L are defined as

(5.13) Ls
mn(k) = Ds(k)

e−ik|~r−~rs|

|~r − ~rs|
Ymn(θs, ϕs).

Equation (5.12) can be used to calculate a set of decoding gains by defining

a target radius for the listening region and a maximum allowed variation for the

reconstruction error. Alternatively, it is possible to find the gains that minimize the

variation in the reconstruction error by successive approximations. The resulting

gains

G = argmin
G

∣

∣

∣

∣

∂

∂r

[

ψ̃k(r, θ, ϕ)− φk(r, θ, ϕ)

−
∑

s

N
∑

m=0

m
∑

n=−m

Gs
mn(k)

e−ik|~r−~rs|

|~r − ~rs|
Ymn(θs, ϕs)

]
∣

∣

∣

∣

∣

(5.14)

can be used to generate loudspeaker signals through the following decoding equation:

(5.15) p(k) =
[

GT(k) +C+
initial

]

B(k).

In contrast with the unconstrained least-squares method, the proposed

decoder does not guarantee that the reconstruction error at the center of the array

will be minimal. Instead, it seeks to maintain an acceptable reconstruction accuracy

over a wider region and reduce reproduction artifacts as the listener turns his head

or moves slightly within the array.

5.4 Near-field corrections for non-spherical arrays

High-Order Ambisonics describe the sound field at a fixed distance from the

observation point; that is, over a spherical boundary. The HOA decoders discussed

thus far follow on this assumption and do not introduce any distance compensation.
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If the loudspeaker array is, like the microphone one, spherical, then the two radii

can be matched using a quotient of spherical Hankel functions. It is, however, very

difficult to arrange vast numbers of loudspeakers at a constant distance from the

position of the listener.

5.4.1 Near-field compensated high-order Ambisonics

The solutions of the Helmholtz equation derived in Chapter II are valid

inside a region with no sound sources. Sound radiates from the outside and into the

region under consideration. This leads to the solutions containing only the spherical

Bessel functions for the radial component. However, a more general case, where

a sound source is located in the region of interest and radiates sound as outwards

spherical waves can also be described by the Helmholtz equation. The solutions of

the Helmholtz equation under this condition include the spherical Hankel functions

hn(kr) [21].

(5.16) ψ(~r, k) =
∞
∑

n=0

k
hn(kr)

in+1

n
∑

m=−n

Onm(k)Ynm(θ, ϕ).

The coefficients Onm are known as the exterior multipole expansion of the sound

field ψ(~r, k) and characterize the radiation patterns of the sources present within a

spherical boundary.

The exterior expansion coefficients are not a conventional HOA encoding and

they are unfit for presentation using a surrounding loudspeaker array. It is possible,

however, to derive an standard HOA encoding of the sound fields they encode by

applying a spatial translation. The extended sources encoded by the coefficients

Onm are, then, present as if they were outside of a spherical boundary surrounding

the listener.

Converting the Onm coefficients into the standard HOA coefficients Bmn can
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be done with the following equation [19]:

(5.17)

Bnm(k) =
∑

n′

∑

m′

[

k

4πin+n′+1jn(kr)

∫

boundary

dΩYn′m′(θ′, ϕ′)Ynm(θ, ϕ)hn(kr
′)

]

On′m′(k).

The primed coordinates now represent the position from which the extended sound

source will be presented. Therefore, the choice of r′ must be made considering the

radius of the target listening region.

Due to its explicit dependency on a fixed distance, the encoding of Eq. (5.17)

is said to include near-field corrections. This kind of HOA recordings, combined with

the information on which distance was chosen for the translation, can be referred as

Near-Field Compensated High-Order Ambisonics (NFC-HOA) encodings.

5.4.2 Compensating for disparate loudspeaker distances

The decoding method introduced in the previous section cannot handle

NFC-HOA encodings. A further consideration is that irregular arrays are often

chosen due to the difficulty of building a regular or almost-regular one. When

angular uniformity is hard to achieve, it seems unreasonable to expect that the

loudspeakers can be positioned at a constant separation from the listening position.

The HOA decoder previously introduced is reformulated in this section so as to

handle NFC-HOA encodings.

Conventional HOA encodings use the far-field approximation and present

all sound sources from a spherical boundary of an assumed large radius. In actual

scenarios, however, the sound sources do not necessarily lie on this boundary. Some

research attempts to correct for this by introducing distance filters; however, they

exhibit an infinite bass boost [24].

On the other hand, the NFC-HOA encodings of Eq. (5.17), include an infinite
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bass attenuation due to the reciprocal of the Bessel functions. It is possible to

combine both effects during the decoding stage to produce a stable set of distance

compensation filters. This process, which requires filtering the NFC-HOA data before

decoding it, does not depend on the angular coordinates. Therefore, it has no impact

on the performance of the decoding method used.

Distance filtering of the NFC-HOA encoding of a sound source located at a

distance rsrc from the listener, to be decoded using a loudspeaker array of radius ra

can be done using the following transfer function [24]:

(5.18) HNFC
n (ω) =

∑n
m=0

(n+m)!
(n−m)!m!

(

−ic
ωrsrc

)

∑n
m=0

(n+m)!
(n−m)!m!

(

−ic
ωra

) .

When the distance to the loudspeakers is not constant, a filterbank for varying ra

can be designed. This leads to a set of HOA encodings which can then be decoded

using the procedure introduced in the previous section.

After simplification, it is possible to model the proposed decoder including

corrections for near-field effects as the following constrained least-squares problem:

(5.19)

∣

∣

∣

∣

∂

∂r
ǫ(k, ~r)

∣

∣

∣

∣

= ||L ·G− d|| ≤ ρ,

where the regularization operator L has the following components:

(5.20) Ls
nm =

(n+m)!

m!(n−m)!
· |~r| − |~rs| cos(~r, ~rs)
(−ikrsrc)n|~r − ~rs|

(

1

|~r − ~rs|
+ ik

)

e−ik|~r−~rs|

|~r − ~rs|
Ynm(θs, ϕs).

The regularization operator depends explicitly on the distance to the sound

sources. However, it is possible to establish a convention in the encoding stage that

would include distance compensation filtering in order to translate all sources to a

fixed distance. After settling on such convention, the decoding of NFC-HOA data

can be made independent of the distance to the sources present in the re-created

sound field.
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Figure 5.1: Layout of a 157-channel irregular loudspeaker array used to evaluate the proposed HOA
decoder. Panel (a) shows the layout for the walls and ceiling; the distance between
adjacent loudspeakers is constant and equals 50 cm. Panel (b) shows a photograph of
this particular loudspeaker array built inside a soundproof room covered with a sound
absorbing material to reduce reflections.
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5.5 Evaluation

In this section, the performance of the proposed decoding method and that of

a conventional HOA decoder are compared using a computer simulation. The analysis

carried out comprises both, the physical accuracy of the sound field reconstruction,

and two perceptually meaningful parameters for sound localization: the interaural

level and phase differences.

The loudspeaker array used for evaluation is an irregular one with

loudspeakers distributed on the walls and ceiling of a rectangular room. The distance

between loudspeakers is constant, resulting in an irregular angular sampling due to

the differences in distance between the loudspeakers and the listener. A total of

157 loudspeakers are considered in a configuration that leads to well-conditioned

re-encoding matrices up to the fifth Ambisonic order. The layout of this particular

array is shown in Fig. 5.1.

High-Order Ambisonics descriptions of the sound field are synthesized by

simulating plane waves of various frequencies incident from several directions. The

plane waves are sampled by a spherical microphone array that uses a regular, Fliege

geometry [40].

5.5.1 Sound field reconstruction error

The first evaluation consists of observing the sound field reproduction

accuracy directly when a conventional least-squares decoder and the proposed

constrained least-squares decoder are used. The reconstruction accuracy of both

decoders was calculated over a region large enough to accommodate an average

human listener. In concrete, the reconstruction error is given as the root-mean-square

value of the difference between the reproduced and ideal sound fields inside a sphere
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Figure 5.2: Reconstruction error for plane waves of various frequencies incident from the front. The
red curve corresponds to a conventional decoder, while the blue curve shows the results
achieved by the proposed decoding method.

at the center of the array. The radius of the sphere was chosen to be 8.5 cm to

match that of the average human head. All results were obtained through a computer

simulation that treats the loudspeakers as ideal omnidirectional radiators.

Several sound fields, consisting of single plane waves, were reconstructed.

The test fields were divided into two sets. The first one consisted of simulated

plane waves of frequencies between 50 Hz and 5 kHz arriving from a fixed direction

(θ = 0, ϕ = 0). The second set of test fields consisted of a 2 kHz plane wave incident

at azimuth angles between 0◦ and 90◦.

The results from the first set of tests are summarized in Fig. 5.2. At low

frequencies, the conventional least-squares decoder shows slightly better results,

although both methods present acceptable results with small reproduction errors.
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Figure 5.3: Reconstruction error for a 2 kHz plane wave as a function of the angle of incidence.
The results for the conventional decoder are shown in red, and those corresponding to
the proposed decoder in blue.

As frequency increases, though, the unconstrained least-squares approximation sees

its reconstruction error increase rapidly. On the other hand, the proposed method

manages to mantain the RMS error below 2 dB throughout the entire frequency

range tested.

As for the second set of evaluation tests, the results are presented in Fig. 5.3.

These tests consider a plane wave of a fixed frequency, 2 kHz. Consistently with the

results of the first test, the proposed HOA decoder outperforms the conventional

one, although the difference is less than 0.5 dB. However, variations in decoder

performance for plane waves incident from different directions is almost twice as

large when no constrains are imposed on the radial derivative of the reconstruction

error.
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Figure 5.4: Average error in the interaural level and phase differences when presenting 5th order
HOA recordings over an irregular, 157-channel loudspeaker array. The presented values
represent the average for frequencies up to 5 kHz with the results for a conventional
HOA decoder in blue and those for the proposed method in red. The first two panels
show, from top to bottom, the error in the presented ILD and IPD for plane waves
arriving at different azimuth angles and elevation 0. The last two panels show the same
results but for different elevation angles at an azimuth of 0 degrees.
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5.5.2 Interaural cues

A second evaluation further compares the performance of the proposed HOA

decoder to that of a conventional one. Focus will now be on two perceptually

meaningful variables: the interaural level difference (ILD) and the interaural phase

difference (IPD). The two variables were chosen since they are important for sound

localization in humans. Comparisons are drawn for a virtual loudspeaker array

modeled from the Head-Related Transfer Functions of the SAMRAI dummy head.

The virtual array approximates the 157 channel array used in the previous evaluation.

Since the SAMRAI HRTF was not available at the precise positions defined by the

array, the sample points that minimize the error in central angle were used. Distance

compensation filters were also applied to approximate the parallelepiped shape of the

array.

The results in conveying interaural differences for the two HOA decoders

evaluated are presented in Fig. 5.4. The results show a pronounced difference in the

ILD reconstruction error for azimuth angles between 30◦ and 55◦. Incidentally, this

region is also the one at which the loudspeaker array exhibits greater irregularities in

its layout, as it transitions from a densely sampled region at the front to a sparsely

sampled one on the left side of the listener. The performance of the proposed decoder

is seen to be considerably better at elevation angles above 32◦. This phenomenon is

related to the lack of loudspeakers below the listener.

5.6 Summary

This chapter focused on sound field reproduction, specifically that of

HOA-encoded sound fields. Conventional HOA encodings and their decoders do

not consider distance explicitely since they assume that the far-field approximation
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holds. Furthermore, transducers in both the recording and reproduction arrays are

considered to be equidistant from the observation point.

A new HOA decoding method was introduced by taking into consideration

the difficulty of building a spherical loudspeaker array, as well as the desire for a larger

listening region to accommodate the listener(s). The performance of the proposal

was compared with that of a conventional HOA decoder. Not only was the accuracy

in the reconstruction of the field considered for evaluation, but also the interaural

cues that each decoding method conveys to the listener.



CHAPTER VI

3D Cylindrical Ambisonics

6.1 Overview

A significant amount of research has focused on the design and use of

spherical microphone arrays [25]. The symmetric layout, having no preferred

orientation, simplifies the formulas used to characterize the sound field. In

Chapter III a different kind of microphone array, a cylindrical one, was considered.

Spherical microphone arrays are inadequate when recording over large

regions; for example, across a stage or a conference room. In this case, cylindrical

arrays can be a good choice since the axis of the cylinder defines a privileged direction;

it is thus possible, for example, to record the horizontal plane with high accuracy

while using only a coarse sampling for elevation. Sound sources, such as speakers in

a room or instruments on the stage, tend to be positioned at similar elevations.

Cylindrical microphone arrays are also easier to design. Any number of

transducers can be spaced regularly along the cylinder’s axis and circumference.

Furthermore, cylindrical baffles are known to have good characteristics making the

microphone array robust to errors in transducer placement as well as microphone

self-noise [26, 27].

One problem of working with cylindrical arrays is the lack of an encoding

104
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scheme, like that defined by the spherical harmonic expansion and used in HOA. This

problem was considered in Chapter IV, where a method to derive HOA encodings

from the recordings of cylindrical microphone arrays was presented.

In this chapter, the spherical geometry underlying HOA is discarded to

make full use of the separate axial and polar coordinates introduced by the choice

of a cylindrical arrangement. The basis for a new sound field recording and

encoding method using cylindrical microphone arrays is outlined in the following

sections. The proposed encoding, called 3D Cylindrical Ambisonics, is scalable

and system-independent, like HOA in the spherical case. It treats the axial and

polar coordinates independently; therefore, different resolutions can be used for

azimuth and elevation. A general approach to reproduce the proposed encoding

using loudspeaker arrays is briefly discussed. The computer simulation of a complete

system, including a rigid cylinder baffle, recording, encoding and reproduction using

loudspeakers is considered to evaluate the proposal.

6.2 Spatial encoding for cylindrical microphone

arrays

There have been some efforts to reproduce sound fields recorded by

cylindrical microphone arrays using loudspeakers. Chapter III introduced the

plane-wave decomposition to encode and reproduce the far field. Another attempt

which also works in the near field involves matching two cylinders of different radii

with a propagator filter. The filters, known as the wave field reconstruction filters,

are given in the helical wave spectrum domain by the following equation [33]:

(6.1) Gn(kr) = −
krRcylH

′
n(krRcyl)

RspkHn(krRspk)
.
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The filters described in this equation depend only on the radius of the microphone

array Rcyl and the loudspeaker array Rspk.

Previous attempts at using a cylindrical microphone array to characterize

sound fields lack the desirable properties of methods based on spherical

geometries such as HOA. The plane-wave decomposition defines a scalable and

system-independent encoding scheme; however, it cannot deal with localized sound

sources. In general, information regarding the distance to the sound sources is

lost. On the other hand, the wave field reconstruction filters of Eq. (6.1) can

accurately re-create the sound field measured by a cylindrical microphone array

using a cylindrical loudspeaker array. However, the filters must be designed for

every pair of recording and reproduction systems; this technique does not generate

an intermediate encoding of the measured field.

In this section a new encoding format which results in a scalable

representation of the sound field including distance is introduced. The proposal is

independent of the recording and reproduction systems. In this sense, it is similar to

HOA. By using a cylindrical microphone array, it benefits from a privileged direction

and the possibility of sampling the field across a wider region. The encoding scheme

follows the same paradigm as HOA. It starts from the general solutions to the

Helmholtz equation in cylindrical coordinates. These were derived in Chapter III

and are reproduced here.

(6.2) ψ±n,ξ(r, θ, z) = C±n,ξ(k)Jn(ξkr)e
i(nθ±kz

√
1−ξ2).

A set of coefficients C±n,ξ(k) can fully characterize any arbitrary sound field, while the

general solutions formed by the product of the Bessel functions Jn and a complex

exponential, the cylindrical harmonics, are a basis of the Helmholtz equation’s

solution space. Therefore, they can be used as to encode any possible sound pressure
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distribution on the cylinder. The coefficients are classified according to their degree

n, damping ratio ξ, and orientation (positive or negative).

The basis functions that appear in Eq. (6.2) show three distinct patterns

depending on the value of ξ. These are illustrated in Fig. 3.2. When ξ = 1 the

functions no longer depend on z and the decomposition reduces to the circular

harmonic expansion. This case occurs when encoding a plane wave whose wavefronts

are parallel to the cylinder axis. If ξ < 1 the argument for the exponential in

the basis functions is purely imaginary. The basis functions will therefore exhibit

an oscillatory behavior on both the axial and polar coordinates. These additional

functions serve to encode plane waves incident at oblique angles. In particular, the

damping ratio associated with an arbitrary plane wave is ξ = sin(φinc). Finally, the

case when ξ > 1 leads to a real part in the argument of the exponential functions.

The resulting functions diverge towards either the positive or negative direction of

the z-axis. These functions help to encode the evanescent component of the sound

field. They are needed to encode localized sources, such as monopoles.

The sound pressure measured by the microphones should not be encoded

directly since it includes the scattering effects of the cylindrical baffle. In the ideal

case of a rigid scatterer, it is possible to model the baffle effects and design a set of

filters to recover the original sound pressure distribution. The general solution for

the scattering of an arbitrary sound field is given by the following equation:

p(r, θ, z, k) =
1

2π

∞
∑

n=−∞

einθ
∫ ∞

0

[

C+
n,ξ(k)e

ikz
√

1−ξ2 + C−n,ξ(k)e
−ikz
√

1−ξ2
]

[

Jn(ξkr)−
J ′n(ξkRcyl)

H′n(ξkRcyl)
Hn(ξkRcyl)

]

dξ.(6.3)

This equation is valid for all r ≥ Rcyl. The divergent solutions, while unphysical,

occur when calculating the field of a monopole in the vicinity of the source and are,
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therefore, consistent with the wave equation.

Considering a microphone array for which all transducers are positioned

precisely on the surface of the rigid cylinder, Eq. (6.3) can be simplified as follows:

p(Rcyl, θ, z, k) =
1

π2kRcyl

∞
∑

n=−∞

einθ
∫ ∞

0

[

C+
n,ξ(k)e

ikz
√

1−ξ2

+C−n,ξ(k)e
−ikz
√

1−ξ2
] i

ξH′n(ξkRcyl)
dξ.(6.4)

The equation above can be easily inverted since the general solutions to the wave

equation are orthogonal. The result is the encoding of the sound pressure distribution

on a cylindrical boundary from the sound pressure observed over a rigid cylinder:

(6.5) C+
n,ξ(k) = −iπ2ξkRcylH

′
n(ξkRcyl)

∫ 0

z=−∞

∫ π

θ=−π

p(θ, z, k)e−inθe−ikz
√

1−ξ2dθdz,

(6.6) C−n,ξ(k) = −iπ2ξkRcylH
′
n(ξkRcyl)

∫ ∞

z=0

∫ π

θ=−π

p(θ, z, k)e−inθeikz
√

1−ξ2dθdz.

Equations (6.5) and(6.6) are the cylindrical version of the HOA encoding

presented in Chapter II as Eq. (2.24) after considering the effects of the baffle. They

are the defining equations of 3D Cylindrical Ambisonics, the sound field encoding

proposed in this chapter.

In practice, it is impossible to sample a continuous surface. Approximating

the integrals in the equations above requires proper quadrature weights which depend

on the actual array layout. Integration along the z-coordinate must also be limited

to a finite interval. These contributions, along with the effects of the baffle, can

be summarized in a set of filters w±n,ξ(z, k). The resulting filters for a total of

Nmic microphones uniformly distributed along both coordinates, θ and z, within

the interval [−zM, zM], and applying a Tukey window with a taper-to-length ratio of
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Figure 6.1: The fragmented Tukey window applied to finite-length microphone arrays. The purpose
of this spatial window is to prevent large peaks due to the discontinuity in the Fourier
series along the axial coordinate; the Gibbs phenomenon.

α are given by the following expression:

(6.7) w±n,ξ(z, k)=



































−iπ2ξkRcylH
′

n(ξkRcyl)

2Nmic

(

cos
[

π
α

(

|z|
zM
+α−1

)]

+1
)

if (α−1)zM>±z≥−zM,

−iπ2ξkRcylH
′

n(ξkRcyl)

Nmic
if 0 ≥ ±z ≥ (α−1)zM,

0 otherwise.

The Tukey windows used in this equation are shown, without the contribution from

the baffle scattering, in Fig. 6.1.

The filters of Eq. (6.7) include all of the parameters related to the microphone

array. They can be applied to the signals measured by each microphone in order to

produce an encoding of the sound field. The encoding equation used to derive the

coefficients C±n,ξ(k) from cylindrical microphone array recordings is:

(6.8) C±n,ξ(k) ≈
Nmic
∑

mic=1

w±n,ξ(zmic, k)pmic(θmic, zmic, k)e
−inθmice∓ikzmic

√
1−ξ2 .
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Figure 6.2: Effects of discarding high-order coefficients in the expansion of a delta function centered
at the origin. The panels show the approximated delta function for different sets
of harmonic expansion coefficients. The polar and axial resolutions can be chosen
independently depending on the application requirements.

6.2.1 Truncation of the cylindrical harmonic expansion

The complete description of an arbitrary sound field using Eq. (6.2) requires

an infinite number of coefficients C±n,ξ(k). Practical systems can only record and use

a finite number of expansion coefficients, reducing the resolution of the encoding. In

this section we consider the separate effects of discarding high-order coefficients for

the polar and axial encodings.

To quantify the loss of accuracy, we consider the completeness property of

the cylindrical harmonic functions:

δ(θ − θ′)δ(z − z′)

=
1

4π2

∫ ξ=∞

ξ=0

∞
∑

n=−∞

ei(nθ±kz
√

1−ξ2)e−i(nθ
′±kz′

√
1−ξ2)dξ

=
1

4π2

∞
∑

n=−∞

ein(θ−θ
′)

∫ kz=∞

kz=−∞

eikz(z−z
′)dkz.(6.9)

Here, the change of variables kz = k
√

1− ξ2 was applied. The coordniate θ is,

of course, periodic every 2π. The completeness relation treats the polar and axial
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Figure 6.3: RMS of the error in the approximation of the delta function for different number of
polar and axial expansion coefficients. The total number of coefficients used in the
approximation is the product of both of these values.

coordinates separately. The results are two well-known [18] expressions for the delta

function and the delta comb. The effects of truncating the expansion of any sound

field will, at most, correspond to the deviation from the delta function exhibited by

a similarly truncated Eq. (6.9).

Figure 6.2 gives a few examples illustrating the effects of an incomplete

expansion. The RMS value of the error in the approximation of the delta function

can be used as a measure of spatial accuracy. Figure 6.3 shows the value of this error

for different numbers of expansion coefficients. As expected, the spatial resolution

of the microphone arrary is closely related to the number of expansion coefficients.

More coefficients always provide a higher resolution description of the field.

A final consideration is that of spatial aliasing in the description of the

sound field. The truncation of Eq. (6.2) limits the maximum frequency that the

microphone array is able to resolve accurately. A limiting frequency can be calculated

by noting that the polar and axial coordinates are completely separated in Eq. (6.9).

Direct application of the Nyquist theorem gives the following expression for the alias
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frequency:

(6.10) f alias
polar =

c(Npolar − 1)

4Rcyl

.

Npolar stands for the number of angular coefficients used in the encoding.

The maximum frequency to be encoded along the axial coordinate is given

by the maximum value of kz. However, the maximum axial frequency that can be

resolved depends on the microphone separation along the z-coordinate, ∆zmic.

(6.11) f alias
axial =

c

2∆zmic

.

6.3 Reproducing 3D Cylindrical Ambisonics

A sound field encoded using Eq. (6.8) can be reproduced using most

surrounding loudspeaker arrays; the reproduction system is not required to have a

cylindrical geometry. The coefficients C±n,ξ(k) can be decoded to produce loudspeaker

signals using any of the techniques used to reproduce Ambisonics. The simplest

approach would use Eq. (6.2) directly to calculate the sound pressure at the

loudspeaker positions and a tapering window to turn off the loudspeakers that are

away from the source’s direction of incidence. This, however, requires knowledge of

the sound source positions. Another possibility is to define a re-encoding matrix by

calculating, from Eq. (6.2), the coefficients Ĉ±n,ξ(k) corresponding to the contribution

of each loudspeaker towards the re-created sound field. For an ideal monopole

radiator, these coefficients are given by the Hankel functions:

(6.12) Ĉ±n,ξ(k; ∆r) =
i

4
Hn (ξk|∆r|) .
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The re-encoded field over a cylindrical secondary surface for a loudspeaker located at

(rspk, θspk, zspk) is defined as the linear combination of cylindrical harmonic functions:

p(r, θ, z, k) =
1

2π

∞
∑

n=−∞

ein(θspk−θ)
∫ ∞

0

[

Ĉ+
n,ξ [k; (rspk − r)] eik(zspk−z)

√
1−ξ2

+Ĉ−n,ξ [k; (rspk − r)] e−ik(zspk−z)
√

1−ξ2
]

dξ.(6.13)

Equation (6.13) is the 3D cylindrical Ambisonics equivalent of Eq. (2.23).

The loudspeaker signals can be chosen to minimize the square error in the re-created

sound pressure distribution p(r, θ, z, k) over a secondary surface. In particular, when

the loudspeakers are arranged on a cylinder surrounding the listener, the use of

Eq. (6.13) to decode the sound field description will yield the same results as the

wave field reconstruction filters of Eq. (6.1). It is also possible to adapt the more

advanced techniques used to decode Ambisonics for reproduction using arbitrary

loudspeaker arrays [36].
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6.4 Numerical simulation results

The viability of the proposed encoding scheme was evaluated using the

numerical simulation of a cylindrical microphone array. The recording device

consisted of 100 microphones distributed in 20 rings over a 95-centimeters-long

region of a rigid cylinder. The spacing between rings and angular spacing between

microphones was constant at (∆θ = 72◦,∆z = 5 cm). The radius of the cylinder

was chosen as 5 cm. A Tukey window with a taper-to-length ratio of 0.1 was applied

over the interval z = [−0.5 m, 0.5 m] and the encoding of a 1-kHz plane wave was

computed using Eqs. (6.7) and (6.8). The plane wave incided over the cylinder at

a polar angle of θinc = 15◦ and the angle between its wavevector and the cylinder’s

axis was φinc = 45◦. The maximum polar degree calculated was n = ±2, and the

damping factor was sampled at increments of 0.25 between 0 and 1. Therefore, the

encoding of the sound field consisted of 45 coefficients C±n,ξ(k).

The sound field description was decoded using the least-squares-error criteria

to generate signals for a 162-channel spherical loudspeaker array. The loudspeakers

were treated as ideal monopole sources and situated on the vertices of a subdivided

icosahedron, one meter away from the center. The secondary surface used to calculate

the least-squares error was a 1-meter-long cylinder with a radius of 15 cm located at

the center of the loudspeaker array.

Figure 6.4 shows the numerical simulation results for the recording and

reproduction of a plane wave using the cylindrical microphone array and spherical

loudspeaker array described above. As expected, the sound field is re-created

more accurately inside the secondary control region; however, the reconstruction

is acceptable even outside of it.
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Figure 6.4: Numerical simulation results of applying the proposed encoding to sound field
reproduction. (a) and (b) Original sound field consisting of an 1-kHz plane wave.
(c) and (d) Re-created sound field. White circles show the loudspeaker positions; the
white rectangle and circumference delineate the control surface.
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Figure 6.5: Sound pressure level on the surface of a rigid cylinder of finite length. The panels
show the Boundary Element Method computation results for plane waves of different
frequencies, all of them parallel to the axis of the cylinder.

6.5 Effects of a finite-length baffle

Any practical implementation of the cylindrical microphone arrays under

consideration requires the baffle to be truncated. The spatial window of Eq. (6.7)

was derived from the scattering model of an infinite rigid cylinder. Unfortunately,

there are no similarly simple solutions for the scattering of a finite cylinder.

To estimate the effects of baffle truncation in the encoding of the sound field,

a computer simulation using the Fast Multipole Boundary Element Method [29] was

used. Figure 6.5 shows the results of the simulation for different frequencies. The

cylinder used was 1.5 meters long with a diameter of 0.15 meters. The average size

of the cells used in the 3D model was 8.8× 10−3 m; the simulation is accurate up to

around 5 kHz. A single plane wave was considered as the incident sound field. The

wavevector is perpendicular to the axis of the cylinder.

The simulation shows significant effects on the scattered field over the

cylinder’s surface at low frequencies. In general, these edge contributions are periodic

along the z-coordinate due to the symmetries involved. However, the effects are
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Figure 6.6: Differences between the scattered fields of a finite-length and an infinite-length cylinder.
The panels show the magnitude difference in the sound field recorded by microphones
on the surface of a truncated cylindrical baffle when compared to the theoretical result
for an infinite rigid cylinder. Panel (a) corresponds to a microphone located 0.25 meters
away from the cylinder’s edge. Panel (b) is for a microphone located at the center of
the 1.5-meters long cylinder.

considerably reduced when the wavelength of the incident plane wave drops below

the cylinder’s diameter.

The results of the BEM simulation are summarized in Fig. 6.6. Truncation

effects are particularly significant at low frequencies and for microphones located

close to the edges. However, once the wavelength of the sound source falls under two

times the cylinder’s diameter, around 1.15 kHz in our simulation, the scattering of

the baffle can be considered to be close to that of an infinite cylinder.

6.6 Summary

This chapter introduced a sound field encoding method for cylindrical

microphone array recording. The proposal, which has been named 3D Cylindrical

Ambisonics, can be used to store or broadcast sound field information for

reproduction using most loudspeaker arrays. In this sense, it offers advantages similar
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to those of HOA in spherical geometries. However, using the proposed method, it is

easy to change the azimuth and elevation resolutions independently. The number of

transducer rings or staves in the recording system can be chosen to fit the application

requirements.

The encoding method presented considers a finite-length microphone array

by introducing a set of spatial windows. This is an important requirement for the

eventual application of the methods introduced to an actual microphone array.

Expressions showing the limits of cylindrical microphone arrays, due to

spatial aliasing, were also presented. On the other hand, the effects of truncating

the cylindrical harmonic expansion were also considered and found to be similar to

those observen in HOA where the spherical harmonic expansion is truncated. In

particular, the resolution increases and the error decreases monotonically as more

expansion coefficients are considered.

A finite-length baffle was considered using Boundary Element Method

simulations and, while truncating the baffle leads to artifacts in the recording at

low frequencies, once the wavelength of the sound source is comparable to the radius

of the baffle, it can be considered to be infinite with good accuracy.





CHAPTER VII

Conclusions

Through this dissertation, a series of techniques to record, analyze, encode

and reproduce sound fields have been explored. The presentation starts with Chapter

I offering an overview of the field of spatial audio. Stating the need for systems

that can record and reproduce sounds while preserving the spatial information that

humans use to determine the position of sound sources in an acoustic scene.

Chapter II offers a review of existing techniques. In particular, High-Order

Ambisonics is singled out since it is the only method which introduces a scalable and

system-agnositc encoding capable of characterizing the entire sound field information

to any desired accuracy. These properties are extremely useful in the design of

future-proof, ultra-realistic spatial audio systems. Therefore, this dissertation adopts

these two properties as constraints required of all the techniques proposed by it.

Taking HOA as a basis, Chapter III of this dissertation seeks to eliminate

the need for a spherical geometry in the recording and reproduction systems. In

HOA, the spherical harmonic functions are used to characterize the sound field.

Therefore, sound measurements made from a single privileged position and sampling

all directions uniformly are required. This imposes unnecessary constraints on the

recording and reproduction systems, and makes it difficult to present sound to more

120



121

than one listener. An alternative set of basis functions, the cylindrical harmonic

functions, are derived in Chapter III and proposed as a replacement of the spherical

harmonics. In particular, the case of encoding plane waves is considered and a new

expression for the plane wave decomposition in cylindrical coordinates was derived.

Previous research had only considered plane waves that are parallel to the axial

coordinate; however, in this dissertation, a mathematical expression to encode all

possible plane waves is derived for the first time.

Chapter IV of this dissertation takes a step back to consider the application

of cylindrical microphone arrays to construct spherical harmonic encodings. In

particular, it is observed that the spatial resolution of a cylindrical microphone array

can be made to vary independently along the polar and axial coordinates. The

present dissertation considers the properties of spatial hearing in humans and opts

to develop a method that will provide higher resolution in the horizontal plane at the

expense of reduced resolution in the encoding of elevation. The techniques developed

in Chapter IV can produce a conventional Mixed-Order Ambisonics (MOA) encoding

of sound fields having arbitrary and independent horizontal and vertical resolutions.

To achieve this, a new method to create a virtual spherical microphone array from

a cylindrical one is advanced. The encodings produced by this proposal are fully

compatible with existing Ambisonics reproduction systems.

The problem of reproducing sound fields using loudspeakers is considered in

Chapter V. Harmonic encodings of sound fields can be easily decoded and reproduced

if the recording and reproduction arrays share similar geometries. However, this is

hard to achieve in practice, particularly in the case of spherical geometries due to

the need to distribute large numbers of loudspeakers regularly at all angles, such as

below the listener. In this chapter, a new error metric is advanced as an useful
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way to optimize HOA decoders when the reproduction array is irregular. The

proposed metric focuses not on the reconstruction error at a single control point, like

conventional decoders do, but on the change of said error as the observation point is

moved away from the priviledged listening position. The result of applying this new

metric in the least-squares formulation of HOA decoders is a more stable reproduction

that remains free of audible artifacts over larger regions than those generated by

previous methods. This result is particularly important in the reproduction of sound

fields using irregular loudspeaker arrays since traditional decoders targeting them

tend to be unstable. The instability is ameliorated by minimizing the proposed error

metric.

Finally, Chapter VI of this dissertation introduces what may be the most

salient contribution of this research. The benefits of cylindrical microphone arrays

that were observed in Chapters III and IV can be fully exploited by using a new

encoding method for sound field information. This method, called 3D Cylindrical

Ambisonics (3DCA), can achieve optimal performance for a cylindrical microphone

array and produce complete encodings that can be reproduced with loudspeaker

systems of an arbitrary geometry. The proposed encoding scheme allows for an

independent choice of horizontal resolution while reducing system complexity by

lowering the number of channels devoted to encode elevation. The encoding equations

for ideal and realistic microphone arrays are derived. Evaluation is carried out

to consider the effects of microphone truncation, self-noise, uneven calibration and

misplacement An outline of the decoding algorithm for 3DCA is presented in both,

an analytic formula considering ideal reproduction systems and a least-squares

formulation for realistic loudspeaker arrays. The decoding of 3DCA can be further

improved with the addition of stabilization metrics like the one introduced in Chapter
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V.

In summary, this dissertation seeks to solve three problems in the field

of sound field recording and reproduction. First, it considers the solutions to the

Helmholtz equation not in spherical, but in cylindrical coordinates to define a solid

ground for the analysis of sound fields in geometries different to the spherical one.

This led to an encoding of the far field using the plane wave decomposition of a

cylindrical pressure distribution. An extension to this allows for the encoding of

Mixed-Order Ambisonics descriptions of sound fields from cylindrical microphone

array recordings. Second, a new HOA decoder that can be used with irregular and

non-spherical loudspeaker arrays was introduced. The main difference with other

approaches is the introduction of a constraint on the behavior of the reconstruction

away from the listening position. This resulted in a larger listening region and better

stability when the reproduction array does not match the HOA geometry. Finally, a

new encoding method, 3D Cylindrical Ambisonics, is developed to encode sound field

information measured with a cylindrical microphone array directly. The encoding is

similar to HOA in the sense of being scalable and system-agnostic. However, unlike

HOA, it allows for the independent definition of axial and polar resolutions. This

feature makes it more attractive to record and present sound fields to large audiences

which can be aligned along the preferred axis.

This dissertation outlines the basis for sound field recording, analysis and

reproduction using non-spherical arrays and in particular a cylindrical microphone

array. It is hoped that the proposal presented here, in particular 3D Cylindrical

Ambisonics can become an important step towards the realization of ultra-realistic

spatial audio systems.
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APPENDIX

A Practical considerations for cylindrical

microphone arrays

A.1 Overview

Chapter VI introduced 3D Cylindrical Ambisonics, a sound field encoding

method for cylindrical microphone array recordings. The format introduces some

errors in the form of a limited spatial resolution due to a finite expansion in terms

of cylindrical harmonics. This error, however, can be made as small as desired by

simply calculating more terms in the expansion.

In practical situations, where a microphone array is being designed, there are

other sources of error which cannot be eliminated by increasing the amount of signal

processing. This appendix evaluates these considerations which are an important

factor for the design and use of an actual cylindrical microphone array.

A.2 Errors in microphone placement and self-noise

It is impossible to be perfectly accurate when building a physical microphone

array. The encoding of Eq. (6.8), however, assumes knowledge of the microphone

positions on the cylinder. Furthermore, the signals obtained from the microphones

will not correspond perfectly to the sound pressure at their position since all physical

microphones suffer from some degree of self-noise. The effects of these two error
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Figure A-1: Magnitude of the encoding coefficients for cylindrical and spherical arrarys when the
microphone signals correspond to uncorrelated white noise. This value provides a
measure for the impact of microphone misplacement and self-noise in the spatial
encoding of sound fields. The graphic shows the results for arrays of 100 microphones
and first-order angular expansions.

sources have been studied for arrays using spherical and cylindrical baffles. Existing

results show that both factors impact the microphone array resolution in a similar

way [27]. Based on this result, it is possible to analyze the effects of sensor

misplacement and self-noise by introducing additive error into the sound pressure

measurements pmic(θmic, zmic, k) of Eq. (6.8).

In order to evaluate the encoding error introduced by the transducers, an
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additive noise signal

Ĉ±n,ξ(k) ≈
Nmic
∑

mic=1

w±n,ξ(zmic, k) [pmic(θmic, zmic, k)

+Emic(θmic, zmic, k)] e
−inθmice∓ikzmic

√
1−ξ2

= C±n,ξ(k) + E±n,ξ(k).(A.1)

The encoding error can be easily separated due to the linearity of Eq. (6.8). The

impact of microphone misplacement and self-noise in the proposed encoding can be

measured as the expansion coefficients of noise, labeled here as E±n,ξ(k).

Our evaluation considers white noise with a signal-to-noise ratio (SNR) of

50 dB for each microphone. The same conditions were also applied to a spherical

microphone array for comparison. Both arrays were chosen to have the same diameter

(0.15 m) and number of transducers (100). The microphones were distributed in a

rectangular grid for the cylinder and a minimum-energy grid [35] for the sphere.

The spherical microphone array signals were encoded using the spherical harmonic

expansion [19], while the cylindrical array used our proposal. The magnitude of the

encoding error for first-ordedr angular encodings is shown in Fig. A-1.

The impact of transducer error when considering a finite-length cylindrical

microphone array with an infinite cylindrical baffle is close to that observed in

spherical microphone arrays. Our results are in agreement with those of existing

research focusing on spheroidal baffles [27]. This analysis, however, does not consider

the effects of a finite-length baffle. The truncation of the baffle is discussed in later

sections.
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A.3 Differences in microphone calibration

The encoding equation, Eq. (6.8), assumes ideal sound pressure

measurements. The impact of self-noise in any physical microphone was considered

in the previous section. However, another important source of error lies in the fact

that different microphones in an array will always present different characteristics.

The differences can never be completely removed, even after a careful microphone

calibration procedure. In this section we evaluate the impact of these differences on

the proposed encoding method and compare our results with those observed in the

case of spherical microphone arrays.

The frequency responses of all transducers in an array should be fairly similar

if high-quality microphones of the same model are used. However, a small gain

difference will remain even after calibration. In most cases, however, calibration

should reduce this gain difference between sensors to levels under 1 dB. The impact

of unknown, random gain differences ∆Gmic on the encoding equation can be stated

as follows:

Ĉ±n,ξ(k) ≈
Nmic
∑

mic=1

w±n,ξ(zmic, k)(1 + ∆Gmic)pmic(θmic, zmic, k)

e−inθmice∓ikzmic

√
1−ξ2

= C±n,ξ(k) + E±n,ξ(k).(A.2)

When we considered transducer misplacement and self-noise, the encoding

error E±n,ξ(k) was independent of the sound pressure at the ideal microphone

positions pmic(θmic, zmic, k).. This time, however, the encoding error includes these
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measurements and is given by

E±n,ξ(k) =

Nmic
∑

mic=1

w±n,ξ(zmic, k)∆Gmicpmic(θmic, zmic, k)

e−inθmice∓ikzmic

√
1−ξ2 .(A.3)
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Figure A-2: Encoding error due to transducer calibration differences for cylindrical and spherical
arrarys. Panel (a) shows the impact of slightly different microphone gains (± 1 dB
uniformly distributed) on the accuracy of the spherical harmonic expansion. Panels
(b) and (c) show the results for a cylindrical array in relation to the number of polar and
axial expansion coefficients, respectively. All results assume arrays of 750 microphones.
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To evaluate the impact of these gain differences, we considered two

750-channel microphone arrays: a cylindrical and a spherical one. The cylindrical

array uses a uniform rectangular grid, while the spherical one uses an approximately

regular distribution [35]. Uniformly-distributed random gain differences of up to 1 dB

in magnitude were assumed. After computing the expansion coefficients, the inverse

operation was applied to recover a sound pressure distribution. In the cylindrical

case, this is done by applying Eq. (6.2). For the spherical case we used Eq. (1.5). The

root-mean-square value of the resulting sound pressure distributions was calculated

and the results for both, cylindrical and spherical arrays, at different expansion orders

are shown in Fig. A-2.

Our results show that the impact of different microphone characteristics is

negligible for low-order expansions. On the other hand, both types of microphone

array, cylindrical and spherical, show a significant increase in the encoding error

when high-order expansion coefficients are considered. The results are not surprising

since the truncation of the harmonic expansions can be seen as the spatial low-pass

filtering of the sound pressure distributions. The contribution of gain differences will

appear at all spatial frequencies if they are truly random. As the order increases,

so does the cutoff frequency of the spatial low-pass filter, thus more and more

of the gain difference contributions are being allowed to appear in the results.

Figure A-2, however, does show that the cylindrical arrangement is not significantly

more susceptible to these errors than spherical ones.
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A.4 Summary

This appendix reviews some important considerations for the

implementation of the techniques outlined in Chapters III. IV and VI. In

concrete, the effects of some inevitable sources of error when building a loudspeaker

array are considered.

The effects of microphone self-noise, as well as errors in microphone

placement are discussed. The impact of these on the 3D Cylindrical Ambisonics

encoding are considered and found to be comparable to those faced by HOA when

using a spherical microphone array. However, while the general behavior of the

error is similar, cylindrical microphone arrays are more robust to these sources of

error and, therefore, impose less stringent requirements on signal-to-noise ratio or

manufacturing precision.
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