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Chapter 1

Introduction

Quasiconformal mappings are a natural generalization of conformal map-

pings. There are several definitions for quasiconformality, which are based

on generalizations of certain properties of conformal mappings (we will intro-

duce a definition of quasiconformal mappings in Chapter 2). Further various

theorems for analytic functions are valid for quasiconformal mappings at

least in modified form (see [20] for details). Quasiconformal mappings were

introduced by H. Grötzsch in 1928. Afterwards, this theory was developed

further by many mathematicians in this field. Applications can be found in

different areas of mathematics, such as complex dynamical systems (see e.g.

[1], [28]), Teichmüller space (see e.g. [1], [13], [17]) and so on.

Recently, some numerical methods for quasiconformal mappings with

practical applications were presented in different scientific area. A finite

difference method for the quasiconformal mapping was presented in Mastin-

Tompson [27]. This method is applied to the finite grid generation [27].

Weisel [38] proposed a finite element based method and applied it to the de-

termination of the modulus of quadrilaterals. A method based on the proof

of the existence theorem for quasiconformal mapping by Ahlfors-Bers [2],

was presented in Daripa [6]. This method is an iterative scheme which uses

singular integral transforms. Their work includes a refinement of the tech-

nique of evaluation of the singular integrals, which is of interest in itself. A

related approach involving the singular integrals was developed by P. Daripa
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2 CHAPTER 1. INTRODUCTION

and D. Mashat [8, 7], and refined by D. Gaidashev and D. Khmelev [12].

Zh.-X. He [15] and B. Williams [39] proposed alternative methods which are

based on circle packings. A circle packing, is considered to be a collection

of closed disks with disjoint interiors and prescribed tangencies, induces a

simplicial complex between the domains. The induced sequence of piecewise

linear mappings by circle packings, convergence to the Riemann mapping.

The convergence was suggested by W. Thurston for a geometric proof of the

Riemann mapping theorem, and the proof has been worked out by Rodin-

Sullivan [33]. A method based on the Beltrami holomorphic flow is presented

in Lui et al. [23], and applied to the medical image processing and data com-

pression. Lui et al. [24] described yet another method, which reduces the

question of solving the Beltrami equation to that of a linear system on the

underlying mesh. Their method, focused on obtaining Teichmüller mappings

of prescribed domains, is applied to problems of face recognition and brain

mapping.

In this thesis, we propose a numerical method for quasiconformal map-

pings of the unit disk. Our method considers a well known lemma for quasi-

conformal mappings, the so called good approximation lemma (see Lemma

J). The unit disk is triangulated in a simple way and quasiconformal map-

pings are approximated by piecewise linear mappings. The images of the

vertices of the triangles are defined by an overdetermined system of linear

equations. Further the sequence of the approximation converges to the true

solution in some certain cases, such as our main theorem (Theorem 4.1.1).

In Chapter 2, we prepare some definitions, notations and known results

which we will use in the latter part of this work. First we give a defini-

tion of the quasiconformal mapping, and introduce some basic properties

of quasiconformal mappings. In particular, we will introduce the Beltrami

coefficient and the Beltrami equation, which is deeply related to the quasi-

conformal mapping. In the following steps, we define the triangulation of

the unit disk in our setting, and then define the secant map and piecewise

linear space for the triangulation. A proof for a lemma for piecewise linear

mappings in this special setting is presented. Further we define the least

squares solution for an over determined linear systems.



3

The detailed setting of the problem is formulated in Chapter 3, where we

also present our algorithm. First we will define the vertices of the triangula-

tion, and construct an overdetermined linear system by these vertices and the

Beltrami coefficient. In the end of this chapter, we present our approximation

for a quasiconformal mapping.

In Chapter 4, the main theorem for the convergence of the approxima-

tions (Theorem 4.1.1) is stated. Our proof is stated for the case that the

Beltrami coefficients are in C1(D), i.e. the Beltrami coefficient is contin-

uously differentiable on the unit disk (we conjecture that the condition is

overly restrictive by the numerical experiments).

Finally several numerical experiments are presented in Chapter 5. First

we compare the results which were produced by our algorithm, with the ex-

act formulas for the quasiconformal mappings under consideration. Then we

compare our method with the method by Daripa. Furthermore several ex-

periments for various Beltrami coefficients are presented. The computational

cost of our method is estimated. At last we will conclude this work with a

short summary of our studies. This thesis is based on the joint work with

Professor R. Michael Porter [32].
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Chapter 2

Preliminaries

In this chapter, we prepare some definitions, notations and basic facts which

we will use. The contents come from the theory of quasiconformal mappings,

simplicial approximation and Least squares method.

2.1 Quasiconformal mappings

2.1.1 Quasiconformality

We will define the quasiconformal mapping in the plane. There are some

definitions for the quasiconformality. For convenience, we use the analytic

definition. See e.g. [1] and [20] for other definitions and the proof for the

equivalence.

Definition A ([1, p. 17]). Let K > 1 and D,D′ be the domains in the

complex plane C. An sense preserving homeomorphism f : D → D′ is a

K-quasiconformal mapping if f satisfies the following:

1. For any closed rectangle R := {x + iy | a ≤ x ≤ b, c ≤ y ≤ d}, f is

absolutely continuous on almost every horizontal and vertical line in R.

2. The dilatation condition

|fz(z)| ≤ K − 1

K + 1
|fz(z)| (2.1.1)

5



6 CHAPTER 2. PRELIMINARIES

holds almost everywhere in D, where fz = (fx−ify)/2, fz = (fx+ify)/2.

It follows from the definition that the quasiconformal mapping f : D →
D′ has partial derivatives fz := (fx− ify)/2, fz := (fx + ify)/2 almost every-

where inD. Further f is differentiable a.e. inD, i.e. the linear approximation

f(z)− f(z0) = fz(z0)(z − z0) + fz(z0)(z − z0) + o(|z − z0|)

holds a.e. in D (see e.g. [1, p. 17]). The Beltrami coefficients can be defined

as

µf (z) :=
fz(z)

fz(z)
(2.1.2)

a.e. in D for a quasiconformal mapping f , which is a measure of non-

conformality (see e.g. [1, p. 7]). In particular, f is conformal at a point

z0 ∈ D if µf (z0) = 0.

2.1.2 Measurable Riemann mapping theorem

We consider the following Beltrami equation

fz = µfz (2.1.3)

with a prescribed Beltrami coefficient µ. The existence theorem for the solu-

tion of the Beltrami equation is called Measurable Riemann mapping theorem

(see e.g. [1, p. 57] and [20, p. 194]). The first proof of the existence theorem

for the measurable Beltrami coefficients was given by Morrey. Alternative

proofs were given by Ahlfors-Bers, Bers-Nirenberg and Bojarskii (see [2] for

the historical remark).

Theorem B (Measurable Riemann mapping theorem (see e.g. [1, p. 57] and

[20, p. 194])). Let µ be a measurable function in C with ‖µ‖∞ < 1, where

‖·‖∞ is the essential supremum. Then there exists a quasiconformal mapping

f : C→ C whose Beltrami coefficient coincides with µ almost everywhere in

C. This mapping is uniquely determined up to a conformal mapping of C
onto itself.
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As a corollary of Lemma F and the Measurable Riemann mapping theo-

rem, we obtain the following corollaries.

Corollary C (see [20, p. 194]). Let D,D′ be bounded simply connected do-

mains in C and µ a measurable function in D with ‖µ‖∞ < 1. Then there

exists a quasiconformal mapping f : D → D′ whose Beltrami coefficient co-

incides with µ almost everywhere in D. This mapping is uniquely determined

up to a conformal mapping of D′ onto it self.

Corollary D (see [2, Lemma 14]). If µ is a measurable function which sat-

isfies ‖µ‖∞ < 1 and µ(z) = µ(1/z)z2/z2. The the restriction of µ-conformal

mapping fµ : C→ C which fixes 0 and 1 to the unit disk, is a µ|D-conformal

self-mapping.

These corollaries mean that for a given measurable function µ, there exits

a unique self µ-conformal mapping of the unit disk which fixes 0 and 1. The

Beltrami coefficient of a µ-conformal mapping is invariant under the compo-

sition of the conformal mapping. Hence if we have self µ-conformal mappings

of the unit disk, then we can obtain µ-conformal mapping from the unit disk

to arbitrary simply connected domains by the classical Riemann mapping

theorem. Further there are many efficient methods for the numerical con-

formal mappings (see for example, Porter[31]). Furthermore Ahlfors-Bers[2]

investigated f in its dependence on µ. Ahlfors and Bers proved that if µ

depends analytically, differentially, or continuously on real parameters, the

same is true for f .

2.1.3 Composition and distortion lemmas for quasi-

conformal mappings

Let µ be a measurable function on a domain D with ‖µ‖∞ < 1 where ‖ · ‖∞
is essential supremum.

Definition E. We say a quasiconformal mapping of D is µ-conformal if its

Beltrami coefficients coincide with µ almost everywhere in D.
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A µ-comformal mapping is a Kµ-quasiconformal mapping where Kµ :=

(‖µ‖∞ + 1)/(‖µ‖∞ − 1). Kµ is said to be the complex dilatation.

Lemma F ([1, p. 9]). Let µi be a measurable function on the domain Di

with ‖µi‖∞ < 1 (i = 1, 2). Assume that f : D1 → D2 is a µf -conformal

mapping and g : D2 → D3 the µg-conformal mapping. Then the following

holds:

1. g ◦ f is a Kµf ×Kµg-quasiconformal mapping.

2. If g is conformal, g ◦ f is Kµf -quasiconformal and also µf -conformal.

3. If g and f are diffeomorphisms, then the chain rule for the Beltrami

coefficient

µg ◦ f =
fz
fz

µg◦f − µf
1− µf · µf◦g

holds.

In the following we consider the self quasiconformal mappings of the unit

disk which fix 0. Mori showed the following distortion theorem for this family.

Lemma G (Mori’s Theorem [20, p. 66]). Let K > 1 and f be a self K-

quasiconformal mapping of the unit disk with f(0) = 0. Then for all z1, z2 ∈
D,

|f(z1)− f(z2)| ≤ 16|z1 − z2|1/K

holds. The number 16 can’t be replaced by any smaller constant which is

independent of K.

It was conjectured that the number 16 may be replaced by 161−1/K if we

allow dependence on K (see [20, p. 68]).

2.1.4 Normal families of the quasiconformal mappings

We introduce a criterion of the normality for the family of quasiconformal

mappings. Let F be a family of K-quasiconformal mappings of a domain

D ⊂ C.



2.1. QUASICONFORMAL MAPPINGS 9

Lemma H ([20, p. 73]). The family F is normal if there exists a positive

real number d such that one of the following conditions is satisfied:

1. Any quasiconformal mapping f ∈ F omits two values whose spherical

distance is greater than d.

2. Any quasiconformal mapping f ∈ F omits one value a and at two fixed

points z1, z2 ∈ D takes values such that the distances k(f(z1), a), k(f(z2), a)

are greater than d.

3. Any quasiconformal mapping f ∈ F takes values at three fixed points

z1, z2, z3 ∈ D such that the distances k(f(zj), f(zk)) (j, k = 1, 2, 3, j 6=
k) are greater than d.

The limit function f of a sequence of the quasiconformal mappings fn in

the family F is classified as follows.

Lemma I ([20, p. 74]). The limit function f of a sequence of K-quasiconformal

mappings fn ∈ F convergent in D is either a constant, a mapping of D to

two points, or K-quasiconformal mapping of D.

We will consider the case that the sequence fn of K-quasiconformal map-

pings of D converge to a quasiconformal mapping f uniformly on compact

subsets of D. If the Beltrami coefficient µn of fn converge to the Beltrami

coefficient of f a.e. in D, then we can show that fn is a good approximation

to f in the sense of the definition given by Bers as follows.

Lemma J (Good approximation lemma [20, p. 187]). Let fn be a sequence

of K-quasiconformal mappings of D which converges to a quasiconformal

mapping f with the Beltrami coefficients µ uniformly on compact subsets of

D. If the Beltrami coefficients µn of fn tend to a limit µ∞ almost everywhere

in D, then fn is a good approximation to f , i.e. µ∞(z) = µ(z) almost

everywhere in D.

2.1.5 Conformal module

We introduce the conformal module of a quadrilateral and its relation to

quasiconformal mappings. A quadrilateral consists of a Jordan domain Q
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and distinct four boundary points z1, z2, z3, z4 of Q. We call z1, z2, z3, z4 the

vertices of Q, and shall consider only quadrilaterals Q(z1, z2, z3, z4) whose

sequence of vertices z1, z2, z3, z4 agrees with the positive orientation with re-

spect to Q. The vertices of a quadrilateral Q(z1, z2, z3, z4) divide its boundary

into four Jordan arcs. We call these the sides of the quadrilateral.

Definition K ([20, p. 21]). Let Q(z1, z2, z3, z4) be a quadrilateral and set

Rb := {z ∈ C | 0 < |Re z| < 1, 0 < |Im z| < b}. Then there exists a

unique b > 0 such that: the conformal map h from Q(z1, z2, z3, z4) onto

Rb(0, 1, 1 + ib, ib) which has the continuous extension to the boundary with

h(z1) = 0, h(z2) = 1, h(z3) = 1 + ib, h(z4) = ib exists. We define the

conformal module of Q(z1, z2, z3, z4) by

M(Q(z1, z2, z3, z4)) :=
1

b
.

We give other representation of the conformal module. Let Γ be a family

of curves in the plane such that any curve γ ∈ Γ is a countable union of open

arcs, closed arcs or closed curves, and every closed subarc is rectifiable. A

function ρ defined on the whole plane is called allowable if ρ is a positive

valued function, measurable, and satisfies

A(ρ) =

∫ ∫
C
ρdxdy 6= 0,∞.

For such a ρ we define

Lγ(ρ) :=

∫
γ

ρ|dz|

if ρ measurable on γ, Lγ(ρ) :=∞ otherwise. Furter let

LΓ(ρ) := inf
γ∈Γ

Lγ(ρ)

for all allowable ρ.

Lemma L ([20, p. 22]). Let Q(z1, z2, z3, z4) a quadrilateral and Γ1 ⊂ Γ the

set of all arcs in Q which joins a pair of the arcs

(

(z1, z2) and

(

(z3, z4). Then
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the following equality holds.

M(Q(z1, z2, z3, z4)) = inf
ρ

∫ ∫
Q
ρdxdy

LΓ1(ρ)2
.

The conformal module of a quadrilateral was estimated as follows.

Lemma M ([20, p. 23]). Let Q(z1, z2, z3, z4) be a quadrilateral, Γ1 ⊂ Γ the

set of all arcs in Q which joins a pair of the arcs

(
(z1, z2) and

(

(z3, z4) and

Γ2 ⊂ Γ the set of all arcs in Q which joins a pair of the arcs

(

(z2, z3) and(

(z4, z1). Then the module M(Q(z1, z2, z3, z4)) satisfies the inequality

M(Q) ≤ π
1 + 2 log(1 + s1/s2)

(log(1 + 2s1/s2))2

where sk = LΓk
(1) (k = 1, 2).

2.1.6 Affine linear quasiconformal mappings

Let µ, a, b be complex constants with a 6= 0, |µ| < 1. We consider the

µ-conformal real-linear mapping

Lµ(z) :=
z + µz

1 + µ
(2.1.4)

and conformal affine complex-linear mapping

Ha,b(z) := az + b (2.1.5)

for z ∈ C. Note that Lµ fixes 0 and 1 and hence is determined by its value

at any single point. Further Ha,b is determined by the images of any two

points. For given µ-conformal affine linear mappings, there exists a unique

decomposition Ha,b ◦ Lµ.

Proposition 2.1.1. Let z1, z2, w1, w2 ∈ C with z1 6= z2 and w1 6= w2. For

a given complex constant µ ∈ D, there is a unique µ-conformal affine linear
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mapping B = Bµ; z1,z2;w1,w2 which sends zi to wi (i = 1, 2). This mapping is

given by

B(z) = w1 +
w2 − w1

Lµ(z2 − z1)
Lµ(z − z1)

=
Lµ(z2 − z)

Lµ(z2 − z1)
w1 +

Lµ(z1 − z)

Lµ(z1 − z2)
w2.

Remark 2.1.2. We note that the coefficients of w1, w2 in the last expression

are never 0, 1, or ∞ if z1, z2, z3 are distinct.

The following formulation is useful for the later discussion.

Corollary 2.1.3. Let zi ∈ C (i = 1, 2, 3) noncollinear, wi ∈ C (i = 1, 2, 3)

noncollinear and µ ∈ D. If an µ-conformal affine linear map B takes z1, z2,

z3 to w1, w2, w3 respectively, then the following holds:

w3 = B(z3) =
Lµ(z2 − z3)

Lµ(z2 − z1)
w1 +

Lµ(z1 − z3)

Lµ(z1 − z2)
w2

⇐⇒ Lµ(z2 − z3)w1 + Lµ(z3 − z1)w2 + Lµ(z1 − z2)w3 = 0.(2.1.6)

The Beltrami coefficient of an affine linear mapping can be calculate in

the following way.

Corollary 2.1.4. Let zi ∈ C (i = 1, 2, 3) noncollinear and wi ∈ C (i =

1, 2, 3) noncollinear. There is a unique affine linear mapping which sends zi

to wi (i = 1, 2, 3). Further its Beltrami coefficient is equal to

µ = −(z2 − z1)(w3 − w1)− (z3 − z1)(w2 − w1)

(z2 − z1)(w3 − w1)− (z3 − z1)(w2 − w1)
. (2.1.7)

2.2 Simplicial approximation and least squares

In this section, we will introduce the basic facts about the simplicial approx-

imation. Also we define the least square solution, and show a condition for

its uniqueness.
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Figure 2.2.1: An triangulation of the unit disk which consists of 16× 16.

2.2.1 Triangulation and piecewise linear mapping

We define the triangulation of the unit disk as the following.

Definition N. We say a Euclidian simplicial complex T which consist of

finite closed 2-simplices {τi} in C forms a triangulation of the unit disk D if:

1. P := |T | is a closed simple jordan polygon whose vertices lie on the

boundary of the unit disk ∂D, where |T | is the union of all 2-simplices

in T .

2. each 1-face lk of any 2-simplex τi of T is either:

• an edge of P , or

• there exists unique j(j 6= i) such that lk is an edge of a 2-simplex

τj in T .

A example of the triangulation of the unit disk is drawn in Figure 2.2.1.

We will approximate a quasiconformal mapping by the piecewise linear

mapping which is induced by two triangulations of the unit disk.
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Definition O. Let Tz, Tw be triangulations of D. If Tz and Tw are simpli-

cially equivalent, then the piecewise linear mapping f : |Tz| → |Tw| which

sends 2-simplex in Tz to the corresponding 2-simplex in Tw linearly, is a

homeomorphism between |Tz| and |Tw|. We say f is the induced piecewise

mapping by Tz and Tw.

The Beltrami coefficients of f is defined on each interior of the 2-simplex

and the values are determined as in Corollary 2.1.4. We will use the notation

PL(Tz) for the space of the piecewise linear mappings for Tz, i.e.

Definition P. For given triangulation of the unit disk Tz, we define PL(Tz)

by

{f : |Tz| → C | f is continuous on |Tz|, and linear on each 2-simplex in Tz} .

The following Lemma 2.2.1 is important for proof of our main theorem.

Lemma 2.2.1. Let Tz := {τj} be a triangulation of the unit disk D such that

Pz := |Tz| is a simple polygon with k vertices. Suppose f : |Tz| → D ∈ PL(Tz)

preserves the orientation on each τ ∈ Tz and maps ∂|Tz| homeomorphically to

a boundary of a simple polygon Pw with k vertices on the unit circle. Then the

secant map induced by f and Tz, is an orientation preserving homeomorphism

from Pz to Pw. It means that the collections of 2-simplicies Tw := {f(τ)}τ∈Tz
is a simplicial complex, and form a triangulation of the unit disk.

Proof. At first, we will prove f(IntPz) ⊆ IntPw where IntPz, IntPw are the

interior of Pz, Pw, respectively. If the assumption is false, the boundary of

f(IntPz) would contain a point p exterior to IntPw, and there would be a

sequence {zn} ⊂ IntPz such that f(zn) → p. Now zn must accumulate in

the closure of IntPz, and in fact zn converge to a boundary point z ∈ ∂Pz
since f is a local homeomorphism. Thus z0 is on an edge of a 2-simplex

joining two vertices on ∂D, and p is on the corresponding edge of the image

2-simplex, which by the hypothesis on boundary points must lie in ∂Pz, a

contradiction which proves f(IntPz) ⊆ IntPw. A similar argument yields

that IntPw ⊆ f(IntPz), and we have f(Pz) = Pw. f satisfies the path-lifting
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property, and thus is a covering map of simply connected regions, so it is a

orientation preserving homeomorphism.

2.2.2 Secant mapping and least squares

Next we define the secant map for the C1 diffeomorphism and triangulation of

the unit disk. The secant map is also used in the proof of our main theorem.

Definition Q (see [29, p. 90]). Let Tz be a triangulation of D and f : D→ C
a Cr map where r ∈ N. For any 2-simplex τ ∈ Tz, the linear map Lf,τ : τ →
C which is equal to f(vj,k) on the all vertices of vj,k of τ , is called the secant

map which is induced by f and τ . Similarly we say that, the piecewise linear

mapping Lf,Tz : |Tz| → C is the secant map which is induced by f and Tz,

if the all restrictions of Lf,Tz to 2-simplex τ ∈ Tz is the secant map which is

induced by f and τ .

The secant map induced by f and Tz is an element of PL(Tz). We will

use the least squares method in our algorithm which will be presented later.

Mm,n(C) shall denote the complex m× n matrix.

Definition R ([5, p. 2]). Let m,n ∈ N with m > n. Let AW = B be an

overdetermined linear system with A ∈ Mm,n(C), B ∈ Cm and unknown

vector W ∈ Cn. We will write this linear system as (A,B). This linear

system usually has no solution, and we consider the quadratic minimization

problem: Find a W ∈ Cn which minimizes ‖AW −B‖2. If such W exists,

we call it the least squares solution of the linear system (A,B).

The following condition for the existence and uniqueness for the least

square solution is well known.

Lemma S ([5, Theorem 1.2.10]). In the same setting as Definition R, if A

has full column rank, then there exists a least square solution of the linear

system (A,B) and it is unique.

There are many efficient numerical methods for the least squares problem.

See [5] for the details.
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Figure 2.2.2: A triangulation of the unit disk which is simplicially equivalent
to Figure 2.2.1

Figure 2.2.3: The contour plot of the absolute values for the induced PL
mapping by Figure 2.2.1 and Figure 2.2.2



Chapter 3

Algorithm for quasiconformal

mappings

In this chapter, we will propose a numerical method for the quasiconformal

mappings. As we mentioned in Chapter 2, we will concentrate on the nu-

merical construction for the normalized self µ-conformal mapping of the unit

disk.

3.1 Setting

Corollary D stated that: For given measurable function µ on D with ‖µ‖∞ <

1, there exists a unique self µ-conformal mapping fµ of the unit disk which

fixes 0 and 1. We will propose an algorithm to produce triangulations of

the unit disk Tz, Tw whose vertices include 0 and 1, so that the induced

piecewise linear mapping fµ,Tz ∈ PL(Tz) approximate f in the following

sense: the Beltrami coefficient µ′ of the induced piecewise linear mapping

fµ,Tz ∈ PL(Tz) reduces ‖µ− µ′‖∞ on each τ ∈ Tz.

3.2 Discrete Beltrami equation

Let µ be a measurable function with ‖µ‖∞ < 1. First we propose a discrete

version of the Beltrami equation (2.1.3).

17
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3.2.1 Logarithmic coordinates

We take logarithmic coordinates in the form of the variables Z = log z, W =

logw in the left half-plane (cf. [20, section 6.4]), and extend the mapping to

the right half-plane symmetrically by the chain rule of the Beltrami coefficient

which is mentioned in Chapter 2. First we will approximate

W = F (Z) (3.2.1)

where F (Z) = exp ◦f(logZ), and then apply the operation

z = exp(Z), w = exp(W ) (3.2.2)

to obtain the desired mapping z 7→ w. Afterwards we will justify the dis-

tortion of triangles produced by the exponential mapping does not affect the

accuracy significantly.

3.2.2 Domain of definition and triangulation

Take M,N ∈ N and let R−m ∈ R (m ∈ {0, 1, 2, · · · ,M}) so that

R−M < R−M+1 < · · · < R−1 < R0 = 0.

Further we define (M + 1)N vertices

Zj,k = Rj +
2π(k + (j mod 2)/2)

N
i (3.2.3)

for −M ≤ j ≤ 0 and 0 ≤ k ≤ N − 1. (If we want to extend the formula for

arbitrary values of k, we have a periodic mesh with Zj,k+N = Zj,k + 2πNi).

Our mesh contains M ×N rightward pointing 2-simplices defined by

τ+
j,k =

{
Conv(Zj−1,k−1, Zj−1,k, Zj,k), j even,

Conv(Zj−1,k, Zj−1,k+1, Zj,k), j odd,
(3.2.4)
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for −M + 1 ≤ j ≤ 0 where Conv(Z1, Z2, Z3) is the 2-simplex which vertices

are Z1, Z2, Z3. There are also M ×N leftward pointing 2-simplices

τ−j,k =

{
Conv(Zj+1,k−1, Zj+1,k, Zj,k), j even,

Conv(Zj+1,k, Zj+1,k+1, Zj,k), j odd,
(3.2.5)

for −M ≤ j ≤ −1. For even values of j the 2-simplex τ+
j,0 contains Zj−1,−1

and the 2-simplex τ−j,0 contains Zj+1,−1; while for odd j the 2-simplex τ+
j,N−1

contains Zj−1,N and the 2-simplex τ−j,N−1 contains Zj+1,N . The second index

k of each of these points lies outside of the basic range 0 ≤ k ≤ N − 1. We

treat

TM,N := {τ±j,k}

as a simplicial complex and solve the Beltrami equation on TM,N .

To simplify the following discussion, we set

Rj :=

√
3 π j

N
. (3.2.6)

In this case, the triangles τ±jk are equilateral. We extend this mesh symmet-

rically to the right half-plane as

Zj,k = %(Z−j,k)

where % is the reflection at the imaginary axis

%(Z) = −Z. (3.2.7)

Now we have (2M + 1)N vertices and 4MN 2-simplices. We say this is the

basic mesh in the logarithmic coordinates.
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Figure 3.2.1: The basic mesh in the logarithmic coordinates with 16 × 16
equilateral triangles

3.2.3 Beltrami coefficients in the logarithmic coordi-

nates

We consider the Beltrami coefficients of F (Z). By Lemma 2.1.4, the Beltrami

coefficients of F (Z) are given as follows:

ν(Z) = µ(eZ)
eZ

eZ
= µ(eZ)e−2i Im Z , Re Z < 0. (3.2.8)

Using ν, we set the Beltrami coefficients as ν(Z) = ν(%(Z)) for Re Z > 0.

Corresponding F (Z) = ρ(F (ρ(Z)) have the symmetry with respect to the

imaginary axis. We will write ν±j,k for the average value of ν(Z) on the

2-simplices τ±j,k. It is useful for the upcoming numerical work to take the

average of ν(Z) over the three vertices as an approximation of this average,

at least when ν is continuous. Let us note that

νjk = ν−j,k, j > 0. (3.2.9)
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3.2.4 Triangle equations

For all rightward pointing 2-simplicies τ+
jk ∈ TM,N := {τ±j,k} in the left half

plane, we construct the following MN linear equations by Corollary 2.1.3:

a+
jkWjk + b+

jkWj−1,k + c+
jkWj−1,k+1 = 0 (3.2.10)

where

a+
jk =

{
Lνjk(Zj−1,k−1 − Zj−1,k), j even,

Lνjk(Zj−1,k − Zj−1,k+1), j odd,

b+
jk =

{
Lνjk(Zj−1,k − Zj,k), j even,

Lνjk(Zj−1,k+1 − Zjk), j odd,
(3.2.11)

c+
jk =

{
Lνjk(Zj,k − Zj−1,k−1), j even,

Lνjk(Zjk − Zj−1,k), j odd.

Further MN linear equations for the leftward pointing 2-simplices τ−jk in the

left half plane are constructed Corollary 2.1.3,

a−jkWjk + b−jkWj+1,k−1 + c−jkWj+1,k = 0 (3.2.12)

where

a−jk =

{
Lνjk(Zj+1,k−1 − Zj+1,k), j even,

Lνjk(Zj+1,k − Zj+1,k+1), j odd,

b−jk =

{
Lνjk(Zj+1,k − Zj,k), j even,

Lνjk(Zj+1,k+1 − Zj,k), j odd,
(3.2.13)

c−jk =

{
Lνjk(Zj,k − Zj+1,k−1). j even,

Lνjk(Zj,k − Zj+1,k), j odd.

We note that these equations stand as written for all 2-simplices in the

left half plane. Further we must take the 2πi-periodicity into account in

order to conserve our requirement that 0 ≤ l ≤ N − 1 in every appearance

of Wj,l.

If k + 1 = N + 1 in (3.2.10) and k − 1 = −1 in (3.2.12), the exceptions
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to these equations occur. We have to use Wj±1,N−1 − 2πi instead of Wj±1,−1

when k = 0 and j is even. Also when k = N − 1 and j is odd, we write

Wj±1,0 + 2πi instead of Wj±1,N . Considering (3.2.4) and (3.2.5), we define

the exceptional equations as:

a±j0Wj0 + b±j0Wj−1,0 + c±j0Wj−1,1 = −2πic±j0, j even,

a±j0Wj0 + b±j0Wj−1,0 + c±j0Wj−1,1 = 2πib±j0, j odd. (3.2.14)

Now we consider these equations in the right half-plane via (3.2.7). We

want F to be symmetric with respect to the imaginary axis, i.e. F = %F%.

The Beltrami coefficients of %F% is ν = ν ◦ %, and hence we reflect ν appro-

priately to the right half-plane as discrete Beltrami coefficients like (3.2.9).

It means that, for a 2-simplex τ±jk = %(τ±−j,k) in the right half Z-plane

(j ≥ 0), the image F (τ±j,k) in the W -plane, defined by Wj,k and two ad-

jacent vertices should be the same as %(F (τ±−j,k)). Hence the correspondence

%(τ±jk) → %(F (τ±jk)) translates into equations of the same form as (3.2.10),

(3.2.12) with j ≥ 0 and with the coefficients

a±jk = a±−j,k, b
±
jk = b±−j,k, c

±
jk = c±−j,k. (3.2.15)

We have totally 4MN triangle equations for the simplices of TM,N .

3.2.5 Boundary equations

The image of left boundary vertices {ZM,k}, are lie on a circle C which is

centered at the origin and has the radius r−M = exp(R−M). Originally, the

image of the infinitesimal circle by a quasiconformal mapping is the infinites-

imal ellipse. The shape of this ellipse depends on the Beltrami coefficients

at the origin. If the quasiconformal mapping f is C1 at the origin and r−M

is small enough, the image f(C) approximately forms an ellipse (considering

the Taylor expansion of f , the image is close to the ellipse by linear term).

Under this situation, we will add the following equations.

Let ek be the images of these points {Zm,k} under the real-linear mapping
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Lµ(0), i.e.

ek = Lµ0(r−Me
2πik/N) = r−MLµ0(e

2πik/N), 0 ≤ k ≤ N − 1,

where µ0 denotes the average value of µ(z) inside this circle. These vertices

lie on an ellipse, however it dose not correspond to the image by the quasi-

conformal mapping in general, but the shape is the same infinitesimally. In

other words, we want a condition that the image of C is an unknown complex

nonzero constant multiple of the ellipse {ek}. Here we consider the image of

the vertices in the logarithmic coordinates:

Ek = log ek (3.2.16)

with 0 ≤ argEk < 2π. The condition above states that the image of the

curve {Z−M,k}k is a translate of the curve {Ek}k by a complex constant. The

same argument holds for the reflected curve {%(Ek)}k. Hence the bound-

ary equations which achieve the above condition are the following 2(N − 1)

equations

W−M,k −W−M,k−1 = Dk,

WM,k −WM,k−1 = Dk, (3.2.17)

where Dk = Ek −Ek−1 and 1 ≤ k ≤ N − 1. The magnitude of r−M does not

influence the value of Dk.

3.2.6 Normalization

Finally, we add an equation. We want a normalized µ-conformal mapping

which fixes 0 and 1. For normalization that f(1) = 1, we set

W0,0 = 0. (3.2.18)
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3.3 Associated linear system

In the argument above, we construct totally ne = 4MN + 2(N − 1) + 1

complex linear equations for the nv = (2M + 1)N unknown variables Wjk,

−M ≤ j ≤ M , 0 ≤ k ≤ N − 1. Let p = p(j, k) be an fixed bijection from

the set of index pairs {(j, k)} to the range 1 ≤ p ≤ nv. Using this bijection

p, we will rename the variables in a single vector W with

W := Wp = Wjk (3.3.1)

for convenience. The linear system now takes the form:

AW = B (3.3.2)

where A = (Aj,k) is the ne × nv-type complex matrix and B = (Bk) is a

complex vector of length ne. When we take a pair of N,M , the mesh {Zjk}
is fixed, and linear system above is defined. We will say that this linear

system (A,B) is the associated linear system to the collection of ν-values

{νjk}. The coefficients depend both on νjk and Zjk.

3.4 Approximation of the solution

Since our linear system is overdetermined, we chose the standard least squares

method for the approximation.

3.4.1 Least squares solution

Given arbitrary TM,N and the measurable Beltrami coefficients µ, the follow-

ing Lemma holds for the corresponding associated linear systems (A,B).

Lemma 3.4.1. Let X be a complex vector which length is the same as the

number of unknown variables nv. If AX = 0, then X = 0.

Proof. Take X ∈ Cnv and assume that AX = 0. We write Xj,k for Xp(j,k)

as mentioned before. First consider equations (3.2.17) for the boundary
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Figure 3.4.1: The corresponding simplicial complex for the Beltrami coeffi-
cients µ(z) = 0.3 and the basic mesh in the logarithmic coordinates in Figure
3.4.1

condition, with zero on the right hand side in place of Dk and Dk. These

equations are of the form X−M,k+1 − X−M,k = 0, and hence all X−M,k are

the same value. Next we consider the triangle equations for the rightward-

pointing 2-simplices (3.2.10), (3.2.14) with j = −M + 1:

a+
−M+1,kX−M+1,k + b+

−M+1,kX−M,k + c+
−M+1,kX−M,k′ = 0

for suitable k′. Considering a+
−M+1,k 6= 0 (recalling the remark after Proposi-

tion 2.1.1) and a+
−M+1,k + b+

−M+1,k + c+
−M+1,k = 0, we obtain X−M+1,k = c for

all k. Similarly we have X−j,k = c for all k and −M ≤ j ≤ 0. Further the

normalization condition X0,0 = 0 means that c = 0. Therefore the symmetry

gives Xj,k = 0 for all j, k. In conclusion, we obtain X = 0.

The Lemma states that the matrix A has full column rank. Therefore we

have the following uniqueness for our least squares solution.

Lemma 3.4.2. The least squares solution W = {Wj,k} (−M ≤ j ≤ M ,

0 ≤ k ≤ N − 1) of the associated linear system (A,B) exists uniquely.

Furthermore W satisfies the following symmetric relation:

A
↔
W = A%(W )
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where
↔
W jk = W−j,k, %(W ) = {%(Wjk)} and ρ is defined by (3.2.7), i.e. the

entries of W satisfy the symmetry W−j,k = ρ(Wjk). In particular, the values

{W0,k} are purely imaginary.

Proof. By Lemma 3.4.1 and Lemma S, A has full column rank, so this op-

timal W is unique. For any W ∈ Cnv , the relation A
↔
W = A%(W ) follows

immediately from the above symmetric construction as (3.2.15). Therefore
↔
W = %(W ).

3.4.2 Exponential mapping

Finally, we apply the exponential mapping to the vertices of {Zj,k} and

{Wj,k}, and then we take the piecewise linear mapping which is induced

by the corresponding between the two simplices.

↓ eZ

Figure 3.4.2: The piecewise linear approximation for the quasiconformal map-
ping whose Beltrami coefficients are µ(z) = 0.3 with M = N = 16



Chapter 4

Convergence

In this chapter we will give a justification of our algorithm. The algorithm

is summarized as follows.

Algorithm 1 Piecewise linear approximation of a quasiconformal mapping

Input: The measurable function µ : D → C with ‖µ‖∞ < 1 and dimen-
sions M,N for a simplicial complex TM,N in the logarithmic coordinates.
1. Calculate the averages of the Beltrami coefficients νj,k on each triangle
in the logarithmic coordinates via (3.2.8). (If µ is continuous on the unit
circle, we may use averages on the 3 vertices.)
2. Calculate the coefficients of the associated linear system (A,B) of {νjk}
and TM,N as prescribed by equations (3.2.10), (3.2.12), (3.2.14), (3.2.17),
and (3.2.18).
3. Calculate the least squares solution W to the associated linear system
(A,B), and arrange the entries of W to form the mesh {Wjk}. (The least
squares solution exists uniquely by Lemma 3.4.2.)
4. Calculate wjk = expWjk for −M ≤ j ≤ 0 and 0 ≤ k ≤ N − 1.
Output: The piecewise linear mapping such that zjk 7→ wjk where zjk =
expZjk.

We will discuss the convergence properties of this approximations for

µ ∈ C1(D).

4.1 Convergence of the approximations

Here we state our main theorem for our algorithm.

27
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Theorem 4.1.1. Let s ∈ N and Ms, Ns ∈ N be strictly increasing sequences

which satisfy

c1Ns logNs ≤Ms ≤ c2Ns logNs (4.1.1)

for constants c1, c2 where c1 > 1/(π
√

3). If the given Beltrami coefficient is

in the class C1 with ‖µ‖∞ = c3 < 1, then the following holds.

i. If s is large enough, the points {z(s)
j,k} and the points {w(s)

j,k} produced

by the algorithm form the vertex sets of triangulations T
(s)
z and T

(s)
w of

the unit disk D. Furthermore, for any fixed compact set K ⊂ Int D,

K ⊂ |T (s)
z | and K ⊂ |T (s)

w | hold when s is large enough.

ii. The mappings fs converge to the µ-conformal mapping f normalized by

f(0) = f(1)− 1 = 0 uniformly on compact subsets of D as s→∞.

Remark 4.1.2. We conjecture that the condition µ ∈ C1 is overly restrictive

by the numerical experiments in the next chapter.

Proof. Let µ be a C1-function and take strictly increasing sequences {Ms},
{Ns} ⊂ N with the growth condition c1Ns logNs ≤ Ms ≤ c2Ns logNs for

constants c1, c2 where c1 > 1/(π
√

3). For a fixed s, let (As,Bs) be the

associated linear system, {Z(s)
j,k} be the vertices of the basic mesh T

(s)
Z in the

logarithmic coordinates and {W (s)
j,k } the least squares solutions of (As,Bs).

Further let νs := {(ν±j,k)(s)} denote the collection of average values of the

function ν which are defined by (3.2.8) on the triangles of T
(s)
Z . We will

divide the proof into several steps.

Step 1. We will replace µ(z) with µ(rz) for r < 1 arbitrarily close to 1, and

then apply the standard approximation arguments. Thus we assume that

µ(z) belongs to the class C1 on a neighborhood of the closed unit disk. This

condition implies that the corresponding normalized µ-conformal mapping f

is in the class C2. The Beltrami coefficient in the logarithmic coordinate ν

belongs to the class C1 in a neighborhood of the closed left half-plane and

has period 2πi, while the corresponding F (Z) = log f(expZ) is in C2 there.

Note that in general the extension of F by reflection in the imaginary axis is

not in C1 on the imaginary axis.
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Step 2. Let {z(s)
j,k} := {expZ

(s)
j,k}. Considering the growth condition (4.1.1),

we have

r−Ms := eRe Z−Ms,k = e−(π
√

3c1) logNs = N−π
√

3c1
s (4.1.2)

since π
√

3c1 > 1. Furthermore we see that

|z−Ms,k − z−Ms,k−1| = 2r−Ms sin
π

Ns

<
2πr−Ms

Ns

= O(1/N1+π
√

3c1
s ).

Step 3. Let {Z(s)
j,k}, {W

(s)
j,k } be the vertices of the simplicial complex T

(s)
Z , T

(s)
W

in the logarithmic coordinates which are produced by our algorithm. If the

equations

AsW s = Bs

hold, the piecewise linear mapping Fs : |T (s)
Z | → |T

(s)
W | is exactly νs-conformal.

However it does not hold in general. Hence we take the least squares solution

for the associated linear system (As,Bs). W s minimizes the L2-norm ‖Rs‖2

of the residual vector

Rs = AsW s −Bs. (4.1.3)

Now we consider another linear system. Let W ∗
s be defined by

W ∗
s := {W ∗(s)

j,k } = {F (Z
(s)
j,k )} (4.1.4)

which contains the images of the vertices under the true ν-conformal mapping

F (Z) = log f(eZ). Let F ∗s be the secant map which is induced by {Z(s)
j,k} and

F , and let ν∗s be the Beltrami coefficient of F ∗s . The associated linear system

(As,Bs) used in the algorithm is defined in terms of the values of νs. By

the construction, F ∗s coincides with F on the vertices of {Z(s)
j,k}. However the

Beltrami coefficient of F ∗s is constant on each 2-simplex. Let (A∗s,B
∗
s) be the

associated linear system which is induced by T
(s)
Z and ν∗s . We will consider

the following linear systems:

AsW s −Bs = Rs, (4.1.5)

A∗sW
∗
s −B∗s = εs. (4.1.6)
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The complex vector εs in (4.1.6) is defined in the next step.

Step 4. The entries of εs corresponding to the the triangle equations are

0 because F ∗s is ν∗s -conformal. This means that the nonzero elements of εs

are in the position of boundary equations. Considering (3.2.17), the values

in A∗sW
∗
s are F (Z

(s)
−M,k)−F (Z

(s)
−M,k−1) and the values in B∗s are E

(s)
k −E

(s)
k−1.

Hence the corresponding positions in εs contain the values

(F (Z
(s)
−M,k)− E

(s)
k )− (F (Z

(s)
−M,k−1)− E(s)

k−1).

We will estimate this by the regularity of f . Since f is in the class C2 and

the approximation

f(z) = fz(0)z + fz(0)z +O(|z|2)

= aLµ(0)(z) +O(|z|2)

holds near the origin, where a is some non-zero constant. Therefore

f(z
(s)
−Ms,k

)e
(s)
k−1

f(z
(s)
−Ms,k−1)e

(s)
k

=
(ae

(s)
k +O(r2

−Ms
))(e

(s)
k−1)

(ae
(s)
k−1 +O(r2

−Ms
))(e

(s)
k )

=
e

(s)
k e

(s)
k−1 +O(r3

−Ms
)

e
(s)
k e

(s)
k−1 +O(r3

−Ms
)

=
r2
−Ms

e2πi(k+(k−1)) +O(r3
−Ms

)

r2
−Ms

e2πi(k+(k−1)) +O(r3
−Ms

)

= 1 +O(r−Ms). (4.1.7)

Taking logarithms we conclude that the nonzero entries of εs shrink at least

as fast as O(r−Ms) < O(1/Nπ
√

3c1
s ) where π

√
3c1 > 1. It should be noted that

the number of non-zero elements is at most 2Ns, so (4.1.2) gives

‖εs‖2 < O

((2Ns)
1

(Nπ
√

3c1
s )2

)(1/2)
 < O(1/Ns)→ 0. (4.1.8)

Considering (4.1.6) and (4.1.8), we see that ‖A∗sW ∗
s − B∗s‖∞ can be made
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arbitrarily small by taking a large enough s. This says that F ∗s is approx-

imately ν∗s -conformal on each τ ∈ T
(s)
Z , so in particular the PL-mapping

F ∗s : |T (s)
Z | → C is now known to be an local homeomorphism. We note that

(4.1.7) means that the boundary is mapped to a Jordan curve. Further F ∗s

is homeomorphism by Lemma 2.2.1.

Step 5. Now we compare our Beltrami coefficients νs with the Beltrami

coefficients of the secant map ν∗s . We apply the algorithm by using average

values

νs|τj,k =
ν(Z1) + ν(Z2) + ν(Z3)

3
(4.1.9)

for τj,k = (Z1, Z2, Z3) ∈ T (s)
Z . We note that this differs from the value∫

τj,k
ν dx dy

area(τj,k)

by an amount which tends to zero with O(1/N2
s ). Using the differentiability

of ν, we can represent ν(Zi) as ν(Z0) + νZ(Z0)(Zi−Z0) + νZ(Z0)(Zi − Z0) +

O(1/N2
s ), i = 1, 2, 3, where Z0 is the barycenter of τ . Since (4.1.9), on

τj,k = (Z1, Z2, Z3) ∈ T (s)
Z we have

max
j,k

∣∣νs|τj,k − ν(Z0)
∣∣ = O(1/N2

s )

as s→∞ and Z0 always refers to the barycenter of τj,k ∈ T (s)
Z .

On the other hand,

Wi = F (Zi) = F ∗(Zi) = W0 +Ha,b ◦ Lν(Z0)(Zi − Z0) +O(1/N2
s ) (4.1.10)

holds where Ha,b and Lν are defined in Section 2 and the constants a, b depend

on Z0. Recall that ν∗s on τj,k is given by Corollary 2.1.4,

ν∗s |τj,k = −(Z2 − Z1)(W3 −W1)− (Z3 − Z1)(W2 −W1)

(Z2 − Z1)(W3 −W1)− (Z3 − Z1)(W2 −W1)
.
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Applying (2.1.4)–(2.1.5) in (4.1.10) and cancelling, we obtain

−(Z2 − Z1)(W3 −W1)− (Z3 − Z1)(W2 −W1)

(Z2 − Z1)(W3 −W1)− (Z3 − Z1)(W2 −W1)

= −((Z2 − Z1)(Ha,0 ◦ Lν(Z0)(Z3 − Z1))

−(Z3 − Z1)(Ha,0 ◦ Lν(Z0)(Z2 − Z1)) +O(1/N3
s ))/

((Z2 − Z1)(Ha,0 ◦ Lν(Z0)(Z3 − Z1))

−(Z3 − Z1)(Ha,0 ◦ Lν(Z0)(Z2 − Z1)) +O(1/N3
s ))

= −
(Z2 − Z1)(Lν(Z0)(Z3 − Z1))− (Z3 − Z1)(Lν(Z0)(Z2 − Z1))

(Z2 − Z1)(Lν(Z0)(Z3 − Z1))− (Z3 − Z1)(Lν(Z0)(Z2 − Z1))

+O(1/Ns)

= −(Z2 − Z1)((Z3 − Z1) + ν(Z0)(Z3 − Z1))

−(Z3 − Z1)((Z2 − Z1) + ν(Z0)(Z2 − Z1))/

((Z2 − Z1)((Z3 − Z1) + ν(Z0)(Z3 − Z1))−

(Z3 − Z1)((Z2 − Z1) + ν(Z0)(Z2 − Z1))

+O(1/Ns)

= ν(Z0) +O(1/Ns).

We conclude that

max
j,k

∣∣ν∗s |τj,k − νs|τj,k∣∣ = O

(
1

Ns

)
. (4.1.11)

Step 6. In this step we will prove:

‖W ∗
s‖∞ = O(logNs) as s→∞. (4.1.12)

The support |T (s)
Z | of the triangulation in the logarithmic coordinates is a

rectangle of width RMs ≈ logNs and height 2π. We may think of the image

by F as a Riemann surface extended over a region of theW -plane. This image

is a possibly non-schlicht topological quadrilateral whose “vertical” sides are

the lifting of the small ellipse together with its reflection in the imaginary axis.

The “horizontal” sides are two curves shifted from one another by 2πi. If the

condition (4.1.12) were false, this quadrilateral would contain points W
(s)
j,k
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such that ρs := |W (s)
j,k |/ logNs → ∞. Note that Wj,k = F (Zj,k). This would

imply that all curves joining the two vertical sides have Euclidean length

at least ρs logNs. It follows from Lemma M, that the conformal module of

this quadrilateral must also grow at least as fast as ρs logNs. Since |T (s)
Z |

has conformal module O(logNs), the quasiconformal mappings F must have

arbitrarily large maximal dilatation; i.e., their Beltrami coefficent must have

absolute value greater 1 at some point. This contradicts the fact that the

Beltrami coefficent is ν, which is less than 1. Therefore (4.1.12) holds as

claimed.

Step 7. The following notations will be used:

|A∗s −As| := sup |(A∗s)jk − (As)jk|, (4.1.13)

|B∗s −Bs| := sup |(B∗s)k − (Bs)k|. (4.1.14)

All elements of (As,Bs) and (A∗s,B
∗
s) in the same positions are equivalent

formulas by νs and ν∗s respectively. Considering Corollary 2.1.3, elements in

As, A
∗
s resulting from triangle equations are given by Lν(Zi−Zj), Lν∗(Zi−Zj)

respectively, where a given triangle is referred to by (Z1, Z2, Z3) as in (4.1.9),

and ν, ν∗ refer to the constant values assigned to that particular triangle.

The elements satisfy

Lνs(Zi − Zj)− Lν∗s (Zi − Zj) =
2(ν∗s − νs)Im (Zi − Zj)

(1 + νs)(1 + ν∗s )

= O

(
1

N2
s

)
by (4.1.11), because |ν| is bounded away from 1. The elements of As,A

∗
s

from boundary equations do not depend on νs, ν
∗
s , because right hand side

is 0. We arrive at

|A∗s −As| = O(1/N2
s ), |B∗s −Bs| = O(1/Ns), (4.1.15)

the latter estimate resulting from a simple calculation based on (3.2.17).
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Step 8. Using (4.1.6), we observe

‖AsW
∗
s −Bs‖2 ≤ ‖AsW

∗
s −A∗sW

∗
s‖2 + ‖A∗sW ∗

s −B∗s‖2

+‖B∗s −Bs‖2

= ‖(As −A∗s)W
∗
s‖2 + ‖εs‖2 + ‖B∗s −Bs‖2.

Considering the construction of the associated linear systems, each row

of As or A∗s contains at most three non-zero entries, as only three variables

appear in the linear equations. The entries of (As − A∗s)W
∗
s are of the

form
∑

p(Ap(j,k),k − A∗p(j,k),k)Wp(j,k), where the map p : {(j, k)} → {1 ≤
p ≤ nv} is a bijection, at most three of the summands are nonzero. Thus

‖(As − A∗s)W
∗
s‖∞ ≤ 3|As − A∗s| ‖W ∗

s‖∞ = O(logNs/N
2
s ) by (4.1.12) and

(4.1.15). This vector has ne elements, so we may estimate its L2-norm,

‖(As −A∗s)W
∗
s‖2 ≤ O

((
ne(

logNs

N2
s

)2

)1/2
)

= O

((
N2
s logNs

(logNs)
2

N4
s

)1/2
)

= O
(

(logNs)
3/2 /Ns

)
.

By a similar calculation, we obtain

‖B∗s −Bs‖2 ≤ O

((
Ns(

1

Ns

)2

)1/2
)

= O(1/N1/2
s ).

Further we have

‖Rs‖∞ < ‖Rs‖2 = ‖AsW s −Bs‖2 ≤ ‖AsW
∗
s −Bs‖2

by minimality of ‖AsW s−Bs‖2 = ‖Rs‖2 (recall (4.1.16) and (4.1.8)). There-
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fore we have proved that

‖Rs‖∞ = ‖AsW s −Bs‖∞ → 0. (4.1.16)

This means that the Beltrami coefficient of Fs is approximately νs on each

τ ∈ T
(s)
z . Hence Fs is also a local homeomorphism and has the Beltrami

coefficients close to ν∗s . Let ν ′s be the Beltrami coefficients of PL mappings

which is induced by {Z(s)
j,k} and {W (s)

j,k }. We note that (4.1.16) means

max
j,k

∣∣∣ν ′s |j,k − ν∗s |j,k∣∣∣→ 0 (4.1.17)

as s→∞.

Step 9. By (4.1.5) and (4.1.6), we obtain

‖As(W s −W ∗
s)‖∞ ≤ ‖AsW s −Bs‖∞ + ‖Bs −B∗s‖∞ + ‖B∗s −A∗sW

∗
s‖∞

+ ‖A∗sW ∗
s −AsW

∗
s‖∞

= ‖Rs‖∞ + ‖B∗s −Bs‖∞ + ‖εs‖∞
+ ‖(A∗s −As)W

∗
s‖∞. (4.1.18)

Hence we may conclude that ‖As(W s −W ∗
s)‖∞ → 0.

Now we will prove: If {Xs} ∈ Cnv is such that AsXs → 0, then Xs → 0.

Consider a subsequence of {Xs} which converges to a limit X. By the

continuity we have AsXs → 0 and hence X = 0 by Lemma 3.4.1. Thus

we see that every convergent subsequence of {Xs} converges to 0. If {Xs}
is bounded, then it indeed has a convergent subsequence, so it follows that

Xs → 0 as desired.

Next we assume that {Xs} is not bounded. The maximum absolute value

|X(s)
p | of an element of {Xs} occurs infinitely often for some fixed index p0.

On the corresponding subsequence we have |X(s)
p0 | → ∞. Let

Y s =
1

X
(s)
p0

Xs,
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so |Y s| = 1. Also

AsY s =
1

X
(s)
p0

AXs → 0

on the subsequence, where |X(s)
p0 | > 1 for large n. Since {Y s} is bounded, by

the previous paragraph Y s → 0, which contradicts |Y s| = 1. Therefore this

case does not occur.

Considering ‖As(W s −W ∗
s)‖∞ → 0, we obtain that

‖W s −W ∗
s‖∞ → 0 (4.1.19)

as s → ∞. This says that the points W s produced by the algorithm differ

by an arbitrarily small amount from the image vertices under the true ν-

conformal mapping F .

Step 10. Finally, we apply the exponential mapping via (3.2.1) and (3.2.2)

to obtain the sequence of PL-mappings fs ∈ PL(|T (s)
z |) which send each

2-simplices (z1, z2, z3) ∈ T
(s)
z to the 2-simplices (w1, w2, w3) where wj :=

exp ◦Fs ◦ log(zj). Note that the domain {|T (s)
z |} exhausts the unit disk D,

produced by the algorithm for meshes determined by (Ms, Ns).

Let f ∗s be the secant map which is induced by f and T
(s)
z , and let µ∗s be

the Beltrami coefficients of f ∗s . We note that

f ∗s (zj,k) = exp ◦F ∗s ◦ log(zj,k) = exp ◦F ∗s (Zj,k) = eW
∗
j,k .

Considering the Beltrami coefficients of f ∗s and Lemma 2.2.1, we see that f ∗s

is a quasiconformal mapping if s is large enough. Further the images under

quasiconformal mapping {f ∗s (|T (s)
z |)} exhaust the unit disk D. Considering

Lemma J, we conclude that f ∗s converges to the true solution f locally uni-

formly on D. Hence fs is also a quasiconformal mapping if s is large enough,

and fs → f locally uniformly on D.



Chapter 5

Numerical experiments

In this chapter, we will present numerical experiments of our algorithm for

some constructive examples. We have calculated with machine precision in

Mathematica on a Macintosh platform (3.33 GHz CPU, 16.00 G RAM) for

all experiments. The Mathematica routine LeastSquares handles sparse

matrices [5, 37], a data structure which registers only the nonzero entries

appearing in a matrix or vector. Further examples are presented in the

appendix with the error of the Beltrami coefficients.

5.1 Comparison with true solution

In the first several examples we compare the results produced by our algo-

rithm with an exact formula for the quasiconformal mapping under consid-

eration.

5.1.1 Constant Beltrami coefficient

We consider the case that the Beltrami coefficient is constant µ(z) = c. First

we note that the real-linear mapping Lµ maps the unit circle to an ellipse

with semi-axes 1, (1 − |µ|)/(1 + |µ|) slanted in the directions (1/2) arg µ,

(1/2)(arg µ+ π) respectively, modulo π. Let f be the conformal mapping to

D from an ellipse Ea,b with semi-major and semi-minor axes of lengths a, b

(a2−b2 = 1) and foci at ±1. It was presented in [36] that f has the following

37
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form:

f(z) =
√
k sn (

2K

π
sin−1 u; k2) (5.1.1)

where the Jacobi elliptic function modulus k is related to the complete elliptic

integral K and the Jacobi theta functions by the formulas

q = (a+ b)−4 = e−πK(1−m)/K(m),

k =
√
m =

(
θ2

θ3

)2

,

with notation from [40].

The ellipse Ea,b is sent by the conformal linear mapping H1/(2
√
µ),0 to

the ellipse E ′a,b with semi-axes a, b. Then via (5.1.1) this is transformed

conformally to the unit disk.

Figure 5.1.1: Image for constant Beltrami derivative µ = 0.5 and (M,N) =
(52, 64). Observe the “crowding phenomenon” near the boundary.
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It is well known that a conformal mapping from an ellipse to a disk tends

to “crowd” boundary points near the images of the endpoints of the major

axis. The crowding, or maximum ratio of separation of N points sent to the

Nth roots of unity, increases exponentially as a function of the aspect ratio

a/b [11, section 2.6]. In contrast, the affine mapping Lµ which we combined

with this conformal mapping produces little crowding. The combined effect

is a great deal of crowding near w = 1, as it can be perceived in Figure 5.1.1.

Simply we chose the constant c as µ = 0.1, 0.3, 0.5, 0.7 and applied our

algorithm for the basic meshes defined by N = 16, 32, 48, . . . 256, with M =

(NdlogNe)/2 where d·e is the ceiling function. In this case c1N logN < M

hold in the view of (4.1.1). The list of number of equations and variables

with the calculating time for constructing the matrix time and solving the

least squares problems are presented in Table 5.1.1. Table 5.1.2 presents the

maximum error over all wkj when these points are compared to the images

of zkj under the exact quasiconformal mapping described in the preceding

paragraph. As is to be expected, the error increases when the Beltrami

derivative increases. However the error decreases when N is increased. It was

found that for µ = 0.7 and a rather coarse mesh such as (M,N) = (36, 48),

the image of TMN is not a triangulation, inasmuch as a few of the w-triangles

near ±1 are improperly oriented. In spite of this fact, the values obtained

for the conformal mapping are not very far off.

16 32 48 64 80 96 112 128

Constructing 0.51 1.27 3.01 7.06 11.60 18.00 24.98 33.87
Solving 0.03 0.26 0.64 1.59 2.80 4.24 6.12 8.47

Table 5.1.1: The maximum of the calculating time for constructing the equa-
tions and solving the least squares problems for constant Beltrami coefficient
and N = 16, 32, 48, 64, 80, 96, 112, 128 with M = (NdlogNe)/2. Values are
in seconds.

We analyze the variation of the error as a function of the radius for the

case µ = 0.3. Figure 5.1.2 shows the maximum error over k in the calculated

value of wjk for each fixed j. It is seen that the error remains approximately

constant for r < 0.7 and then increases rather sharply for 0.7 < r < 1.
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Figure 5.1.2: Numerical errors of the algorithm for different values of (M,N)
with µ = 0.3. The horizontal axis indicates the distance rj = |zjk| of the
z-points from the origin; the vertical axis gives the maximum discrepancy
(over k) of the calculated value of wjk from the true value.

Thus the maximum values in Table 5.1.2 are much higher than the average

errors. As noted above, the maximum error, which occurs on the boundary,

decreases as a function of N .

16 32 48 64 80 96 112 128

0.1 0.012 0.0031 0.0014 0.00077 0.0005 0.00034 0.00025 0.00019
0.3 0.027 0.0070 0.0031 0.0018 0.0011 0.00078 0.00057 0.00044
0.5 0.061 0.020 0.011 0.0065 0.0042 0.0030 0.0022 0.0017
0.7 0.244 0.120 0.086 0.063 0.045 0.034 0.026 0.021

Table 5.1.2: The maximum of the absolute errors between the solutions by
our algorithm and the approximation of real values of constant Beltrami
coefficients µ = 0.1, 0.3, 0.5, 0.7 and N = 16, 32, 48, 64, 80, 96, 112, 128 with
M = (NdlogNe)/2.
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5.1.2 Radial quasiconformal mappings

Let ϕ : [0, 1] → [0, 1] be an strictly increasing diffeomorphism of the unit

interval. We define the radially symmetric function as

f(z) = ϕ(|z|)ei arg z = ϕ(|z|) z
|z|
. (5.1.2)

The function f has Beltrami derivative equal to

µ(z) =
|z|ϕ′(z)/ϕ(z)− 1

|z|ϕ′(z)/ϕ(z) + 1

z

z
(5.1.3)

when z 6= 0. As an illustration we will take

ϕ(r) = (1− cos 3r)/(1− cos 3)

in Figure 5.1.3. In this case the essential supremum of the Beltrami coefficient

is ‖µ‖∞ ≈ 0.65.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1.3: Radial function ϕ (left), together with the induced rotationally
symmetric image domain.

The domain points zjk on the real axis were selected, and the values of

wjk produced by the algorithm were compared with the true values ϕ(|zjk|).
The results are given in Table 5.1.3. It was also observed that as in the

previous example, the errors increase as the radius increases.
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16 32 48 64 80 96 112 128

Error 0.040 0.014 0.0058 0.0034 0.0021 0.0015 0.0011 0.00086

Table 5.1.3: Maximum absolute error for radially symmetric quasiconformal
mapping defined by (5.1.3).

16 32 48 64 80 96 112 128
Error 0.067 0.036 0.025 0.019 0.015 0.013 0.011 0.010

Table 5.1.4: Maximum absolute error |ψ(θ)− f(eiθ)| for µ defined by (5.1.5).

5.1.3 Sectorial quasiconformal mappings

In a similar spirit, we let ψ : [0, 2π]→ [0, 2π] be an increasing diffeomorphism.

Write ψ̃(eiθ) = eiψ(θ). Then the sectorially symmetric function

f(z) = |z| ψ̃
(
z

|z|

)
(5.1.4)

has Beltrami derivative equal to

µ(z) =
1− ψ′(θ)
1 + ψ′(θ)

z

z
(5.1.5)

when z 6= 0. As an example we will take

ψ(θ) =

{
θ
2
, 0 ≤ θ ≤ π,
π
2

+ 3(θ−π)
2

, π ≤ θ ≤ 2π.

as in Figure 5.1.4. In this example µ does not satisfy the hypothesis of

Theorem 4.1.1 because it is not continuous. The arguments of the final

boundary values on the unit circle were compared with the true values ψ(θ);

see Table 5.1.4.

5.2 Trivial Beltrami coefficients

Let µ ∈ L∞(D) with ‖µ‖∞ < 1. If the corresponding normalized solution

fµ satisfies fµ(z) = z on the unit circle, µ called a trivial Beltrami coef-
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Figure 5.1.4: Angular function ψ (left), together with image domain under
the sectorial mapping (5.1.4).

ficient. Trivial Beltrami coefficients play an important role in the theory

of Teichmüller space. Sugawa [35] showed a criterion for the triviality of

the Beltrami coefficients, and gave an example for a trivial Beltrami coeffi-

cient. Let N be a non-negative integer and aj(t) (1 ≤ j ≤ N) be essentially

bounded measurable functions in t ≥ 0 so that

µ(z) :=
N∑
j=0

aj (− log |z|)
(
z

|z|

)j+2

satisfies ‖µ‖∞ < 1. Then his results implies that µ is a trivial Beltrami

coefficient. For the experiment, we chose

aj(z) :=
2

3

(
sin 10z

2

)j+1

.

We show our result in Figure 5.2.1. Further the error between the boundary

and the identity values, and the error of the Beltrami coefficients are plotted

in Figure 5.2.2. It was observed that the error at the boundary values are

bounded by 0.0032 (the distance between the vertices is 0.05).
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Figure 5.2.1: The result made by our algorithm with trivial coefficient µ1.

Figure 5.2.2: The errors of the boundary values (left), the difference between
the induced Beltrami coefficients to µ1 (right).
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5.3 Comparison with Daripa’s method

We will compare our algorithm with Daripa’s method. Daripa [7] has cal-

culated quasiconformal mappings from D to the exterior of an ellipse (the

origin being sent to ∞) which has following Beltrami coefficients:

µ1(z) = |z|2e0.65(iz5−2.0),

µ2(z) =
1

2
|z|2 sin(5Re z).

Let h(z) be the rational function of the form:

h(z) =
(1 + α)− (1− α)z2

2αz
.

The rational function h maps D conformally to the exterior of an ellipse with

aspect ratio α. Further let fµ1 and fµ2 be the normalized quasiconformal self-

mapping of the unit disk which has Beltrami coefficients µ1, µ2 respectively.

The composition h ◦ fµj are µj-conformal mappings to the exterior of the

ellipse (j = 1, 2).

In the examples in [7], α = 0.6 was chosen. However, the inner ellipses in

[7] appear to have aspect ratios of approximately 0.47; axes are not drawn.

We made adjustments for the fact that Daripa uses M radii equally spaced

in [0, 1], in contrast to the exponential spacing we have been using. We show

an result (M,N) = (64, 64) in Figure 5.3.1 for comparison. Our image looks

like similar to Daripa’s images in [7].

Computation times are reported in [7] for N = 64 as approximately 8.5

seconds of CPU on a MIPS computer described as “approximately 15 times

slower than the CRAY-YMP at Texas A & M University” of that time. Our

CPU times were approximately 3.17 seconds for the first example and 3.16

seconds for the other.

It is apparent from the examples in [7] that Beltrami derivatives with a

great deal of oscillation were used in order to create an interesting problem.

Figure 5.3.2 shows our results for the mapping of the disk to the exterior of
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the same ellipse, with Beltrami derivative

µ(z) = 0.9 sin |20z| (5.3.1)

and (M,N) = (128, 128).

In the above examples which we have taken from [7], µ satisfies ‖µ‖∞ ≈
0.5. However it should be noted that µ satisfies |µ(z)| < 0.12 for |z| < 0.5,

and |µ(z)| < 0.12 for |z| < 0.3. In fact, an important limitation stated in

[7] is that the Beltrami coefficient µ must be Hölder continuous. Further,

it is recommended that µ vanishes at least as fast as |z|3 at the origin for

the method to work properly. In [12] it is similarly recognized that the

computation time increases as ‖µ‖∞ increases. Our algorithm, in contrast,

is not subject to any such requirement on µ.

Daripa’s main algorithm requires an evaluation of the ∂/∂z derivatives

which appear in the singular integrals. The operation count of one iteration of

Daripa’s method is O(MN logN). This should be multiplied by the average

number of iterations required, which depends on how refined the mesh is and

how much accuracy is desired.

-1.0 -0.5 0.5 1.0
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-0.5
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-0.5
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Figure 5.3.1: The quasiconformal self-mappings of unit disk with Beltrami
derivatives µ1 (left), µ2 (right) followed by a conformal mapping to exterior
of an ellipse as in [7].
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Figure 5.3.2: Quasiconformal mappings to the unit disk (left) and the exterior
of an ellipse (right) determined by (5.3.1).

5.4 Computational cost

In this section we will estimate computational cost of our algorithm. As

described in Chapter 3, we use a linear system (A,B). For a fixed dimensions

M,N for our basic mesh, the matrices A,B are of orders ne × nv, ne × 1

respectively (recall that ne = 4MN+2(N−1)+1 and nv = (2M+1)N). The

total number of elements contained in A is O(M2N2). However, we noted in

the proof of Theorem 4.1.1 that the number of nonzero elements of any row

of A is no greater than 3. Further the number of nonzero elements of any

column of A is no greater than 7. It should be noted that each variable Wjk

in (3.2.10), (3.2.12) corresponds to a vertex of at most six triangles; the only

vertex appearing in seven equations is W0,0, cf. (3.2.18). Hence the number

of nonzero elements in A is no greater than O(MN).

Recall that the linear system AV = B is overdetermined and in general

there is no exact solution. Hence we took the least squares solution as the

approximation. There are many numerical methods available for the least

squares problem (see a comprehensive reference [5] for details). For simplic-

ity we discuss the method of “normal equations,” that is, the solution of

AHAV = AHB, where AH is the conjugate transpose of A. It is easily

seen that by construction the columns of A are linearly independent, so that
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AHA is positive definite, and each row or column of AHA contains at most

7 nonzero entries. These entries are not consecutive, but the index corre-

spondence in (3.3.1) may be taken so that the row bandwidth of AHA is

2M .

When one applies Gaussian reduction to (A,B), the n-th of the nv rows

will only need to reduce at most 2M of the succeeding rows, and will require

no more than 2M floating-point multiplications for each one. Hence the

total operation count is of the order of O(nv(2M)2) = O(M3N). Once

AHA has been thus reduced to echelon form, the computational cost of back

substitution is seen to be no more than O(M2N). These computations do

not require a significant amount of storage other than the original data.

In summary, when one doubles the mesh dimensions M,N , the memory

requirement is at most multiplied by 4 (which is the same as the increase

in the mesh itself) and the computation time by 16. Our numerical experi-

ments indicate that the more sophisticated least squares algorithms found in

packaged software appear to reduce these exponents slightly.

5.5 Future tasks

We think that our algorithm can be used for solving the Beltrami equation on

the entire z-plane (normalized by fixing 0, 1, and∞) instead of the unit disk.

One simply eliminates the step of extending the Beltrami coefficient from the

disk to its exterior by reflection. We have not yet investigated this question

numerically. We conjectured that our algorithm will converge to the true

µ-conformal mapping even when µ is piecewise smooth, and perhaps in even

greater generality. The conjectured is suggested by the numerical examples

in Chapter 5 and Appendix. The estimates in the proof of Theorem 4.1.1

concerning L2 norms would not be greatly affected if only a small proportion

of the terms in the sums failed to tend to zero as fast as required. We hope

to look into these questions in the near future.



Appendix

For the interested readers we present several results of our numerical exper-

iments. The left figure is the results by our algorithm. The right figure is

the error of the Beltrami coefficient: the horizontal axis indicates the index

from the origin, the vertical axis gives the maximum discrepancy (over k) of

the calculated value of the Beltrami coefficient from the true value.

Figure 5.5.1: µ(z) = 0.15− 0.15i (M = 128, N = 64).
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Figure 5.5.2: µ(z) = 1/2 for {z ∈ D : Im z > −1/3}, 0 for others (M =
128, N = 64). Note that µ is not continuous on {z ∈ D : Im z = −1/3}.

Figure 5.5.3: µ(z) = z/2 (M = 128, N = 64).

Figure 5.5.4: µ(z) = z2/2 (M = 128, N = 64).
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Figure 5.5.5: µ(z) = z/2 (M = 128, N = 64).

Figure 5.5.6: µ(z) = sin(z)/2 (M = 128, N = 64).

Figure 5.5.7: µ(z) = cos(z)/2 (M = 128, N = 64).
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Figure 5.5.8: µ(z) = cos(20|z|)/2 (M = 256, N = 128).

Figure 5.5.9: µ(z) = cos(20|z|+ π/2)/2 (M = 256, N = 128).
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Figure 5.5.10: µ(x + iy) = (1+6i)x−(6−i)y
37x−37iy

(M = 128, N = 64). This is the

Beltrami coefficent of a logarithmic spiral map fµ(z) = z|z|i/6.
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Notations

We summarize the notations.

Symbol Definition
C the complex plane

Ĉ the Riemann sphere
Ck(D) the set of functions which are in the

class Ck on the domain D ⊂ C
D the unit disk {z ∈ C : |z| < 1}.
fµ the quasiconformal mapping which has

the Beltrami coefficient µ
Int X the interior of a domain X ⊂ C

Mm,n(C) the set of complex (m,n)-matrixes for
positive fingers m,n

µf the Beltrami coefficient of f , i.e.
µ(z) = fz/fz

PL(T ) the set of continuous functions which is
linear on each 2-simplices in the trian-
gulation T

|T | the union of all 2-simplicies of a trian-
gulation T

‖ · ‖∞ the essential supremum
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[36] G. Szegö, Conformal mapping of the interior of an ellipse onto a circle,

American Mathematical Monthly 57:474–479 (1950).

[37] M. Trott, The Mathematica GuideBook for Numerics, Springer, New

york. (2006).

[38] J. Weisel, Numerische ermittlung quasikonformer abbildungen mit

finiten elementen, Numer. Math., 35, 201-222, (1980).

[39] G. B. Williams, A circle packing measurable Riemann mapping theorem,

Proc. Amer. Math. Soc. 134, 2139-2146, (2006).

[40] E. T. Whittaker and G. N. Watson, Course of Modern Analysis, reprint

of the fourth (1927) edition, Cambridge Mathematical Library, Cam-

bridge University Press, Cambridge (1996).

[41] Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL

(2014).


