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This thesis focuses on the impurity partitioning during the polycrystallization of colloidal
crystals, which investigated the impurity partitioning at grain boundaries (GBs) and revealed the
segregation process of impurity and corresponding influential factors. The outline of this thesis is as
follows.

In chapter 1, researches about GB segregation were introduced. Though most researches
assume that impurity segregation at GBs takes place in annealing process, it was recently reported
that GB segregation occurs during solidification. Impurity segregation at GBs during crystal growth
is still under debate. To reveal the mechanism of GB segregation, a colloidal crystal is introduced.
The growth of colloidal crystals enables us to study the detailed dynamics of crystallization, melting,
and nucleation with single-particle resolution in real time.

The colloidal particles and growth cells used in the experiment and the in situ observation
technique are described in Chapter 2. The convective self-assembly is applied for growing colloidal
crystals in this work, because small density difference between solid and liquid during
crystallization is similar to melt growth. Monodispersed polystyrene (PS) particles and red and
green fluorescent particles were used in the experiment.

The impurity segregation at GBs are presented in Chapter 3. Impurity partitioning for both
grains and GBs were investigated via in-situ observation. A close-packed {111} plane of the
face-centered cubic (fcc) structure was observed on the surface normal to the growth direction. The



impurities were incorporated into crystals as substitutional impurities. The impurity particles
gathered more at GBs than in grains. Impurity partitioning of polycrystalline grains is found to be
similar to that of single colloidal crystals, which follows the Burton, Prim, and Slichter (BPS)
model. Impurity concentration at GBs (Cgg) for various misorientation angles (&) between adjacent
grains and growth rates (V) has been investigated. Cgg was found to increase with either increasing
@ or V, and also when the size of the impurity is close to that of the host colloid particle. Possible
mechanisms for the incorporation of impurities into GBs are discussed. Analysis based on BPS
theory indicates that both the incorporation of impurities directly from liquid and impurities that
rejected by grain give significant effect on GB segregation.

In Chapter 4, the effect of the solid—liquid interface morphology on the diffusion behavior
of impurities in the liquid in the vicinity of the interface is demonstrated. It is observed that GB
always has a groove at solid—liquid interface, where GB was exposed to the liquid at the bottom of
groove. The time evolution of impurity distribution in the liquid in the vicinity of solid—liquid
interface was investigated. The observations revealed that impurities are distributed homogenously
at the initial growth stage and are then gradually accumulated at the groove formed at the GB. The
impurity concentration of the GB increased with the groove area. For the impurity partitioning of
polycrystal colloidal growth, grain orientation was found to influence the energy state of the
solid—liquid interface, which determines the groove area and therefore results in different Cgg. The
influence of the groove area on grain boundary segregation was experimentally demonstrated in this
chapter.

The transition of crystal orientation accompanied by the change in the number of layers
during colloidal polycrystallization was investigated in Chapter 5. The evolution of packing
structure during the change of number of layer from 1 to 2 and that from 2 to 3 was traced.
[100]-oriented grains form between [111]-oriented grains when the layer thickness increases. Since
the volume fraction of [111]- is larger than that of [100]-oriented grains for the same number of
crystal layers in a multilayer region, [111]-oriented grains is more stable, which changes the
[100]-oriented grains into [111] after the increase of number of layers is completed.

Chapter 6 is summary of this work. We have successfully clarified the impurity behavior in
GB segregation via in situ observations. The detail process of impurity segregation into GBs was
observed and it was qualitatively analyzed. We experimentally demonstrated that the groove at the
GB contributes to GB segregation. A crystal-orientation transition is associated with change in the
number of layers during colloidal polycrystallization. These observations will contribute to the
fundamental understandings of GB segregation during polycrystal growth.
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