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Abstract

This thesis focuses on the spatial and temporal variability of concentric gravity waves (CGWSs)
in the mesopause region based on the Oz A-band (762 nm) nightglow data obtained with
IMAP/VISI. Atmospheric gravity waves (AGWs) have been studied intensively because of
their major role in the atmospheric dynamics, such as transporting energy and momentum
and interaction to the mean wind and thermal structure of the middle atmosphere. CGWSs are
one of the most distinct features of gravity waves, which show a direct coupling between lower
and upper atmosphere. The past studies have revealed the general properties of CGWs, such
as launching mechanism and effect of the background wind profile. However, these are mostly
based on a single event, which give only local information. Thus, a statistical approach with
space-based observations is ideal since they cover wider area globally and can measure
atmospheric gravity waves without cloud obscuration.

For the data analysis, we used the airglow data measured with the Visible and
near-Infrared Spectral Imager (VISI) of the IMAP mission on the International Space Station
(ISS). IMAP/VISI was operated from October 2012 until August 2015 in the nightside
hemisphere with geographical latitude range of +/- 51°, measuring mainly three different
airglow emissions of OI at 630 nm, the OH Meinel band at 730 nm and the Oz (0-0) A-band at
762 nm at an altitude of ~400 km with the typical spatial resolution of 16 — 50 km.

The present study of CGWs is divided into two parts; the first part is a case study
using the coordinated observations of IMAP/VISI and ground-based all-sky imager at
Rikubetsu, and the second part is a statistical study on the global distribution and seasonal
variability of CGW. Here we examined a partial CGWs case observed in northeastward of
Japan on October 18, 2012. IMAP/VISI measured an arc-like shaped; partial CGWs pattern
around the mesopause (~95 km) in the Oz 762-nm airglow emission at 1204 UT. The
maximum radius of CGWs was ~1400 — 1500 km. Similar patterns were also observed by the
all-sky imager at Rikubetsu (43.5°N, 143.8°E) in OI 557.7-nm and OH-band airglow emissions
from ~1100-1200 UT. Horizontal wavelengths of the observed small-scale gravity waves are
~50 km (OH-band and OI 557.7-nm) and ~67 km (O2 762-nm). From MTSAT and TRMM data
the source is suggested to be a deep convective activity over Honshu island (33°N, 136°) which
likely to be related to a typhoon in the south of Japan. Background winds and temperature on
the propagation mechanism were analyzed with MERRA, Wakkanai MF Radar and SABER
data. Using atmospheric temperature profiles, we conclude that this long-distance
propagation of the waves could be caused by thermal duct in the middle atmosphere in the
altitude range of 45 to 110 km. The zonal and meridional wind profiles could produce the
arc-like shaped CGWs in which the wind filtering effect plays a role on the suppression of

wave propagation in the particular direction.
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We also conducted a statistical study using 235 CGWs events obtained from 3 years
data of IMAP/VISI to clarify the spatial and temporal variability of CGWs in the mesopause.
We found the horizontal wavelength ranging from 40 to 250 km and maximum radius of 200
to 3000 km, clearly demonstrating the fact that the small-scale gravity waves can travel for a
long distance up to 3000 km. The zonally averaged latitudinal distribution of the CGWs
occurrence maximized at mid-latitudes (40°N and 40°S) and minimized at low latitudes (10°S).
It is interesting to note that more events were found in the summer hemisphere mid-latitudes,
with a rapid transition between northern and southern hemisphere around the equinoxes.
Occurrence probability of the CGWs was significantly high during non-solstice months
(February-May and August-November) than solstice months (June-July and
December-January), suggesting that they are able to survive breaking and critical level
absorption in the middle atmosphere to reach the mesopause region more often during these
periods. Information regarding localized regions of high CGW activities seen in the global
map and the seasonal variability are useful for the future mesospheric and upper atmospheric

studies.
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