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Quantum computers promise to be able to solve tasks beyond the reach of standard computational platforms.
Among the others, photonic quantum walks prove to be great candidates for their implementation, since single
photon sources, passive linear optics and photo-detectors are sufficient for universal quantum computation. To this
aim, a device performing the quantum Fourier transform represents a fundamental building block for quantum
algorithms, whose applications are not limited to the field of quantum computation. Recently, an algorithm has
been developed to efficiently realize a quantum Fourier transform of an input photonic state by using a quantum
walk on elementary linear-optical components. Here we provide a simple operative description of the algorithm,
introducing a whole class of quantum transformations achievable through a generalization of this procedure. We
finally discuss how femtosecond laser writing technology well represents an efficient and scalable platform for the
implementation of this class of photonic quantum walks.
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Introduction

Modern research deeply relies on the computational power of state-of-the-art standard technologies. In the last
decades, a novel concept of quantum computational platform has been introduced [1], which is strongly believed to go
beyond the reach of that currently available [2]. Quantum walk-based computing devices, composed of only linear-
optical elements and able to manage adaptive measurements, may indeed become universal quantum computers
promising to solve problems that are intractable for classical ones [3–6]. Thus, it becomes necessary to develop tools
for efficiently realizing and characterizing any kind of photonic quantum walk, aiming at building up interferometric
architectures of higher dimensionality and practicality. Indeed, it was already shown that any unitary evolution can be
decomposed in the combined action of a number of beamsplitters and phase shifters that grows polynomially with the
size of the interferometer [7, 8]. However, the high versatility of this decomposition comes at the cost of requiring, in
general, more elements than those really sufficient for a specific transformation [9]. A new algorithm has been recently
developed by Barak and Ben-Aryeh (BB) [10] which, following the famous classical algorithm of Cooley and Tukey
[11], minimizes the number of beamsplitters and phase shifters for implementing the 2n-dimensional quantum Fourier
transform (QFT) over the optical modes. Indeed, the BB construction of the m-mode Fast Quantum Fourier Transform
(qFFT) reduces the optical elements to only Oðm logmÞ, to be compared with the Oðm2Þ elements necessary in the more
general decomposition. Besides this qFFT implementation, whose importance stands out among quantum processing
routines, other remarkable examples of transformations that can be decomposed in a BB-like architecture may find
application in future quantum optical experiments [12]. Thus, it is of a broad interest, also from a fundamental point of
view, the possibility of exploiting this fast decomposition for more general unitary evolutions on quantum walks.

Fast Quantum Hadamard and Fourier Transforms

Here we introduce a whole class of generalized fast quantum transformations that present a fast decomposition over
the optical modes of a 2n-dimensional interferometer, i.e. transformations that require a number of optical elements
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scaling as Oðm logmÞ. To achieve this task, we reverse the way of thinking of BB, starting from the most general
2n-dimensional fast architecture to express the dependence of the related unitary transformation Gð2

nÞ on the parameters
describing the beamsplitters and phase shifters employed in the construction. The algorithm to design an interferometer
of dimension 2n resembling the fast architecture of the BB decomposition can be pictorially summarized as follows
[13]. Each optical mode k 2 ½1; 2n� is associated to a vertex of a n-dimensional hypercube in Rn with coordinates
ðb1; b2; . . . ; bnÞk, where bi ¼ �1 (+1) if the i-th bit of the binary representation of k is 0 (1). The architecture consists of
n steps (layers): at the step s, all pairs of modes differing only for the s-th bit are connected. The position of each mode
in the cross-section of a fictitious plane can be defined by projecting on it the vertices of the hypercube. Each layer
connects, by means of phase shifters and beamsplitters, corresponding to the edges of the hypercube with a given
direction, the pairs of modes that have to interact at that step.

Once the overall architecture is arranged, specific unitary evolutions can be tailored for a given application. Firstly,
by simply setting all beamsplitters to be 50:50 and zeroing all relative phases within the evolution, the Hadamard
matrix is directly recovered. Thus, the simplest transformation achievable with a fast architecture is the Hadamard
transformation, whose definition is well-known to be given recursively by defining Hð0Þ ¼ 1 and HðmÞ as

Hð2
nþ1Þ ¼

1ffiffiffi
2
p

Hð2
nÞ Hð2

nÞ

Hð2
nÞ �Hð2nÞ

 !
ð1Þ

Other definitions can be given, for instance, specifying the single matrix elements Hð2
nÞ

i; j ¼ 1
2n=2
ð�1Þ~i�~j, where the vectors

~i; ~j denote the usual binary representations of the matrix indexes ði; jÞ, or equivalently as a tensor product

Hð1Þ ¼ 1 Hð2Þ ¼
1ffiffiffi
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A first generalization is obtained by separately setting the transmissivities � of all beamsplitters and the phases of all
phase shifters in the layer s to be equal to a fixed value �s ¼ cos �s and �s, respectively. The general transformation in
this case has the form

Gð2
nÞ ¼

On
s¼1

cos �s ei�s sin �s

sin �s ei�s cos �s

 !
ð3Þ

It can be shown by directly expanding ð3Þ that the evolution closely resembles the structure of the most general
quantum transformation acting on the n-qubit separable state jxi ¼ jx0 x1 . . . xni in the Bloch sphere representation

jxi ¼ jx0 x1 . . . xni ! j i ¼
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k¼1
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�kðxÞ

2
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2
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which can be recast in a weighted superposition of the computational basis vector fjjig
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It is worth noting that, from the definitions above, also the QFT can be recovered [2, 14–16] by directly setting in ð4Þ or
ð5Þ all beamsplitters to be 50:50 (�k ¼ �=2) and all phases �kðxÞ to

~�ðQFTÞk ðxÞ ¼ 2�
Xn�k
s¼0

xn�s 2
kþs�n�1 ð7Þ

Depending on the dimension of the qFFT, a final relabeling of the output modes is necessary to recover the unitary
[2, 10].

Generalized Fast Quantum Transform

So far, parameters have been set with a certain degree of symmetry to retrieve the fast implementations of the
Hadamard and Fourier transformations over the optical modes. Relaxing the level of symmetry in the architecture, it
can be shown that the element Gð2

nÞ
i; j of the most general 2n-dimensional fast quantum transformation, implemented

using the BB decomposition, can be parametrized in ð�; �Þ as

Gð2
nÞ

i; j ¼
X2n
k1¼1

� � �
X2n

kn�1¼1

Yn
s¼1

Lðn;sÞks�1;ks
ð8Þ

where the factors Lðn;sÞks�1;ks
describe the action of the optical components connecting the modes ðks�1; ksÞ at the step s of

the 2n-dimensional interferometer. Each matrix Lðn;sÞ consists of a layer of 2n�1 beamsplitters Bðn;sÞks�1;ks
, placed between

the modes ðks�1; ksÞ, and 2n�1 phase shifters ei�ks ðn;sÞ placed on one of the two interacting modes ðks�1; ksÞ
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Lðn;sÞks�1;ks
¼ Bðn;sÞks�1;ks

ei�ks ðn;sÞ ð9Þ

having also absorbed the indexes i and j in k0 and kn respectively. Here, by denoting with �ðnÞs;ks the beamsplitters’
transmissivities on the mode ks, the generic matrix associated to the layer of beamsplitters has the form

Bðn;sÞks�1;ks
�

�ðnÞs;ks ks�1 ¼ ks

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ðnÞ2s;ks

q
ðks�1; ksÞ 2 fð�; �Þgðn;sÞ

0 otherwise

8>><
>>: ð10Þ

where, for a given layer s, fð�; �Þgðn;sÞ is the set of pairs of modes that have to interact for the fast implementation:

fð�; �Þgðn;sÞ ¼ fðaþ 2s b; aþ 2s bþ 2s�1Þg ð11Þ

with a 2 f1; . . . ; 2s�1g, b 2 f0; . . . ; 2n�s � 1g.
As an example (Fig. 1), the 8-dimensional qFFT can be obtained within the generalized fast architecture by setting all
beamsplitters to be 50:50 ð�ð3Þs;ks ¼

ffiffiffiffiffiffiffi
2�1
p

8 fk; sgÞ and by setting, for each layer s, the phase shifts �ksð3; sÞ to be
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Again, a final relabeling of the output modes is necessary to retrieve the correct form of the qFFT [10, 13].

Experimental Realization of a Fast QFT

Femtosecond laser writing technique for fast architectures. In [13], one first experimental realization of a
quantum walk implementing the qFFT has been reported as an effective platform for validating genuine quantum
interference with many-photon states. The implementation of the qFFT interferometer has been realized on a photonic
integrated platform by exploiting the 3-D capabilities of femtosecond laser writing technology [17, 18], which enables
the fabrication of quantum walks arranged in three-dimensional scalable architectures with arbitrary layouts [20–23].
Indeed, the integration of all beamsplitters and phase shifters into a monolithic structure leads to a fundamental increase
in the stability and scalability of the whole apparatus. Moreover, while various fabrication techniques exist for realizing
integrated photonic devices, femtosecond laser writing offers unique advantages thanks mainly to cost-effective ease of
production, low waveguides birefringence, control over the polarization and capability of engineering three-
dimensional architectures [19], which prove to be essential tools for the realization of photonic quantum walks.
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Fig. 1. a) Circuital scheme of the integrated interferometer implementing the 8-dimensional quantum fast Fourier transform over
the optical modes. Phase shifters are represented by pink squares, while blue segments on the waveguides represent the
directional couplers (the integrated equivalent of a beamsplitter). The architecture consists of a sequence of n steps, each
including one layer of phase shifters and one of beamsplitters. Additional swaps in the arrangement of the optical modes,
highlighted in this scheme, may be required for a more efficient fabrication process or to formally recover the desired
transformation. b) Three-dimensional integrated interferometer implementing the 8-dimensional qFFT, fabricated via
femtosecond laser writing technique [13]. c) Parametric description in ð�; �Þ of the optical components in the circuital
representation.
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Fabrication of the 3-D fast QFT. The 8-mode integrated interferometer reported in [13] was fabricated in
EAGLE2000 (Corning Inc.) boro-aluminosilicate glass chips. The inscription of the waveguides building up the
quantum walk was carried out by focusing laser pulses (300 fs duration, 1 MHz repetition rate and 220 nJ energy from
an Yb:KYW cavity dumped oscillator at 1030 nm) in the bulk of the glass with a 0.6 NA microscope objective. All
waveguides, single mode at 800 nm with about 0.5 dB cm�1 propagation losses along the structure, were placed nearly
170 mm under the sample surface. The length of each fan-in and fan-out section, required to bring the waveguides at a
distance of 127 mm, was 13.2 mm, while the cross-section of the 3-D interferometer was about 95 mm� 95 mm for a
length of 14.7 mm. The Fidelity between the ideal 8-mode quantum Fourier transform and the implemented
transformation, characterized via single and two-photon measurements at 785 nm, is F ¼ 0:9527� 0:0006, thus
proving the high quality of femtosecond laser writing technology for quantum walk applications.

Conclusions

We have presented a new class of fast transformations that can be realized by extending the algorithm of Barak and
Ben-Aryeh to more general photonic architectures. Following their algorithm, all fast transformations can be
experimentally implemented by properly concatenating linear-optical elements, specifically beamsplitters and phase
shifters. The class of generalized quantum walks arises from the parametrization of each optical component, thus
spanning the whole space of 2n-dimensional unitaries achievable with a given fast architecture. An operative recipe for
retrieving within this class the Hadamard transform and the quantum Fourier transform is also reported. Lastly, we have
discussed how this class of transformations can be efficiently implemented on a photonic platform, by employing the
femtosecond laser writing technique to inscribe any quantum walk in an interferometric integrated structure. Further
technological advances involving reconfigurable circuits may enable real time modifications in the unitary
implemented, thus paving the way for designing efficient transformations whose particular form depends on the
heralded photonic input state injected in the interferometer. Together, the approach represents a versatile tool for an
efficient realization of photonic quantum walks, for broader applications in quantum computation and quantum
information theory.
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